1
|
Sun SY, Nie L, Zhang J, Fang X, Luo H, Fu C, Wei Z, Tang AH. The interaction between KIF21A and KANK1 regulates dendritic morphology and synapse plasticity in neurons. Neural Regen Res 2025; 20:209-223. [PMID: 38767486 PMCID: PMC11246154 DOI: 10.4103/1673-5374.391301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 11/07/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00029/figure1/v/2024-05-14T021156Z/r/image-tiff Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory. Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1; however, whether KIF21A modulates dendritic structure and function in neurons remains unknown. In this study, we found that KIF21A was distributed in a subset of dendritic spines, and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines. Furthermore, the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity. Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching, and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1, but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1. Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals' cognitive abilities. Taken together, our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.
Collapse
Affiliation(s)
- Shi-Yan Sun
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
| | - Lingyun Nie
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- CAS Center for Excellence in Molecular Cell Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Jing Zhang
- Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xue Fang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Hongmei Luo
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
| | - Chuanhai Fu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- CAS Center for Excellence in Molecular Cell Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Zhiyi Wei
- Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ai-Hui Tang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Jaudon F, Cingolani LA. Unlocking mechanosensitivity: integrins in neural adaptation. Trends Cell Biol 2024; 34:1029-1043. [PMID: 38514304 DOI: 10.1016/j.tcb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Mechanosensitivity extends beyond sensory cells to encompass most neurons in the brain. Here, we explore recent research on the role of integrins, a diverse family of adhesion molecules, as crucial biomechanical sensors translating mechanical forces into biochemical and electrical signals in the brain. The varied biomechanical properties of neuronal integrins, including their force-dependent conformational states and ligand interactions, dictate their specific functions. We discuss new findings on how integrins regulate filopodia and dendritic spines, shedding light on their contributions to synaptic plasticity, and explore recent discoveries on how they engage with metabotropic receptors and ion channels, highlighting their direct participation in electromechanical transduction. Finally, to facilitate a deeper understanding of these developments, we present molecular and biophysical models of mechanotransduction.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; Center for Synaptic Neuroscience and Technology (NSYN), Fondazione Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy.
| |
Collapse
|
3
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
4
|
Zhang B, Hu YB, Li G, Yu HX, Cui C, Han YY, Li HX, Li G. Itga5-PTEN signaling regulates striatal synaptic strength and motor coordination in Parkinson's disease. Int J Biol Sci 2024; 20:3302-3316. [PMID: 38993558 PMCID: PMC11234218 DOI: 10.7150/ijbs.96116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Parkinson's disease (PD) is marked by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and cognitive dysfunctions. The molecular mechanisms underlying synaptic alterations in PD remain elusive, with a focus on the role of Itga5 in synaptic integrity and motor coordination and TAT-Itga5 was designed to suppress PTEN activity in this investigation. Methods: This study utilized MPTP-induced PD animal models to investigate the expression and role of Itga5 in the striatum. Techniques included quantitative PCR, Western blotting, immunostaining, CRISPR-CasRx-mediated knockdown, electrophysiological assays, behavioral tests, and mass spectrometry. Results: Itga5 expression was significantly reduced in MPTP-induced PD models. In these models, a marked decrease in dendritic spine density and a shift towards thinner spines in striatal GABA neurons were observed, suggesting impaired synaptic integration. Knockdown of Itga5 resulted in reduced dendritic branching, decreased mushroom spines, and increased thin spines, altering synaptic architecture. Electrophysiological analyses revealed changes in action potential and spontaneous excitatory postsynaptic currents, indicating altered synaptic transmission. Motor behavior assessments showed that Itga5 deficiency led to impairments in fine motor control and coordination. Furthermore, Itga5 was found to interact with PTEN, affecting AKT signaling crucial for synaptic development and motor coordination. Conclusion: The study demonstrates that Itga5 plays a critical role in maintaining synaptic integrity and motor coordination in PD. The Itga5-PTEN-AKT pathway represents a potential therapeutic target for addressing synaptic and motor dysfunctions in PD.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yong-Bo Hu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Gen Li
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 20040, China
| | - Hong-Xiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ying-Ying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hong-Xia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Righes Marafiga J, Calcagnotto ME. Electrophysiology of Dendritic Spines: Information Processing, Dynamic Compartmentalization, and Synaptic Plasticity. ADVANCES IN NEUROBIOLOGY 2023; 34:103-141. [PMID: 37962795 DOI: 10.1007/978-3-031-36159-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For many years, synaptic transmission was considered as information transfer between presynaptic neuron and postsynaptic cell. At the synaptic level, it was thought that dendritic arbors were only receiving and integrating all information flow sent along to the soma, while axons were primarily responsible for point-to-point information transfer. However, it is important to highlight that dendritic spines play a crucial role as postsynaptic components in central nervous system (CNS) synapses, not only integrating and filtering signals to the soma but also facilitating diverse connections with axons from many different sources. The majority of excitatory connections from presynaptic axonal terminals occurs on postsynaptic spines, although a subset of GABAergic synapses also targets spine heads. Several studies have shown the vast heterogeneous morphological, biochemical, and functional features of dendritic spines related to synaptic processing. In this chapter (adding to the relevant data on the biophysics of spines described in Chap. 1 of this book), we address the up-to-date functional dendritic characteristics assessed through electrophysiological approaches, including backpropagating action potentials (bAPs) and synaptic potentials mediated in dendritic and spine compartmentalization, as well as describing the temporal and spatial dynamics of glutamate receptors in the spines related to synaptic plasticity.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Fell CW, Hagelkruys A, Cicvaric A, Horrer M, Liu L, Li JSS, Stadlmann J, Polyansky AA, Mereiter S, Tejada MA, Kokotović T, Achuta VS, Scaramuzza A, Twyman KA, Morrow MM, Juusola J, Yan H, Wang J, Burmeister M, Choudhury B, Andersen TL, Wirnsberger G, Holmskov U, Perrimon N, Žagrović B, Monje FJ, Moeller JB, Penninger JM, Nagy V. FIBCD1 is an endocytic GAG receptor associated with a novel neurodevelopmental disorder. EMBO Mol Med 2022; 14:e15829. [PMID: 35916241 PMCID: PMC9449597 DOI: 10.15252/emmm.202215829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Whole-exome sequencing of two patients with idiopathic complex neurodevelopmental disorder (NDD) identified biallelic variants of unknown significance within FIBCD1, encoding an endocytic acetyl group-binding transmembrane receptor with no known function in the central nervous system. We found that FIBCD1 preferentially binds and endocytoses glycosaminoglycan (GAG) chondroitin sulphate-4S (CS-4S) and regulates GAG content of the brain extracellular matrix (ECM). In silico molecular simulation studies and GAG binding analyses of patient variants determined that such variants are loss-of-function by disrupting FIBCD1-CS-4S association. Gene knockdown in flies resulted in morphological disruption of the neuromuscular junction and motor-related behavioural deficits. In humans and mice, FIBCD1 is expressed in discrete brain regions, including the hippocampus. Fibcd1 KO mice exhibited normal hippocampal neuronal morphology but impaired hippocampal-dependent learning. Further, hippocampal synaptic remodelling in acute slices from Fibcd1 KO mice was deficient but restored upon enzymatically modulating the ECM. Together, we identified FIBCD1 as an endocytic receptor for GAGs in the brain ECM and a novel gene associated with an NDD, revealing a critical role in nervous system structure, function and plasticity.
