1
|
Yang T, Chen HJ, Zhang CY, He D, Yuan W. Association of blood heavy metal concentrations with hearing loss: a systematic review and meta-analysis. Public Health 2024; 227:95-102. [PMID: 38142497 DOI: 10.1016/j.puhe.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/24/2023] [Accepted: 10/09/2023] [Indexed: 12/26/2023]
Abstract
OBJECTIVES This study aimed to assess the associations between blood heavy metal concentrations and hearing loss. STUDY DESIGN This was a systematic review and meta-analysis. METHODS A comprehensive literature search was performed using Embase, PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Chinese Biomedical Literature, Wanfang and Weipu databases. Ten studies were included, and a random or fixed-effects model was used for the meta-analysis. Review Manager 5.4 software was used for data synthesis, and Stata 15.1 software was used for the publication bias and sensitivity analyses. RESULTS Blood lead concentrations were significantly and substantially associated with hearing loss (mean difference (MD) = 1.14; 95% confidence interval [CI] = 0.03, 2.26; P = 0.04; I2 = 81%), and iron deficiency was significantly related to hearing loss (MD = -0.42; 95% CI = -0.66, -0.18; P = 0.12; I2 = 60%). CONCLUSIONS These results suggest an association between blood heavy metal concentrations and hearing loss. However, there were limitations: confounding factors, lack of description for the specific methods of blinding and independent verification of case definition, limited sample size, Chinese publications comprising half of the primary data and the lack of assessment of the relationship between different blood heavy metal concentrations and the severity of hearing loss. Therefore, larger and well-designed prospective cohort studies are required for further exploration.
Collapse
Affiliation(s)
- T Yang
- Chongqing Medical University, Chongqing, 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing General Hospital, Chongqing, 401121, China.
| | - H J Chen
- Chongqing Medical University, Chongqing, 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing General Hospital, Chongqing, 401121, China.
| | - C Y Zhang
- Chongqing Medical University, Chongqing, 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing General Hospital, Chongqing, 401121, China.
| | - D He
- Chongqing Medical University, Chongqing, 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing General Hospital, Chongqing, 401121, China.
| | - W Yuan
- Chongqing Medical University, Chongqing, 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing General Hospital, Chongqing, 401121, China.
| |
Collapse
|
2
|
Zhang Y, Sun M, Zhao H, Wang Z, Shi Y, Dong J, Wang K, Wang X, Li X, Qi H, Zhao X. Neuroprotective Effects and Therapeutic Potential of Dichloroacetate: Targeting Metabolic Disorders in Nervous System Diseases. Int J Nanomedicine 2023; 18:7559-7581. [PMID: 38106446 PMCID: PMC10725694 DOI: 10.2147/ijn.s439728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Dichloroacetate (DCA) is an investigational drug used to treat lactic acidosis and malignant tumours. It works by inhibiting pyruvate dehydrogenase kinase and increasing the rate of glucose oxidation. Some studies have documented the neuroprotective benefits of DCA. By reviewing these studies, this paper shows that DCA has multiple pharmacological activities, including regulating metabolism, ameliorating oxidative stress, attenuating neuroinflammation, inhibiting apoptosis, decreasing autophagy, protecting the blood‒brain barrier, improving the function of endothelial progenitor cells, improving mitochondrial dynamics, and decreasing amyloid β-protein. In addition, DCA inhibits the enzyme that metabolizes it, which leads to peripheral neurotoxicity due to drug accumulation that may be solved by individualized drug delivery and nanovesicle delivery. In summary, in this review, we analyse the mechanisms of neuroprotection by DCA in different diseases and discuss the causes of and solutions to its adverse effects.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Meiyan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Hongxiang Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Zhengyan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Yanan Shi
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Jianxin Dong
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Kaifang Wang
- Department of Anesthesia, Tangdu Hospital, Fourth Military Medical University, Xian, Shanxi Province, People’s Republic of China
| | - Xi Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Haiyan Qi
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xiaoyong Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
3
|
Dimitrijević M, Nikolić J, Mitić V, Stankov Jovanović V, Miladinović D. Determination of Trace Elements in Mushrooms by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS): Characterization of the Health Risk. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2159972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Jelena Nikolić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Violeta Mitić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | | | | |
Collapse
|
4
|
Sadiku OO, Rodríguez-Seijo A. Metabolic and genetic derangement: a review of mechanisms involved in arsenic and lead toxicity and genotoxicity. Arh Hig Rada Toksikol 2022; 73:244-255. [PMID: 36607725 PMCID: PMC9985351 DOI: 10.2478/aiht-2022-73-3669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Urbanisation and industrialisation are on the rise all over the world. Environmental contaminants such as potentially toxic elements (PTEs) are directly linked with both phenomena. Two PTEs that raise greatest concern are arsenic (As) and lead (Pb) as soil and drinking water contaminants, whether they are naturally occurring or the consequence of human activities. Both elements are potential carcinogens. This paper reviews the mechanisms by which As and Pb impair metabolic processes and cause genetic damage in humans. Despite efforts to ban or limit their use, due to high persistence both continue to pose a risk to human health, which justifies the need for further toxicological research.
Collapse
Affiliation(s)
- Olubusayo Olujimi Sadiku
- University of Lagos, College of Medicine, Faculty of Basic Medical Sciences, Department of Medical Laboratory Science, Lagos, Nigeria
| | - Andrés Rodríguez-Seijo
- University of Porto, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- University of Porto, Faculty of Sciences, Biology Department, Porto, Portugal
- University of Vigo, Department of Plant Biology and Soil Sciences, Ourense, Spain
| |
Collapse
|
5
|
de J Bandeira M, Dos Santos NR, Cardoso MS, Hlavinicka N, Anjos ALS, Wândega EL, Bah HAF, de Oliva ST, Rocha AR, Souza-Júnior JA, Menezes-Filho JA. Assessment of potters' occupational exposure to lead and associated risk factors in Maragogipinho, Brazil: preliminary results. Int Arch Occup Environ Health 2021; 94:1061-1071. [PMID: 33606099 DOI: 10.1007/s00420-021-01659-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/30/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Lead (Pb) is used as a flux in the glazing process of pottery utensils in several regions of the world. It can affect the nervous and hematopoietic systems; in addition, it is classified as a probable human carcinogen. This work aims to evaluate Pb exposure of potters and describe the main determinants of elevated blood Pb (PbB) levels in this group of workers. METHODS This is a cross-sectional study with potters of Maragogipinho Village, Bahia, Brazil, of both sexes, aged 16-72 years (n = 85). Non-exposed workers of the same age range residing in the urban area of Aratuípe town were also recruited (n = 50). We evaluated Pb dust deposition rates (PbDrt) in pottery workshops and PbB levels. All Pb measurements were performed by Graphite Furnace Atomic Absorption Spectrometry. RESULTS The median of PbB (min-max) and geometric mean (SD) PbDrt for the exposed group were 7.9 (0.9-49.8) µg/dL and 1463 (± 290,000) μg/m2/30 days, respectively. For the control group, levels were 1.5 (0.1-19.8) μg/dL and 82 (46) μg/m2 30 days, respectively. CONCLUSION The data found showed an excessive exposure among artisans, exceeding occupationally safe levels and those reported in the literature. It is important to implement occupational hygiene measures and improvements of the working conditions of these labors, especially the replacement of lead oxide in the pottery-glazing process.
