1
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2024; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
2
|
Pan J, Zhong J, Geng J, Oberhauser J, Shi S, Wan J. Microglial Lyzl4 Facilitates β-Amyloid Clearance in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412184. [PMID: 39555667 DOI: 10.1002/advs.202412184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative condition characterized by the accumulation and deposition of amyloid-β (Aβ) aggregates in the brain. Despite a wealth of research on the toxicity of Aβ and its role in synaptic damage, the mechanisms facilitating Aβ clearance are not yet fully understood. However, microglia, the primary immune cells of the central nervous system, are known to maintain homeostasis through the phagocytic clearance of protein aggregates and cellular debris. In this study, RNA sequencing analysis and live cell functional screens are employed to uncover microglial genetic modifiers related to AD. Lyzl4 is identified, which encodes a c-type lysozyme-like enzyme primarily localized to microglial lysosomes, as a gene significantly upregulated in AD microglia with aging and propose that Lyzl4 upregulation acts as a positive regulator of Aβ clearance. Furthermore, it is found that Lyzl4 overexpression boosts Aβ clearance both in vitro and in vivo, underscoring its potential for mitigating Aβ burden. These novel insights position Lyzl4 as a promising therapeutic target for Alzheimer's disease, paving the way for further exploration into potential AD treatments.
Collapse
Affiliation(s)
- Jie Pan
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Jie Zhong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, 518036, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Ji Geng
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Jane Oberhauser
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Shihua Shi
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, 4056, Switzerland
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, 518036, China
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| |
Collapse
|
3
|
Prabha S, Sajad M, Hasan GM, Islam A, Imtaiyaz Hassan M, Thakur SC. Recent advancement in understanding of Alzheimer's disease: Risk factors, subtypes, and drug targets and potential therapeutics. Ageing Res Rev 2024; 101:102476. [PMID: 39222668 DOI: 10.1016/j.arr.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a significant neocortical degenerative disorder characterized by the progressive loss of neurons and secondary alterations in white matter tracts. Understanding the risk factors and mechanisms underlying AD is crucial for developing effective treatments. The risk factors associated with AD encompass a wide range of variables, including gender differences, family history, and genetic predispositions. Additionally, environmental factors such as air pollution and lifestyle-related conditions like cardiovascular disease, gut pathogens, and liver pathology contribute substantially to the development and progression of AD and its subtypes. This review provides current update and deeper insights into the role of diverse risk factors, categorizing AD into its distinct subtypes and elucidating their specific pathophysiological mechanisms. Unlike previous studies that often focus on isolated aspects of AD, our review integrates these factors to offer a comprehensive understanding of the disease. Furthermore, the review explores a variety of drug targets linked to the neuropathology of different AD subtypes, highlighting the potential for targeted therapeutic interventions. We further discussed the novel therapeutic options and categorized them according to their targets. The roles of different drug targets were comprehensively studied, and the mechanism of action of their inhibitors was discussed in detail. By comprehensively covering the interplay of risk factors, subtype differentiation, and drug targets, this review provides a deeper understanding of AD and suggests directions for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Sajad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2024:1-21. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
5
|
Wieg L, Ciola JC, Wasén CC, Gaba F, Colletti BR, Schroeder MK, Hinshaw RG, Ekwudo MN, Holtzman DM, Saito T, Sasaguri H, Saido TC, Cox LM, Lemere CA. Cognitive Effects of Simulated Galactic Cosmic Radiation Are Mediated by ApoE Status, Sex, and Environment in APP Knock-In Mice. Int J Mol Sci 2024; 25:9379. [PMID: 39273325 PMCID: PMC11394682 DOI: 10.3390/ijms25179379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aβ in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer's disease phenotypes.
Collapse
Affiliation(s)
- Laura Wieg
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Jason C. Ciola
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Caroline C. Wasén
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Fidelia Gaba
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Brianna R. Colletti
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Maren K. Schroeder
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Robert G. Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Millicent N. Ekwudo
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Aichi, Japan;
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City 351-0198, Saitama, Japan; (H.S.); (T.C.S.)
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City 351-0198, Saitama, Japan; (H.S.); (T.C.S.)
| | - Laura M. Cox
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Cynthia A. Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Fongsaran C, Jirakanwisal K, Peng BH, Fracassi A, Taglialatela G, Dineley KT, Paessler S, Cisneros IE. Arbovirus infection increases the risk for the development of neurodegenerative disease pathology in the murine model. Brain Behav Immun Health 2024; 38:100780. [PMID: 38706571 PMCID: PMC11067009 DOI: 10.1016/j.bbih.2024.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Alzheimer's disease is classified as a progressive disorder resulting from protein misfolding, also known as proteinopathies. Proteinopathies include synucleinopathies triggered by misfolded amyloid α-synuclein, tauopathies triggered by misfolded tau, and amyloidopathies triggered by misfolded amyloid of which Alzheimer's disease (β-amyloid) is most prevalent. Most neurodegenerative diseases (>90%) are not due to dominantly inherited genetic causes. Instead, it is thought that the risk for disease is a complicated interaction between inherited and environmental risk factors that, with age, drive pathology that ultimately results in neurodegeneration and disease onset. Since it is increasingly appreciated that encephalitic viral infections can have profoundly detrimental neurological consequences long after the acute infection has resolved, we tested the hypothesis that viral encephalitis exacerbates the pathological profile of protein-misfolding diseases. Using a robust, reproducible, and well-characterized mouse model for β-amyloidosis, Tg2576, we studied the contribution of alphavirus-induced encephalitis (TC-83 strain of VEEV to model alphavirus encephalitis viruses) on the progression of neurodegenerative pathology. We longitudinally evaluated neurological, neurobehavioral, and cognitive levels, followed by a post-mortem analysis of brain pathology focusing on neuroinflammation. We found more severe cognitive deficits and brain pathology in Tg2576 mice inoculated with TC-83 than in their mock controls. These data set the groundwork to investigate sporadic Alzheimer's disease and treatment interventions for this infectious disease risk factor.
