1
|
Tiwari S, Phoolmala, Goyal S, Yadav RK, Chaturvedi RK. Bisphenol-F and Bisphenol-S (BPF and BPS) Impair the Stemness of Neural Stem Cells and Neuronal Fate Decision in the Hippocampus Leading to Cognitive Dysfunctions. Mol Neurobiol 2024; 61:9347-9368. [PMID: 38635025 DOI: 10.1007/s12035-024-04160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Neurogenesis occurs throughout life in the hippocampus of the brain, and many environmental toxicants inhibit neural stem cell (NSC) function and neuronal generation. Bisphenol-A (BPA), an endocrine disrupter used for surface coating of plastic products causes injury in the developing and adult brain; thus, many countries have banned its usage in plastic consumer products. BPA analogs/alternatives such as bisphenol-F (BPF) and bisphenol-S (BPS) may also cause neurotoxicity; however, their effects on neurogenesis are still not known. We studied the effects of BPF and BPS exposure from gestational day 6 to postnatal day 21 on neurogenesis. We found that exposure to non-cytotoxic concentrations of BPF and BPS significantly decreased the number/size of neurospheres, BrdU+ (proliferating NSC marker) and MAP-2+ (neuronal marker) cells and GFAP+ astrocytes in the hippocampus NSC culture, suggesting reduced NSC stemness and self-renewal and neuronal differentiation and increased gliogenesis. These analogs also reduced the number of BrdU/Sox-2+, BrdU/Dcx+, and BrdU/NeuN+ co-labeled cells in the hippocampus of the rat brain, suggesting decreased NSC proliferation and impaired maturation of newborn neurons. BPF and BPS treatment increases BrdU/cleaved caspase-3+ cells and Bax-2 and cleaved caspase protein levels, leading to increased apoptosis in hippocampal NSCs. Transmission electron microscopy studies suggest that BPF and BPS also caused degeneration of neuronal myelin sheath, altered mitochondrial morphology, and reduced number of synapses in the hippocampus leading to altered cognitive functions. These results suggest that BPF and BPS exposure decreased the NSC pool, inhibited neurogenesis, induced apoptosis of NSCs, caused myelin degeneration/synapse degeneration, and impaired learning and memory in rats.
Collapse
Affiliation(s)
- Saurabh Tiwari
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Phoolmala
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shweta Goyal
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ranjeet Kumar Yadav
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Cajachagua-Torres KN, Quezada-Pinedo HG, Wu T, Trasande L, Ghassabian A. Exposure to Endocrine Disruptors in Early life and Neuroimaging Findings in Childhood and Adolescence: a Scoping Review. Curr Environ Health Rep 2024; 11:416-442. [PMID: 39078539 PMCID: PMC11324673 DOI: 10.1007/s40572-024-00457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW: Evidence suggests neurotoxicity of endocrine disrupting chemicals (EDCs) during sensitive periods of development. We present an overview of pediatric population neuroimaging studies that examined brain influences of EDC exposure during prenatal period and childhood. RECENT FINDINGS: We found 46 studies that used magnetic resonance imaging (MRI) to examine brain influences of EDCs. These studies showed associations of prenatal exposure to phthalates, organophosphate pesticides (OPs), polyaromatic hydrocarbons and persistent organic pollutants with global and regional brain structural alterations. Few studies suggested alteration in functional MRI associated with prenatal OP exposure. However, studies on other groups of EDCs, such as bisphenols, and those that examined childhood exposure were less conclusive. These findings underscore the potential profound and lasting effects of prenatal EDC exposure on brain development, emphasizing the need for better regulation and strategies to reduce exposure and mitigate impacts. More studies are needed to examine the influence of postnatal exposure to EDC on brain imaging.
Collapse
Affiliation(s)
- Kim N Cajachagua-Torres
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA.
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Hugo G Quezada-Pinedo
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Tong Wu
- Department of Radiology and Nuclear Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Bhatia P, Mehmood S, Doyon-Reale N, Rosati R, Stemmer PM, Jamesdaniel S. Unraveling the molecular landscape of lead-induced cochlear synaptopathy: a quantitative proteomics analysis. Front Cell Neurosci 2024; 18:1408208. [PMID: 39104440 PMCID: PMC11298392 DOI: 10.3389/fncel.2024.1408208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Exposure to heavy metal lead can cause serious health effects such as developmental neurotoxicity in infants, cognitive impairment in children, and cardiovascular and nephrotoxic effects in adults. Hearing loss is one of the toxic effects induced by exposure to lead. Previous studies demonstrated that exposure to lead causes oxidative stress in the cochlea and disrupts ribbon synapses in the inner hair cells. Methods This study investigated the underlying mechanism by evaluating the changes in the abundance of cochlear synaptosomal proteins that accompany lead-induced cochlear synaptopathy and hearing loss in mice. Young-adult CBA/J mice were given lead acetate in drinking water for 28 days. Results Lead exposure significantly increased the hearing thresholds, particularly at the higher frequencies in both male and female mice, but it did not affect the activity of outer hair cells or induce hair cell loss. However, lead exposure decreased wave-I amplitude, suggesting lead-induced cochlear synaptopathy. In agreement, colocalization of pre- and post-synaptic markers indicated that lead exposure decreased the number of paired synapses in the basal turn of the cochlea. Proteomics analysis indicated that lead exposure increased the abundance of 352 synaptic proteins and decreased the abundance of 394 synaptic proteins in the cochlea. Bioinformatics analysis indicated that proteins that change in abundance are highly enriched in the synaptic vesicle cycle pathway. Discussion Together, these results suggest that outer hair cells are not the primary target in lead-induced ototoxicity, that lead-induced cochlear synaptopathy is more pronounced in the basal turn of the cochlea, and that synaptic vesicle cycle signaling potentially plays a critical role in lead-induced cochlear synaptopathy.
Collapse
Affiliation(s)
- Pankaj Bhatia
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Shomaila Mehmood
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Nicole Doyon-Reale
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Samson Jamesdaniel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
4
|
Gagnon-Chauvin A, Fornasier-Bélanger M, Jacobson SW, Jacobson JL, Courtemanche Y, Ayotte P, Bélanger RE, Muckle G, Saint-Amour D. Brain gray matter volume of reward-related structures in Inuit adolescents pre- and postnatally exposed to lead, mercury and polychlorinated biphenyls. Neurotoxicology 2024; 103:162-174. [PMID: 38880197 DOI: 10.1016/j.neuro.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
This study aimed to assess associations between prenatal and postnatal exposure to lead (Pb), mercury (Hg) and polychlorinated biphenyls (PCBs) and gray matter volume of key regions of the brain reward circuit, namely the caudate nucleus, putamen, nucleus accumbens (nAcc), the amygdala, the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC). Structural magnetic resonance imaging (MRI) was conducted in 77 Inuit adolescents (mean age = 18.39) from Nunavik, Canada, who also completed the Brief Sensation Seeking Scale (BSSS-4) and Sensation Seeking - 2 (SS-2), two self-report questionnaires evaluating the tendency toward sensation seeking, which is a proxy of reward-related behaviors. Exposures to Pb, Hg and PCBs were measured in cord blood at birth, in blood samples at 11 years old and at time of testing (18 years old). Multivariate linear regressions were corrected for multiple comparisons and adjusted for potential confounders, such as participants' sociodemographic characteristics and nutrient fish intake. Results showed that higher cord blood Pb levels predicted smaller gray matter volume in the bilateral nAcc, caudate nucleus, amygdala and OFC as well as in left ACC. A moderating effect of sex was identified, indicating that the Pb-related reduction in volume in the nAcc and caudate nucleus was more pronounced in female. Higher blood Hg levels at age 11 predicted smaller right amygdala independently of sex. No significant associations were found between blood PCBs levels at all three times of exposure. This study provides scientific support for the detrimental effects of prenatal Pb and childhood Hg blood concentrations on gray matter volume in key reward-related brain structures.
Collapse
Affiliation(s)
- Avril Gagnon-Chauvin
- Département de Psychologie, Université du Québec à Montréal, 100 Sherbrooke Ouest, Montréal, Québec H2X 3P2, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Mathieu Fornasier-Bélanger
- Département de Psychologie, Université du Québec à Montréal, 100 Sherbrooke Ouest, Montréal, Québec H2X 3P2, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Drive, Detroit, MI 48201, United States
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Drive, Detroit, MI 48201, United States
| | - Yohann Courtemanche
- Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-Sacrement, 1050 Ch Ste-Foy, Québec, Québec G1S 4L8, Canada
| | - Pierre Ayotte
- Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-Sacrement, 1050 Ch Ste-Foy, Québec, Québec G1S 4L8, Canada; Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, 1050, Avenue de la Médecine, Pavillon Ferdinand-Vandry, Québec, Québec G1V 0A6, Canada
| | - Richard E Bélanger
- Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-Sacrement, 1050 Ch Ste-Foy, Québec, Québec G1S 4L8, Canada; Département de Pédiatrie, Université Laval, Centre mère-enfant Soleil du CHU de Québec, 2705, Boulevard Laurier, Québec, Québec G1V 4G2, Canada
| | - Gina Muckle
- Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-Sacrement, 1050 Ch Ste-Foy, Québec, Québec G1S 4L8, Canada; École de Psychologie, Université Laval, 2325, rue des Bibliothèques, Québec, Québec G1V 0A6, Canada
| | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, 100 Sherbrooke Ouest, Montréal, Québec H2X 3P2, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada.
| |
Collapse
|
5
|
Margolis ET, Gabard-Durnam LJ. Prenatal influences on postnatal neuroplasticity: Integrating DOHaD and sensitive/critical period frameworks to understand biological embedding in early development. INFANCY 2024. [PMID: 38449347 DOI: 10.1111/infa.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Early environments can have significant and lasting effects on brain, body, and behavior across the lifecourse. Here, we address current research efforts to understand how experiences impact neurodevelopment with a new perspective integrating two well-known conceptual frameworks - the Developmental Origins of Health and Disease (DOHaD) and sensitive/critical period frameworks. Specifically, we consider how prenatal experiences characterized in the DOHaD model impact two key neurobiological mechanisms of sensitive/critical periods for adapting to and learning from the postnatal environment. We draw from both animal and human research to summarize the current state of knowledge on how particular prenatal substance exposures (psychoactive substances and heavy metals) and nutritional profiles (protein-energy malnutrition and iron deficiency) each differentially impact brain circuits' excitation/GABAergic inhibition balance and myelination. Finally, we highlight new research directions that emerge from this integrated framework, including testing how prenatal environments alter sensitive/critical period timing and learning and identifying potential promotional/buffering prenatal exposures to impact postnatal sensitive/critical periods. We hope this integrative framework considering prenatal influences on postnatal neuroplasticity will stimulate new research to understand how early environments have lasting consequences on our brains, behavior, and health.