Collapse
Affiliation(s)
- Matheus de J Bandeira
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Nathália R Dos Santos
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mariana S Cardoso
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Natalia Hlavinicka
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n. Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Ana Laura S Anjos
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n. Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Eduardo L Wândega
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n. Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Homegnon A F Bah
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Sérgio T de Oliva
- Analytical Chemistry Department, Chemistry Institute, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Andrea R Rocha
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - José A Souza-Júnior
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n. Ondina, Salvador, Bahia, 40170-115, Brazil
| | - José A Menezes-Filho
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n. Ondina, Salvador, Bahia, 40170-115, Brazil. .,Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil. .,Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil.
| |
Collapse
|
6
|
Redox and essential metal status in the brain of Wistar rats acutely exposed to a cadmium and lead mixture. Arh Hig Rada Toksikol 2020; 71:197-204. [PMID: 33074172 PMCID: PMC7968497 DOI: 10.2478/aiht-2020-71-3425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
Most Pb and Cd neurotoxicity studies investigate exposure to either of the toxic metals alone, while data on co-exposure are scarce. The aim of our study was to fill that gap by investigating acute combined effects of Pb and Cd on redox and essential metal status in the brain of Wistar rats. Animals were randomised in four groups of six to eight rats, which received 15 or 30 mg/kg of Cd, 150 mg/kg of Pb, or 150 mg/kg of Pb + 15 mg/kg of Cd by gavage. The fifth, control, group received distilled water only. Co-treatment with Pb and Cd induced significant increase in malondialdehyde (MDA) and thiobarbituric acid-reactive substances (TBARS) compared to control and groups receiving either metal alone. This is of special importance, as MDA presence in the brain has been implicated in many neurodegenerative disorders. The groups did not significantly differ in Zn, Cu, Mn, and Fe brain levels. Our findings highlight the importance of metal mixture studies. Neurotoxicity assessments of single chemicals do not provide a real insight into exposure to mixtures in real life. Further research should look into interactions between these metals to reveal complex molecular mechanisms of their neurotoxicity.
Collapse
|
7
|
Fu Z, Liu G, Wang L. Assessment of potential human health risk of trace element in wild edible mushroom species collected from Yunnan Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29218-29227. [PMID: 32436089 DOI: 10.1007/s11356-020-09242-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Wild edible mushrooms are rich in nutritions and popular among people, but wild edible mushrooms easily accumulate potentially harmful trace elements, and excessive intake will harm health. The aim of this study was to investigate the potential health hazards of long-term intake of wild edible mushrooms in Yunnan Province, China. The concentrations of trace element (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn) in 19 species of wild edible mushrooms in Yunnan Province were determined by inductively coupled plasma mass spectrometry (ICP-MS). Further processing of the data, the potential health risk assessments of consumers were evaluated by the target hazard quotient (THQ), hazard index (HI), and incremental lifetime cancer risk (ILCR), respectively. Results showed that concentrations of trace element in wild edible mushrooms decreased in the order of Zn > Cu > As > Ni > Cr > Cd > Pb > Hg. Compared with the maximum standard by the WHO/China, the averages of As, Cd, Cr, Hg, and Zn were significantly greater than the standard. Among the tested wild edible mushrooms, HI values of Leccinum crocipodium, Thelephora ganbajun, Lactarius luteolus, Tricholoma matsutake, and Polyporus ellisii were more than 1. Thus, Leccinum crocipodium, Thelephora ganbajun, Lactarius luteolus, Tricholoma matsutake, and Polyporus ellisii are the main sources of risk. The value of THQ in ascending order was as follows: Pb (0.11) < Cd (0.75) < As (4.27) < Hg (6.87). Thus, Hg are the primary sources of health risk in the wild edible mushrooms in Yunnan Province. ILCR(As) values of Thelephora ganbajun, Tricholoma matsutake, Laccaria amethystea, and Polyporus ellisii were more than 10-4, these four samples are the primary sources of health risk. The mean values of ILCR for As in wild mushroom were 1.01 × 10-4. The results suggest that there was potential health risk to the consumer associated with the long-term consumption of wild edible mushrooms collected from Yunnan Province. We propose that the concentrations of trace element should be periodically monitored in wild edible mushrooms.
Collapse
Affiliation(s)
- Zhiqiu Fu
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China
- School of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, China
| | - Gang Liu
- School of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, China.
| | - Luxiang Wang
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| |
Collapse
|
8
|
Fernández-Macías JC, González-Mille DJ, García-Arreola ME, Cruz-Santiago O, Rivero-Pérez NE, Pérez-Vázquez F, Ilizaliturri-Hernández CA. Integrated probabilistic risk assessment in sites contaminated with arsenic and lead by long-term mining liabilities in San Luis Potosi, Mexico. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110568. [PMID: 32283412 DOI: 10.1016/j.ecoenv.2020.110568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Mining environmental liabilities (MEL) in San Luis Potosi are the result of more than 450 years of mining activity, which has contaminated the soil mainly with arsenic (As) and lead (Pb) in several areas. Risk assessments are used to estimate the possibility of the occurrence of adverse effects on human health or on ecological receptors; and the most accessible way of performing them is through probabilistic estimates such as the Latin Hypercube Sampling (LHS) model. Therefore, the aim of this study was to carry out an Integrated Probabilistic Environmental Risk Assessment (IPERA) for the estimation of health risks in infants and rodents. The mean concentrations of As and Pb in soil were significantly higher (p<0.05) in all contaminated sites than in their respective reference sites. Villa de la Paz was the site with the highest mean concentration of As (1374 mg/kg), while Charcas was the one with the highest level of Pb (12,929 mg/kg). The Hazard Quotient (HQ) was calculated and Villa de la Paz had the highest values of As in both rodents (11.994) and children (39.32), and Charcas showed the highest values of Pb in both (24.971 and 31.668 for rodents and children respectively). The cumulative hazard Index (HI) reveals there is a very significant health risk due to As and Pb exposure for both rodents and children in contaminated areas of these mining communities.
Collapse
Affiliation(s)
- Juan C Fernández-Macías
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud, Universidad Autónoma de San Luis Potosí, Coordinación para la Aplicación de la Ciencia y la Tecnología- (CIACyT-CIAAS), San Luis Potosí, México
| | - Donaji J González-Mille
- Cátedras Consejo Nacional de Ciencia y Tecnologí (CONACyT), Universidad Autónoma de San Luis Potosí, México
| | | | - Omar Cruz-Santiago
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud, Universidad Autónoma de San Luis Potosí, Coordinación para la Aplicación de la Ciencia y la Tecnología- (CIACyT-CIAAS), San Luis Potosí, México
| | - Norma E Rivero-Pérez
- Centro Regional de Investigación en Salud Pública-Instituto Nacional de Salud Pública (CRISP-INSP), Tapachula, Chiapas, México
| | - Francisco Pérez-Vázquez
- Cátedras Consejo Nacional de Ciencia y Tecnologí (CONACyT), Universidad Autónoma de San Luis Potosí, México
| | - César A Ilizaliturri-Hernández
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud, Universidad Autónoma de San Luis Potosí, Coordinación para la Aplicación de la Ciencia y la Tecnología- (CIACyT-CIAAS), San Luis Potosí, México.