Collapse
Affiliation(s)
- Chanida Fongsaran
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Krit Jirakanwisal
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Bi-Hung Peng
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Giulio Taglialatela
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly T. Dineley
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Irma E. Cisneros
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Islam R, Choudhary H, Rajan R, Vrionis F, Hanafy KA. An overview on microglial origin, distribution, and phenotype in Alzheimer's disease. J Cell Physiol 2024; 239:e30829. [PMID: 35822939 PMCID: PMC9837313 DOI: 10.1002/jcp.30829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease that is responsible for about one-third of dementia cases worldwide. It is believed that AD is initiated with the deposition of Ab plaques in the brain. Genetic studies have shown that a high number of AD risk genes are expressed by microglia, the resident macrophages of brain. Common mode of action by microglia cells is neuroinflammation and phagocytosis. Moreover, it has been discovered that inflammatory marker levels are increased in AD patients. Recent studies advocate that neuroinflammation plays a major role in AD progression. Microglia have different activation profiles depending on the region of brain and stimuli. In different activation, profile microglia can generate either pro-inflammatory or anti-inflammatory responses. Microglia defend brain cells from pathogens and respond to injuries; also, microglia can lead to neuronal death along the way. In this review, we will bring the different roles played by microglia and microglia-related genes in the progression of AD.
Collapse
Affiliation(s)
- Rezwanul Islam
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Hadi Choudhary
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Robin Rajan
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| | - Frank Vrionis
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| | - Khalid A. Hanafy
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| |
Collapse
|
8
|
Pumo A, Legeay S. The dichotomous activities of microglia: A potential driver for phenotypic heterogeneity in Alzheimer's disease. Brain Res 2024; 1832:148817. [PMID: 38395249 DOI: 10.1016/j.brainres.2024.148817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, characterized by two defining neuropathological hallmarks: amyloid plaques composed of Aβ aggregates and neurofibrillary pathology. Recent research suggests that microglia have both beneficial and detrimental effects in the development of AD. A new theory proposes that microglia play a beneficial role in the early stages of the disease but become harmful in later stages. Further investigations are needed to gain a comprehensive understanding of this shift in microglia's function. This transition is likely influenced by specific conditions, including spatial, temporal, and transcriptional factors, which ultimately lead to the deterioration of microglial functionality. Additionally, recent studies have also highlighted the potential influence of microglia diversity on the various manifestations of AD. By deciphering the multiple states of microglia and the phenotypic heterogeneity in AD, significant progress can be made towards personalized medicine and better treatment outcomes for individuals affected by AD.
Collapse
Affiliation(s)
- Anna Pumo
- Université d'Angers, Faculté de Santé, Département Pharmacie, 16, Boulevard Daviers, Angers 49045, France.
| | - Samuel Legeay
- Université d'Angers, Faculté de Santé, Département Pharmacie, 16, Boulevard Daviers, Angers 49045, France; Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| |
Collapse
|
9
|
Pirici D, Mogoanta L, Ion DA, Kumar-Singh S. Fractal Analysis in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 36:365-384. [PMID: 38468042 DOI: 10.1007/978-3-031-47606-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Neurodegenerative diseases are defined by progressive nervous system dysfunction and death of neurons. The abnormal conformation and assembly of proteins is suggested to be the most probable cause for many of these neurodegenerative disorders, leading to the accumulation of abnormally aggregated proteins, for example, amyloid β (Aβ) (Alzheimer's disease and vascular dementia), tau protein (Alzheimer's disease and frontotemporal lobar degeneration), α-synuclein (Parkinson's disease and Lewy body dementia), polyglutamine expansion diseases (Huntington disease), or prion proteins (Creutzfeldt-Jakob disease). An aberrant gain-of-function mechanism toward excessive intraparenchymal accumulation thus represents a common pathogenic denominator in all these proteinopathies. Moreover, depending upon the predominant brain area involvement, these different neurodegenerative diseases lead to either movement disorders or dementia syndromes, although the underlying mechanism(s) can sometimes be very similar, and on other occasions, clinically similar syndromes can have quite distinct pathologies. Non-Euclidean image analysis approaches such as fractal dimension (FD) analysis have been applied extensively in quantifying highly variable morphopathological patterns, as well as many other connected biological processes; however, their application to understand and link abnormal proteinaceous depositions to other clinical and pathological features composing these syndromes is yet to be clarified. Thus, this short review aims to present the most important applications of FD in investigating the clinical-pathological spectrum of neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel Pirici
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Laurentiu Mogoanta
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Adriana Ion
- Department of Physiopathology, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Samir Kumar-Singh
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Cell Biology & Histology and Translational Neuroscience Department, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
10
|
Chidambaram H, Desale SE, Chinnathambi S. Purinergic Receptor P2Y12-Mediated Tau Internalization in Microglia. Methods Mol Biol 2024; 2754:457-470. [PMID: 38512682 DOI: 10.1007/978-1-0716-3629-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Microglia are the resident brain macrophage cells that are involved in constant surveillance of brain microenvironment. In Alzheimer's disease, microglia get over activated upon the accumulation of Tau and amyloid-β species in the extracellular space, ultimately leading to neurodegeneration. Microglia phagocytose the extracellular Tau species by several mechanisms among which P2Y12 receptor-mediated internalization of extracellular Tau is recently studied. Extracellular Tau activates microglia and directly interacts with the P2Y12 receptor. Tau-receptor complex is then internalized followed by perinuclear accumulation and lysosomal degradation. Upon microglial activation by extracellular Tau, P2Y12 receptor is also involved in membrane-associated actin remodeling which has its key role in active migration and phagocytosis.