Collapse
Affiliation(s)
- Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Astrid Hagelkruys
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaViennaAustria
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Marion Horrer
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Lucy Liu
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Joshua Shing Shun Li
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Johannes Stadlmann
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Institute of BiochemistryUniversity of Natural Resource and Life SciencesViennaAustria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max Perutz LabsUniversity of ViennaViennaAustria
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Stefan Mereiter
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Miguel Angel Tejada
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Research Unit on Women's Health‐Institute of Health Research INCLIVAValenciaSpain
| | - Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Venkat Swaroop Achuta
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Angelica Scaramuzza
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | | | | | | | - Huifang Yan
- Department of PediatricsPeking University First HospitalBeijingChina
- Joint International Research Center of Translational and Clinical ResearchBeijingChina
| | - Jingmin Wang
- Department of PediatricsPeking University First HospitalBeijingChina
- Joint International Research Center of Translational and Clinical ResearchBeijingChina
| | - Margit Burmeister
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMIUSA
- Departments of Computational Medicine & Bioinformatics, Psychiatry and Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Biswa Choudhury
- Department of Cellular and Molecular MedicineUCSDLa JollaCAUSA
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of PathologyOdense University HospitalOdenseDenmark
- Pathology Research Unit, Department of Clinical Research and Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Gerald Wirnsberger
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Apeiron Biologics AG, Vienna BioCenter CampusViennaAustria
| | - Uffe Holmskov
- Cancer and Inflammation Research, Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Bojan Žagrović
- Department of Structural and Computational Biology, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Jesper Bonnet Moeller
- Cancer and Inflammation Research, Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Danish Institute for Advanced StudyUniversity of Southern DenmarkOdenseDenmark
| | - Josef M Penninger
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Department of Medical Genetics, Life Science InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| |
Collapse
|
7
|
Shiosaka S. Kallikrein 8: A key sheddase to strengthen and stabilize neural plasticity. Neurosci Biobehav Rev 2022; 140:104774. [PMID: 35820483 DOI: 10.1016/j.neubiorev.2022.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Neural networks are modified and reorganized throughout life, even in the matured brain. Synapses in the networks form, change, or disappear dynamically in the plasticity state. The pre- and postsynaptic signaling, transmission, and structural dynamics have been studied considerably well. However, not many studies have shed light on the events in the synaptic cleft and intercellular space. Neural activity-dependent protein shedding is a phenomenon in which (1) presynaptic excitation evokes secretion or activation of sheddases, (2) sheddases are involved not only in cleavage of membrane- or matrix-bound proteins but also in mechanical modulation of cell-to-cell connectivity, and (3) freed activity domains of protein factors play a role in receptor-mediated or non-mediated biological actions. Kallikrein 8/neuropsin (KLK8) is a kallikrein family serine protease rich in the mammalian limbic brain. Accumulated evidence has suggested that KLK8 is an important modulator of neural plasticity and consequently, cognition. Insufficiency, as well as excess of KLK8 may have detrimental effects on limbic functions.
Collapse
Affiliation(s)
- Sadao Shiosaka
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Miyanosaka 3-16-21, Hirakata-shi, Osaka 573-0022, Japan.
| |
Collapse
|
8
|
Riccardi S, Cingolani LA, Jaudon F. CRISPR-Mediated Activation of αV Integrin Subtypes Promotes Neuronal Differentiation of Neuroblastoma Neuro2a Cells. Front Genome Ed 2022; 4:846669. [PMID: 35498157 PMCID: PMC9039181 DOI: 10.3389/fgeed.2022.846669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal differentiation is a complex process whose dysfunction can lead to brain disorders. The development of new tools to target specific steps in the neuronal differentiation process is of paramount importance for a better understanding of the molecular mechanisms involved, and ultimately for developing effective therapeutic strategies for neurodevelopmental disorders. Through their interactions with extracellular matrix proteins, the cell adhesion molecules of the integrin family play essential roles in the formation of functional neuronal circuits by regulating cell migration, neurite outgrowth, dendritic spine formation and synaptic plasticity. However, how different integrin receptors contribute to the successive phases of neuronal differentiation remains to be elucidated. Here, we implemented a CRISPR activation system to enhance the endogenous expression of specific integrin subunits in an in vitro model of neuronal differentiation, the murine neuroblastoma Neuro2a cell line. By combining CRISPR activation with morphological and RT-qPCR analyses, we show that integrins of the αV family are powerful inducers of neuronal differentiation. Further, we identify a subtype-specific role for αV integrins in controlling neurite outgrowth. While αVβ3 integrin initiates neuronal differentiation of Neuro2a cells under proliferative conditions, αVβ5 integrin appears responsible for promoting a complex arborization in cells already committed to differentiation. Interestingly, primary neurons exhibit a complementary expression pattern for β3 and β5 integrin subunits during development. Our findings reveal the existence of a developmental switch between αV integrin subtypes during differentiation and suggest that a timely controlled modulation of the expression of αV integrins by CRISPRa provides a means to promote neuronal differentiation.
Collapse
Affiliation(s)
- Sara Riccardi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Lorenzo A. Cingolani
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia (IIT), Genoa, Italy
- *Correspondence: Lorenzo A. Cingolani, ; Fanny Jaudon,
| | - Fanny Jaudon
- Department of Life Sciences, University of Trieste, Trieste, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- *Correspondence: Lorenzo A. Cingolani, ; Fanny Jaudon,
| |
Collapse
|
9
|
Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post-Mortem Brain of Schizophrenia, Parkinson's and Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23031539. [PMID: 35163460 PMCID: PMC8835961 DOI: 10.3390/ijms23031539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin-binding protein cyclase-associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post-mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non-psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson’s and Alzheimer’s disease. Interestingly, also in Parkinson’s disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies.
Collapse
|
10
|
Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021; 12:100089. [PMID: 34786551 PMCID: PMC8579148 DOI: 10.1016/j.mbplus.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
Collapse
Affiliation(s)
- Sarah J. Hernandez
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna Fote
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea M. Reyes-Ortiz
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S. Steffan
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
11
|
Dionne O, Corbin F. A new strategy to uncover fragile X proteomic biomarkers using the nascent proteome of peripheral blood mononuclear cells (PBMCs). Sci Rep 2021; 11:15148. [PMID: 34312401 PMCID: PMC8313568 DOI: 10.1038/s41598-021-94027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent inherited cause of intellectual disabilities and autism spectrum disorders. FXS result from the loss of expression of the FMRP protein, an RNA-binding protein that regulates the expression of key synaptic effectors. FXS is also characterized by a wide array of behavioural, cognitive and metabolic impairments. The severity and penetrance of those comorbidities are extremely variable, meaning that a considerable phenotypic heterogeneity is found among fragile X individuals. Unfortunately, clinicians currently have no tools at their disposal to assay a patient prognosis upon diagnosis. Since the absence of FMRP was repeatedly associated with an aberrant protein synthesis, we decided to study the nascent proteome in order to screen for potential proteomic biomarkers of FXS. We used a BONCAT (Biorthogonal Non-canonical Amino Acids Tagging) method coupled to label-free mass spectrometry to purify and quantify nascent proteins of peripheral blood mononuclear cells (PBMCs) from 7 fragile X male patients and 7 age-matched controls. The proteomic analysis identified several proteins which were either up or downregulated in PBMCs from FXS individuals. Eleven of those proteins were considered as potential biomarkers, of which 5 were further validated by Western blot. The gene ontology enrichment analysis highlighted molecular pathways that may contribute to FXS physiopathology. Our results suggest that the nascent proteome of PBMCs is well suited for the discovery of FXS biomarkers.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.
| | - François Corbin
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.