| |
Collapse
|
9
|
de Andrade VL, Cota M, Serrazina D, Mateus ML, Aschner M, Dos Santos APM. Metal environmental contamination within different human exposure context- specific and non-specific biomarkers. Toxicol Lett 2020; 324:46-53. [PMID: 31935480 PMCID: PMC7083091 DOI: 10.1016/j.toxlet.2019.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/23/2019] [Accepted: 12/16/2019] [Indexed: 01/13/2023]
Abstract
Exposure to high levels of persistent pollutants, such as metal mixtures, is commonly encountered by the general population especially in industrialized countries. The aim of this work was to evaluate how metal pollution in contaminated areas is reflected in terms of biomarkers (BMs) of exposure and effect in human sub-populations living in distinct non-occupational environmental contexts. Thus, four Portuguese sub-populations living in different areas of Portugal were studied: i- the exposure of each member of these sub-populations to lead (Pb), manganese (Mn) and arsenic (As) was evaluated by determining metal levels in urine; ii- biochemical changes were assessed, establishing the levels of urinary metabolites of heme biosynthesis; iii- the ability of combinations of these BMs to predict the context of exposure of each subject was tested, as to develop a tool to identify adverse health effects in these environmentally exposed populations. Concerning the combinations of BMs, heme precursors in urine (delta-aminolevulinic acid and porphyrins), were predictive of contexts of environmental exposures, with 94.2% of the studied subjects correctly identified as to their sub-population origin. The use of non-specific BMs may affirm the exposure to Pb, Mn and As, also reflecting health effects induced by a chemical environmental mixture. Our studies affirm the difficulty in establishing a metal reference population.
Collapse
Affiliation(s)
- Vanda Lopes de Andrade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Madalena Cota
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Daniela Serrazina
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Maria Luisa Mateus
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| | - Ana Paula Marreilha Dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
10
|
Riaz MA, Nisa ZU, Mehmood A, Anjum MS, Shahzad K. Metal-induced nephrotoxicity to diabetic and non-diabetic Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31111-31118. [PMID: 31456145 DOI: 10.1007/s11356-019-06022-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The present study was conducted to examine the nephrotoxic effects of heavy metals including lead (Pb), manganese (Mn), arsenic (As), and cadmium (Cd) in diabetic and non-diabetic Wistar rats. Animals were exposed to heavy metals for 30 days, Pb was injected as lead acetate (C4H6O4Pb), Mn was injected as manganese chloride (MnCl2), Cd was injected as cadmium chloride (CdCl2), and As was administered orally to rats in the form of sodium arsenite (AsO2Na). Results showed that metal deposition trends in tissues were Pb > As > Cd > Mn and the urinary metal levels were Pb > Cd > As > Mn. Diabetic metal alone, as well as metal mixture-treated groups, showed decreased urinary metal levels as compared with non-diabetic metal alone and metal mixture-treated groups. Both diabetic- and non-diabetic metal mixture-treated groups revealed an increasing trend of blood urea nitrogen (BUN) and serum creatinine. In addition, heavy metal treatments resulted in elevated malondialdehyde (MDA) levels in the kidney tissue while decreased levels of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GHS) were observed in the kidney tissue in comparison with the control group. The histological analysis of the kidney tissues showed tubular degeneration, fibrosis, and vacuolation as a result of heavy metal exposure. The present study revealed that co-exposure of heavy metals (Pb, Cd, Mn, As) induced more nephrotoxicity as compared with the metal alone treatment. Moreover, diabetic Wistar rats are more prone to kidney damage as a result of heavy metal exposure.
Collapse
Affiliation(s)
- Muhammad Ahsan Riaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan.
| | - Zaib Un Nisa
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of Punjab, Lahore, Pakistan
| | - Muhammad Sohail Anjum
- National Centre of Excellence in Molecular Biology, University of Punjab, Lahore, Pakistan
| | - Khurram Shahzad
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
11
|
Dórea JG. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. ENVIRONMENTAL RESEARCH 2019; 177:108641. [PMID: 31421445 DOI: 10.1016/j.envres.2019.108641] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is a worldwide environmental contaminant that even at low levels influences brain development and affects neurobehavior later in life; nevertheless it is only a small fraction of the neurotoxicant (NT) exposome. Exposure to environmental Pb concurrent with other NT substances is often the norm, but their joint effects are challenging to study during early life. The aim of this review is to integrate studies of Pb-containing NT mixtures during the early life and neurodevelopment outcomes of children. The Pb-containing NT mixtures that have been most studied involve other metals (Mn, Al, Hg, Cd), metalloids (As), halogen (F), and organo-halogen pollutants. Co-occurring Pb-associated exposures during pregnancy and lactation depend on the environmental sources and the metabolism and half-life of the specific NT contaminant; but offspring neurobehavioral outcomes are also influenced by social stressors. Nevertheless, Pb-associated effects from prenatal exposure portend a continued burden on measurable neurodevelopment; they thus favor increased neurological health issues, decrements in neurobehavioral tests and reductions in the quality of life. Neurobehavioral test outcomes measured in the first 1000 days showed Pb-associated negative outcomes were frequently noticed in infants (<6 months). In older (preschool and school) children studies showed more variations in NT mixtures, children's age, and sensitivity and/or specificity of neurobehavioral tests; these variations and choice of statistical model (individual NT stressor or collective effect of mixture) may explain inconsistencies. Multiple exposures to NT mixtures in children diagnosed with 'autism spectrum disorders' (ASD) and 'attention deficit and hyperactivity disorders' (ADHD), strongly suggest a Pb-associated effect. Mixture potency (number or associated NT components and respective concentrations) and time (duration and developmental stage) of exposure often showed a measurable impact on neurodevelopment; however, net effects, reversibility and/or predictability of delays are insufficiently studied and need urgent attention. Nevertheless, neurodevelopment delays can be prevented and/or attenuated if public health policies are implemented to protect the unborn and the young child.
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
12
|
Zendehdel R, Fazli Z, Rezazadeh Azari M. Neurological risk assessment of co-exposure to heavy metals (chromium and nickel) in chromium-electroplating workers. Work 2019; 63:355-360. [DOI: 10.3233/wor-192941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rezvan Zendehdel
- Department of Occupational Hygiene and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Fazli
- Department of Occupational Hygiene and safety, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Mansour Rezazadeh Azari
- Department of Occupational Hygiene and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Owumi SE, Dim UJ. Manganese suppresses oxidative stress, inflammation and caspase-3 activation in rats exposed to chlorpyrifos. Toxicol Rep 2019; 6:202-209. [PMID: 30859069 PMCID: PMC6396099 DOI: 10.1016/j.toxrep.2019.02.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 12/18/2022] Open
Abstract
The present study investigated the individual and combined impact of organophosphorus pesticide chlorpyrifos (CPF) and manganese (Mn), a naturally occurring trace metal, on hepatorenal function in adult rats. The four experimental groups namely control, CPF alone (5 mg/kg), Mn alone (10 mg/kg) and the co-exposure group consisted of eight rats which were orally gavage for 14 consecutive days. Following sacrifice, the biomarkers of hepatorenal damage, antioxidant enzyme activities, myeloperoxidase (MPO) activity as well as levels of nitric oxide, reactive oxygen and nitrogen (RONS) species and lipid peroxidation (LPO) were analysed spectrophotometrically. Further, the concentration of tumour necrosis factor alpha (TNF-α), interleukin-1 β (IL-1β) and caspase-3 activity were assessed using ELISA. Results showed that the CPF-induced increase in biomarkers of hepatorenal toxicity were significantly (p < 0.05) alleviated in rats co-expose to CPF and Mn. Moreover, the decrease in antioxidant status as well as the elevation in RONS and LPO were significantly assuaged in rats co-treated with CPF and Mn. In addition, CPF mediated increase in TNF-α, IL-1β and caspase-3 activity were significantly diminished in the liver and kidney of rats co-exposed to CPF and Mn. Light microscopic examination evidenced that the severity of histopathological lesions induced by CPF were alleviated in rats co-exposed to CPF and Mn. In conclusion, the results highlight that co-exposure to CPF and Mn in rats assuaged CPF-induced oxidative stress, inflammation and caspase-3 activation in the liver and kidney of the rats.