Collapse
Affiliation(s)
- Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| |
Collapse
|
11
|
Grewal S, Gonçalves de Andrade E, Kofoed RH, Matthews PM, Aubert I, Tremblay MÈ, Morse SV. Using focused ultrasound to modulate microglial structure and function. Front Cell Neurosci 2023; 17:1290628. [PMID: 38164436 PMCID: PMC10757935 DOI: 10.3389/fncel.2023.1290628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024] Open
Abstract
Transcranial focused ultrasound (FUS) has the unique ability to target regions of the brain with high spatial precision, in a minimally invasive manner. Neuromodulation studies have shown that FUS can excite or inhibit neuronal activity, demonstrating its tremendous potential to improve the outcome of neurological diseases. Recent evidence has also shed light on the emerging promise that FUS has, with and without the use of intravenously injected microbubbles, in modulating the blood-brain barrier and the immune cells of the brain. As the resident immune cells of the central nervous system, microglia are at the forefront of the brain's maintenance and immune defense. Notably, microglia are highly dynamic and continuously survey the brain parenchyma by extending and retracting their processes. This surveillance activity aids microglia in performing key physiological functions required for brain activity and plasticity. In response to stressors, microglia rapidly alter their cellular and molecular profile to help facilitate a return to homeostasis. While the underlying mechanisms by which both FUS and FUS + microbubbles modify microglial structure and function remain largely unknown, several studies in adult mice have reported changes in the expression of the microglia/macrophage marker ionized calcium binding adaptor molecule 1, and in their phagocytosis, notably of protein aggregates, such as amyloid beta. In this review, we discuss the demonstrated and putative biological effects of FUS and FUS + microbubbles in modulating microglial activities, with an emphasis on the key cellular and molecular changes observed in vitro and in vivo across models of brain health and disease. Understanding how this innovative technology can modulate microglia paves the way for future therapeutic strategies aimed to promote beneficial physiological microglial roles, and prevent or treat maladaptive responses.
Collapse
Affiliation(s)
- Sarina Grewal
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Rikke Hahn Kofoed
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center for Experimental Neuroscience-CENSE, Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Paul M. Matthews
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Isabelle Aubert
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sophie V. Morse
- Department of Bioengineering, Imperial College London, London, United Kingdom
- UK Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Santhosh Kumar H, Moore J, Steiner AC, Sotirakis E, Schärli B, Isnard-Petit P, Thiam K, Wolfer DP, Böttger EC. Mistranslation-associated perturbations of proteostasis do not promote accumulation of amyloid beta and plaque deposition in aged mouse brain. Cell Mol Life Sci 2023; 80:378. [PMID: 38010524 PMCID: PMC10682081 DOI: 10.1007/s00018-023-05031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
A common perception in age-related neurodegenerative diseases posits that a decline in proteostasis is key to the accumulation of neuropathogenic proteins, such as amyloid beta (Aβ), and the development of sporadic Alzheimer's disease (AD). To experimentally challenge the role of protein homeostasis in the accumulation of Alzheimer's associated protein Aβ and levels of associated Tau phosphorylation, we disturbed proteostasis in single APP knock-in mouse models of AD building upon Rps9 D95N, a recently identified mammalian ram mutation which confers heightened levels of error-prone translation together with an increased propensity for random protein aggregation and which is associated with accelerated aging. We crossed the Rps9 D95N mutation into knock-in mice expressing humanized Aβ with different combinations of pathogenic mutations (wild-type, NL, NL-F, NL-G-F) causing a stepwise and quantifiable allele-dependent increase in the development of Aβ accumulation, levels of phosphorylated Tau, and neuropathology. Surprisingly, the misfolding-prone environment of the Rps9 D95N ram mutation did not affect Aβ accumulation and plaque formation, nor the level of phosphorylated Tau in any of the humanized APP knock-in lines. Our findings indicate that a misfolding-prone environment induced by error-prone translation with its inherent perturbations in protein homeostasis has little impact on the accumulation of pathogenic Aβ, plaque formation and associated phosphorylated Tau.
Collapse
Affiliation(s)
| | - James Moore
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | | | - Benjamin Schärli
- Institute of Human Movement Sciences and Sport, D-HEST, ETH Zurich, Zurich, Switzerland
| | | | | | - David P Wolfer
- Institute of Human Movement Sciences and Sport, D-HEST, ETH Zurich, Zurich, Switzerland.
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Wellman SM, Coyne OA, Douglas MM, Kozai TDY. Aberrant accumulation of age- and disease-associated factors following neural probe implantation in a mouse model of Alzheimer's disease. J Neural Eng 2023; 20:046044. [PMID: 37531953 PMCID: PMC10594264 DOI: 10.1088/1741-2552/aceca5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Objective. Electrical stimulation has had a profound impact on our current understanding of nervous system physiology and provided viable clinical options for addressing neurological dysfunction within the brain. Unfortunately, the brain's immune suppression of indwelling microelectrodes currently presents a major roadblock in the long-term application of neural recording and stimulating devices. In some ways, brain trauma induced by penetrating microelectrodes produces similar neuropathology as debilitating brain diseases, such as Alzheimer's disease (AD), while also suffering from end-stage neuron loss and tissue degeneration. The goal of the present study was to understand whether there may be any parallel mechanisms at play between brain injury from chronic microelectrode implantation and those of neurodegenerative disorder.Approach. We used two-photon microscopy to visualize the accumulation, if any, of age- and disease-associated factors around chronically implanted electrodes in both young and aged mouse models of AD.Main results. We determined that electrode injury leads to aberrant accumulation of lipofuscin, an age-related pigment, in wild-type and AD mice alike. Furthermore, we reveal that chronic microelectrode implantation reduces the growth of pre-existing Alzheimer's plaques while simultaneously elevating amyloid burden at the electrode-tissue interface. Lastly, we uncover novel spatial and temporal patterns of glial reactivity, axonal and myelin pathology, and neurodegeneration related to neurodegenerative disease around chronically implanted microelectrodes.Significance. This study offers multiple novel perspectives on the possible neurodegenerative mechanisms afflicting chronic brain implants, spurring new potential avenues of neuroscience investigation and design of more targeted therapies for improving neural device biocompatibility and treatment of degenerative brain disease.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Olivia A Coyne
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Madeline M Douglas
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
14
|