| |
Collapse
|
12
|
Jaudon F, Thalhammer A, Cingolani LA. Integrin adhesion in brain assembly: From molecular structure to neuropsychiatric disorders. Eur J Neurosci 2020; 53:3831-3850. [PMID: 32531845 DOI: 10.1111/ejn.14859] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Integrins are extracellular matrix receptors that mediate biochemical and mechanical bi-directional signals between the extracellular and intracellular environment of a cell thanks to allosteric conformational changes. In the brain, they are found in both neurons and glial cells, where they play essential roles in several aspects of brain development and function, such as cell migration, axon guidance, synaptogenesis, synaptic plasticity and neuro-inflammation. Although there are many successful examples of how regulating integrin adhesion and signaling can be used for therapeutic purposes, for example for halting tumor progression, this is not the case for the brain, where the growing evidence of the importance of integrins for brain pathophysiology has not translated yet into medical applications. Here, we review recent literature showing how alterations in integrin structure, expression and signaling may be involved in the etiology of autism spectrum disorder, epilepsy, schizophrenia, addiction, depression and Alzheimer's disease. We focus on common mechanisms and recurrent signaling pathways, trying to bridge studies on the genetics and molecular structure of integrins with those on synaptic physiology and brain pathology. Further, we discuss integrin-targeting strategies and their potential benefits for therapeutic purposes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
13
|
Osteopontin and Integrin Mediated Modulation of Post-Synapses in HIV Envelope Glycoprotein Exposed Hippocampal Neurons. Brain Sci 2020; 10:brainsci10060346. [PMID: 32512754 PMCID: PMC7349055 DOI: 10.3390/brainsci10060346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 01/13/2023] Open
Abstract
The advent of Human Immunodeficiency Virus (HIV) antiretrovirals have reduced the severity of HIV related neurological comorbidities but they nevertheless remain prevalent. Synaptic degeneration due to the action of several viral factors released from infected brain myeloid and glia cells and inflammatory cytokines has been attributed to the manifestation of a range of cognitive and behavioral deficits. The contributions of specific pro-inflammatory factors and their interplay with viral factors in the setting of treatment and persistence are incompletely understood. Exposure of neurons to chemokine receptor-4(CXCR4)-tropic HIV-1 envelope glycoprotein (Env) can lead to post-synaptic degradation of dendritic spines. The contribution of members of the extracellular matrix (ECM) and specifically, of perineuronal nets (PNN) toward synaptic degeneration, is not fully known, even though these structures are found to be disrupted in post-mortem HIV-infected brains. Osteopontin (Opn, gene name SPP1), a cytokine-like protein, is found in abundance in the HIV-infected brain. In this study, we investigated the role of Opn and its ECM integrin receptors, β1- and β3 integrin in modifying neuronal synaptic sculpting. We found that in hippocampal neurons incubated with HIV-1 Env protein and recombinant Opn, post-synaptic-95 (PSD-95) puncta were significantly increased and distributed to dendritic spines when compared to Env-only treated neurons. This effect was mediated through β3 integrin, as silencing of this receptor abrogated the increase in post-synaptic spines. Silencing of β1 integrin, however, did not block the increase of post-synaptic spines in hippocampal cultures treated with Opn. However, a decrease in the PNN to βIII-tubulin ratio was found, indicating an increased capacity to support spine growth. From these results, we conclude that one of the mechanisms by which Opn counters the damaging impact of the HIV Env protein on hippocampal post-synaptic plasticity is through complex interactions between Opn and components of the ECM which activate downstream protective signaling pathways that help maintain the potential for effective post-synaptic plasticity.
Collapse
|
14
|
Adamatzky A, Schnauß J, Huber F. Actin droplet machine. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191135. [PMID: 31903204 PMCID: PMC6936293 DOI: 10.1098/rsos.191135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/04/2019] [Indexed: 05/06/2023]
Abstract
The actin droplet machine is a computer model of a three-dimensional network of actin bundles developed in a droplet of a physiological solution, which implements mappings of sets of binary strings. The actin bundle network is conductive to travelling excitations, i.e. impulses. The machine is interfaced with an arbitrary selected set of k electrodes through which stimuli, binary strings of length k represented by impulses generated on the electrodes, are applied and responses are recorded. The responses are recorded in a form of impulses and then converted to binary strings. The machine's state is a binary string of length k: if there is an impulse recorded on the ith electrode, there is a '1' in the ith position of the string, and '0' otherwise. We present a design of the machine and analyse its state transition graphs. We envisage that actin droplet machines could form an elementary processor of future massive parallel computers made from biopolymers.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Laboratory, Department of Computer Science, University of the West of England, Bristol, UK
| | - Jörg Schnauß
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany & Fraunhofer Institute for Cell Therapy and Immunology (IZI), DNA Nanodevices Unit, Leipzig, Germany
| | - Florian Huber
- Netherlands eScience Center, Science Park 140, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
15
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
16
|
Harris RM, Kao HY, Alarcon JM, Hofmann HA, Fenton AA. Hippocampal transcriptomic responses to enzyme-mediated cellular dissociation. Hippocampus 2019; 29:876-882. [PMID: 31087609 DOI: 10.1002/hipo.23095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 11/08/2022]
Abstract
Single-neuron gene expression studies may be especially important for understanding nervous system structure and function because of the neuron-specific functionality and plasticity that defines functional neural circuits. Cellular dissociation is a prerequisite technical manipulation for single-cell and single cell-population studies, but the extent to which the cellular dissociation process affects neural gene expression has not been determined. This information is necessary for interpreting the results of experimental manipulations that affect neural function such as learning and memory. The goal of this research was to determine the impact of cellular dissociation on brain transcriptomes. We compared gene expression of microdissected samples from the dentate gyrus (DG), CA3, and CA1 subfields of the mouse hippocampus either prepared by a standard tissue homogenization protocol or subjected to enzymatic digestion used to dissociate cells within tissues. We report that compared to homogenization, enzymatic dissociation alters about 350 genes or 2% of the hippocampal transcriptome. While only a few genes canonically implicated in long-term potentiation and fear memory change expression levels in response to the dissociation procedure, these data indicate that sample preparation can affect gene expression profiles, which might confound interpretation of results depending on the research question. This study is important for the investigation of any complex tissues as research effort moves from subfield level analysis to single cell analysis of gene expression.
Collapse
Affiliation(s)
- Rayna M Harris
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Hsin-Yi Kao
- Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, Massachusetts.,Center for Neural Science, New York University, New York, New York
| | - Juan Marcos Alarcon
- Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Hans A Hofmann
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - André A Fenton
- Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, Massachusetts.,Center for Neural Science, New York University, New York, New York.,The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, New York.,Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.,Neuroscience Institute at the New York University Langone Medical Center, New York University, New York, New York
| |
Collapse
|
17
|
Perez DR, Sklar LA, Chigaev A. Clioquinol: To harm or heal. Pharmacol Ther 2019; 199:155-163. [PMID: 30898518 DOI: 10.1016/j.pharmthera.2019.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Clioquinol, one of the first mass-produced drugs, was considered safe and efficacious for many years. It was used as an antifungal and an antiprotozoal drug until it was linked to an outbreak of subacute myelo-optic neuropathy (SMON), a debilitating disease almost exclusively confined to Japan. Today, new information regarding clioquinol targets and its mechanism of action, as well as genetic variation (SNPs) in efflux transporters in the Japanese population, provide a unique interpretation of the existing phenomena. Further understanding of clioquinol's role in the inhibition of cAMP efflux and promoting apoptosis might offer promise for the treatment of cancer and/or neurodegenerative diseases. Here, we highlight recent developments in the field and discuss possible connections, hypotheses and perspectives in clioquinol-related research.