Collapse
|
14
|
Ata SA, Abu-Dari KI, Tutunji MF, Mubarak MS. Reversing the adverse biochemical effects in lead-intoxicated rats by N,N`- bis[(1,2-didehydro-1-hydroxy-2-thioxopyrid-4-yl)-carbonyl]- L-lysine. J Trace Elem Med Biol 2018; 50:93-99. [PMID: 30262322 DOI: 10.1016/j.jtemb.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023]
Abstract
N,N`-Bis[(1,2-didehydro-1-hydroxy-2-thioxopyrid-4-yl)-carbonyl]- L-lysine (HTPL) is a novel newly synthesized compound intended to be used for the chelation of lead in intoxicated animals. Subchronic lead intoxication experiments were carried out on Wistar male rats; these rats were intoxicated with lead and then treated with HTPL. Results were compared with those obtained with known compounds used for lead chelation therapy, such as disodium ethylnediaminetetraacetic acid (CaNa2EDTA) and meso-2,3-dimercaptosuccininc acid (DMSA), using different routes of administration. Biological samples of whole blood and urine were collected and analyzed for urinary proporphyrins, δ-aminolevulinic acid dehydratase, and zinc protoporphyrin. Results revealed that HTPL can remarkably reverse the toxic effects of lead intoxication at biochemical levels. Additionally, results showed that this agent is as good or even more potent than calcium disodium ethylnediaminetetraacetic acid (CaNa2EDTA) and meso-2,3-dimercaptosuccininc acid (DMSA) in reversing the toxic effect of lead. More importantly, HTPL was found effective when administrated intraperitoneally and orally.
Collapse
Affiliation(s)
- Samah A Ata
- Pharmacy Department, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman-Jordan, 130 Amman 11733, Jordan
| | - Kamal I Abu-Dari
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.
| | - Maha F Tutunji
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Mohammad S Mubarak
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
15
|
Eguchi A, Nomiyama K, Sakurai K, Kim Trang PT, Viet PH, Takahashi S, Iwata H, Tanabe S, Todaka E, Mori C. Alterations in urinary metabolomic profiles due to lead exposure from a lead-acid battery recycling site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:98-105. [PMID: 29966840 DOI: 10.1016/j.envpol.2018.06.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Lead poisoning is considered a public health threat, particularly in developing countries. Health problems from Pb exposure occur in many parts of the world, especially near Pb mines, Pb smelters, and used lead-acid battery (ULAB) recycling plants. In this study, we analyzed the urine metabolome of residents in a village located near a ULAB recycling facility to investigate the biological effects of Pb exposure (ULAB: n = 44, Reference: n = 51). Lasso linear regression models were moderately predictive of blood Pb levels, as evaluated by a training set (R2 = 0.813) and against an external test set (R2EXT = 0.647). In lasso logistic regression models, areas under receiver operating characteristic curves, as measured by 5-fold cross-validation (AUCCV = 0.871) and against an external test set (AUCEXT = 0.917), indicated accurate classification of urine samples from the affected village and from a reference site. Ten candidate biomarkers identified at false discovery rates of <0.05 were associated with ATP-binding cassette (ABC) transporters, possibly related to the disruption of small-molecule transport in the kidney; amino acid, porphyrin, and chlorophyll metabolism; and the heme biosynthetic pathway. Collectively, the results suggest that lead Pb is related to the health effects in individuals residing in ULAB site by alteration of these biological pathways.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, 263-8522, Japan.
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime, 790-8577, Japan
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, 263-8522, Japan
| | - Pham Thi Kim Trang
- Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, Vietnam National University, T3 Building, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Pham Hung Viet
- Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, Vietnam National University, T3 Building, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Shin Takahashi
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime, 790-8577, Japan; Center of Advanced Technology for the Environment, Faculty of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime, 790-8566, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime, 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime, 790-8577, Japan
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, 263-8522, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba, 260-8670, Japan
| |
Collapse
|
16
|
Serrazina DC, Lopes De Andrade V, Cota M, Mateus ML, Aschner M, Dos Santos APM. Biomarkers of exposure and effect in a working population exposed to lead, manganese and arsenic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:983-997. [PMID: 30296394 DOI: 10.1080/15287394.2018.1509408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lead (Pb), manganese (Mn) and arsenic (As) are among the major toxicants in mining environments. Miners are commonly and repeatedly exposed to this toxic mixture. Some adverse effects may appear at concentrations below environmental quality guidelines for individual mixture components. Further, Pb, Mn, and As induce common adverse outcomes, such as interferences in the cholinergic system and heme synthesis. It is thus vital to monitor miners through biomarkers (BM), such that subclinical effects may be identified at an early stage. The main objectives of this study were to evaluate the exposure of a mining population to these three metals and determine alterations in cholinergic and heme synthesis parameters. Blood and urine samples of workers (n = 60) were obtained from a Portuguese mining industry and compared with a control population (n = 80). The levels of the metals were determined in biological samples, as well as urinary heme precursor levels, delta aminolevulinic acid (ALA) and porphyrins, and blood acetylcholinesterase (AChE) activity. The miners exhibited significantly higher values of Pb and As in blood and urine compared to control. In the case of Mn near or slightly higher than limit values were found. Our data show that heme precursors may be used simultaneously with metal levels as BMs for multiple metal exposures on an individual basis, resulting in 94.3% and 95.7% accuracy, respectively, in blood and urine, for subjects correctly identified with respect to occupation. This study also revealed that biological monitoring of this working population regarding metal body burden and heme precursor accumulation is advisable.
Collapse
Affiliation(s)
- Daniela C Serrazina
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
- b Faculdade de Ciências , Universidade de Lisboa , Lisboa, Portugal
| | - Vanda Lopes De Andrade
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| | - Madalena Cota
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
- b Faculdade de Ciências , Universidade de Lisboa , Lisboa, Portugal
| | - Maria Luísa Mateus
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| | - Michael Aschner
- c Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , USA
| | | |
Collapse
|
17
|
Gomes Silva AP, da Silva Araujo Santiago M, Maranho LA, de Oliveira RP, Constantino DHJ, Pereira CDS, da Silva RCB, Perobelli JE. Could male reproductive system be the main target of subchronic exposure to manganese in adult animals? Toxicology 2018; 409:1-12. [PMID: 29990519 DOI: 10.1016/j.tox.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/28/2023]
Abstract
Manganese (Mn) is one of the most common chemical elements on Earth and an essential micronutrient in animal organism. However, in supraphysiological levels and long-term exposures, it is a potential toxicant. Although nervous system is the most studied in relation to Mn toxicity, other tissues can have their function impaired by Mn in high doses. The present study investigated the possible adverse effects of subchronic exposure to supraphysiologic level of Mn (5 mg/kg or 15 mg/kg, intraperitoneally) on reproductive, neurobehavioral, renal and hepatic parameters of male rats. For the first time, the vulnerability of these parameters to Mn was concomitantly investigated. While our results demonstrate that Mn treatments were not sufficient to produce a marked effect of neurotoxic, hepatotoxic or renal toxicity in adult rats, we found typical indicators of reproductive toxicity such as histopathological changes (major in testes and epididymis) and impaired sperm concentration and quality. Mn, under these experimental conditions, seems to exert reproductive toxicity by different testicular mechanisms, i.e. direct and indirect action on germ cells. On the other hand, exposure to Mn did not change the pattern of cognitive and emotional behaviors and the histological organization of kidneys of experimental rats. The liver showed a weight increasement and hidropic degeneration, probable due to the detoxification overload. In summary, for the first time it was demonstrated that adult male reproductive system was more sensitive to Mn toxicity than nervous, hepatic and renal systems, although nervous system is known as the main target tissue of this metal.