Morris GP, Foster CG, Courtney J, Collins JM, Cashion JM, Brown LS, Howells DW, DeLuca GC, Canty AJ, King AE, Ziebell JM, Sutherland BA. Microglia directly associate with pericytes in the central nervous system. Glia 2023; 71:1847-1869. [PMID: 36994950 PMCID: PMC10952742 DOI: 10.1002/glia.24371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Cerebral blood flow (CBF) is important for the maintenance of brain function and its dysregulation has been implicated in Alzheimer's disease (AD). Microglia associations with capillaries suggest they may play a role in the regulation of CBF or the blood-brain-barrier (BBB). We explored the relationship between microglia and pericytes, a vessel-resident cell type that has a major role in the control of CBF and maintenance of the BBB, discovering a spatially distinct subset of microglia that closely associate with pericytes. We termed these pericyte-associated microglia (PEM). PEM are present throughout the brain and spinal cord in NG2DsRed × CX3 CR1+/GFP mice, and in the human frontal cortex. Using in vivo two-photon microscopy, we found microglia residing adjacent to pericytes at all levels of the capillary tree and found they can maintain their position for at least 28 days. PEM can associate with pericytes lacking astroglial endfeet coverage and capillary vessel width is increased beneath pericytes with or without an associated PEM, but capillary width decreases if a pericyte loses a PEM. Deletion of the microglia fractalkine receptor (CX3 CR1) did not disrupt the association between pericytes and PEM. Finally, we found the proportion of microglia that are PEM declines in the superior frontal gyrus in AD. In summary, we identify microglia that specifically associate with pericytes and find these are reduced in number in AD, which may be a novel mechanism contributing to vascular dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary P. Morris
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Catherine G. Foster
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jo‐Maree Courtney
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jessica M. Collins
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jake M. Cashion
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Lachlan S. Brown
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - David W. Howells
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Gabriele C. DeLuca
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Alison J. Canty
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
- Global Brain Health InstituteTrinity CollegeDublinIreland
| | - Anna E. King
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jenna M. Ziebell
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Brad A. Sutherland
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
15
|
Wu Z, Tang W, Ibrahim FEEM, Chen X, Yan H, Tao C, Wang Z, Guo Y, Fu Y, Wang Q, Ge Y. Aβ Induces Neuroinflammation and Microglial M1 Polarization via cGAS-STING-IFITM3 Signaling Pathway in BV-2 Cells. Neurochem Res 2023:10.1007/s11064-023-03945-5. [PMID: 37210413 DOI: 10.1007/s11064-023-03945-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/22/2023]
Abstract
Microglia, innate immune cells of the brain, constantly monitor the dynamic changes of the brain microenvironment under physiological conditions and respond in time. Growing evidence suggests that microglia-mediated neuroinflammation plays an important role in the pathogenesis of Alzheimer's disease. In this study, we investigated that the expression of IFITM3 was significantly upregulated in microglia under the Aβ treatment, and knockdown of IFITM3 in vitro suppressed the M1-like polarization of microglia. Moreover, IFITM3 was regulated by cGAS-STING signaling in activated microglia, and inhibition of cGAS-STING signaling reduces IFITM3 expression. Taken together, our findings suggested that the cGAS-STING-IFITM3 axis may be involved in Aβ-induced neuroinflammation in microglia.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Wei Tang
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian City, China
| | - Fatima Elzahra E M Ibrahim
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Xuejing Chen
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Hongting Yan
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Chunmei Tao
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Zhiming Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Yunchu Guo
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Yu Fu
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China.
| | - Yusong Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, China.
| |
Collapse
|
16
|
Kwon YJ, Kwon OI, Hwang HJ, Shin HC, Yang S. Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders. Front Mol Neurosci 2023; 16:1193590. [PMID: 37305552 PMCID: PMC10249478 DOI: 10.3389/fnmol.2023.1193590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Phlorotannins are natural polyphenolic compounds produced by brown marine algae and are currently found in nutritional supplements. Although they are known to cross the blood-brain barrier, their neuropharmacological actions remain unclear. Here we review the potential therapeutic benefits of phlorotannins in the treatment of neurodegenerative diseases. In mouse models of Alzheimer's disease, ethanol intoxication and fear stress, the phlorotannin monomer phloroglucinol and the compounds eckol, dieckol and phlorofucofuroeckol A have been shown to improve cognitive function. In a mouse model of Parkinson's disease, phloroglucinol treatment led to improved motor performance. Additional neurological benefits associated with phlorotannin intake have been demonstrated in stroke, sleep disorders, and pain response. These effects may stem from the inhibition of disease-inducing plaque synthesis and aggregation, suppression of microglial activation, modulation of pro-inflammatory signaling, reduction of glutamate-induced excitotoxicity, and scavenging of reactive oxygen species. Clinical trials of phlorotannins have not reported significant adverse effects, suggesting these compounds to be promising bioactive agents in the treatment of neurological diseases. We therefore propose a putative biophysical mechanism of phlorotannin action in addition to future directions for phlorotannin research.
Collapse
Affiliation(s)
- Yoon Ji Kwon
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Oh Ig Kwon
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
| | - Hye Jeong Hwang
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Hyeon-Cheol Shin
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
17
|
Diks AM, Teodosio C, de Mooij B, Groenland RJ, Naber BAE, de Laat IF, Vloemans SA, Rohde S, de Jonge MI, Lorenz L, Horsten D, van Dongen JJM, Berkowska MA, Holstege H. Carriers of the p.P522R variant in PLCγ2 have a slightly more responsive immune system. Mol Neurodegener 2023; 18:25. [PMID: 37081539 PMCID: PMC10116473 DOI: 10.1186/s13024-023-00604-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/14/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The rs72824905 single-nucleotide polymorphism in the PLCG2 gene, encoding the p.P522R residue change in Phospholipase C gamma 2 (PLCγ2), associates with protection against several dementia subtypes and with increased likelihood of longevity. Cell lines and animal models indicated that p.P522R is a functional hypermorph. We aimed to confirm this in human circulating peripheral immune cells. METHODS We compared effects of p.P522R on immune system function between carriers and non-carriers (aged 59-103y), using in-depth immunophenotyping, functional B-cell and myeloid cell assays, and in vivo SARS-CoV-2 vaccination. RESULTS In line with expectations, p.P522R impacts immune cell function only slightly, but it does so across a wide array of immune cell types. Upon B-cell stimulation, we observed increased PLCγ2 phosphorylation and calcium release, suggesting increased B-cell sensitivity upon antigen recognition. Further, p.P522R-carriers had higher numbers of CD20++CD21-CD24+ naive B cells and IgG1+ memory B cells. In myeloid cells, normalized ROS production was higher upon PLCγ2-dependent stimulation. On classical monocytes, CD33 levels were elevated. Furthermore, carriers expressed lower levels of allergy-related FcεRI on several immune cell subsets. Nevertheless, carriers and non-carriers had similar serological responses to SARS-CoV-2 vaccination. CONCLUSION The immune system from p.P522R-carriers is slightly more responsive to stimulation than in non-carriers.