Collapse
Affiliation(s)
- Dominique R Perez
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Larry A Sklar
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Alexandre Chigaev
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
18
|
Seo EJ, Klauck SM, Efferth T, Panossian A. Adaptogens in chemobrain (Part I): Plant extracts attenuate cancer chemotherapy-induced cognitive impairment - Transcriptome-wide microarray profiles of neuroglia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:80-91. [PMID: 30668446 DOI: 10.1016/j.phymed.2018.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer chemotherapy-induced cognitive impairments are presumably associated with undesirable effects of chemotherapy on physiological functions of brain cells. Adaptogens are natural compounds or plant extracts increasing an organism's adaptability and survival in stress. They exhibited neuroprotective effects and increased cognitive functions in clinical studies in human beings. HYPOTHESIS We hypothesized that selected adaptogenic plant extracts attenuate or prevent cancer chemotherapy-induced cognitive impairments. AIM We assessed the effects of selected adaptogenic herbal extracts on FEC (fixed combination 5-fluorouracil, epirubicin and cyclophosphamide) induced changes in transcriptome-wide RNA microarray profiles of neuroglia cells. The aim of the study was to predict potential effects of andrographolide, Andrographis herb, Eleutherococcus root genuine extracts, their fixed combination (AE) and the combination of Rhodiola roots, Schisandra berries and Eleutherococcus roots (RSE) on cellular and physiological, mostly cognitive functions. METHODS Gene expression profiling was performed by transcriptome-wide mRNA microarray in the human T98G neuroglia cells after treatment with adaptogens. Interactive pathways downstream analysis was performed with data sets of significantly up- or down-regulated genes and predicted effects on cellular functions and diseases were identified by Ingenuity IPA database software. RESULTS FEC deregulated 67 genes involved in decrease of neuronal development, 37 genes involved in development of the sensory system, 12 genes in extension of axons, and 3 genes in migration of neurons. Co-incubation with Andrographis paniculata (AP) suppressed FEC-induced deregulation of a large number of genes involved in predicted activation of neuronal death and inhibition of neurogenesis, and 16 genes related to inhibition of several functions in the nervous system. Co-incubation with AE suppressed FEC-induced deregulation of a number of genes involved in predicted inhibition of axon extension, migration of T98G neuroglia cells, conduction of nerves and other genes related to regulations of some other functions in the nervous system. CONCLUSION Application of cytostatic drugs in combination with apoptogenic plant extracts induced significant changes in transcriptome-wide mRNA microarray profiles of neuroglial cells. These changes indicate on potential beneficial effects on neuronal functions associated with mild cognitive impairments in cancer chemotherapy.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460 Heidelberg 69120, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| | - Alexander Panossian
- EuroPharma USA Inc., 955 Challenger Dr., Green Bay, Wisconsin 54311 United States; Phytomed AB, Vaxtorp, Sweden.
| |
Collapse
|
19
|
Krasovska V, Doering LC. Regulation of IL-6 Secretion by Astrocytes via TLR4 in the Fragile X Mouse Model. Front Mol Neurosci 2018; 11:272. [PMID: 30123107 PMCID: PMC6085486 DOI: 10.3389/fnmol.2018.00272] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/17/2018] [Indexed: 01/15/2023] Open
Abstract
Fragile X syndrome (FXS) is identified by abnormal dendrite morphology and altered synaptic protein expression. Astrocyte secreted factors such as Tenascin C (TNC), may contribute to the synaptic changes, including maturation of the synapse. TNC is a known endogenous ligand of toll-like receptor 4 (TLR4) that has been shown to induce the expression of pro-inflammatory cytokines such as interleukin-6 (IL-6). At the molecular level, elevated IL-6 promotes excitatory synapse formation and increases dendrite spine length. With these molecular changes linked to the phenotype of FXS, we examined the expression and the mechanism of the endogenous TLR4 activator TNC, and its downstream target IL-6 in astrocytes from the Fragile X Mental Retardation 1 (FMR1) knockout (KO) mouse model. Secreted TNC and IL-6 were significantly increased in FMR1 KO astrocytes. Addition of TNC and lipopolysaccharide (LPS) induced IL-6 secretion, whereas the antagonist of TLR4 (LPS-RS) had an opposing effect. Cortical protein expression of TNC and IL-6 were also significantly elevated in the postnatal FMR1 KO mouse. In addition, there was an increase in the number of vesicular glutamate transporter 1 (VGLUT1)/post synaptic density protein 95 (PSD95) positive synaptic puncta of both wild-type (WT) and FMR1 KO neurons when plated with astrocyte conditioned media (ACM) from FMR1 KO astrocytes, compared to those plated with media from wild type astrocytes. By assessing the cellular mechanisms involved, a novel therapeutic option could be made available to target abnormalities of synaptic function seen in FXS.
Collapse
Affiliation(s)
| | - Laurie C. Doering
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
21
|
Abstract
The formation of correct synaptic structures and neuronal connections is paramount for normal brain development and a functioning adult brain. The integrin family of cell adhesion receptors and their ligands play essential roles in the control of several processes regulating neuronal connectivity - including neurite outgrowth, the formation and maintenance of synapses, and synaptic plasticity - that are affected in neurodevelopmental disorders, such as autism spectrum disorders (ASDs) and schizophrenia. Many ASD- and schizophrenia-associated genes are linked to alterations in the genetic code of integrins and associated signalling pathways. In non-neuronal cells, crosstalk between integrin-mediated adhesions and the actin cytoskeleton, and the regulation of integrin activity (affinity for extracellular ligands) are widely studied in healthy and pathological settings. In contrast, the roles of integrin-linked pathways in the central nervous system remains less well defined. In this Review, we will provide an overview of the known pathways that are regulated by integrin-ECM interaction in developing neurons and in adult brain. We will also describe recent advances in the identification of mechanisms that regulate integrin activity in neurons, and highlight the interesting emerging links between integrins and neurodevelopment.
Collapse
Affiliation(s)
- Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland .,Department of Biochemistry, University of Turku, FIN-20500 Turku, Finland
| |
Collapse
|
22
|
Wang Q, Han TH, Nguyen P, Jarnik M, Serpe M. Tenectin recruits integrin to stabilize bouton architecture and regulate vesicle release at the Drosophila neuromuscular junction. eLife 2018; 7:35518. [PMID: 29901439 PMCID: PMC6040883 DOI: 10.7554/elife.35518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/13/2018] [Indexed: 11/15/2022] Open
Abstract
Assembly, maintenance and function of synaptic junctions depend on extracellular matrix (ECM) proteins and their receptors. Here we report that Tenectin (Tnc), a Mucin-type protein with RGD motifs, is an ECM component required for the structural and functional integrity of synaptic specializations at the neuromuscular junction (NMJ) in Drosophila. Using genetics, biochemistry, electrophysiology, histology and electron microscopy, we show that Tnc is secreted from motor neurons and striated muscles and accumulates in the synaptic cleft. Tnc selectively recruits αPS2/βPS integrin at synaptic terminals, but only the cis Tnc/integrin complexes appear to be biologically active. These complexes have distinct pre- and postsynaptic functions, mediated at least in part through the local engagement of the spectrin-based membrane skeleton: the presynaptic complexes control neurotransmitter release, while postsynaptic complexes ensure the size and architectural integrity of synaptic boutons. Our study reveals an unprecedented role for integrin in the synaptic recruitment of spectrin-based membrane skeleton. Nerve cells or neurons can communicate with each other by releasing chemical messengers into the gap between them, the synapse. Both neurons and synapses are surrounded by a network of proteins called the extracellular matrix, which anchors, protects and supports the synapse. The matrix also helps to regulate the dynamic communication across the synapses and consequently neurons. Little is known about the proteins of the extracellular matrix, in particular about the ones involved in structural support. This is especially important for the so-called neuromuscular junctions, where neurons stimulate muscle contraction and trigger vigorous movement. Receptor proteins on cell surfaces, such as integrins, can bind to the extracellular matrix proteins to anchor the cells and are important for all cell junctions, including synaptic junctions. But because of their many essential roles during development, it was unclear how integrins modulate the activity of the synapse. To investigate this further, Wang et al. studied the neuromuscular junctions of fruit flies. The experiments revealed that both muscle and neurons secrete a large protein called Tenectin, which accumulates into the small space between the neuron and the muscle, the synaptic cleft. This protein can bind to integrin and is necessary to support the neuromuscular junction structurally and functionally. Wang et al. discovered that Tenectin works by gathering integrins on the surface of the neuron and the muscle. In the neuron, Tenectin forms complexes with integrin to regulate the release of neurotransmitters. In the muscle, the complexes provide support to the synaptic structures. However, when Tenectin was experimentally removed, it only disrupted the integrins at the neuromuscular junction, without affecting integrins in other regions of the cells, such as the site where the muscle uses integrins to attach to the tendon. Moreover, without Tenectin an important intracellular scaffolding meshwork that lines up and reinforces cell membranes was no longer organized properly at the synapse. A next step will be to identify the missing components between Tenectin/integrin complexes on the surface of neurons and the neurotransmitter release machinery inside the cells. The extracellular matrix and its receptors play fundamental roles in the development and function of the nervous system. A better knowledge of the underlying mechanisms will help us to better understand the complex interplay between the synapse and the extracellular matrix.