Collapse
Affiliation(s)
- Ana Priscila Gomes Silva
- Laboratório de Toxicologia Experimental-LATOEX, Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Marcella da Silva Araujo Santiago
- Laboratório de Toxicologia Experimental-LATOEX, Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Luciane Alves Maranho
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Rodolpho Pereira de Oliveira
- Laboratório de Psicobiologia da Esquizofrenia, Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | | | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Regina Cláudia Barbosa da Silva
- Laboratório de Psicobiologia da Esquizofrenia, Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Juliana Elaine Perobelli
- Laboratório de Toxicologia Experimental-LATOEX, Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| |
Collapse
|
18
|
Kalahasthi R, Barman T. Assessment of Lead Exposure and Urinary-δ-aminolevulinic Acid Levels in Male Lead Acid Battery Workers in Tamil Nadu, India. J Health Pollut 2018; 8:6-13. [PMID: 30524844 PMCID: PMC6221436 DOI: 10.5696/2156-9614-8.17.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/22/2017] [Indexed: 06/09/2023]
Abstract
BACKGROUND Exposure to lead (Pb) affects multiple health outcomes and physiological systems. In adults, even small increases in blood Pb levels have been associated with decreased glomerular filtration rate, increased risk of hypertension and increased incidence of essential tremor. To date, there have been few Pb-exposure assessments using the United States Occupational Health and Safety Administration (OSHA) regulations. OBJECTIVE The aim of the present study was to assess Pb-exposure in terms of elevated blood lead levels (BLL) and urinary-δ-aminolevulinic acid (U-δ-ALA) levels of workers exposed to Pb in the lead acid battery industry in Tamil Nadu, India based on Pb exposure regulations set by the American Conference of Governmental Industrial Hygienists (ACGIH) and OSHA. MATERIALS AND METHODS BLLs and U-δ-ALA were estimated in 449 male workers exposed to Pb across ten different job categories in a lead acid battery factory. Worker BLLs were estimated using atomic absorption spectrophotometry and U-δ-ALA was estimated using spectrophotometry. RESULTS The Biological Exposure Index of the American Conference of Governmental Industrial Hygienists (BEI-ACGIH) were used to assess Pb exposure. BLLs <30 μg/dL were found in 63.5% of workers, and 36.5% of workers had BLLs>30 μg/dL. The present study also assessed Pb exposure using OSHA regulations and found that 83.3% of workers had BLLs <40 μg/dL and 16.7% of workers had BLLs>40 μg/dL. Among these workers, 0.7% of workers had BLLs >60 μg/dL. An excessive excretion of U-δ-ALA (20-40 mg/L) was noted in pasting area workers (2.6%) followed by executives (2.2%) and assembly workers (0.9%). CONCLUSIONS Workers in the job categories of pasting and assembly, as well as executives, are at high risk of Pb exposure compared to other job categories. We recommend placing humidifiers on the roof and keeping a water bath closer the to plate cutting area to reduce fugitive Pb dust emissions. We recommended workers with BLLs >60 μg/dL be removed from jobs involving Pb exposure and return to work only when their BLLs are <40 μg/dL. PARTICIPANT CONSENT Obtained. ETHICS APPROVAL The study was approved by the ethics committee of the Regional Occupational Health Centre (Southern) Bengaluru, part of the National Institute of Occupational Health of India. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
| | - Tapu Barman
- Regional Occupational Health Centre, (Southern) Bengaluru, Karnataka, India
| |
Collapse
|
19
|
Schofield K. The Metal Neurotoxins: An Important Role in Current Human Neural Epidemics? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1511. [PMID: 29206191 PMCID: PMC5750929 DOI: 10.3390/ijerph14121511] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
Many published studies have illustrated that several of the present day neurological epidemics (autism, attention deficit disorder, Alzheimer's) cannot be correlated to any single neurotoxicant. However, the present scientific examination of the numerous global blood monitoring databases for adults that include the concentrations of the neurotoxic elements, aluminum (Al), arsenic (As), lead (Pb), manganese (Mn), mercury (Hg), and selenium (Se) clearly indicate that, when considered in combination, for some, the human body may become easily over-burdened. This can be explained by changes in modern lifestyles. Similar data, solely for pregnant women, have been examined confirming this. All these elements are seen to be present in the human body and at not insignificant magnitudes. Currently suggested minimum risk levels (MRL) for humans are discussed and listed together with averages of the reported distributions, together with their spread and maximum values. One observation is that many distributions for pregnant women are not too dissimilar from those of general populations. Women obviously have their individual baseline of neurotoxin values before pregnancy and any efforts to modify this to any significant degree is not yet clearly apparent. For any element, distribution shapes are reasonably similar showing broad distributions with extended tails with numerous outlier values. There are a certain fraction of people that lie well above the MRL values and may be at risk, especially if genetically susceptible. Additionally, synergistic effects between neurotoxins and with other trace metals are now also being reported. It appears prudent for women of child-bearing age to establish their baseline values well before pregnancy. Those at risk then can be better identified. Adequate instrumental testing now is commercially available for this. In addition, directives are necessary for vaccination programs to use only non-neurotoxic adjuvants, especially for young children and all women of child-bearing ages. Additionally, clearer directives concerning fish consumption must now be reappraised.
Collapse
Affiliation(s)
- Keith Schofield
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106-5121, USA.
| |
Collapse
|
20
|
Alvarez-Ortega N, Caballero-Gallardo K, Olivero-Verbel J. Low blood lead levels impair intellectual and hematological function in children from Cartagena, Caribbean coast of Colombia. J Trace Elem Med Biol 2017; 44:233-240. [PMID: 28965581 DOI: 10.1016/j.jtemb.2017.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023]
Abstract
Lead produces numerous biochemical and physiological changes in humans, including hematological disorders, toxic effects on the central nervous system and in the function of several organs. The aim of this study was to determine blood lead levels (BLL) in children from Cartagena, Colombia, associating those with hematological and liver damage markers, the intelligence quotient (IQ), as well as with gene expression of the aminolevulinate dehydratase (ALAD), superoxide dismutase 1 (SOD1), gamma interferon (INF-γ), tumor necrosis factor (TNF) and tumor protein (p53). To achieve this purpose, 118 blood samples were collected from children 5-16 years old, with their respective informed consent from their parents. BLL was measured by atomic absorption; hematological parameters were obtained with automated systems; plasma was utilized to analyze hepatic toxicity markers, alanine aminotransferase (ALT), gamma-glutamyltransferase (γ-GT) and alkaline phosphatase (ALP); the Kaufman Brief Intelligence Test (K-BIT) was administered to measure the IQ; and gene expression was quantified from blood RNA. The mean BLL was 1.7±0.3μg/dL. A low proportion of the children (3.4%) had BLL above the CDC recommended limit (5μg/dL). BLL were correlated weakly, but negatively with child age, weight, height, body mass index, platelets wide distribution, mean platelet volume, γ-GT and IQ. There were not significant changes in the expression of evaluated genes. These results support the hypothesis that BLL below 5μg/dL may still be a detrimental factor on children's cognitive abilities, development and hematology, in line with recent concerns that there is no safe level of pediatric lead exposure.