Collapse
Affiliation(s)
- Annieck M Diks
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Salamanca, Spain
- Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Bas de Mooij
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Rick J Groenland
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Brigitta A E Naber
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Inge F de Laat
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Sandra A Vloemans
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Susan Rohde
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Linda Lorenz
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Debbie Horsten
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands.
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Salamanca, Spain.
- Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| | - Magdalena A Berkowska
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Henne Holstege
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Razi S, Yaghmoorian Khojini J, Kargarijam F, Panahi S, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Macrophage efferocytosis in health and disease. Cell Biochem Funct 2023; 41:152-165. [PMID: 36794573 DOI: 10.1002/cbf.3780] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Kargarijam
- Department of Biotechnology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany
| |
Collapse
|
19
|
Wellman SM, Coyne OA, Douglas MM, Kozai TDY. Aberrant accumulation of age- and disease-associated factors following neural probe implantation in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528131. [PMID: 36891286 PMCID: PMC9993955 DOI: 10.1101/2023.02.11.528131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Electrical stimulation has had a profound impact on our current understanding of nervous system physiology and provided viable clinical options for addressing neurological dysfunction within the brain. Unfortunately, the brain's immune suppression of indwelling microelectrodes currently presents a major roadblock in the long-term application of neural recording and stimulating devices. In some ways, brain trauma induced by penetrating microelectrodes produces similar neuropathology as debilitating brain diseases, such as Alzheimer's disease (AD), while also suffering from end-stage neuron loss and tissue degeneration. To understand whether there may be any parallel mechanisms at play between brain injury from chronic microelectrode implantation and those of neurodegenerative disorder, we used two-photon microscopy to visualize the accumulation, if any, of age- and disease-associated factors around chronically implanted electrodes in both young and aged mouse models of AD. With this approach, we determined that electrode injury leads to aberrant accumulation of lipofuscin, an age-related pigment, in wild-type and AD mice alike. Furthermore, we reveal that chronic microelectrode implantation reduces the growth of pre-existing amyloid plaques while simultaneously elevating amyloid burden at the electrode-tissue interface. Lastly, we uncover novel spatial and temporal patterns of glial reactivity, axonal and myelin pathology, and neurodegeneration related to neurodegenerative disease around chronically implanted microelectrodes. This study offers multiple novel perspectives on the possible neurodegenerative mechanisms afflicting chronic brain implants, spurring new potential avenues of neuroscience investigation and design of more targeted therapies for improving neural device biocompatibility and treatment of degenerative brain disease.
Collapse
|
20
|
Chu YN, Akahori A, Takatori S, Tomita T. Pathological Roles of INPP5D in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:289-301. [PMID: 37525057 DOI: 10.1007/978-3-031-31978-5_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Current hypothesis of Alzheimer's disease (AD) postulates that amyloid β (Aβ) deposition in the brain causes tau inclusion in neurons and leads to cognitive decline. The discovery of the genetic association between triggering receptor expressed on myeloid cells 2 (TREM2) with increased AD risk points to a causal link between microglia and AD pathogenesis, and revealed a crucial role of TREM2-dependent clustering of microglia around amyloid plaques that prevents Aβ toxicity to facilitate tau deposition near the plaques. Here we review the physiological and pathological roles of another AD risk gene expressed in microglia, inositol polyphosphate-5-polyphosphatase D (INPP5D), which encodes a phosphoinositide phosphatase. Evidence suggests that its risk polymorphisms alter the expression level and/or function of INPP5D, while concomitantly affecting tau levels in cerebrospinal fluids. In β-amyloidosis mice, INPP5D was upregulated upon Aβ deposition and negatively regulated the microglial clustering toward amyloid plaques. INPP5D seems to exert its function by acting antagonistically at downstream of the TREM2 signaling pathway, suggesting that it is a novel regulator of the protective barrier by microglia. Further studies to elucidate INPP5D's role in AD may help in developing new therapeutic targets for AD treatment.
Collapse
Affiliation(s)
- Yung Ning Chu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Aika Akahori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
Bruna-Gauchoux J, Montagnac G. Constraints and frustration in the clathrin-dependent endocytosis pathway. C R Biol 2022; 345:43-56. [PMID: 36847464 DOI: 10.5802/crbiol.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Clathrin-dependent endocytosis is the major pathway for the entry of most surface receptors and their ligands. It is controlled by clathrin-coated structures that are endowed with the ability to cluster receptors and locally bend the plasma membrane, leading to the formation of receptor-containing vesicles budding into the cytoplasm. This canonical role of clathrin-coated structures has been repeatedly demonstrated to play a fundamental role in a wide range of aspects of cell physiology. However, it is now clearly established that the ability of clathrin-coated structures to bend the membrane can be disrupted. In addition to chemical or genetic alterations, many environmental conditions can physically prevent or slow membrane deformation and/or budding of clathrin-coated structures. The resulting frustrated endocytosis is not only a passive consequence but serves very specific and important cellular functions. Here we provide a historical perspective as well as a definition of frustrated endocytosis in the clathrin pathway before describing its causes and many functional consequences.