Collapse
Affiliation(s)
- Qi Wang
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Peter Nguyen
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michal Jarnik
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
23
|
Chelini G, Pantazopoulos H, Durning P, Berretta S. The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia. Eur Psychiatry 2018; 50:60-69. [PMID: 29503098 PMCID: PMC5963512 DOI: 10.1016/j.eurpsy.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Growing evidence points to synaptic pathology as a core component of the pathophysiology of schizophrenia (SZ). Significant reductions of dendritic spine density and altered expression of their structural and molecular components have been reported in several brain regions, suggesting a deficit of synaptic plasticity. Regulation of synaptic plasticity is a complex process, one that requires not only interactions between pre- and post-synaptic terminals, but also glial cells and the extracellular matrix (ECM). Together, these elements are referred to as the ‘tetrapartite synapse’, an emerging concept supported by accumulating evidence for a role of glial cells and the extracellular matrix in regulating structural and functional aspects of synaptic plasticity. In particular, chondroitin sulfate proteoglycans (CSPGs), one of the main components of the ECM, have been shown to be synthesized predominantly by glial cells, to form organized perisynaptic aggregates known as perineuronal nets (PNNs), and to modulate synaptic signaling and plasticity during postnatal development and adulthood. Notably, recent findings from our group and others have shown marked CSPG abnormalities in several brain regions of people with SZ. These abnormalities were found to affect specialized ECM structures, including PNNs, as well as glial cells expressing the corresponding CSPGs. The purpose of this review is to bring forth the hypothesis that synaptic pathology in SZ arises from a disruption of the interactions between elements of the tetrapartite synapse.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA.
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Ave., Boston, MA, 02115 USA.
| |
Collapse
|
24
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
25
|
The Gain-of-Function Integrin β3 Pro33 Variant Alters the Serotonin System in the Mouse Brain. J Neurosci 2017; 37:11271-11284. [PMID: 29038237 DOI: 10.1523/jneurosci.1482-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin β3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, PlA2) produces hyperactive αvβ3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvβ3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvβ3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvβ3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders.SIGNIFICANCE STATEMENT The integrin β3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin β3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine integrin β3 recapitulates the sex-dependent neurochemical and behavioral attributes of ASD. Using state-of-the-art techniques, we show that presynaptic 5-HT function is altered in these mice, and that the localization of 5-HT transporters to specific compartments within the synapse, disrupted by the integrin β3 Pro33 mutation, is critical for appropriate reuptake of 5-HT. Our studies provide fundamental insight into the genetic network regulating 5-HT neurotransmission in the CNS that is also associated with ASD risk.
Collapse
|
26
|
Hoxha E, Lippiello P, Scelfo B, Tempia F, Ghirardi M, Miniaci MC. Maturation, Refinement, and Serotonergic Modulation of Cerebellar Cortical Circuits in Normal Development and in Murine Models of Autism. Neural Plast 2017; 2017:6595740. [PMID: 28894610 PMCID: PMC5574313 DOI: 10.1155/2017/6595740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
- Department of Neuroscience, University of Torino, Torino, Italy
| | | | - Bibiana Scelfo
- Department of Neuroscience, University of Torino, Torino, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
- Department of Neuroscience, University of Torino, Torino, Italy
- National Institute of Neuroscience (INN), Torino, Italy
| | | | | |
Collapse
|
27
|
Activity-Induced Synaptic Structural Modifications by an Activator of Integrin Signaling at the Drosophila Neuromuscular Junction. J Neurosci 2017; 37:3246-3263. [PMID: 28219985 DOI: 10.1523/jneurosci.3128-16.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 11/21/2022] Open
Abstract
Activity-induced synaptic structural modification is crucial for neural development and synaptic plasticity, but the molecular players involved in this process are not well defined. Here, we report that a protein named Shriveled (Shv) regulates synaptic growth and activity-dependent synaptic remodeling at the Drosophila neuromuscular junction. Depletion of Shv causes synaptic overgrowth and an accumulation of immature boutons. We find that Shv physically and genetically interacts with βPS integrin. Furthermore, Shv is secreted during intense, but not mild, neuronal activity to acutely activate integrin signaling, induce synaptic bouton enlargement, and increase postsynaptic glutamate receptor abundance. Consequently, loss of Shv prevents activity-induced synapse maturation and abolishes post-tetanic potentiation, a form of synaptic plasticity. Our data identify Shv as a novel trans-synaptic signal secreted upon intense neuronal activity to promote synapse remodeling through integrin receptor signaling.SIGNIFICANCE STATEMENT The ability of neurons to rapidly modify synaptic structure in response to neuronal activity, a process called activity-induced structural remodeling, is crucial for neuronal development and complex brain functions. The molecular players that are important for this fundamental biological process are not well understood. Here we show that the Shriveled (Shv) protein is required during development to maintain normal synaptic growth. We further demonstrate that Shv is selectively released during intense neuronal activity, but not mild neuronal activity, to acutely activate integrin signaling and trigger structural modifications at the Drosophila neuromuscular junction. This work identifies Shv as a key modulator of activity-induced structural remodeling and suggests that neurons use distinct molecular cues to differentially modulate synaptic growth and remodeling to meet synaptic demand.
Collapse
|
28
|
Aguilar-Cuenca R, Llorente-Gonzalez C, Vicente C, Vicente-Manzanares M. Microfilament-coordinated adhesion dynamics drives single cell migration and shapes whole tissues. F1000Res 2017; 6:160. [PMID: 28299195 PMCID: PMC5321130 DOI: 10.12688/f1000research.10356.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/26/2022] Open
Abstract
Cell adhesion to the substratum and/or other cells is a crucial step of cell migration. While essential in the case of solitary migrating cells (for example, immune cells), it becomes particularly important in collective cell migration, in which cells maintain contact with their neighbors while moving directionally. Adhesive coordination is paramount in physiological contexts (for example, during organogenesis) but also in pathology (for example, tumor metastasis). In this review, we address the need for a coordinated regulation of cell-cell and cell-matrix adhesions during collective cell migration. We emphasize the role of the actin cytoskeleton as an intracellular integrator of cadherin- and integrin-based adhesions and the emerging role of mechanics in the maintenance, reinforcement, and turnover of adhesive contacts. Recent advances in understanding the mechanical regulation of several components of cadherin and integrin adhesions allow us to revisit the adhesive clutch hypothesis that controls the degree of adhesive engagement during protrusion. Finally, we provide a brief overview of the major impact of these discoveries when using more physiological three-dimensional models of single and collective cell migration.