Collapse
Affiliation(s)
- Emma T Margolis
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| | | |
Collapse
|
6
|
Wylie AC, Short SJ, Fry RC, Mills-Koonce WR, Propper CB. Maternal prenatal lead levels and neonatal brain volumes: Testing moderations by maternal depressive symptoms and family income. Neurotoxicol Teratol 2024; 102:107322. [PMID: 38244816 PMCID: PMC10990786 DOI: 10.1016/j.ntt.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
There is considerable evidence that prenatal lead exposure is detrimental to child cognitive and socio-emotional development. Further evidence suggests that the effects of prenatal lead on developmental outcomes may be conditional upon exposure to social stressors, such as maternal depression and low socioeconomic status. However, no studies have examined associations between these co-occurring stressors during pregnancy and neonatal brain volumes. Leveraging a sample of 101 mother-infant dyads followed beginning in mid-pregnancy, we examined the main effects of prenatal urinary lead levels on neonatal lateralized brain volumes (left and right hippocampus, amygdala, cerebellum, frontal lobes) and total gray matter. We additionally tested for moderations between lead and depressive symptoms and between lead and family income relative to the federal poverty level (FPL) on the same neurodevelopmental outcomes. Analyses of main effects indicated that prenatal lead was significantly (ps < 0.05) associated with reduced right and left amygdala volumes (βs = -0.23- -0.20). The testing and probing of cross-product interaction terms using simple slopes indicated that the negative effect of lead on the left amygdala was conditional upon mothers having low depressive symptoms or high income relative to the FPL. We interpret the results in the context of trajectories of prenatal and postnatal brain development and susceptibility to low levels of prenatal lead in the context of other social stressors.
Collapse
Affiliation(s)
- Amanda C Wylie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, United States.
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, United States; Center for Healthy Minds, University of Wisconsin-Madison, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States
| | - W Roger Mills-Koonce
- School of Education, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cathi B Propper
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, United States; School of Nursing, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
7
|
Kumar K, Anjali S, Sharma S. Effect of lead exposure on histone modifications: A review. J Biochem Mol Toxicol 2024; 38:e23547. [PMID: 37867311 DOI: 10.1002/jbt.23547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Lead at any levels can result in detrimental health effects affecting various organ systems. These systematic manifestations under Pb exposure and the underlying probable pathophysiological mechanisms have not been elucidated completely. With advancements in molecular research under Pb exposure, epigenetics is one of the emerging field that has opened many possibilities for appreciating the role of Pb exposure in modulating gene expression profiles. In terms of epigenetic alterations reported in Pb toxicity, DNA methylation, and microRNA alterations are extensively explored in both experimental and epidemiological studies, however, the understanding of histone modifications under Pb exposure is still in its infant stage limited to experimental models. In this review, we aim to present a synoptic view of histone modifications explored in relation to Pb exposure attempting to bring out this potential lacunae in research. The scarcity of studies associating histone modifications with Pb toxicity, and the paucity of their validation in human cohort further emphasizes the strong research potential of this field. We summarize the review by presenting our hypotheses regarding the involvement of these histone modification in various diseases modalities associated with Pb toxicity.
Collapse
Affiliation(s)
- Kanishka Kumar
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Sudha Anjali
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Shailja Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
8
|
Bjørklund G, Tippairote T, Hangan T, Chirumbolo S, Peana M. Early-Life Lead Exposure: Risks and Neurotoxic Consequences. Curr Med Chem 2024; 31:1620-1633. [PMID: 37031386 DOI: 10.2174/0929867330666230409135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Lead (Pb) does not have any biological function in a human, and it is likely no safe level of Pb in the human body. The Pb exposure impacts are a global concern for their potential neurotoxic consequences. Despite decreasing both the environmental Pb levels and the average blood Pb levels in the survey populations, the lifetime redistribution from the tissues-stored Pb still poses neurotoxic risks from the low-level exposure in later life. The growing fetus and children hold their innate high-susceptible to these Pb-induced neurodevelopmental and neurobehavioral effects. OBJECTIVE This article aims to evaluate cumulative studies and insights on the topic of Pb neurotoxicology while assessing the emerging trends in the field. RESULTS The Pb-induced neurochemical and neuro-immunological mechanisms are likely responsible for the high-level Pb exposure with the neurodevelopmental and neurobehavioral impacts at the initial stages. Early-life Pb exposure can still produce neurodegenerative consequences in later life due to the altered epigenetic imprints and the ongoing endogenous Pb exposure. Several mechanisms contribute to the Pb-induced neurotoxic impacts, including the direct neurochemical effects, the induction of oxidative stress and inflammation through immunologic activations, and epigenetic alterations. Furthermore, the individual nutritional status, such as macro-, micro-, or antioxidant nutrients, can significantly influence the neurotoxic impacts even at low-level exposure to Pb. CONCLUSION The prevention of early-life Pb exposure is, therefore, the critical determinant for alleviating various Pb-induced neurotoxic impacts across the different age groups.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana, 8610, Norway
| | - Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, 900470, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134, Verona, Italy
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
| |
Collapse
|
9
|
Ruden DM, Singh A, Rappolee DA. Pathological epigenetic events and reversibility review: the intersection between hallmarks of aging and developmental origin of health and disease. Epigenomics 2023; 15:741-754. [PMID: 37667910 PMCID: PMC10503466 DOI: 10.2217/epi-2023-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
We discuss pathological epigenetic events that are reversible (PEERs). A recent study by Poganik and colleagues showed that severe stress in mice and humans transiently elevates biological age of several tissues, and this transient age increase is reversible when the stress is removed. These studies suggest new strategies for reversing normal aging. However, it is important to note that developmental origin of health and disease studies have shown that developmental exposure to toxic chemicals such as lead causes permanent changes in neuron shape, connectivity and cellular hyperplasia of organs such as the heart and liver. In this review, the PEER hypothesis speculates that the hallmarks of aging and the hallmarks of developmental origin of health and disease intersect at PEERs.
Collapse
Affiliation(s)
- Douglas M Ruden
- CS Mott Center for Human Health and Development, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Aditi Singh
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Health and Development, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
- Reproductive Stress, Grosse Pointe Farms, MI 48236, USA
| |
Collapse
|
10
|
Zhu J, Zhou F, Zhou Q, Xu Y, Li Y, Huang D, Chen L, Liu A, Zou F, Meng X. NLRP3 activation in microglia contributes to learning and memory impairment induced by chronic lead exposure in mice. Toxicol Sci 2023; 191:179-191. [PMID: 36308466 DOI: 10.1093/toxsci/kfac115] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lead (Pb)-induced microglial activation and neuroinflammation has been considered as one of the main pathological events of Pb neurotoxicity. The NLRP3 inflammasome signaling pathway is a major contributor to the neuroinflammatory process in the central nervous system. However, the relationship between chronic Pb exposure and neurogenic NLRP3 inflammasome is unclear. Therefore, the aim of this study was to characterize the role of NLRP3 inflammasome activation during the chronic Pb exposure using in vitro and in vivo models. Our results showed that chronic Pb exposure induce learning and memory impairment in mice, mainly related to the activation of microglia and NLRP3 inflammasome. This phenomenon was reversed in mice by treating with the NLRP3 inhibitor MCC950 and using NLRP3-/- mice. In addition, Pb caused the activation of NLRP3 inflammasome, the production of mitochondrial ROS (mtROS), and mitochondrial Ca2+ overload in BV2 cells. Amelioration of mtROS abolished Pb-induced NLRP3 inflammasome activation. Moreover, after regulation of Ca2+ redistribution, mtROS and NLRP3 inflammasome activation was restored. In conclusion, NLRP3 inflammasome activation in microglia plays a vital role in Pb neurotoxicity, by a novel mechanism of enhancing mtROS production and Ca2+ redistribution.
Collapse
Affiliation(s)
- Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fan Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dingbang Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lixuan Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Anfei Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
11
|
Non-traditional stable isotopic analysis for source tracing of atmospheric particulate matter. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Zheng J, Reynolds JE, Long M, Ostertag C, Pollock T, Hamilton M, Dunn JF, Liu J, Martin J, Grohs M, Landman B, Huo Y, Dewey D, Kurrasch D, Lebel C. The effects of prenatal bisphenol A exposure on brain volume of children and young mice. ENVIRONMENTAL RESEARCH 2022; 214:114040. [PMID: 35952745 DOI: 10.1016/j.envres.2022.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical used for the manufacturing of plastics, epoxy resin, and many personal care products. This ubiquitous endocrine disruptor is detectable in the urine of over 80% of North Americans. Although adverse neurodevelopmental outcomes have been observed in children with high gestational exposure to BPA, the effects of prenatal BPA on brain structure remain unclear. Here, using magnetic resonance imaging (MRI), we studied the associations of maternal BPA exposure with children's brain structure, as well as the impact of comparable BPA levels in a mouse model. Our human data showed that most maternal BPA exposure effects on brain volumes were small, with the largest effects observed in the opercular region of the inferior frontal gyrus (ρ = -0.2754), superior occipital gyrus (ρ = -0.2556), and postcentral gyrus (ρ = 0.2384). In mice, gestational exposure to an equivalent level of BPA (2.25 μg BPA/kg bw/day) induced structural alterations in brain regions including the superior olivary complex (SOC) and bed nucleus of stria terminalis (BNST) with larger effect sizes (1.07≤ Cohens d ≤ 1.53). Human (n = 87) and rodent (n = 8 each group) sample sizes, while small, are considered adequate to perform the primary endpoint analysis. Combined, these human and mouse data suggest that gestational exposure to low levels of BPA may have some impacts on the developing brain at the resolution of MRI.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E Reynolds
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Madison Long
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Curtis Ostertag
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tyler Pollock
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Max Hamilton
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Melody Grohs
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bennett Landman
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
13
|
Shaffer RM, Forsyth JE, Ferraro G, Till C, Carlson LM, Hester K, Haddock A, Strawbridge J, Lanfear CC, Hu H, Kirrane E. Lead exposure and antisocial behavior: A systematic review protocol. ENVIRONMENT INTERNATIONAL 2022; 168:107438. [PMID: 35994796 DOI: 10.1016/j.envint.2022.107438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lead exposure remains highly prevalent worldwide despite decades of research highlighting its link to numerous adverse health outcomes. In addition to well-documented effects on cognition, there is growing evidence of an association with antisocial behavior, including aggression, conduct problems, and crime. An updated systematic review on this topic, incorporating study evaluation and a developmental perspective on the outcome, can advance the state of the science on lead and inform global policy interventions to reduce exposure. OBJECTIVES We aim to evaluate the link between lead exposure and antisocial behavior. This association will be investigated via a systematic review of human epidemiological and experimental nonhuman mammalian studies. METHODS The systematic review protocol presented in this publication is informed by recommendations for the conduct of systematic reviews in toxicology and environmental health research (COSTER) and follows the study evaluation approach put forth by the U.S. EPA Integrated Risk Information System (IRIS) program. DATA SOURCES We will search the following electronic databases for relevant literature: PubMed, BIOSIS and Web of Science. Search results will be stored in EPA's Health and Environmental Research Online (HERO) database. STUDY ELIGIBILITY AND CRITERIA Eligible human epidemiological studies will include those evaluating any population exposed to lead at any lifestage via ingestion or inhalation exposure and considering an outcome of antisocial behavior based on any of the following criteria: psychiatric diagnoses (e.g., oppositional defiant disorder (ODD), conduct disorder (CD), disruptive behavior disorders (DBD)); violation of social norms (e.g., delinquency, criminality); and aggression. Eligible experimental animal studies will include those evaluating nonhuman mammalian studies exposed to lead via ingestion, inhalation, or injection exposure during any lifestage. The following outcomes will be considered relevant: aggression; antisocial behavior; and altered fear, anxiety, and stress response. STUDY APPRAISAL AND SYNTHESIS METHODS Screening will be conducted with assistance from an artificial intelligence application. Two independent reviewers for each data stream (human, animal) will screen studies with highest predicted relevance against pre-specified inclusion criteria at the title/abstract and full-text level. Study evaluation will be conducted using methods adapted from the U.S. EPA IRIS program. After data extraction, we will conduct a narrative review and quantitative meta-analysis on the human epidemiological studies as well as a narrative review of the experimental animal studies. We will evaluate the strength of each evidence stream separately and then will develop a summary evidence integration statement based on inference across evidence streams.