Collapse
Affiliation(s)
- Neda Alvarez-Ortega
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia.
| |
Collapse
|
21
|
Andrade V, Mateus ML, Batoréu MC, Aschner M, Dos Santos AM. Toxic Mechanisms Underlying Motor Activity Changes Induced by a Mixture of Lead, Arsenic and Manganese. EC PHARMACOLOGY AND TOXICOLOGY 2017; 3:31-42. [PMID: 31633124 PMCID: PMC6800226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pb, As and Mn are neurotoxic metals, present as mixtures at various settings. All metals are known to interfere with cholinergic/dopaminergic neurotransmission and motor function. The main objective of this work was to assess metal mixture effects of lead (Pb), arsenic (As) and manganese (Mn) on motor activity, and to evaluate the role of each mixture component as well as their additive/synergic interactions on dopaminergic and cholinergic neurotransmission. Wistar rats were treated with 8 doses of each single metal, Pb, As and Mn, or a triple metal mixture. Motor activity was evaluated along with cholinergic/dopaminergic neurotransmission, using brain acetylcholinesterase (AChE-Br) activity and serum prolactin (PRL-S) levels, respectively. Brain concentrations of Pb, As, Mn were also quantified. The metal mixture induced decreased motor activity relative to all other groups with factor analysis revealing close proximity between AChE-Br and motor activity. Pb brain levels increased significantly as compared to all the other groups, while β coefficients of multiple regression showed that this metal was the most effective in changing AChE-Br. Significant effects of interactions among the three metals on the activity of this enzyme were also noted for the metal mixture. In conclusion, co-exposure to Pb, As and Mn mixture alters the cholinergic system and motor activity to a greater extent than the dopaminergic system. Additive/synergic interactions between Pb, As and Mn may have a relevant role in mediating these events.
Collapse
Affiliation(s)
- Vanda Andrade
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - M Luísa Mateus
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - M Camila Batoréu
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA
| | - Ap Marreilha Dos Santos
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Adedara IA, Abolaji AO, Awogbindin IO, Farombi EO. Suppression of the brain-pituitary-testicular axis function following acute arsenic and manganese co-exposure and withdrawal in rats. J Trace Elem Med Biol 2017; 39:21-29. [PMID: 27908416 DOI: 10.1016/j.jtemb.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/12/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022]
Abstract
Despite the fact that most environmental exposures to metals do not occur in isolation, the combined effects of metal mixtures on brain-pituitary-gonadal axis are poorly known. The present study investigated the impacts of co-exposure to arsenic (As) and manganese (Mn) on sperm characteristics, reproductive hormones and selected oxidative stress indices in the brain, testes and epididymis of rats following exposure for 15 consecutive days to 60mg/L of AsO2Na and 30mg/L of MnCl2 in drinking water. The results showed that while the brain weight remained unaffected, the fluid intake and the weights of testes and epididymis significantly (p<0.05) decreased in all the treatment groups. A significant decrease in the body weight gain when compared with control was noted only in the co-exposed rats. Moreover, the significant decreases in the antioxidant status in brain, testes and epididymis as well as in the circulatory concentrations of follicle-stimulating hormone, luteinizing hormone and testosterone were similar following separate or combined exposure of rats to As and Mn. The marked oxidative damage in the investigated tissues was accompanied by a significant decrease in the sperm quantity and quality in all the treated rats when compared with the control. Interestingly, most of the parameters determined immediately after the exposure period persisted in rats from the withdrawal experiment. Collectively, co-exposure to As and Mn suppressed the brain-pituitary-testicular axis function and the post-testicular events such as sperm function possibly via a mechanism involving persistent oxidative stress and endocrine disruption in the exposed rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Amos O Abolaji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
23
|
Nascimento S, Baierle M, Göethel G, Barth A, Brucker N, Charão M, Sauer E, Gauer B, Arbo MD, Altknecht L, Jager M, Dias ACG, de Salles JF, Saint' Pierre T, Gioda A, Moresco R, Garcia SC. Associations among environmental exposure to manganese, neuropsychological performance, oxidative damage and kidney biomarkers in children. ENVIRONMENTAL RESEARCH 2016; 147:32-43. [PMID: 26844420 DOI: 10.1016/j.envres.2016.01.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 05/06/2023]
Abstract
Environmental exposure to manganese (Mn) results in several toxic effects, mainly neurotoxicity. This study investigated associations among Mn exposure, neuropsychological performance, biomarkers of oxidative damage and early kidney dysfunction in children aged 6-12 years old. Sixty-three children were enrolled in this study, being 43 from a rural area and 20 from an urban area. Manganese was quantified in blood (B-Mn), hair (H-Mn) and drinking water using inductively coupled plasma mass spectrometry (ICP-MS). The neuropsychological functions assessed were attention, perception, working memory, phonological awareness and executive functions - inhibition. The Intelligence quotient (IQ) was also evaluated. The biomarkers malondialdehyde (MDA), protein carbonyls (PCO), δ-aminolevulinate dehydratase (ALA-D), reactivation indexes with dithiothreitol (ALA-RE/DTT) and ZnCl2 (ALA-RE/ZnCl2), non-protein thiol groups, as well as microalbuminuria (mALB) level and N-acetyl-β-D-glucosaminidase (NAG) activity were assessed. The results demonstrated that Mn levels in blood, hair and drinking water were higher in rural children than in urban children (p<0.01). Adjusted for potential confounding factors, IQ, age, gender and parents' education, significant associations were observed mainly between B-Mn and visual attention (β=0.649; p<0.001). Moreover, B-Mn was negatively associated with visual perception and phonological awareness. H-Mn was inversely associated with working memory, and Mn levels from drinking water with written language and executive functions - inhibition. Rural children showed a significant increase in oxidative damage to proteins and lipids, as well as alteration in kidney function biomarkers (p<0.05). Moreover, significant associations were found between B-Mn, H-Mn and Mn levels in drinking water and biomarkers of oxidative damage and kidney function, besides between some oxidative stress biomarkers and neuropsychological tasks (p<0.05). The findings of this study suggest an important association between environmental exposure to Mn and toxic effects on neuropsychological function, oxidative damage and kidney function in children.