Collapse
Affiliation(s)
- Rocio Aguilar-Cuenca
- Universidad Autonoma de Madrid School of Medicine, Madrid, Spain; Instituto de Investigacion Sanitaria Hospital Universitario de la Princesa, Madrid, Spain
| | - Clara Llorente-Gonzalez
- Universidad Autonoma de Madrid School of Medicine, Madrid, Spain; Instituto de Investigacion Sanitaria Hospital Universitario de la Princesa, Madrid, Spain
| | - Carlos Vicente
- Team of Cell Interactions in Plant Symbiosis, Faculty of Biology, Complutense University, Madrid, Spain
| | - Miguel Vicente-Manzanares
- Universidad Autonoma de Madrid School of Medicine, Madrid, Spain; Team of Cell Interactions in Plant Symbiosis, Faculty of Biology, Complutense University, Madrid, Spain
| |
Collapse
|
29
|
Gulisano W, Bizzoca A, Gennarini G, Palmeri A, Puzzo D. Role of the adhesion molecule F3/Contactin in synaptic plasticity and memory. Mol Cell Neurosci 2016; 81:64-71. [PMID: 28038945 DOI: 10.1016/j.mcn.2016.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Cell adhesion molecules (CAMs) have a pivotal role in building and maintaining synaptic structures during brain development participating in axonal elongation and pathfinding, glial guidance of neuronal migration, as well as myelination. CAMs expression persists in the adult brain particularly in structures undergoing postnatal neurogenesis and involved in synaptic plasticity and memory as the hippocampus. Among the neural CAMs, we have recently focused on F3/Contactin, a glycosylphosphatidyl inositol-anchored glycoprotein belonging to the immunoglobulin superfamily, involved in neuronal development, synaptic maintenance and organization of neuronal networks. Here, we discuss our recent data suggesting that F3/Contactin exerts a role in hippocampal synaptic plasticity and memory in adult and aged mice. In particular, we have studied long-term potentiation (LTP), spatial and object recognition memory, and phosphorylation of the transcription factor cAMP-Responsive-Element Binding protein (CREB) in a transgenic mouse model of F3/Contactin overexpression. We also investigated whether F3/Contactin might influence neuronal apoptosis and the production of amyloid-beta peptide (Aβ), known to be one of the main pathogenetic hallmarks of Alzheimer's disease (AD). In conclusion, a further understanding of F3/Contactin role in synaptic plasticity and memory might have interesting clinical outcomes in cognitive disorders, such as aging and AD, offering innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Walter Gulisano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Bizzoca
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Gianfranco Gennarini
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Agostino Palmeri
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Daniela Puzzo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
30
|
Abstract
Integrins are a large family of extracellular matrix (ECM) receptors. In the developing and adult brain, many integrins are present at high levels at synapses. The tetrapartite structure of synapses - which comprises presynaptic and postsynaptic neurons, the ECM and glial processes - places synaptic integrins in an excellent position to sense dynamic changes in the synaptic environment and use this information to coordinate further changes in synapse structure and function that will shape neural circuit properties. Recent developments in our understanding of the cellular and physiological roles of integrins, which range from control of neural process outgrowth and synapse formation to regulation of synaptic plasticity and memory, enable us to attempt a synthesis of synaptic integrin function.
Collapse
|
31
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
32
|
Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins. PLoS One 2016; 11:e0158558. [PMID: 27518800 PMCID: PMC4982633 DOI: 10.1371/journal.pone.0158558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/19/2016] [Indexed: 02/02/2023] Open
Abstract
Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling.
Collapse
|
33
|
González-Castillo C, Ortuño-Sahagún D, Guzmán-Brambila C, Márquez-Aguirre AL, Raisman-Vozari R, Pallás M, Rojas-Mayorquín AE. The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro. Mol Cell Neurosci 2016; 75:113-21. [PMID: 27468976 DOI: 10.1016/j.mcn.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/04/2016] [Accepted: 07/25/2016] [Indexed: 12/28/2022] Open
Abstract
Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro.
Collapse
Affiliation(s)
- Celia González-Castillo
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), CUCS, Universidad de Guadalajara, Jalisco, Mexico
| | - Daniel Ortuño-Sahagún
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Jalisco, Mexico.
| | - Carolina Guzmán-Brambila
- Tecnológico de Monterrey, División de Biotecnología y Salud, Escuela de Medicina, Campus Guadalajara, Jalisco, Mexico
| | - Ana Laura Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., 44270 Guadalajara, Jalisco, Mexico
| | - Rita Raisman-Vozari
- Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Mercé Pallás
- Department of Pharmacology and Medical Chemistry, Faculty of Pharmacy, Institute of Neuroscience (INUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Spain
| | - Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Jalisco, Mexico.
| |
Collapse
|
34
|
Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 2016; 139:973-996. [PMID: 27241695 DOI: 10.1111/jnc.13687] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Brain development, sensory information processing, and learning and memory processes depend on Hebbian forms of synaptic plasticity, and on the remodeling and pruning of synaptic connections. Neurons in networks implicated in these processes carry out their functions while facing constant perturbation; homeostatic responses are therefore required to maintain neuronal activity within functional ranges for proper brain function. Here, we will review in vitro and in vivo studies demonstrating that several mechanisms underlie homeostatic plasticity of excitatory synapses, and identifying participant molecular players. Emerging evidence suggests a link between disrupted homeostatic synaptic plasticity and neuropsychiatric and neurologic disorders. Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP), induce long-lasting changes in synaptic strength, which can be destabilizing and drive activity to saturation. Conversely, homeostatic plasticity operates to compensate for prolonged activity changes, stabilizing neuronal firing within a dynamic physiological range. We review mechanisms underlying homeostatic plasticity, and address how neurons integrate distinct forms of plasticity for proper brain function. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Dominique Fernandes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PDBEB-Doctoral Program in Experimental Biology and Biomedicine, Interdisciplinary Research Institute (III-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity. Neural Plast 2016; 2016:7969272. [PMID: 27019755 PMCID: PMC4785275 DOI: 10.1155/2016/7969272] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/31/2016] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.
Collapse
|
36
|
In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. Neural Plast 2015; 2016:9847696. [PMID: 26839720 PMCID: PMC4709762 DOI: 10.1155/2016/9847696] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/27/2015] [Indexed: 12/25/2022] Open
Abstract
Rapidly emerging evidence implicates perineuronal nets (PNNs) and extracellular matrix (ECM) molecules that compose or interact with PNNs, in the pathophysiology of several psychiatric disorders. Studies on schizophrenia, autism spectrum disorders, mood disorders, Alzheimer's disease, and epilepsy point to the involvement of ECM molecules such as chondroitin sulfate proteoglycans, Reelin, and matrix metalloproteases, as well as their cell surface receptors. In many of these disorders, PNN abnormalities have also been reported. In the context of the “quadripartite” synapse concept, that is, the functional unit composed of the pre- and postsynaptic terminals, glial processes, and ECM, and of the role that PNNs and ECM molecules play in regulating synaptic functions and plasticity, these findings resonate with one of the most well-replicated aspects of the pathology of psychiatric disorders, that is, synaptic abnormalities. Here we review the evidence for PNN/ECM-related pathology in these disorders, with particular emphasis on schizophrenia, and discuss the hypothesis that such pathology may significantly contribute to synaptic dysfunction.