Collapse
Affiliation(s)
- Rachel M Shaffer
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Washington, DC, and Research Triangle Park, NC, United States
| | - Jenna E Forsyth
- Stanford University, Woods Institute for the Environment, Stanford, CA, United States
| | - Greg Ferraro
- North Carolina State University, Raleigh, NC, United States
| | | | - Laura M Carlson
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Washington, DC, and Research Triangle Park, NC, United States
| | - Kirstin Hester
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Washington, DC, and Research Triangle Park, NC, United States
| | - Amanda Haddock
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Washington, DC, and Research Triangle Park, NC, United States
| | - Jenna Strawbridge
- Oak Ridge Associated Universities, US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Charles C Lanfear
- Nuffield College, University of Oxford, Oxford, England, United Kingdom
| | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ellen Kirrane
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Washington, DC, and Research Triangle Park, NC, United States.
| |
Collapse
|
14
|
Islam F, Shohag S, Akhter S, Islam MR, Sultana S, Mitra S, Chandran D, Khandaker MU, Ashraf GM, Idris AM, Emran TB, Cavalu S. Exposure of metal toxicity in Alzheimer’s disease: An extensive review. Front Pharmacol 2022; 13:903099. [PMID: 36105221 PMCID: PMC9465172 DOI: 10.3389/fphar.2022.903099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Metals serve important roles in the human body, including the maintenance of cell structure and the regulation of gene expression, the antioxidant response, and neurotransmission. High metal uptake in the nervous system is harmful because it can cause oxidative stress, disrupt mitochondrial function, and impair the activity of various enzymes. Metal accumulation can cause lifelong deterioration, including severe neurological problems. There is a strong association between accidental metal exposure and various neurodegenerative disorders, including Alzheimer’s disease (AD), the most common form of dementia that causes degeneration in the aged. Chronic exposure to various metals is a well-known environmental risk factor that has become more widespread due to the rapid pace at which human activities are releasing large amounts of metals into the environment. Consequently, humans are exposed to both biometals and heavy metals, affecting metal homeostasis at molecular and biological levels. This review highlights how these metals affect brain physiology and immunity and their roles in creating harmful proteins such as β-amyloid and tau in AD. In addition, we address findings that confirm the disruption of immune-related pathways as a significant toxicity mechanism through which metals may contribute to AD.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Shomaya Akhter
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Subang Jaya, Malaysia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| |
Collapse
|
15
|
Migneron-Foisy V, Muckle G, Jacobson JL, Ayotte P, Jacobson SW, Saint-Amour D. Impact of chronic exposure to legacy environmental contaminants on the corpus callosum microstructure: A diffusion MRI study of Inuit adolescents. Neurotoxicology 2022; 92:200-211. [PMID: 35995272 DOI: 10.1016/j.neuro.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Exposure to environmental contaminants is an important public health concern for the Inuit population of northern Québec, who have been exposed to mercury (Hg), polychlorinated biphenyls (PCBs) and lead (Pb). During the last 25 years, the Nunavik Child Development Study (NCDS) birth cohort has reported adverse associations between these exposures and brain function outcomes. In the current study, we aimed to determine whether contaminant exposure is associated with alterations of the corpus callosum (CC), which plays an important role in various cognitive, motor and sensory function processes. Magnetic resonance imaging (MRI) was administered to 89 NCDS participants (mean age ± SD = 18.4 ± 1.2). Diffusion-weighted imaging was assessed to characterize the microstructure of the CC white matter in 7 structurally and functionally distinct regions of interest (ROIs) using a tractography-based segmentation approach. The following metrics were computed: fiber tract density, fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). Multiple linear regression models adjusted for sex, age, current alcohol/drug use and fish nutrients (omega-3 fatty acids and selenium) were conducted to assess the association between diffusion-weighted imaging metrics and Hg, PCB 153 and Pb concentrations obtained at birth in the cord blood and postnatally (mean values from blood samples at 11 and 18 years of age). Exposures were not associated with fiber tract density. Nor were significant associations found with cord and postnatal blood Pb concentrations for FA. However, pre- and postnatal Hg and PCB concentrations were significantly associated with higher FA of several regions of the CC, namely anterior midbody, posterior midbody, isthmus, and splenium, with the most pronounced effects observed in the splenium. FA results were mainly associated with lower RD. This study shows that exposure to Hg and PCB 153 alters the posterior microstructure of the CC, providing neuroimaging evidence of how developmental exposure to environmental chemicals can impair brain function and behavior in late adolescence.
Collapse
Affiliation(s)
- Vincent Migneron-Foisy
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada
| | - Gina Muckle
- School of Psychology, Université Laval, Québec, Québec, Canada; Centre de Recherche du CHUQ de Québec, Université Laval, Québec, Canada
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pierre Ayotte
- Department of Social and Preventive Medicine, Université Laval, Québec, Québec, Canada
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dave Saint-Amour
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Cecil KM. Pediatric Exposures to Neurotoxicants: A Review of Magnetic Resonance Imaging and Spectroscopy Findings. Diagnostics (Basel) 2022; 12:diagnostics12030641. [PMID: 35328193 PMCID: PMC8947432 DOI: 10.3390/diagnostics12030641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Heavy metals, including lead and manganese, air pollution, pesticides, environmental tobacco smoke, and flame retardants are among the known and suspected environmental neurotoxicant exposures examined with magnetic resonance imaging (MRI)-based studies of pediatric populations. Many studies feature morphological changes associated with the exposures while others employ magnetic resonance spectroscopy, diffusion imaging, task-based, and resting state functional magnetic resonance imaging to reveal abnormal metabolic concentrations, white matter disorganization, and atypical patterns of activation. Some studies follow pregnant women and their offspring throughout the lifespan with collection of individual specimens as exposure biomarkers. Others innovatively make use of public databases to obtain relevant exposure biomarkers while taking advantage of these studies in their efforts to monitor developmental features in large, population-based, imaging cohorts. As exposures to neurotoxicants in the womb and throughout childhood have life-long impacts on health and well-being, the importance of these innovative neuroimaging investigations is ever increasing.
Collapse
Affiliation(s)
- Kim M Cecil
- Departments of Radiology and Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Cruz GB, Vasquez MA, Cabañas E, Joseph JN, Skeen JC, Lynch KP, Ahmed I, Khairi EB, Bonitto JR, Clarke EG, Rubi S, Hameed N, Kaur S, Mathew N, Dacius TF, Jose TJ, Handford G, Wolfe S, Feher A, Tidwell K, Tobin J, Ugalde E, Fee S, Choe A, Gillenwater K, Hindi B, Pilout S, Natale NR, Domahoski N, Kent MH, Jacob JC, Lambert KG, Neuwirth LS. Developmental Lead Exposure in Rats Causes Sex-Dependent Changes in Neurobiological and Anxiety-Like Behaviors that Are Improved by Taurine Co-treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:461-479. [DOI: 10.1007/978-3-030-93337-1_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
18
|
Marshall AT, McConnell R, Lanphear BP, Thompson WK, Herting MM, Sowell ER. Risk of lead exposure, subcortical brain structure, and cognition in a large cohort of 9- to 10-year-old children. PLoS One 2021; 16:e0258469. [PMID: 34648580 PMCID: PMC8516269 DOI: 10.1371/journal.pone.0258469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/26/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Lead, a toxic metal, affects cognitive development at the lowest measurable concentrations found in children, but little is known about its direct impact on brain development. Recently, we reported widespread decreases in cortical surface area and volume with increased risks of lead exposure, primarily in children of low-income families. METHODS AND FINDINGS We examined associations of neighborhood-level risk of lead exposure with cognitive test performance and subcortical brain volumes. We also examined whether subcortical structure mediated associations between lead risk and cognitive performance. Our analyses employed a cross-sectional analysis of baseline data from the observational Adolescent Brain Cognitive Development (ABCD) Study. The multi-center ABCD Study used school-based enrollment to recruit a demographically diverse cohort of almost 11,900 9- and 10-year-old children from an initial 22 study sites. The analyzed sample included data from 8,524 typically developing child participants and their parents or caregivers. The primary outcomes and measures were subcortical brain structure, cognitive performance using the National Institutes of Health Toolbox, and geocoded risk of lead exposure. Children who lived in neighborhoods with greater risks of environmental lead exposure exhibited smaller volumes of the mid-anterior (partial correlation coefficient [rp] = -0.040), central (rp = -0.038), and mid-posterior corpus callosum (rp = -0.035). Smaller volumes of these three callosal regions were associated with poorer performance on cognitive tests measuring language and processing speed. The association of lead exposure risk with cognitive performance was partially mediated through callosal volume, particularly the mid-posterior corpus callosum. In contrast, neighborhood-level indicators of disadvantage were not associated with smaller volumes of these brain structures. CONCLUSIONS Environmental factors related to the risk of lead exposure may be associated with certain aspects of cognitive functioning via diminished subcortical brain structure, including the anterior splenium (i.e., mid-posterior corpus callosum).