Collapse
|
22
|
Wu YG, Song LJ, Yin LJ, Yin JJ, Wang Q, Yu JZ, Xiao BG, Ma CG. The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer's disease. Neural Regen Res 2022; 18:947-954. [PMID: 36254973 PMCID: PMC9827789 DOI: 10.4103/1673-5374.355747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system. During the pathogenesis of Alzheimer's disease, stimulatory factors continuously act on the microglia causing abnormal activation and unbalanced phenotypic changes; these events have become a significant and promising area of research. In this review, we summarize the effects of microglial polarization and crosstalk with other cells in the central nervous system in the treatment of Alzheimer's disease. Our literature search found that phenotypic changes occur continuously in Alzheimer's disease and that microglia exhibit extensive crosstalk with astrocytes, oligodendrocytes, neurons, and penetrated peripheral innate immune cells via specific signaling pathways and cytokines. Collectively, unlike previous efforts to modulate microglial phenotypes at a single level, targeting the phenotypes of microglia and the crosstalk with other cells in the central nervous system may be more effective in reducing inflammation in the central nervous system in Alzheimer's disease. This would establish a theoretical basis for reducing neuronal death from central nervous system inflammation and provide an appropriate environment to promote neuronal regeneration in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yi-Ge Wu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Li-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jie-Zhong Yu
- Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China,Correspondence to: Cun-Gen Ma, .
| |
Collapse
|
23
|
Focal-type, but not Diffuse-type, Amyloid Beta Plaques are Correlated with Alzheimer's Neuropathology, Cognitive Dysfunction, and Neuroinflammation in the Human Hippocampus. Neurosci Bull 2022; 38:1125-1138. [PMID: 36028642 PMCID: PMC9554074 DOI: 10.1007/s12264-022-00927-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Amyloid beta (Aβ) plaques are one of the hallmarks of Alzheimer’s disease (AD). However, currently available anti-amyloid therapies fail to show effectiveness in the treatment of AD in humans. It has been found that there are different types of Aβ plaque (diffuse and focal types) in the postmortem human brain. In this study, we aimed to investigate the correlations among different types of Aβ plaque and AD-related neuropathological and cognitive changes based on a postmortem human brain bank in China. The results indicated that focal plaques, but not diffuse plaques, significantly increased with age in the human hippocampus. We also found that the number of focal plaques was positively correlated with the severity of AD-related neuropathological changes (measured by the “ABC” scoring system) and cognitive decline (measured by the Everyday Cognitive Insider Questionnaire). Furthermore, most of the focal plaques were co-localized with neuritic plaques (identified by Bielschowsky silver staining) and accompanied by microglial and other inflammatory cells. Our findings suggest the potential of using focal-type but not general Aβ plaques as biomarkers for the neuropathological evaluation of AD.
Collapse
|
24
|
Zhang R, Zhou T, Samanta S, Luo Z, Li S, Xu H, Qu J. Synergistic photobiomodulation with 808-nm and 1064-nm lasers to reduce the β-amyloid neurotoxicity in the in vitro Alzheimer's disease models. FRONTIERS IN NEUROIMAGING 2022; 1:903531. [PMID: 37555169 PMCID: PMC10406259 DOI: 10.3389/fnimg.2022.903531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 08/10/2023]
Abstract
BACKGROUND In Alzheimer's disease (AD), the deposition of β-amyloid (Aβ) plaques is closely associated with the neuronal apoptosis and activation of microglia, which may result in the functional impairment of neurons through pro-inflammation and over-pruning of the neurons. Photobiomodulation (PBM) is a non-invasive therapeutic approach without any conspicuous side effect, which has shown promising attributes in the treatment of chronic brain diseases such as AD by reducing the Aβ burden. However, neither the optimal parameters for PBM treatment nor its exact role in modulating the microglial functions/activities has been conclusively established yet. METHODS An inflammatory stimulation model of Alzheimer's disease (AD) was set up by activating microglia and neuroblastoma with fibrosis β-amyloid (fAβ) in a transwell insert system. SH-SY5Y neuroblastoma cells and BV2 microglial cells were irradiated with the 808- and 1,064-nm lasers, respectively (a power density of 50 mW/cm2 and a dose of 10 J/cm2) to study the PBM activity. The amount of labeled fAβ phagocytosed by microglia was considered to assess the microglial phagocytosis. A PBM-induced neuroprotective study was conducted with the AD model under different laser parameters to realize the optimal condition. Microglial phenotype, microglial secretions of the pro-inflammatory and anti-inflammatory factors, and the intracellular Ca2+ levels in microglia were studied in detail to understand the structural and functional changes occurring in the microglial cells of AD model upon PBM treatment. CONCLUSION A synergistic PBM effect (with the 808- and 1,064-nm lasers) effectively inhibited the fAβ-induced neurotoxicity of neuroblastoma by promoting the viability of neuroblastoma and regulating the intracellular Ca2+ levels of microglia. Moreover, the downregulation of Ca2+ led to microglial polarization with an M2 phenotype, which promotes the fAβ phagocytosis, and resulted in the upregulated expression of anti-inflammatory factors and downregulated expression of inflammatory factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
25
|
Kiani Shabestari S, Morabito S, Danhash EP, McQuade A, Sanchez JR, Miyoshi E, Chadarevian JP, Claes C, Coburn MA, Hasselmann J, Hidalgo J, Tran KN, Martini AC, Chang Rothermich W, Pascual J, Head E, Hume DA, Pridans C, Davtyan H, Swarup V, Blurton-Jones M. Absence of microglia promotes diverse pathologies and early lethality in Alzheimer's disease mice. Cell Rep 2022; 39:110961. [PMID: 35705056 PMCID: PMC9285116 DOI: 10.1016/j.celrep.2022.110961] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2022] Open
Abstract
Microglia are strongly implicated in the development and progression of Alzheimer's disease (AD), yet their impact on pathology and lifespan remains unclear. Here we utilize a CSF1R hypomorphic mouse to generate a model of AD that genetically lacks microglia. The resulting microglial-deficient mice exhibit a profound shift from parenchymal amyloid plaques to cerebral amyloid angiopathy (CAA), which is accompanied by numerous transcriptional changes, greatly increased brain calcification and hemorrhages, and premature lethality. Remarkably, a single injection of wild-type microglia into adult mice repopulates the microglial niche and prevents each of these pathological changes. Taken together, these results indicate the protective functions of microglia in reducing CAA, blood-brain barrier dysfunction, and brain calcification. To further understand the clinical implications of these findings, human AD tissue and iPSC-microglia were examined, providing evidence that microglia phagocytose calcium crystals, and this process is impaired by loss of the AD risk gene, TREM2.