Collapse
Affiliation(s)
- Sabrina Nascimento
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marília Baierle
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Anelise Barth
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariele Charão
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Health Sciences, Feevale University, Novo Hamburgo, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Louise Altknecht
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation (FUC), Porto Alegre, RS, Brazil
| | - Márcia Jager
- Post-graduate Program in Psychology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ana Cristina Garcia Dias
- Post-graduate Program in Psychology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jerusa Fumagalli de Salles
- Post-graduate Program in Psychology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tatiana Saint' Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Rafael Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analyses, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation (FUC), Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Cobbina SJ, Chen Y, Zhou Z, Wu X, Feng W, Wang W, Mao G, Xu H, Zhang Z, Wu X, Yang L. Low concentration toxic metal mixture interactions: Effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure. CHEMOSPHERE 2015; 132:79-86. [PMID: 25828250 DOI: 10.1016/j.chemosphere.2015.03.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/27/2015] [Accepted: 03/09/2015] [Indexed: 05/03/2023]
Abstract
The deleterious effects of long term exposure to individual toxic metals in low doses are well documented. There is however, a paucity of information on interaction of low dose toxic metal mixtures with toxic and essential metals. This study reports on interactions between low dose mixtures of lead (Pb), mercury (Hg), arsenic (As) and cadmium (Cd) and toxic and essential metals. For 120d, six groups of forty mice each were exposed to metal mixtures, however, the control group was given distilled water. Exposure to Pb+Cd increased brain Pb by 479% in 30d, whiles Pb+Hg+As+Cd reduced liver Hg by 46.5%, but increased kidney As by 130% in 30d. Brain Cu, increased by 221% on Pb+Hg+As+Cd exposure, however, liver Ca reduced by 36.1% on Pb+Hg exposure in 60-d. Interactions within metal mixtures were largely synergistic. Principal component analysis (PCA) showed that low dose metal exposures influenced greatly levels of Hg (in brain and liver) and As (brain). The influence exerted on essential metals was highest in liver (PC1) followed by kidney (PC2) and brain (PC3). Exposure to low dose metal mixtures affected homeostasis of toxic and essential metals in tissues of mice.
Collapse
Affiliation(s)
- Samuel J Cobbina
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Zhaoxiang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xueshan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Hai Xu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Zhen Zhang
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
25
|
von Stackelberg K, Guzy E, Chu T, Henn BC. Exposure to Mixtures of Metals and Neurodevelopmental Outcomes: A Multidisciplinary Review Using an Adverse Outcome Pathway Framework. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:971-1016. [PMID: 26096925 PMCID: PMC5108657 DOI: 10.1111/risa.12425] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Current risk assessment guidance calls for an individual chemical-by-chemical approach that fails to capture potential interactive effects of exposure to environmental mixtures and genetic variability. We conducted a review of the literature on relationships between prenatal and early life exposure to mixtures of lead (Pb), arsenic (As), cadmium (Cd), and manganese (Mn) with neurodevelopmental outcomes. We then used an adverse outcome pathway (AOP) framework to integrate lines of evidence from multiple disciplines based on evolving guidance developed by the Organization for Economic Cooperation and Development (OECD). Toxicological evidence suggests a greater than additive effect of combined exposures to As-Pb-Cd and to Mn with any other metal, and several epidemiologic studies also suggest synergistic effects from binary combinations of Pb-As, Pb-Cd, and Pb-Mn. The exposure levels reported in these epidemiologic studies largely fall at the high-end (e.g., 95th percentile) of biomonitoring data from the National Health and Nutrition Examination Survey (NHANES), suggesting a small but significant potential for high-end exposures. This review integrates multiple data sources using an AOP framework and provides an initial application of the OECD guidance in the context of potential neurodevelopmental toxicity of several metals, recognizing the evolving nature of regulatory interpretation and acceptance.
Collapse
Affiliation(s)
- Katherine von Stackelberg
- Harvard Center for Risk Analysis, Boston, MA 02215;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Elizabeth Guzy
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Tian Chu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Birgit Claus Henn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
- Now at the Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118
| |
Collapse
|
26
|
Frazzoli C, Bocca B, Mantovani A. The One Health Perspective in Trace Elements Biomonitoring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:344-370. [PMID: 26691900 DOI: 10.1080/10937404.2015.1085473] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Health risks in both animals and humans are associated with chronic exposures to levels of trace elements (TE) eliciting toxic and/or antinutritional effects, including excess exposures to some essential elements. Interferences with essential TE may also lead to secondary nutritional deficiencies and/or imbalances. Although research is still required, biomarkers of exposure, including bioavailability, for TE are established tools for human biomonitoring that can also be applied to animal surveillance. Biomarkers of effect as well as, where available, of susceptibility and bioavailability are necessary to understand whether an ongoing exposure may pose a current or future health concern. In the field of animal health the use of biomarkers is less developed and less widespread than in human health; however, under a One Health perspective, animal biomonitoring can provide important information on the interfaces among humans, animals, and the environment, supporting the prevention and management of health risks. Therefore, a transfer of knowledge from human biomonitoring to farm or free-ranging animals is critical in a risk assessment framework from farm to humans. Advantages and critical aspects in designing and conducting integrative biomonitoring activities in humans and animals were critically reviewed focusing on biomarkers of exposure, effect, susceptibility, and bioavailability for toxic and essential TE. Highlighted aspects include TE metabolism, bioaccessibility, and interactions. Farm or free-ranging animals may provide noninvasive matrices suitable for evaluating animal welfare, environmental stressors, food safety, and potential risks for human health, as proposed by the interdisciplinary concept of One Health.
Collapse
Affiliation(s)
- Chiara Frazzoli
- a External Relations Office , Istituto Superiore di Sanità , Rome , Italy
| | - Beatrice Bocca
- b Bioelements and Health Unit, Department of Environment and Primary Prevention , Istituto Superiore di Sanità , Rome , Italy
| | - Alberto Mantovani
- c Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
27
|
Tasmin S, Furusawa H, Ahmad SA, Faruquee MH, Watanabe C. Delta-aminolevulinic acid dehydratase (ALAD) polymorphism in lead exposed Bangladeshi children and its effect on urinary aminolevulinic acid (ALA). ENVIRONMENTAL RESEARCH 2015; 136:318-323. [PMID: 25460652 DOI: 10.1016/j.envres.2014.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Lead has long been recognized as a harmful environmental pollutant. People in developing countries like Bangladesh still have a higher risk of lead exposure. Previous research has suggested that the delta-aminolevulinic acid dehydratase (ALAD) genotype can modify lead toxicity and individual susceptibility. As children are more susceptible to lead-induced toxicity, this study investigated whether the ALAD genotype influenced urinary excretion of delta-aminolevulinic acid (U-ALA) among children exposed to environmental lead in Bangladesh. METHODS Subjects were elementary schoolchildren from a semi-urban industrialized area in Bangladesh. A total of 222 children were studied. Blood and urine were collected to determine ALAD genotypes, blood lead levels and urinary aminolevulinic acid (U-ALA). RESULTS The mean BPb level was 9.7 µg/dl for the study children. BPb was significantly positively correlated with hemoglobin (p<0.01). In total, allele frequency for ALAD 1 and 2 was 0.83 and 0.17 respectively. The mean U-ALA concentration was lower in ALAD1-2/2-2 carriers than ALAD1-1 carriers for boys (p=0.001). But for girls, U-ALA did not differ significantly by genotype (p=0.26). When U-ALA was compared by genotype at the same exposure level in a multiple linear regression analysis, boys who were ALAD1-2/2-2 carriers still had a lower level of U-ALA compared to ALAD1-1 carriers. CONCLUSION This study provides information about the influence of ALAD polymorphism and its association with U-ALA in Bangladeshi children. Our results indicate that the ALAD1-2/2-2 genotype may have a protective effect in terms of U-ALA for environmentally lead exposed boys.