Collapse
Affiliation(s)
- Andrew T. Marshall
- Children’s Hospital Los Angeles, and the Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Wesley K. Thompson
- Department of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, San Diego, California, United States of America
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Elizabeth R. Sowell
- Children’s Hospital Los Angeles, and the Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Daniele M, Sassa Y, Kawashima R. Lead exposure is associated with functional and microstructural changes in the healthy human brain. Commun Biol 2021; 4:912. [PMID: 34312468 PMCID: PMC8313694 DOI: 10.1038/s42003-021-02435-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Lead is a toxin known to harm many organs in the body, particularly the central nervous system, across an individual's lifespan. To date, no study has yet investigated the associations between body lead level and the microstructural properties of gray matter areas, and brain activity during attention-demanding tasks. Here, utilizing data of diffusion tensor imaging, functional magnetic resonance imaging and cognitive measures among 920 typically developing young adults, we show greater hair lead levels are weakly but significantly associated with (a) increased working memory-related activity in the right premotor and pre-supplemental motor areas, (b) lower fractional anisotropy (FA) in white matter areas near the internal capsule, (c) lower mean diffusivity (MD) in the dopaminergic system in the left hemisphere and other widespread contingent areas, and (d) greater MD in the white matter area adjacent to the right fusiform gyrus. Higher lead levels were also weakly but significantly associated with lower performance in tests of high-order cognitive functions, such as the psychometric intelligence test, greater impulsivity measures, and higher novelty seeking and extraversion. These findings reflect the weak effect of daily lead level on the excitability and microstructural properties of the brain, particularly in the dopaminergic system.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- grid.69566.3a0000 0001 2248 6943Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- grid.69566.3a0000 0001 2248 6943Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- grid.69566.3a0000 0001 2248 6943Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryoichi Yokoyama
- grid.31432.370000 0001 1092 3077School of Medicine, Kobe University, Kobe, Japan
| | - Yuka Kotozaki
- grid.411582.b0000 0001 1017 9540Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- grid.69566.3a0000 0001 2248 6943Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan ,grid.412755.00000 0001 2166 7427Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- grid.69566.3a0000 0001 2248 6943Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.419280.60000 0004 1763 8916Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- grid.69566.3a0000 0001 2248 6943Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sugiko Hanawa
- grid.69566.3a0000 0001 2248 6943Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- grid.69566.3a0000 0001 2248 6943Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- grid.69566.3a0000 0001 2248 6943Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- grid.32197.3e0000 0001 2179 2105Research Institute for the Earth Inclusive Sensing, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigeyuki Ikeda
- grid.69566.3a0000 0001 2248 6943Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susum Yokota
- grid.177174.30000 0001 2242 4849Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Magistro Daniele
- grid.12361.370000 0001 0727 0669Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Yuko Sassa
- grid.69566.3a0000 0001 2248 6943Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- grid.69566.3a0000 0001 2248 6943Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Wright JP, Lanphear BP, Dietrich KN, Bolger M, Tully L, Cecil KM, Sacarellos C. Developmental lead exposure and adult criminal behavior: A 30-year prospective birth cohort study. Neurotoxicol Teratol 2021; 85:106960. [PMID: 33617950 PMCID: PMC8582283 DOI: 10.1016/j.ntt.2021.106960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Using a variety of research designs and measures of lead absorption, numerous studies link childhood lead exposure to a range of cognitive and behavioral deficits, including low IQ, impulsivity, juvenile delinquency, and criminal behavior in adolescence and early adulthood. In this study, we tested the association between multiple measures of blood lead concentration assessed in childhood with criminal behavior in adulthood and across the life-course. Prospective data from the Cincinnati Lead Study (CLS) included blood lead measures quarterly across the first 78 months of life and the number of times a person was arrested across the life-course (from age 18 to 33 years) and in later adulthood (age 27 to 33 years). Childhood blood lead concentration prospectively predicted variation in adult arrests and arrests over the life-course, indicating lead absorption is implicated in the etiology of crime-especially in geographic areas where environmental sources of lead are more prevalent and concentrated. Efforts to decrease lead exposure in both developed and developing countries should be part of a comprehensive strategy to reduce social dislocation and crime.
Collapse
Affiliation(s)
- John Paul Wright
- School of Criminal Justice, University of Cincinnati, OH 45221, United States of America.
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University and Child and Family Research Institute, British Columbia Children's Hospital, Vancouver, British Columbia, Canada.
| | - Kim N Dietrich
- Department of Environmental Health, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America.
| | - Michelle Bolger
- Department of Social Science, Criminal Justice Program, DeSales University, Center Valley, PA 18034, United States of America.
| | - Lisa Tully
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Kim M Cecil
- Department of Environmental Health, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States of America; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Catherine Sacarellos
- School of Criminal Justice, University of Cincinnati, OH 45221, United States of America
| |
Collapse
|
21
|
Ahmed MS, El-Neweshy MS. The impact of environmental lead exposure on Whooper swan (Cygnus cygnus): Pathological and immunohistochemical studies. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was carried out to investigate the pathology of environmental lead (Pb) poisoning in Whooper swans (Cygnus cygnus). A number of 12 out 54 swans (22.2%) randomly collected from Honshu, Japan from June 2005 to July 2007 were affected with Pb poisoning. Affected swans showed stained vent with greenish watery diarrhoea and impacted crop. The presence of Pb shots in the gizzard (50%) was confirmed by X-ray, and all cases showed a dark greenish coloured liver. Microscopically, the pathology of Pb poisoning in swans was multisystemic. The severity of the lesions was the highest in the CNS followed by the liver, kidney, spleen, lungs, gizzard, heart, bone marrow respectively and was the least in the peripheral nervous system. CNS lesions were cerebral haemorrhage, malacia, and spongiosis with astrocytic activation and increased neurofilaments accumulations. In addition, there were hepatic and renal hemosiderosis and apoptosis, hepatic granuloma, interstitial pneumonia, gizzard and myocardial necrosis and bone marrow hypoplasia. Chemical analysis of the Pb content in liver and kidneys ranged from 8.18 to 60.6 µg/g, respectively. The extent and severity of lesions varied among individuals and were mostly dose-dependent. Finally, these findings improved the diagnostic procedure of Pb poisoning in free-living Whooper swans.
Collapse
|
22
|
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 2021; 347:108951. [PMID: 33017644 PMCID: PMC7762827 DOI: 10.1016/j.jneumeth.2020.108951] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Eleftherios Garyfallidis
- Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
23
|
Reuben A, Elliott ML, Abraham WC, Broadbent J, Houts RM, Ireland D, Knodt AR, Poulton R, Ramrakha S, Hariri AR, Caspi A, Moffitt TE. Association of Childhood Lead Exposure With MRI Measurements of Structural Brain Integrity in Midlife. JAMA 2020; 324:1970-1979. [PMID: 33201203 PMCID: PMC7672511 DOI: 10.1001/jama.2020.19998] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Childhood lead exposure has been linked to disrupted brain development, but long-term consequences for structural brain integrity are unknown. OBJECTIVE To test the hypothesis that childhood lead exposure is associated with magnetic resonance imaging (MRI) measurements of lower structural integrity of the brain in midlife. DESIGN, SETTING, AND PARTICIPANTS The Dunedin Study followed a population-representative 1972-1973 birth cohort in New Zealand (N = 564 analytic sample) to age 45 years (until April 2019). EXPOSURES Childhood blood lead levels measured at age 11 years. MAIN OUTCOMES AND MEASURES Structural brain integrity at age 45 years assessed via MRI (primary outcomes): gray matter (cortical thickness, surface area, hippocampal volume), white matter (white matter hyperintensities, fractional anisotropy [theoretical range, 0 {diffusion is perfectly isotropic} to 100 {diffusion is perfectly anisotropic}]), and the Brain Age Gap Estimation (BrainAGE), a composite index of the gap between chronological age and a machine learning algorithm-estimated brain age (0 indicates a brain age equivalent to chronological age; positive and negative values represent an older and younger brain age, respectively). Cognitive function at age 45 years was assessed objectively via the Wechsler Adult Intelligence Scale IV (IQ range, 40-160, standardized to a mean of 100 [SD, 15]) and subjectively via informant and self-reports (z-score units; scale mean, 0 [SD, 1]). RESULTS Of 1037 original participants, 997 were alive at age 45 years, of whom 564 (57%) had received lead testing at age 11 years (302 [54%] male) (median follow-up, 34 [interquartile range, 33.7-34.7] years). Mean blood lead level at age 11 years was 10.99 (SD, 4.63) μg/dL. After adjusting for covariates, each 5-μg/dL higher childhood blood lead level was significantly associated with 1.19-cm2 smaller cortical surface area (95% CI, -2.35 to -0.02 cm2; P = .05), 0.10-cm3 smaller hippocampal volume (95% CI, -0.17 to -0.03 cm3; P = .006), lower global fractional anisotropy (b = -0.12; 95% CI, -0.24 to -0.01; P = .04), and a BrainAGE index 0.77 years older (95% CI, 0.02-1.51 years; P = .05) at age 45 years. There were no statistically significant associations between blood lead level and log-transformed white matter hyperintensity volume (b = 0.05 log mm3; 95% CI, -0.02 to 0.13 log mm3; P = .17) or mean cortical thickness (b = -0.004 mm; 95% CI, -0.012 to 0.004 mm; P = .39). Each 5-μg/dL higher childhood blood lead level was significantly associated with a 2.07-point lower IQ score at age 45 years (95% CI, -3.39 to -0.74; P = .002) and a 0.12-point higher score on informant-rated cognitive problems (95% CI, 0.01-0.23; P = .03). There was no statistically significant association between childhood blood lead levels and self-reported cognitive problems (b = -0.02 points; 95% CI, -0.10 to 0.07; P = .68). CONCLUSIONS AND RELEVANCE In this longitudinal cohort study with a median 34-year follow-up, higher childhood blood lead level was associated with differences in some MRI measures of brain structure that suggested lower structural brain integrity in midlife. Because of the large number of statistical comparisons, some findings may represent type I error.
Collapse
Affiliation(s)
- Aaron Reuben
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Maxwell L. Elliott
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Wickliffe C. Abraham
- Brain Health Research Centre, Brain Research New Zealand, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Jonathan Broadbent
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Renate M. Houts
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Annchen R. Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Ahmad R. Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, England
- PROMENTA, Department of Psychology, University of Oslo, Oslo, Norway
| | - Terrie E. Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, England
- PROMENTA, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Tandon A, Singh SJ, Gupta M, Singh N, Shankar J, Arjaria N, Goyal S, Chaturvedi RK. Notch pathway up-regulation via curcumin mitigates bisphenol-A (BPA) induced alterations in hippocampal oligodendrogenesis. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122052. [PMID: 32151947 DOI: 10.1016/j.jhazmat.2020.122052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
CNS myelination process involves proliferation and differentiation of oligodendrocyte progenitor cells (OPCs). Defective myelination causes onset of neurological disorders. Bisphenol-A (BPA), a component of plastic items, exerts adverse effects on human health. Our previous studies indicated that BPA impairs neurogenesis and myelination process stimulating cognitive dysfunctions. But, the underlying mechanism(s) of BPA induced de-myelination and probable neuroprotection by curcumin remains elusive. We found that curcumin protected BPA mediated adverse effects on oligosphere growth kinetics. Curcumin significantly improved proliferation and differentiation of OPCs upon BPA exposure both in-vitro and in-vivo. Curcumin enhanced the mRNA expression and protein levels of myelination markers in BPA treated rat hippocampus. Curcumin improved myelination potential via increasing β-III tubulin-/MBP+ cells (neuron-oligodendrocyte co-culture) and augmented fluoromyelin intensity and neurofilament/MBP+ neurons in vivo. In silico docking studies suggested Notch pathway genes (Notch-1, Hes-1 and Mib-1) as potential targets of BPA and curcumin. Curcumin reversed BPA mediated myelination inhibition via increasing the Notch pathway gene expression. Genetic and pharmacological Notch pathway inhibition by DAPT and Notch-1 siRNA exhibited decreased curcumin mediated neuroprotection. Curcumin improved BPA mediated myelin sheath degeneration and neurobehavioral impairments. Altogether, results suggest that curcumin protected BPA induced de-myelination and behavioural deficits through Notch pathway activation.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Sangh Jyoti Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Manjeet Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India
| | - Nivedita Singh
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Jai Shankar
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India.