Collapse
Affiliation(s)
- Sepideh Kiani Shabestari
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Samuel Morabito
- Mathematical, Computational and System Biology (MCSB) Program, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Emma Pascal Danhash
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Amanda McQuade
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Jessica Ramirez Sanchez
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Emily Miyoshi
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA
| | - Jean Paul Chadarevian
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Christel Claes
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Morgan Alexandra Coburn
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Jonathan Hasselmann
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Jorge Hidalgo
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Kayla Nhi Tran
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Alessandra C Martini
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA; Department of Pathology & Laboratory Medicine, UC Irvine, Irvine, CA 92697, USA
| | | | - Jesse Pascual
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA; Department of Pathology & Laboratory Medicine, UC Irvine, Irvine, CA 92697, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA; Department of Pathology & Laboratory Medicine, UC Irvine, Irvine, CA 92697, USA
| | - David A Hume
- Mater Research Institute-University of Queensland, Brisbane, Australia
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK; Simons Initiative for the Developing Brain Centre, University of Edinburgh, Edinburgh, UK; The Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| | - Hayk Davtyan
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
26
|
Young AP, Denovan-Wright EM. The Dynamic Role of Microglia and the Endocannabinoid System in Neuroinflammation. Front Pharmacol 2022; 12:806417. [PMID: 35185547 PMCID: PMC8854262 DOI: 10.3389/fphar.2021.806417] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia, the resident immune cells of the brain, can take on a range of pro- or anti-inflammatory phenotypes to maintain homeostasis. However, the sustained activation of pro-inflammatory microglia can lead to a state of chronic neuroinflammation characterized by high concentrations of neurotoxic soluble factors throughout the brain. In healthy brains, the inflammatory processes cease and microglia transition to an anti-inflammatory phenotype, but failure to halt the pro-inflammatory processes is a characteristic of many neurological disorders. The endocannabinoid system has been identified as a promising therapeutic target for chronic neuroinflammation as there is evidence that synthetic and endogenously produced cannabinoids temper the pro-inflammatory response of microglia and may encourage a switch to an anti-inflammatory phenotype. Activation of cannabinoid type 2 (CB2) receptors has been proposed as the mechanism of action responsible for these effects. The abundance of components of the endocannabinoid system in microglia also change dynamically in response to several brain pathologies. This can impact the ability of microglia to synthesize and degrade endocannabinoids or react to endogenous and exogenous cannabinoids. Cannabinoid receptors also participate in the formation of receptor heteromers which influences their function specifically in cells that express both receptors, such as microglia. This creates opportunities for drug-drug interactions between CB2 receptor-targeted therapies and other classes of drugs. In this article, we review the roles of pro- and anti-inflammatory microglia in the development and resolution of neuroinflammation. We also discuss the fluctuations observed in the components of the endocannabinoid in microglia and examine the potential of CB2 receptors as a therapeutic target in this context.
Collapse
|
27
|
IKK2/NF-κB Activation in Astrocytes Reduces amyloid β Deposition: A Process Associated with Specific Microglia Polarization. Cells 2021; 10:cells10102669. [PMID: 34685649 PMCID: PMC8534251 DOI: 10.3390/cells10102669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that is accompanied by pronounced neuroinflammatory responses mainly characterized by marked microgliosis and astrogliosis. However, it remains open as to how different aspects of astrocytic and microglial activation affect disease progression. Previously, we found that microglia expansion in the spinal cord, initiated by IKK2/NF-κB activation in astrocytes, exhibits stage-dependent beneficial effects on the progression of amyotrophic lateral sclerosis. Here, we investigated the impact of NF-κB-initiated neuroinflammation on AD pathogenesis using the APP23 mouse model of AD in combination with conditional activation of IKK2/NF-κB signaling in astrocytes. We show that NF-κB activation in astrocytes triggers a distinct neuroinflammatory response characterized by striking astrogliosis as well as prominent microglial reactivity. Immunohistochemistry and Congo red staining revealed an overall reduction in the size and number of amyloid plaques in the cerebral cortex and hippocampus. Interestingly, isolated primary astrocytes and microglia cells exhibit specific marker gene profiles which, in the case of microglia, point to an enhanced plaque clearance capacity. In contrast, direct IKK2/NF-κB activation in microglia results in a pro-inflammatory polarization program. Our findings suggest that IKK2/NF-κB signaling in astrocytes may activate paracrine mechanisms acting on microglia function but also on APP processing in neurons.