Collapse
|
37
|
Shinoe T, Goda Y. Tuning synapses by proteolytic remodeling of the adhesive surface. Curr Opin Neurobiol 2015; 35:148-55. [DOI: 10.1016/j.conb.2015.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/17/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
38
|
Wiera G, Mozrzymas JW. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Front Cell Neurosci 2015; 9:427. [PMID: 26582976 PMCID: PMC4631828 DOI: 10.3389/fncel.2015.00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/09/2015] [Indexed: 02/04/2023] Open
Abstract
Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Grzegorz Wiera
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| |
Collapse
|
39
|
Abstract
Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking.
Collapse
|
40
|
Bell ME, Bourne JN, Chirillo MA, Mendenhall JM, Kuwajima M, Harris KM. Dynamics of nascent and active zone ultrastructure as synapses enlarge during long-term potentiation in mature hippocampus. J Comp Neurol 2014; 522:3861-84. [PMID: 25043676 PMCID: PMC4167938 DOI: 10.1002/cne.23646] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 11/08/2022]
Abstract
Nascent zones and active zones are adjacent synaptic regions that share a postsynaptic density, but nascent zones lack the presynaptic vesicles found at active zones. Here dendritic spine synapses were reconstructed through serial section electron microscopy (3DEM) and EM tomography to investigate nascent zone dynamics during long-term potentiation (LTP) in mature rat hippocampus. LTP was induced with theta-burst stimulation, and comparisons were made with control stimulation in the same hippocampal slices at 5 minutes, 30 minutes, and 2 hours post-induction and to perfusion-fixed hippocampus in vivo. Nascent zones were present at the edges of ∼35% of synapses in perfusion-fixed hippocampus and as many as ∼50% of synapses in some hippocampal slice conditions. By 5 minutes, small dense-core vesicles known to transport active zone proteins moved into more presynaptic boutons. By 30 minutes, nascent zone area decreased, without significant change in synapse area, suggesting that presynaptic vesicles were recruited to preexisting nascent zones. By 2 hours, both nascent and active zones were enlarged. Immunogold labeling revealed glutamate receptors in nascent zones; however, average distances from nascent zones to docked presynaptic vesicles ranged from 170 ± 5 nm in perfusion-fixed hippocampus to 251 ± 4 nm at enlarged synapses by 2 hours during LTP. Prior stochastic modeling suggests that decrease in glutamate concentration reduces the probability of glutamate receptor activation from 0.4 at the center of release to 0.1 just 200 nm away. Thus, conversion of nascent zones to functional active zones likely requires the recruitment of presynaptic vesicles during LTP.
Collapse
Affiliation(s)
- Maria Elizabeth Bell
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
| | - Jennifer N. Bourne
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
| | - Michael A. Chirillo
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
- The University of Texas Medical School, Houston, TX 77030
| | - John M. Mendenhall
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
| | - Masaaki Kuwajima
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
| | - Kristen M. Harris
- Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, TX 78712
| |
Collapse
|
41
|
Bernardinelli Y, Nikonenko I, Muller D. Structural plasticity: mechanisms and contribution to developmental psychiatric disorders. Front Neuroanat 2014; 8:123. [PMID: 25404897 PMCID: PMC4217507 DOI: 10.3389/fnana.2014.00123] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/14/2014] [Indexed: 01/31/2023] Open
Abstract
Synaptic plasticity mechanisms are usually discussed in terms of changes in synaptic strength. The capacity of excitatory synapses to rapidly modify the membrane expression of glutamate receptors in an activity-dependent manner plays a critical role in learning and memory processes by re-distributing activity within neuronal networks. Recent work has however also shown that functional plasticity properties are associated with a rewiring of synaptic connections and a selective stabilization of activated synapses. These structural aspects of plasticity have the potential to continuously modify the organization of synaptic networks and thereby introduce specificity in the wiring diagram of cortical circuits. Recent work has started to unravel some of the molecular mechanisms that underlie these properties of structural plasticity, highlighting an important role of signaling pathways that are also major candidates for contributing to developmental psychiatric disorders. We review here some of these recent advances and discuss the hypothesis that alterations of structural plasticity could represent a common mechanism contributing to the cognitive and functional defects observed in diseases such as intellectual disability, autism spectrum disorders and schizophrenia.
Collapse
Affiliation(s)
- Yann Bernardinelli
- Department of Basic Neurosciences, University of Geneva Medical School Geneva, Switzerland
| | - Irina Nikonenko
- Department of Basic Neurosciences, University of Geneva Medical School Geneva, Switzerland
| | - Dominique Muller
- Department of Basic Neurosciences, University of Geneva Medical School Geneva, Switzerland
| |
Collapse
|
42
|
Martins-de-Souza D, Maccarrone G, Ising M, Kloiber S, Lucae S, Holsboer F, Turck CW. Blood mononuclear cell proteome suggests integrin and Ras signaling as critical pathways for antidepressant treatment response. Biol Psychiatry 2014; 76:e15-7. [PMID: 24607422 DOI: 10.1016/j.biopsych.2014.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Martins-de-Souza
- Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany; Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | | | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | |
Collapse
|
43
|
The serine/threonine kinase Ndr2 controls integrin trafficking and integrin-dependent neurite growth. J Neurosci 2014; 34:5342-54. [PMID: 24719112 DOI: 10.1523/jneurosci.2728-13.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Integrins have been implicated in various processes of nervous system development, including proliferation, migration, and differentiation of neuronal cells. In this study, we show that the serine/threonine kinase Ndr2 controls integrin-dependent dendritic and axonal growth in mouse hippocampal neurons. We further demonstrate that Ndr2 is able to induce phosphorylation at the activity- and trafficking-relevant site Thr(788/789) of β1-integrin to stimulate the PKC- and CaMKII-dependent activation of β1-integrins, as well as their exocytosis. Accordingly, Ndr2 associates with integrin-positive early and recycling endosomes in primary hippocampal neurons and the surface expression of activated β1-integrins is reduced on dendrites of Ndr2-deficient neurons. The role of Ndr2 in dendritic differentiation is also evident in vivo, because Ndr2-null mutant mice show arbor-specific alterations of dendritic complexity in the hippocampus. This indicates a role of Ndr2 in the fine regulation of dendritic growth; in fact, treatment of primary neurons with Semaphorin 3A rescues Ndr2 knock-down-induced dendritic growth deficits but fails to enhance growth beyond control level. Correspondingly, Ndr2-null mutant mice show a Semaphorin 3A(-/-)-like phenotype of premature dendritic branching in the hippocampus. The results of this study show that Ndr2-mediated integrin trafficking and activation are crucial for neurite growth and guidance signals during neuronal development.
Collapse
|
44
|
Eva R, Fawcett J. Integrin signalling and traffic during axon growth and regeneration. Curr Opin Neurobiol 2014; 27:179-85. [PMID: 24793179 DOI: 10.1016/j.conb.2014.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/25/2022]
Abstract
Adult corticospinal tract axons do not regenerate because they have low intrinsic growth ability, and are exposed to inhibitory molecules after injury. PNS axons have a better regenerative capacity, mediated in part by integrins (extracellular matrix receptors). These are subject to complex regulation by signalling and trafficking. Recent studies have found that integrin mediated axon growth relies on signalling via focal adhesion molecules, and that integrins are inactivated by inhibitory molecules in the CNS. Forced activation of integrins can overcome inhibition and increase axon regeneration, however integrins are not transported into some CNS axons. Studies of PNS integrin traffic have identified molecules that can be manipulated to increase axonal integrin expression, suggesting strategies for repairing the injured spinal cord.