| |
Collapse
|
25
|
Reuben A, Frischtak H, Berky A, Ortiz EJ, Morales AM, Hsu‐Kim H, Pendergast LL, Pan WK. Elevated Hair Mercury Levels Are Associated With Neurodevelopmental Deficits in Children Living Near Artisanal and Small-Scale Gold Mining in Peru. GEOHEALTH 2020; 4:e2019GH000222. [PMID: 32490301 PMCID: PMC7240868 DOI: 10.1029/2019gh000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 05/08/2023]
Abstract
Children living near artisanal and small-scale gold mining (ASGM) are at risk of exposure to mercury, a neurotoxicant. It is not certain whether such exposures are harming development, as they occur in underresourced contexts entwined with other stressors, such as malnutrition and enteric infection. This study sought to investigate the association between hair-mercury levels and visual-motor, cognitive, and physical development among children living near ASGM in the Peruvian Amazon. Total hair-mercury levels were measured in 164 children ages 5-12 living in Madre de Dios, Peru. Primary outcomes included Visual-Motor Integration assessed via the Beery-VMI Developmental Test, General Cognitive Ability assessed via the Batería-III Woodcock-Munoz (Spanish-language Woodcock-Johnson Tests of Cognitive Abilities), and Physical Health assessed via anthropometry/hemoglobin counts. Mean (SD) hair-mercury level was 2.06 (2.43) μg/g. Fifty-four children (32.9%) had hair-mercury levels above the World Health Organization reference level of 2.0 μg/g. After controlling for sex, child age, maternal education, and family socioeconomic status, each one unit increase in log hair-mercury level was associated with a 1.01 unit decrease in Visual-Motor Integration (95%CI: -2.06, 0.05, p = 0.061), a 2.59 unit decrease in General Cognitive Ability (95%CI: -4.52, -0.66, p = 0.012), and a 2.43 unit decrease in Physical Health (95%CI: -5.34, 0.49, p = 0.096). After adjustment for covariates, children with hair-mercury levels exceeding the World Health Organization reference level scored 4.68 IQ points lower in Cognitive Ability than their peers. Mercury exposures related to ASGM may be harming child development in the Peruvian Amazon. Children in this region may benefit from intervention to reach their full developmental potential.
Collapse
Affiliation(s)
- Aaron Reuben
- Department of Psychology and NeuroscienceDuke UniversityDurhamNCUSA
| | | | - Axel Berky
- Global Health InstituteDuke UniversityDurhamNCUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - Ernesto J. Ortiz
- Global Health InstituteDuke UniversityDurhamNCUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - Ana Maria Morales
- Centro de Estudios, Investigaciones y Servicios en Salud Publica (CENSAP)Puerto MaldonadoPeru
| | - Heileen Hsu‐Kim
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - Laura L. Pendergast
- Department of Psychological Studies in EducationTemple UniversityPhiladelphiaPAUSA
| | - William K. Pan
- Global Health InstituteDuke UniversityDurhamNCUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| |
Collapse
|
26
|
Meyer DN, Crofts EJ, Akemann C, Gurdziel K, Farr R, Baker BB, Weber D, Baker TR. Developmental exposure to Pb 2+ induces transgenerational changes to zebrafish brain transcriptome. CHEMOSPHERE 2020; 244:125527. [PMID: 31816550 PMCID: PMC7015790 DOI: 10.1016/j.chemosphere.2019.125527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 05/24/2023]
Abstract
Lead (Pb2+) is a major public health hazard for urban children, with profound and well-characterized developmental and behavioral implications across the lifespan. The ability of early Pb2+ exposure to induce epigenetic changes is well-established, suggesting that Pb2+-induced neurobehavioral deficits may be heritable across generations. Understanding the long-term and multigenerational repercussions of lead exposure is crucial for clarifying both the genotypic alterations behind these behavioral outcomes and the potential mechanism of heritability. To study this, zebrafish (Danio rerio) embryos (<2 h post fertilization; EK strain) were exposed for 24 h to waterborne Pb2+ at a concentration of 10 μM. This exposed F0 generation was raised to adulthood and spawned to produce the F1 generation, which was subsequently spawned to produce the F2 generation. Previous avoidance conditioning studies determined that a 10 μM Pb2+ dose resulted in learning impairments persisting through the F2 generation. RNA was extracted from control- and 10 μM Pb2+-lineage F2 brains, (n = 10 for each group), sequenced, and transcript expression was quantified utilizing Quant-Seq. 648 genes were differentially expressed in the brains of F2 lead-lineage fish versus F2 control-lineage fish. Pathway analysis revealed altered genes in processes including synaptic function and plasticity, neurogenesis, endocrine homeostasis, and epigenetic modification, all of which are implicated in lead-induced neurobehavioral deficits and/or their inheritance. These data will inform future investigations to elucidate the mechanism of adult-onset and transgenerational health effects of developmental lead exposure.
Collapse
Affiliation(s)
- Danielle N Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Emily J Crofts
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Rebecca Farr
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA; Division of Laboratory Animal Resources, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Daniel Weber
- Children's Environmental Health Sciences Core Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Tracie R Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
27
|
Marshall AT, Betts S, Kan EC, McConnell R, Lanphear BP, Sowell ER. Association of lead-exposure risk and family income with childhood brain outcomes. Nat Med 2020; 26:91-97. [PMID: 31932788 PMCID: PMC6980739 DOI: 10.1038/s41591-019-0713-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023]
Abstract
Socioeconomic factors influence brain development and structure, but most studies have overlooked neurotoxic insults that impair development, such as lead exposure. Childhood lead exposure affects cognitive development at the lowest measurable concentrations, but little is known about its impact on brain development during childhood. We examined cross-sectional associations among brain structure, cognition, geocoded measures of the risk of lead exposure and sociodemographic characteristics in 9,712 9- and 10-year-old children. Here we show stronger negative associations of living in high-lead-risk census tracts in children from lower- versus higher-income families. With increasing risk of exposure, children from lower-income families exhibited lower cognitive test scores, smaller cortical volume and smaller cortical surface area. Reducing environmental insults associated with lead-exposure risk might confer greater benefit to children experiencing more environmental adversity, and further understanding of the factors associated with high lead-exposure risk will be critical for improving such outcomes in children.
Collapse
Affiliation(s)
- Andrew T Marshall
- Children's Hospital Los Angeles, and the Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Samantha Betts
- Children's Hospital Los Angeles, and the Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Eric C Kan
- Children's Hospital Los Angeles, and the Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Elizabeth R Sowell
- Children's Hospital Los Angeles, and the Department of Pediatrics, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Shadbegian R, Guignet D, Klemick H, Bui L. Early childhood lead exposure and the persistence of educational consequences into adolescence. ENVIRONMENTAL RESEARCH 2019; 178:108643. [PMID: 31473504 PMCID: PMC7038535 DOI: 10.1016/j.envres.2019.108643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND There is consensus that early childhood lead exposure causes adverse cognitive and behavioral effects, even at blood lead levels (BLL) below 5 μg/dL. What has not been established is to what extent the effects of childhood lead exposure persist across grades. OBJECTIVE To measure the effects of early childhood lead exposure (BLL 1-10 μg/dL) on educational performance from grades 3-8; to determine if effects in lower grades persist as a child progresses through school; and if so, to characterize the pattern of persistence. METHODS We examine data from 560,624 children living in North Carolina between 2000 and 2012 with a BLL ≤10 μg/dL measured between age 0-5 years. Children are matched to their standardized math and reading scores for grades 3-8, creating an unbalanced panel of 2,344,358 student-year observations. We use socio-economic, demographic, and school information along with matching techniques to control for confounding effects. RESULTS We find that early childhood exposure to low lead levels caused persistent deficits in educational performance across grades. In each grade (3-8), children with higher blood lead levels had, on average, lower percentile scores in both math and reading than children with lower blood lead levels. In our primary model, we find that children with BLL = 5 μg/dL in early childhood ranked 0.90-1.20 (1.35-1.55) percentiles lower than children with BLL ≤ 1 μg/dL on math (reading) tests during grades 3-8. As children progressed through school, the average percentile deficit in their test scores remained stable. CONCLUSIONS Our study shows that the adverse effects of early childhood exposure to low lead levels persist through early adolescence, and that the magnitude of the test-score percentile deficit remains steady between grades 3-8.
Collapse
Affiliation(s)
- Ron Shadbegian
- US EPA, National Center for Environmental Economics, 1200 Pennsylvania Avenue, NW (mail Code 1809T), Washington, DC, 20460, USA.
| | | | - Heather Klemick
- US EPA, National Center for Environmental Economics, Washington, DC, USA.
| | - Linda Bui
- Brandeis University, Waltham, MA, USA.
| |
Collapse
|
29
|
Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:235-287. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure during different stages of development has demonstrated dose, duration, sex, and tissue-specific pathophysiological outcomes due to altered epigenetic regulation via (a) DNA methylation, (b) histone modifications, (c) miRNAs, and (d) chromatin accessibility. Pb-induced alteration of epigenetic regulation causes neurotoxic and extra-neurotoxic pathophysiological outcomes. Neurotoxic effects of Pb include dysfunction of memory and learning, behavioral disorder, attention deficit hyperactivity disorder, autism spectrum disorder, aging, Alzheimer's disease, tauopathy, and neurodegeneration. Extra-neurotoxic effects of Pb include altered body weight, metabolic disorder, cardiovascular disorders, hematopoietic disorder, and reproductive impairment. Pb exposure either early in life or at any stage of development results in undesirable pathophysiological outcomes that tends to sustain and maintain for a lifetime.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Abstract
Millions of Americans now entering midlife and old age were exposed to high levels of lead, a neurotoxin, as children. Evidence from animal-model and human observational studies suggest that childhood lead exposure may raise the risk of adult neurodegenerative disease, particularly dementia, through a variety of possible mechanisms including epigenetic modification, delayed cardiovascular and kidney disease, direct degenerative CNS injury from lead remobilized from bone, and lowered neural and cognitive reserve. Within the next ten years, the generation of children with the highest historical lead exposures, those born in the 1960s, 1970s, and 1980s, will begin to enter the age at which dementia symptoms tend to emerge. Many will also enter the age in which lead stored in the skeleton may be remobilized at greater rates, particularly for women entering menopause and men and women experiencing osteoporosis. Should childhood lead exposure prove pro-degenerative, the next twenty years will provide the last opportunities for possible early intervention to forestall greater degenerative disease burden across the aging lead-exposed population. More evidence is needed now to characterize the nature and magnitude of the degenerative risks facing adults exposed to lead as children and to identify interventions to limit long-term harm.