Collapse
Affiliation(s)
- Saira Tasmin
- Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hana Furusawa
- Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sk Akhtar Ahmad
- Department of Occupational and Environmental Health, Bangladesh Institute of Health Sciences, 125/1, Darus Salam, Mirpur, Dhaka 1216, Bangladesh
| | - M H Faruquee
- Department of Public Health, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Chiho Watanabe
- Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
Changes in rat urinary porphyrin profiles predict the magnitude of the neurotoxic effects induced by a mixture of lead, arsenic and manganese. Neurotoxicology 2014; 45:168-77. [DOI: 10.1016/j.neuro.2014.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022]
|
29
|
Andrade V, Mateus ML, Santos D, Aschner M, Batoreu MC, Marreilha dos Santos AP. Arsenic and manganese alter lead deposition in the rat. Biol Trace Elem Res 2014; 158:384-91. [PMID: 24715659 PMCID: PMC4041197 DOI: 10.1007/s12011-014-9954-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/24/2014] [Indexed: 01/22/2023]
Abstract
Lead (Pb) continues to be a major toxic metal in the environment. Pb exposure frequently occurs in the presence of other metals, such as arsenic (As) and manganese (Mn). Continued exposure to low levels of these metals may lead to long-term toxic effects due to their accumulation in several organs. Despite the recognition that metals in a mixture may alter each other's toxicity by affecting deposition, there is dearth of information on their interactions in vivo. In this work, we investigated the effect of As and Mn on Pb tissue deposition, focusing on the kidney, brain, and liver. Wistar rats were treated with eight doses of each single metal, Pb (5 mg/Kg bw), As (60 mg/L), and Mn 10 mg/Kg bw), or the same doses in a triple metal mixture. The kidney, brain, liver, blood, and urine Pb, As, and Mn concentrations were determined by graphite furnace atomic absorption spectrophotometry. The Pb kidney, brain, and liver concentrations in the metal-mixture-treated group were significantly increased compared to the Pb-alone-treated group, being more pronounced in the kidney (5.4-fold), brain (2.5-fold), and liver (1.6-fold). Urinary excretion of Pb in the metal-mixture-treated rats significantly increased compared with the Pb-treated group, although blood Pb concentrations were analogous to the Pb-treated group. Co-treatment with As, Mn, and Pb alters Pb deposition compared to Pb alone treatment, increasing Pb accumulation predominantly in the kidney and brain. Blood Pb levels, unlike urine, do not reflect the increased Pb deposition in the kidney and brain. Taken together, the results suggest that the nephro- and neurotoxicity of "real-life" Pb exposure scenarios should be considered within the context of metal mixture exposures.
Collapse
Affiliation(s)
- V Andrade
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - ML Mateus
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - D Santos
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461 NY, USA
| | - MC Batoreu
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - AP Marreilha dos Santos
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Humans are routinely exposed to multiple chemicals simultaneously or sequentially. There is evidence that the toxicity of individual chemicals may depend on the presence of other chemicals. Studies on chemical mixtures are limited, however, because of the lack of sufficient exposure data, limited statistical power, and difficulty in the interpretation of multidimensional interactions. This review summarizes the recent literature examining chemical mixtures and pediatric health outcomes, with an emphasis on metal mixtures. RECENT FINDINGS Several studies report significant interactions between metals in relation to pediatric health outcomes. Two prospective studies found interactive effects of early-life lead and manganese exposures on cognition. In two different cohorts, interactions between lead and cadmium exposures were reported on reproductive hormone levels and on neurodevelopment. Effects of lead exposure on impulsive behavior and cognition were modified by mercury exposure in studies from Canada and Denmark. However, there is little consistency related to exposure indicators and statistical approaches for evaluating interaction. SUMMARY Several studies suggest that metals interact to cause health effects that are different from exposure to each metal alone. Despite the nearly infinite number of possible chemical combinations, mixtures research represents real-life exposure scenarios and warrants more attention, particularly in the context of uniquely vulnerable children.
Collapse
|
31
|
Vasconcellos AP, Colello S, Kyle ME, Shin JJ. Societal-level Risk Factors Associated with Pediatric Hearing Loss: A Systematic Review. Otolaryngol Head Neck Surg 2014; 151:29-41. [PMID: 24671458 DOI: 10.1177/0194599814526561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/12/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine if the current body of evidence describes specific threshold values of concern for modifiable societal-level risk factors for pediatric hearing loss, with the overarching goal of providing actionable guidance for the prevention and screening of audiological deficits in children. DATA SOURCES Three related systematic reviews were performed. Computerized PubMed, Embase, and Cochrane Library searches were performed from inception through October 2013 and were supplemented with manual searches. REVIEW METHODS Inclusion/exclusion criteria were designed to determine specific threshold values of societal-level risk factors on hearing loss in the pediatric population. Searches and data extraction were performed by independent reviewers. RESULTS There were 20 criterion-meeting studies with 29,128 participants. Infants less than 2 standard deviations below standardized weight, length, or body mass index were at increased risk. Specific nutritional deficiencies related to iodine and thiamine may also increase risk, although data are limited and threshold values of concern have not been quantified. Blood lead levels above 10 µg/dL were significantly associated with pediatric sensorineural loss, and mixed findings were noted for other heavy metals. Hearing loss was also more prevalent among children of socioeconomically disadvantaged families, as measured by a poverty income ratio less than 0.3 to 1, higher deprivation category status, and head of household employment as a manual laborer. CONCLUSIONS Increasing our understanding of specific thresholds of risk associated with causative factors forms the foundation for preventive and targeted screening programs as well as future research endeavors.
Collapse
|
32
|
Defects in base excision repair sensitize cells to manganese in S. cerevisiae. BIOMED RESEARCH INTERNATIONAL 2013; 2013:295635. [PMID: 24282812 PMCID: PMC3825218 DOI: 10.1155/2013/295635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022]
Abstract
Manganese (Mn) is essential for normal physiologic functioning; therefore, deficiencies and excess intake of manganese can result in disease. In humans, prolonged exposure to manganese causes neurotoxicity characterized by Parkinson-like symptoms. Mn(2+) has been shown to mediate DNA damage possibly through the generation of reactive oxygen species. In a recent publication, we showed that Mn induced oxidative DNA damage and caused lesions in thymines. This study further investigates the mechanisms by which cells process Mn(2+)-mediated DNA damage using the yeast S. cerevisiae. The strains most sensitive to Mn(2+) were those defective in base excision repair, glutathione synthesis, and superoxide dismutase mutants. Mn(2+) caused a dose-dependent increase in the accumulation of mutations using the CAN1 and lys2-10A mutator assays. The spectrum of CAN1 mutants indicates that exposure to Mn results in accumulation of base substitutions and frameshift mutations. The sensitivity of cells to Mn(2+) as well as its mutagenic effect was reduced by N-acetylcysteine, glutathione, and Mg(2+). These data suggest that Mn(2+) causes oxidative DNA damage that requires base excision repair for processing and that Mn interferes with polymerase fidelity. The status of base excision repair may provide a biomarker for the sensitivity of individuals to manganese.
Collapse
|
33
|
Inorganic Arsenic Exposure and Children’s Neurodevelopment: A Review of the Evidence. TOXICS 2013. [DOI: 10.3390/toxics1010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|