Collapse
Affiliation(s)
- Richard Eva
- John van Geest Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, United Kingdom
| | - James Fawcett
- John van Geest Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, United Kingdom.
| |
Collapse
|
45
|
Kerrisk ME, Cingolani LA, Koleske AJ. ECM receptors in neuronal structure, synaptic plasticity, and behavior. PROGRESS IN BRAIN RESEARCH 2014; 214:101-31. [PMID: 25410355 DOI: 10.1016/b978-0-444-63486-3.00005-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During central nervous system development, extracellular matrix (ECM) receptors and their ligands play key roles as guidance molecules, informing neurons where and when to send axonal and dendritic projections, establish connections, and form synapses between pre- and postsynaptic cells. Once stable synapses are formed, many ECM receptors transition in function to control the maintenance of stable connections between neurons and regulate synaptic plasticity. These receptors bind to and are activated by ECM ligands. In turn, ECM receptor activation modulates downstream signaling cascades that control cytoskeletal dynamics and synaptic activity to regulate neuronal structure and function and thereby impact animal behavior. The activities of cell adhesion receptors that mediate interactions between pre- and postsynaptic partners are also strongly influenced by ECM composition. This chapter highlights a number of ECM receptors, their roles in the control of synapse structure and function, and the impact of these receptors on synaptic plasticity and animal behavior.
Collapse
Affiliation(s)
- Meghan E Kerrisk
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lorenzo A Cingolani
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Department of Neurobiology, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University, New Haven, CT, USA.
| |
Collapse
|
46
|
Abstract
The brain is astonishing in its complexity and capacity for change. This has fascinated scientists for more than a century, filling the pages of this journal for the past 25 years. But a paradigm shift is underway. It seems likely that the plasticity that drives our ability to learn and remember can only be meaningful in the context of otherwise stable, reproducible, and predictable baseline neural function. Without the existence of potent mechanisms that stabilize neural function, our capacity to learn and remember would be lost in the chaos of daily experiential change. This underscores two great mysteries in neuroscience. How are the functional properties of individual neurons and neural circuits stably maintained throughout life? And, in the face of potent stabilizing mechanisms, how can neural circuitry be modified during neural development, learning, and memory? Answers are emerging in the rapidly developing field of homeostatic plasticity.
Collapse
Affiliation(s)
- Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
47
|
Differential control of thrombospondin over synaptic glycine and AMPA receptors in spinal cord neurons. J Neurosci 2013; 33:11432-9. [PMID: 23843515 DOI: 10.1523/jneurosci.5247-12.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a large extracellular matrix protein secreted by astrocytes during development and inflammation. In the developing CNS, TSP-1 is involved in neuronal migration and adhesion, neurite outgrowth, and synaptogenesis. We investigated the effects of TSP-1 on neurons with mature synapses using immunocytochemistry, single-particle tracking, surface biotinylation, and calcium imaging. We show that in cultured rat spinal cord neurons TSP-1 decreased neuronal excitability by reducing the accumulation of excitatory AMPA receptors (AMPARs) and increasing that of inhibitory glycine receptors (GlyRs) in synapses. The effects of TSP-1 on GlyRs were dependent on the activation of excitatory receptors. These changes were abolished by blocking β1-integrins and mimicked by blocking β3-integrins. In the presence of TSP-1, AMPARs were less stabilized at synapses, increasing their lateral diffusion and endocytosis. Interestingly, TSP-1 counteracted the increased neuronal excitability and neuronal death induced by TNFα. These results suggest a role of TSP-1 in controlling the balance between excitation and inhibition which could help the recovery of normal synaptic activity after injury responses.
Collapse
|
48
|
Mironova YA, Giger RJ. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength. Trends Neurosci 2013; 36:363-73. [PMID: 23642707 DOI: 10.1016/j.tins.2013.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 02/07/2023]
Abstract
Growth inhibitory molecules in the adult mammalian central nervous system (CNS) have been implicated in the blocking of axonal sprouting and regeneration following injury. Prominent CNS regeneration inhibitors include Nogo-A, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs), and a key question concerns their physiological role in the naïve CNS. Emerging evidence suggests novel functions in dendrites and at synapses of glutamatergic neurons. CNS regeneration inhibitors target the neuronal actin cytoskeleton to regulate dendritic spine maturation, long-term synapse stability, and Hebbian forms of synaptic plasticity. This is accomplished in part by antagonizing plasticity-promoting signaling pathways activated by neurotrophic factors. Altered function of CNS regeneration inhibitors is associated with mental illness and loss of long-lasting memory, suggesting unexpected and novel physiological roles for these molecules in brain health.
Collapse
Affiliation(s)
- Yevgeniya A Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, 3065 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
49
|
Puighermanal E, Busquets-Garcia A, Maldonado R, Ozaita A. Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids. Philos Trans R Soc Lond B Biol Sci 2013; 367:3254-63. [PMID: 23108544 DOI: 10.1098/rstb.2011.0384] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exogenous cannabinoids, such as delta9-tetrahydrocannabinol (THC), as well as the modulation of endogenous cannabinoids, affect cognitive function through the activation of cannabinoid receptors. Indeed, these compounds modulate a number of signalling pathways critically implicated in the deleterious effect of cannabinoids on learning and memory. Thus, the involvement of the mammalian target of rapamycin pathway and extracellular signal-regulated kinases, together with their consequent regulation of cellular processes such as protein translation, play a critical role in the amnesic-like effects of cannabinoids. In this study, we summarize the cellular and molecular mechanisms reported in the modulation of cognitive function by the endocannabinoid system.
Collapse
Affiliation(s)
- Emma Puighermanal
- Departament de Ciències Experimentals i de la Salut, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Thalhammer A, Cingolani LA. Cell adhesion and homeostatic synaptic plasticity. Neuropharmacology 2013; 78:23-30. [PMID: 23542441 DOI: 10.1016/j.neuropharm.2013.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/26/2013] [Accepted: 03/19/2013] [Indexed: 11/19/2022]
Abstract
At synapses, pre- and post-synaptic cells get in direct contact with each other via cell adhesion molecules (CAMs). Several CAMs have been identified at the neuromuscular junction and at central synapses, where they regulate synaptic strength, by recruiting scaffolding proteins, neurotransmitter receptors and synaptic vesicles in response to the binding of counter-receptors across the synaptic cleft. Many synapses are also surrounded by astrocytic processes and embedded in conspicuous extracellular matrix (ECM). It is now widely recognized that astrocytes play a central role in regulating the synaptic machinery by exchanging information with the neuronal elements via diffusible molecules and direct physical interactions; this has lead to the concept of the 'tri-partite synapse'. More recently, the term 'tetra-partite synapse' has been introduced to underlie the importance of ECM in shaping synaptic function by mediating interaction and signaling between neurons and astrocytes. Here, we will review how this integrated view of the synapse can help us understand homeostatic synaptic plasticity at the neuromuscular junction and in the central nervous system. We will explore how synaptic CAMs regulate two forms of homeostatic plasticity: (i) postsynaptic scaling of synaptic currents to counteract changes in neuronal network activity and (ii) the compensatory modulation of presynaptic neurotransmitter release in response to changes in postsynaptic efficacy. We will discuss recent findings on activity-dependent trans-synaptic signaling events and the role of cell adhesion in the feedback control of network activity. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.
Collapse
Affiliation(s)
- Agnes Thalhammer
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Lorenzo A Cingolani
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy.
| |
Collapse
|