Collapse
Affiliation(s)
- Aaron Reuben
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
31
|
Chronic Lead Exposure Results in Auditory Deficits and Disruption of Hair Cells in Postweaning Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4289169. [PMID: 31217838 PMCID: PMC6536999 DOI: 10.1155/2019/4289169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023]
Abstract
Objective The effects of lead exposure on cognitive function have been studied intensively over the past decade, but less attention has focused on its impact on auditory function. This study is aimed at investigating the effect of lead on the cochlea and the molecular mechanisms responsible for its actions. Methods 0.2% lead acetate was administered to rats in drinking water for 30, 60, and 90 days. Brainstem auditory evoked responses (ABR) were recorded, and morphological changes in the hair cells were observed. We also measured glutathione (GSH) and malondialdehyde (MDA) concentrations and antioxidant enzyme activities such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione reductase (GR) activities in the cochlea. Results Lead exposure increased the ABR threshold and slightly prolonged the latencies of wave II and wave IV in rats. Abnormally shaped hair cells and loss of hair cells were found in the cochlea basilar membrane, together with degenerative changes in spiral ganglion neurons following lead exposure. The activities of some antioxidant enzymes were also reduced in association with upregulation of MDA expression. These effects may be caused by impaired catalytic function of the enzymes as a result of lead interaction. Conclusion The antioxidant system of the cochlea in the immature rat brain is highly vulnerable to developmental lead exposure. Oxidative stress may therefore represent a possible mechanism for lead-induced auditory deficits.
Collapse
|
32
|
Thomason ME, Hect JL, Rauh VA, Trentacosta C, Wheelock MD, Eggebrecht AT, Espinoza-Heredia C, Burt SA. Prenatal lead exposure impacts cross-hemispheric and long-range connectivity in the human fetal brain. Neuroimage 2019; 191:186-192. [PMID: 30739062 PMCID: PMC6451829 DOI: 10.1016/j.neuroimage.2019.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/21/2023] Open
Abstract
Lead represents a highly prevalent metal toxicant with potential to alter human biology in lasting ways. A population segment that is particularly vulnerable to the negative consequences of lead exposure is the human fetus, as exposure events occurring before birth are linked to varied and long-ranging negative health and behavioral outcomes. An area that has yet to be addressed is the potential that lead exposure during pregnancy alters brain development even before an individual is born. Here, we combine prenatal lead exposure information extracted from newborn bloodspots with the human fetal brain functional MRI data to assess whether neural network connectivity differs between lead-exposed and lead-naïve fetuses. We found that neural connectivity patterns differed in lead-exposed and comparison groups such that fetuses that were not exposed demonstrated stronger age-related increases in cross-hemispheric connectivity, while the lead-exposed group demonstrated stronger age-related increases in posterior cingulate cortex (PCC) to lateral prefrontal cortex (PFC) connectivity. These are the first results to demonstrate metal toxicant-related alterations in human fetal neural connectivity. Remarkably, the findings point to alterations in systems that support higher-order cognitive and regulatory functions. Objectives for future work are to replicate these results in larger samples and to test the possibility that these alterations may account for significant variation in future child cognitive and behavioral outcomes.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, USA; Department of Population Health, New York University Medical Center, New York, NY, USA; Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| | - Jasmine L Hect
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Virginia A Rauh
- The Heilbrunn Department of Population & Family Health, Columbia University Medical Center, New York, NY, USA
| | | | - Muriah D Wheelock
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Claudia Espinoza-Heredia
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
33
|
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J Mol Biol 2019; 431:1843-1868. [PMID: 30664867 DOI: 10.1016/j.jmb.2019.01.018] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., β-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD.
Collapse
Affiliation(s)
- Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
34
|
Carbofuran hampers oligodendrocytes development leading to impaired myelination in the hippocampus of rat brain. Neurotoxicology 2019; 70:161-179. [DOI: 10.1016/j.neuro.2018.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022]
|
35
|
Beckwith TJ, Dietrich KN, Wright JP, Altaye M, Cecil KM. Reduced regional volumes associated with total psychopathy scores in an adult population with childhood lead exposure. Neurotoxicology 2018; 67:1-26. [PMID: 29634994 PMCID: PMC6054826 DOI: 10.1016/j.neuro.2018.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
Childhood lead exposure has been correlated to acts of delinquency and criminal behavior; however, little research has been conducted to examine its potential long term influence on behavioral factors such as personality, specifically psychopathic personality. Neuroimaging studies have demonstrated that the effects of childhood lead exposure persist into adulthood, with structural abnormalities found in gray and white matter regions involved in behavioral decision making. The current study examined whether measurements of adult psychopathy were associated with neuroanatomical differences in structural brain volumes for a longitudinal cohort with measured childhood lead exposure. We hypothesized that increased total psychopathy scores and increased blood lead concentration at 78 months of age (PbB78) would be inversely associated with volumetric measures of gray and white matter brain structures responsible for executive and emotional processing. Analyses did not display a direct effect between total psychopathy score and gray matter volume; however, reduced white matter volume in the cerebellum and brain stem in relation to increased total psychopathy scores was observed. An interaction between sex and total psychopathy score was also detected. Females displayed increased gray matter volume in the frontal, temporal, and parietal lobes associated with increased total psychopathy score, but did not display any white matter volume differences. Males primarily displayed reductions in frontal gray and white matter brain volume in relation to increased total psychopathy scores. Additionally, reduced gray and white matter volume was associated with increased blood lead levels in the frontal lobes; reduced white matter volume was also observed in the parietal and temporal lobes. Females demonstrated gray and white matter volume loss associated with increased PbB78 values in the right temporal lobe, as well as reduced gray matter volume in the frontal lobe. Males displayed reduced white matter volumes associated with increased PbB78 values in the frontal, temporal, and parietal lobes. Comparison of the two primary models revealed a volumetric decrease in the white matter of the left prefrontal cortex associated with increased total psychopathy scores and increased blood lead concentration in males. The results of this study suggested that increased psychopathy scores in this cohort may be attributable to the neuroanatomical abnormalities observed and that childhood lead exposure may be influential to these outcomes.
Collapse
Affiliation(s)
- Travis J Beckwith
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Kim N Dietrich
- Department of Environmental Health, Division of Epidemiology and Biostatistics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - John P Wright
- School of Criminal Justice, University of Cincinnati, Cincinnati, OH, United States
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kim M Cecil
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Environmental Health, Division of Epidemiology and Biostatistics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Radiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
36
|
The Neurodevelopmental Toxicity of Lead: History, Epidemiology, and Public Health Implications. LINKING ENVIRONMENTAL EXPOSURE TO NEURODEVELOPMENTAL DISORDERS 2018. [DOI: 10.1016/bs.ant.2018.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Nkomo P, Mathee A, Naicker N, Galpin J, Richter LM, Norris SA. The association between elevated blood lead levels and violent behavior during late adolescence: The South African Birth to Twenty Plus cohort. ENVIRONMENT INTERNATIONAL 2017; 109:136-145. [PMID: 28916132 DOI: 10.1016/j.envint.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
Epidemiological studies have shown the adverse neuro-behavioral health effects of lead exposure among children, in particular. However, there is lack evidence in this regard from developing countries. The main aim of this study was to assess the association between blood lead levels (BLLs) during early adolescence and violent behavior in late adolescence. Our study sample from the Birth to Twenty Plus cohort in Soweto-Johannesburg, South Africa included 1332 study participants (684 females). BLLs were measured using blood samples collected at age 13years. Violent behavior was evaluated using data collected at ages 15 to 16years using the Youth Self Report questionnaire. First, bivariate analysis was used to examine data for an association between lead exposure in early adolescence and violent behavior items during late adolescence. Principal Component Analysis (PCA) was used for dimensionality reduction and six violent behavior components were derived. Data were further analyzed for an association between BLLs at age 13years and violent behavior using PCA derived components; to determine the specific type(s) of violent behavior associated with lead exposure. Median whole BLLs were 5.6μg/dL (p<0.001). Seventy five percent of males and 50% of females had BLLs≥5μg/dL. BLLs ranging from 5 to 9.99μg/dL were associated with physical violence (p=0.03) and BLLs≥10μg/dL were associated physical violence and fighting (p=0.02 and p=0.01, respectively). When data were analyzed using continuous BLLs physical violence was associated with lead exposure (p<0.0001). Furthermore, males were more likely to be involved in violence using a weapon (p=0.01), physical violence (p<0.0001), and robbing others (p<0.05) compared to females. The results from this study show the severe nature of violent behavior in late adolescence associated with childhood lead exposure. They highlight the urgent need for preventive measures against lead exposure among children in low or middle income countries such as South Africa.
Collapse
Affiliation(s)
- Palesa Nkomo
- Environment & Health Research Unit, Medical Research Council, South Africa; MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Angela Mathee
- Environment & Health Research Unit, Medical Research Council, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, South Africa.
| | - Nisha Naicker
- Environment & Health Research Unit, Medical Research Council, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, South Africa.
| | - Jacky Galpin
- School of Statistics and Actuarial Science, University of the Witwatersrand, Johannesburg, South Africa.
| | - Linda M Richter
- DST-NRF Centre of Excellence in Human Development, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shane A Norris
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; DST-NRF Centre of Excellence in Human Development, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
38
|
Baker JM, Rojas-Valverde D, Gutiérrez R, Winkler M, Fuhrimann S, Eskenazi B, Reiss AL, Mora AM. Portable Functional Neuroimaging as an Environmental Epidemiology Tool: A How-To Guide for the Use of fNIRS in Field Studies. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:094502. [PMID: 28937962 PMCID: PMC5915206 DOI: 10.1289/ehp2049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 05/21/2023]
Abstract
SUMMARY The widespread application of functional neuroimaging within the field of environmental epidemiology has the potential to greatly enhance our understanding of how environmental toxicants affect brain function. Because many epidemiological studies take place in remote and frequently changing environments, it is necessary that the primary neuroimaging approach adopted by the epidemiology community be robust to many environments, easy to use, and, preferably, mobile. Here, we outline our use of functional near-infrared spectroscopy (fNIRS) to collect functional brain imaging data from Costa Rican farm workers enrolled in an epidemiological study on the health effects of chronic pesticide exposure. While couched in this perspective, we focus on the methodological considerations that are necessary to conduct a mobile fNIRS study in a diverse range of environments. Thus, this guide is intended to be generalizable to all research scenarios and projects in which fNIRS may be used to collect functional brain imaging data in epidemiological field surveys. https://doi.org/10.1289/EHP2049.
Collapse
Affiliation(s)
- Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University , Stanford, California, USA
| | - Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte, Universidad Nacional , Heredia, Costa Rica
| | - Randall Gutiérrez
- Centro de Investigación y Diagnóstico en Salud y Deporte, Universidad Nacional , Heredia, Costa Rica
| | - Mirko Winkler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute , Basel, Switzerland
- University of Basel , Basel, Switzerland
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute , Basel, Switzerland
- University of Basel , Basel, Switzerland
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley , Berkeley, California, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University , Stanford, California, USA
- Department of Radiology, School of Medicine, Stanford University , Stanford, California, USA
| | - Ana M Mora
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley , Berkeley, California, USA
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional , Heredia, Costa Rica
| |
Collapse
|
39
|
Michielse S, Gronenschild E, Domen P, van Os J, Marcelis M. The details of structural disconnectivity in psychotic disorder: A family-based study of non-FA diffusion weighted imaging measures. Brain Res 2017; 1671:121-130. [PMID: 28709907 DOI: 10.1016/j.brainres.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/01/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) studies in psychotic disorder have shown reduced FA, often interpreted as disturbed white matter integrity. The observed 'dysintegrity' may be of multifactorial origin, as changes in FA are thought to reflect a combination of changes in myelination, fiber organization and number of axons. Examining the structural substrate of the diffusion tensor in individuals with (risk for) psychotic disorder may provide better understanding of the underlying structural changes. METHODS DTI scans were acquired from 85 patients with psychotic disorder, 93 siblings of patients with psychotic disorder and 80 controls. Cross-sectional group comparisons were performed using Tract-Based Spatial Statistics (TBSS) on six DTI measures: axial diffusivity (AXD), radial diffusivity (RD), mean diffusivity (MD), and the case linear (CL), case planar (CP) and case spherical (CS) tensor shape measures. RESULTS AXD did not differ between the groups. RD and CS values were significantly increased in patients compared to controls and siblings, with no significant differences between the latter two groups. MD was higher in patients compared to controls (but not siblings), with no difference between siblings and controls. CL was smaller in patients than in siblings and controls, and CP was smaller in both patients and siblings as compared to controls. CONCLUSION The differences between individuals with psychotic disorder and healthy controls, derived from detailed diffusion data analyses, suggest less fiber orientation and increased free water movement in the patients. There was some evidence for association with familial risk expressed by decreased fiber orientation.
Collapse
Affiliation(s)
- Stijn Michielse
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Ed Gronenschild
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Patrick Domen
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands; King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Machteld Marcelis
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands; Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands
| | | |
Collapse
|
40
|
Reuben A, Caspi A, Belsky DW, Broadbent J, Harrington H, Sugden K, Houts RM, Ramrakha S, Poulton R, Moffitt TE. Association of Childhood Blood Lead Levels With Cognitive Function and Socioeconomic Status at Age 38 Years and With IQ Change and Socioeconomic Mobility Between Childhood and Adulthood. JAMA 2017; 317:1244-1251. [PMID: 28350927 PMCID: PMC5490376 DOI: 10.1001/jama.2017.1712] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Many children in the United States and around the world are exposed to lead, a developmental neurotoxin. The long-term cognitive and socioeconomic consequences of lead exposure are uncertain. OBJECTIVE To test the hypothesis that childhood lead exposure is associated with cognitive function and socioeconomic status in adulthood and with changes in IQ and socioeconomic mobility between childhood and midlife. DESIGN, SETTING, AND PARTICIPANTS A prospective cohort study based on a population-representative 1972-1973 birth cohort from New Zealand; the Dunedin Multidisciplinary Health and Development Study observed participants to age 38 years (until December 2012). EXPOSURES Childhood lead exposure ascertained as blood lead levels measured at age 11 years. High blood lead levels were observed among children from all socioeconomic status levels in this cohort. MAIN OUTCOMES AND MEASURES The IQ (primary outcome) and indexes of Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed (secondary outcomes) were assessed at age 38 years using the Wechsler Adult Intelligence Scale-IV (WAIS-IV; IQ range, 40-160). Socioeconomic status (primary outcome) was assessed at age 38 years using the New Zealand Socioeconomic Index-2006 (NZSEI-06; range, 10 [lowest]-90 [highest]). RESULTS Of 1037 original participants, 1007 were alive at age 38 years, of whom 565 (56%) had been lead tested at age 11 years (54% male; 93% white). Mean (SD) blood lead level at age 11 years was 10.99 (4.63) µg/dL. Among blood-tested participants included at age 38 years, mean WAIS-IV score was 101.16 (14.82) and mean NZSEI-06 score was 49.75 (17.12). After adjusting for maternal IQ, childhood IQ, and childhood socioeconomic status, each 5-µg/dL higher level of blood lead in childhood was associated with a 1.61-point lower score (95% CI, -2.48 to -0.74) in adult IQ, a 2.07-point lower score (95% CI, -3.14 to -1.01) in perceptual reasoning, and a 1.26-point lower score (95% CI, -2.38 to -0.14) in working memory. Associations of childhood blood lead level with deficits in verbal comprehension and processing speed were not statistically significant. After adjusting for confounders, each 5-µg/dL higher level of blood lead in childhood was associated with a 1.79-unit lower score (95% CI, -3.17 to -0.40) in socioeconomic status. An association between greater blood lead levels and a decline in IQ and socioeconomic status from childhood to adulthood was observed with 40% of the association with downward mobility mediated by cognitive decline from childhood. CONCLUSIONS AND RELEVANCE In this cohort born in New Zealand in 1972-1973, childhood lead exposure was associated with lower cognitive function and socioeconomic status at age 38 years and with declines in IQ and with downward social mobility. Childhood lead exposure may have long-term ramifications.
Collapse
Affiliation(s)
- Aaron Reuben
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, & Neuroscience, King’s College, London, UK
| | - Daniel W. Belsky
- Social Science Research Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jonathan Broadbent
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Honalee Harrington
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Renate M. Houts
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Terrie E. Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, & Neuroscience, King’s College, London, UK
| |
Collapse
|
41
|
Pamies D, Barreras P, Block K, Makri G, Kumar A, Wiersma D, Smirnova L, Zang C, Bressler J, Christian KM, Harris G, Ming GL, Berlinicke CJ, Kyro K, Song H, Pardo CA, Hartung T, Hogberg HT. A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2016; 34:362-376. [PMID: 27883356 PMCID: PMC6047513 DOI: 10.14573/altex.1609122] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022]
Abstract
Human in vitro models of brain neurophysiology are needed to investigate molecular and cellular mechanisms associated with neurological disorders and neurotoxicity. We have developed a reproducible iPSC-derived human 3D brain microphysiological system (BMPS), comprised of differentiated mature neurons and glial cells (astrocytes and oligodendrocytes) that reproduce neuronal-glial interactions and connectivity. BMPS mature over eight weeks and show the critical elements of neuronal function: synaptogenesis and neuron-to-neuron (e.g., spontaneous electric field potentials) and neuronal-glial interactions (e.g., myelination), which mimic the microenvironment of the central nervous system, rarely seen in vitro before. The BMPS shows 40% overall myelination after 8 weeks of differentiation. Myelin was observed by immunohistochemistry and confirmed by confocal microscopy 3D reconstruction and electron microscopy. These findings are of particular relevance since myelin is crucial for proper neuronal function and development. The ability to assess oligodendroglial function and mechanisms associated with myelination in this BMPS model provide an excellent tool for future studies of neurological disorders such as multiple sclerosis and other demyelinating diseases. The BMPS provides a suitable and reliable model to investigate neuron-neuroglia function as well as pathogenic mechanisms in neurotoxicology.
Collapse
Affiliation(s)
- David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Paula Barreras
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Katharina Block
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Georgia Makri
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Anupama Kumar
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Daphne Wiersma
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Lenna Smirnova
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Ce Zang
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Joseph Bressler
- Hugo Moser Institute at the Kennedy Krieger, Johns Hopkins University, Baltimore, USA
| | - Kimberly M Christian
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA
| | - Georgina Harris
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| | - Guo-Li Ming
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | | | - Kelly Kyro
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, USA
| | - Hongjun Song
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins University, Baltimore, USA.,Division of Neuroimmunology, Johns Hopkins University, Baltimore, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA.,University of Konstanz, Konstanz, Germany
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
42
|
Rauh VA, Margolis AE. Research Review: Environmental exposures, neurodevelopment, and child mental health - new paradigms for the study of brain and behavioral effects. J Child Psychol Psychiatry 2016; 57:775-93. [PMID: 26987761 PMCID: PMC4914412 DOI: 10.1111/jcpp.12537] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Environmental exposures play a critical role in the genesis of some child mental health problems. METHODS We open with a discussion of children's vulnerability to neurotoxic substances, changes in the distribution of toxic exposures, and cooccurrence of social and physical exposures. We address trends in prevalence of mental health disorders, and approaches to the definition of disorders that are sensitive to the subtle effects of toxic exposures. We suggest broadening outcomes to include dimensional measures of autism spectrum disorders, attention-deficit hyperactivity disorder, and child learning capacity, as well as direct assessment of brain function. FINDINGS We consider the impact of two important exposures on children's mental health: lead and pesticides. We argue that longitudinal research designs may capture the cascading effects of exposures across biological systems and the full-range of neuropsychological endpoints. Neuroimaging is a valuable tool for observing brain maturation under varying environmental conditions. A dimensional approach to measurement may be sensitive to subtle subclinical toxic effects, permitting the development of exposure-related profiles and testing of complex functional relationships between brain and behavior. Questions about the neurotoxic effects of chemicals become more pressing when viewed through the lens of environmental justice. CONCLUSIONS Reduction in the burden of child mental health disorders will require longitudinal study of neurotoxic exposures, incorporating dimensional approaches to outcome assessment, and measures of brain function. Research that seeks to identify links between toxic exposures and mental health outcomes has enormous public health and societal value.
Collapse
Affiliation(s)
- Virginia A Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Amy E Margolis
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
43
|
Modabbernia A, Velthorst E, Gennings C, De Haan L, Austin C, Sutterland A, Mollon J, Frangou S, Wright R, Arora M, Reichenberg A. Early-life metal exposure and schizophrenia: A proof-of-concept study using novel tooth-matrix biomarkers. Eur Psychiatry 2016; 36:1-6. [PMID: 27311101 DOI: 10.1016/j.eurpsy.2016.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite evidence for the effects of metals on neurodevelopment, the long-term effects on mental health remain unclear due to methodological limitations. Our objective was to determine the feasibility of studying metal exposure during critical neurodevelopmental periods and to explore the association between early-life metal exposure and adult schizophrenia. METHODS We analyzed childhood-shed teeth from nine individuals with schizophrenia and five healthy controls. We investigated the association between exposure to lead (Pb(2+)), manganese (Mn(2+)), cadmium (Cd(2+)), copper (Cu(2+)), magnesium (Mg(2+)), and zinc (Zn(2+)), and schizophrenia, psychotic experiences, and intelligence quotient (IQ). We reconstructed the dose and timing of early-life metal exposures using laser ablation inductively coupled plasma mass spectrometry. RESULTS We found higher early-life Pb(2+) exposure among patients with schizophrenia than controls. The differences in log Mn(2+) and log Cu(2+) changed relatively linearly over time to postnatal negative values. There was a positive correlation between early-life Pb(2+) levels and psychotic experiences in adulthood. Moreover, we found a negative correlation between Pb(2+) levels and adult IQ. CONCLUSIONS In our proof-of-concept study, using tooth-matrix biomarker that provides direct measurement of exposure in the fetus and newborn, we provide support for the role of metal exposure during critical neurodevelopmental periods in psychosis.
Collapse
Affiliation(s)
- A Modabbernia
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States; Seaver Center for Autism Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.
| | - E Velthorst
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - C Gennings
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - L De Haan
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - C Austin
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - A Sutterland
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J Mollon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, England, United Kingdom
| | - S Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States; Psychosis Research Program, Icahn School of Medicine at Mount Sinai, New York, United States
| | - R Wright
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - M Arora
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - A Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States; Seaver Center for Autism Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
44
|
Jeong BS, Han DH, Kim SM, Lee SW, Renshaw PF. White matter connectivity and Internet gaming disorder. Addict Biol 2016; 21:732-42. [PMID: 25899390 DOI: 10.1111/adb.12246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Internet use and on-line game play stimulate corticostriatal-limbic circuitry in both healthy subjects and subjects with Internet gaming disorder (IGD). We hypothesized that increased fractional anisotropy (FA) with decreased radial diffusivity (RD) would be observed in IGD subjects, compared with healthy control subjects, and that these white matter indices would be associated with clinical variables including duration of illness and executive function. We screened 181 male patients in order to recruit a large number (n = 58) of IGD subjects without psychiatric co-morbidity as well as 26 male healthy comparison subjects. Multiple diffusion-weighted images were acquired using a 3.0 Tesla magnetic resonance imaging scanner. Tract-based spatial statistics was applied to compare group differences in diffusion tensor imaging (DTI) metrics between IGD and healthy comparison subjects. IGD subjects had increased FA values within forceps minor, right anterior thalamic radiation, right corticospinal tract, right inferior longitudinal fasciculus, right cingulum to hippocampus and right inferior fronto-occipital fasciculus (IFOF) as well as parallel decreases in RD value within forceps minor, right anterior thalamic radiation and IFOF relative to healthy control subjects. In addition, the duration of illness in IGD subjects was positively correlated with the FA values (integrity of white matter fibers) and negatively correlated with RD scores (diffusivity of axonal density) of whole brain white matter. In IGD subjects without psychiatric co-morbidity, our DTI results suggest that increased myelination (increased FA and decreased RD values) in right-sided frontal fiber tracts may be the result of extended game play.
Collapse
Affiliation(s)
- Bum Seok Jeong
- Laboratory of Clinical Neuroscience and Development; Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology; Korea
| | - Doug Hyun Han
- Department of Psychiatry; Chung Ang University Hospital; Korea
| | - Sun Mi Kim
- Department of Psychiatry; Chung Ang University Hospital; Korea
| | - Sang Won Lee
- Laboratory of Clinical Neuroscience and Development; Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology; Korea
| | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This article presents a new hypothesis about the possible relation between early life exposure to metals and psychosis. We review limitations of available research, and discuss novel approaches to overcome previous methodological barriers. RECENT FINDINGS Mechanistic studies suggest a possible association between excess lead, manganese, cadmium, arsenic, or copper, and zinc deficiency, and several biochemical disturbances related to psychosis, such as altered neurotransmitters levels, excitotoxicity, and inflammation. Furthermore, studies suggest that some metals (lead, manganese, cadmium excess, and zinc deficiency) are associated with schizophrenia or psychosis-related phenotype. However, previous studies had multiple methodological limitations. Importantly, metal exposure was often measured after disease development and seldom determined during critical developmental periods. Most studies fell short of depicting the exact timing of exposure and the change in exposure over time. Here, we propose several methods to overcome these methodological limitations. SUMMARY There is a plausible role of early life exposure to metals in the cause of psychosis. Owing to methodological limitations in exposure measurement, this has not been well characterized. Considering the wide exposure to metals and the high cost of psychosis to society, this hypothesis should be rigorously examined.
Collapse
|
46
|
Wolff N, Luehr I, Sender J, Ehrlich S, Schmidt-Samoa C, Dechent P, Roessner V. A DTI study on the corpus callosum of treatment-naïve boys with 'pure' Tourette syndrome. Psychiatry Res Neuroimaging 2016; 247:1-8. [PMID: 26747579 DOI: 10.1016/j.pscychresns.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/19/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Disturbances in the corpus callosum (CC) indicating altered interhemispheric connectivity have been associated with Tourette syndrome (TS). The objective of the present study was to refine knowledge about interhemispheric connectivity in TS by analyzing four different diffusion tensor imaging (DTI) parameters in a very homogeneous group of treatment-naïve boys with pure TS in comparison to male healthy controls (HC). Fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD) and mean diffusivity (MD) of five CC-segments were assessed from DTI of 26 treatment-naïve boys with pure TS and 24 HC. We observed no group differences in both FA and RD. However, we found a significant effect for AD and a trend for MD, being both reduced in boys with TS in comparison to HC. Moreover, a negative correlation between AD and the Yale Global Tic Severity Scale total score was observed. Reduced AD of the CC in treatment-naïve boys with pure TS in comparison to HC may indicate that significant alterations in white matter microstructure of the CC contribute to tic symptomatology per se and seem not to be related to confounders such as consequences of long-term medication, tic performance or tic suppression.
Collapse
Affiliation(s)
- Nicole Wolff
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Ina Luehr
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Jennifer Sender
- MR-Research in Neurology and Psychiatry, Department of Cognitive Neurology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Carsten Schmidt-Samoa
- MR-Research in Neurology and Psychiatry, Department of Cognitive Neurology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Department of Cognitive Neurology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
47
|
Nigg JT, Elmore AL, Natarajan N, Friderici KH, Nikolas MA. Variation in an Iron Metabolism Gene Moderates the Association Between Blood Lead Levels and Attention-Deficit/Hyperactivity Disorder in Children. Psychol Sci 2015; 27:257-69. [PMID: 26710823 DOI: 10.1177/0956797615618365] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022] Open
Abstract
Although attention-deficit/hyperactivity disorder (ADHD) is a heritable neurodevelopmental condition, there is also considerable scientific and public interest in environmental modulators of its etiology. Exposure to neurotoxins is one potential source of perturbation of neural, and hence psychological, development. Exposure to lead in particular has been widely investigated and is correlated with neurodevelopmental outcomes, including ADHD. To investigate whether this effect is likely to be causal, we used a Mendelian randomization design with a functional gene variant. In a case-control study, we examined the association between ADHD symptoms in children and blood lead level as moderated by variants in the hemochromatosis (HFE) gene. The HFE gene regulates iron uptake and secondarily modulates lead metabolism. Statistical moderation was observed: The magnitude of the association of blood lead with symptoms of ADHD was altered by functional HFE genotype, which is consistent with a causal hypothesis.
Collapse
Affiliation(s)
- Joel T Nigg
- Department of Psychiatry, Oregon Health & Science University Department of Behavioral Neuroscience, Oregon Health & Science University
| | - Alexis L Elmore
- Department of Psychological & Brain Sciences, University of Iowa
| | - Neil Natarajan
- Department of Psychiatry, Oregon Health & Science University
| | - Karen H Friderici
- Department of Microbiology and Molecular Genetics, Michigan State University
| | - Molly A Nikolas
- Department of Microbiology and Molecular Genetics, Michigan State University
| |
Collapse
|
48
|
Occupation and the risk of chronic toxic leukoencephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:73-91. [PMID: 26563784 DOI: 10.1016/b978-0-444-62627-1.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among the hundreds of environmental insults capable of inducing nervous system injury, a small number can produce clinically significant damage to the brain white matter. The use of magnetic resonance imaging (MRI) in affected individuals has greatly illuminated this previously obscure area of neurotoxicology. Toxic leukoencephalopathy has acute and chronic forms, in both of which cognitive dysfunction is the major clinical manifestation. Chronic toxic leukoencephalopathy (CTL) has been most thoroughly described in individuals with intense and prolonged exposure to leukotoxins, but the consequences of lesser degrees of exposure are not well understood. Rare cases of CTL have been reported in workers exposed to culpable leukotoxins, but study of this syndrome is hindered by many confounds such as uncertain level of toxin exposure, the presence of multiple toxins, vague dose-response relationship, comorbid medical or neurologic disorders, psychiatric illness, and legal issues. The risk of CTL in workers is low, although it is not possible to determine quantitative risk estimates. More knowledge can be expected with the application of advanced MRI techniques to the assessment of workers who may have been exposed to known or potential leukotoxins. Preventive measures for avoiding workplace CTL will be informed by clinical assessment involving the use of advanced neuroimaging and neuropsychologic evaluation in combination with accurate measurement of leukotoxin exposure.
Collapse
|
49
|
Lindquist DM, Beckwith T, Cecil KM, Sánchez-Martín FJ, Landero-Figueroa J, Puga A. Prenatal and early postnatal lead exposure in mice: neuroimaging findings. Quant Imaging Med Surg 2015; 5:511-8. [PMID: 26435914 DOI: 10.3978/j.issn.2223-4292.2015.07.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Childhood lead exposure has been linked to adult gray matter loss accompanied by changes in myelination and neurochemistry noninvasively revealed by magnetic resonance imaging (MRI) methods. However, the extent, duration and timing of lead exposure required to produce such imaging changes in humans are difficult to ascertain. METHODS To determine if such changes are related to early exposure to low levels of lead, we treated mouse dams with 0, 3, or 30 ppm of lead acetate in drinking water for 2 months prior to mating through gestation until weaning of the offspring at post-natal day 21. Two male and two female pups from each litter were imaged at post-natal day 60. Volumetric, diffusion tensor imaging and magnetic resonance spectroscopy (MRS) measurements were obtained using a seven Tesla Bruker animal MRI scanner. RESULTS Postnatal blood lead levels were identical between groups at the time of imaging. No effects of lead exposure were detected in the volumetric or MRS data. Mean diffusivity in the hippocampus showed significant effects of lead exposure and gender. CONCLUSIONS These data suggest that low-level, gestational lead exposure in a mouse model produces minimal changes observed by MRI.
Collapse
Affiliation(s)
- Diana M Lindquist
- 1 Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA ; 2 Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA ; 3 Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Travis Beckwith
- 1 Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA ; 2 Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA ; 3 Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kim M Cecil
- 1 Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA ; 2 Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA ; 3 Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Francisco Javier Sánchez-Martín
- 1 Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA ; 2 Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA ; 3 Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Julio Landero-Figueroa
- 1 Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA ; 2 Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA ; 3 Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Alvaro Puga
- 1 Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA ; 2 Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA ; 3 Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
50
|
Goodman JE, Petito Boyce C, Sax SN, Beyer LA, Prueitt RL. Rethinking Meta-Analysis: Applications for Air Pollution Data and Beyond. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:1017-39. [PMID: 25969128 PMCID: PMC4690509 DOI: 10.1111/risa.12405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Meta-analyses offer a rigorous and transparent systematic framework for synthesizing data that can be used for a wide range of research areas, study designs, and data types. Both the outcome of meta-analyses and the meta-analysis process itself can yield useful insights for answering scientific questions and making policy decisions. Development of the National Ambient Air Quality Standards illustrates many potential applications of meta-analysis. These applications demonstrate the strengths and limitations of meta-analysis, issues that arise in various data realms, how meta-analysis design choices can influence interpretation of results, and how meta-analysis can be used to address bias and heterogeneity. Reviewing available data from a meta-analysis perspective can provide a useful framework and impetus for identifying and refining strategies for future research. Moreover, increased pervasiveness of a meta-analysis mindset-focusing on how the pieces of the research puzzle fit together-would benefit scientific research and data syntheses regardless of whether or not a quantitative meta-analysis is undertaken. While an individual meta-analysis can only synthesize studies addressing the same research question, the results of separate meta-analyses can be combined to address a question encompassing multiple data types. This observation applies to any scientific or policy area where information from a variety of disciplines must be considered to address a broader research question.
Collapse
|