Collapse
|
28
|
Chen K, Lai C, Su Y, Bao WD, Yang LN, Xu PP, Zhu LQ. cGAS-STING-mediated IFN-I response in host defense and neuro-inflammatory diseases. Curr Neuropharmacol 2021; 20:362-371. [PMID: 34561985 PMCID: PMC9413793 DOI: 10.2174/1570159x19666210924110144] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Abstract
The presence of foreign or misplaced nucleic acids is a danger signal that triggers innate immune responses through activating cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and binding to its downstream signaling effector stimulator of interferon genes (STING). Then the cGAS-STING pathway activation links nucleic acid sensing to immune responses and pathogenic entities clearance. However, overactivation of this signaling pathway leads to fatal immune disorders and contributes to the progression of many human inflammatory diseases. Therefore, optimal activation of this pathway is crucial for the elimination of invading pathogens and the maintenance of immune homeostasis. In this review, we will summarize its fundamental roles in initiating host defense against invading pathogens and discuss its pathogenic roles in multiple neuro-inflammatory diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kai Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Dai Bao
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liu Nan Yang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping-Ping Xu
- Endoscopy Center, Wuhan Children's Hospital , Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
29
|
Tao L, Liu Q, Zhang F, Fu Y, Zhu X, Weng X, Han H, Huang Y, Suo Y, Chen L, Gao X, Wei X. Microglia modulation with 1070-nm light attenuates Aβ burden and cognitive impairment in Alzheimer's disease mouse model. LIGHT, SCIENCE & APPLICATIONS 2021; 10:179. [PMID: 34493703 PMCID: PMC8423759 DOI: 10.1038/s41377-021-00617-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
Photobiomodulation, by utilizing low-power light in the visible and near-infrared spectra to trigger biological responses in cells and tissues, has been considered as a possible therapeutic strategy for Alzheimer's disease (AD), while its specific mechanisms have remained elusive. Here, we demonstrate that cognitive and memory impairment in an AD mouse model can be ameliorated by 1070-nm light via reducing cerebral β-amyloid (Aβ) burden, the hallmark of AD. The glial cells, including microglia and astrocytes, play important roles in Aβ clearance. Our results show that 1070-nm light pulsed at 10 Hz triggers microglia rather than astrocyte responses in AD mice. The 1070-nm light-induced microglia responses with alteration in morphology and increased colocalization with Aβ are sufficient to reduce Aβ load in AD mice. Moreover, 1070-nm light pulsed at 10 Hz can reduce perivascular microglia and promote angiogenesis to further enhance Aβ clearance. Our study confirms the important roles of microglia and cerebral vessels in the use of 1070-nm light for the treatment of AD mice and provides a framework for developing a novel therapeutic approach for AD.
Collapse
Affiliation(s)
- Lechan Tao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qi Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fuli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yuting Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xi Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaofu Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing, 100191, China
| | - Yong Huang
- Zhejiang Brainhealth Medical Technology Co., Ltd, Hangzhou, 314400, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, Peking University, Beijing, 100871, China
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- Tianqiao and Chrissy Chen Institute for Clinical Translational Research, Huashan Hospital, Shanghai, 200040, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
- Biomedical Engineering Department, Peking University, Beijing, 100081, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
30
|
Immunohistochemical Study of ASC Expression and Distribution in the Hippocampus of an Aged Murine Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168697. [PMID: 34445402 PMCID: PMC8395512 DOI: 10.3390/ijms22168697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD), and is notably dependent on age. One important inflammatory pathway exerted by innate immune cells of the nervous system in response to danger signals is mediated by inflammasomes (IF) and leads to the generation of potent pro-inflammatory cytokines. The protein “apoptosis-associated speck-like protein containing a caspase recruitment domain” (ASC) modulates IF activation but has also other functions which are crucial in AD. We intended to characterize immunohistochemically ASC and pattern recognition receptors (PRR) of IF in the hippocampus (HP) of the transgenic mouse model Tg2576 (APP), in which amyloid-beta (Aβ) pathology is directly dependent on age. We show in old-aged APP a significant amount of ASC in microglia and astrocytes associated withAβ plaques, in the absence of PRR described by others in glial cells. In addition, APP developed foci with clusters of extracellular ASC granules not spatiallyrelated to Aβ plaques, which density correlated with the advanced age of mice and AD development. Clusters were associated withspecific astrocytes characterized by their enlarged ring-shaped process terminals, ASC content, and frequent perivascular location. Their possible implication in ASC clearance and propagation of inflammation is discussed.
Collapse
|
31
|
Lu J, Zhou W, Dou F, Wang C, Yu Z. TRPV1 sustains microglial metabolic reprogramming in Alzheimer's disease. EMBO Rep 2021; 22:e52013. [PMID: 33998138 DOI: 10.15252/embr.202052013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
As the brain-resident innate immune cells, reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia is still unclear in AD pathogenesis. Here, using metabolic profiling, we show that microglia energy metabolism is significantly suppressed during chronic Aβ-tolerant processes including oxidative phosphorylation and aerobic glycolysis via the mTOR-AKT-HIF-1α pathway. Pharmacological activation of TRPV1 rescues Aβ-tolerant microglial dysfunction, the AKT/mTOR pathway activity, and metabolic impairments and restores the immune responses including phagocytic activity and autophagy function. Amyloid pathology and memory impairment are accelerated in microglia-specific TRPV1-knockout APP/PS1 mice. Finally, we showed that metabolic boosting with TRPV1 agonist decreases amyloid pathology and reverses memory deficits in AD mice model. These results indicate that TRPV1 is an important target regulating metabolic reprogramming for microglial functions in AD treatment.
Collapse
Affiliation(s)
- Jia Lu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Fangfang Dou
- Basic Research Department, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenfei Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Prikhodko O, Rynearson KD, Sekhon T, Mante MM, Nguyen PD, Rissman RA, Tanzi RE, Wagner SL. The GSM BPN-15606 as a Potential Candidate for Preventative Therapy in Alzheimer's Disease. J Alzheimers Dis 2021; 73:1541-1554. [PMID: 31958080 DOI: 10.3233/jad-190442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In the amyloid hypothesis of Alzheimer's disease (AD), the dysregulation of amyloid-β protein (Aβ) production and clearance leads to amyloid deposits, tau tangles, neuronal loss, and cognitive dysfunction. Thus far, therapies targeting the enzymes responsible for Aβ production have been found ineffective or having significant side effects. OBJECTIVE To test whether a γ-secretase modulator, BPN-15606, is an effective disease-modifying or preventative treatment in the PSAPP mouse model of AD. METHODS We treated pre-plaque (3-month-old) and post-plaque (6-month-old) PSAPP AD transgenic mice for 3 months and examined behavioral, biochemical, and pathological end points. RESULTS BPN-15606 attenuated cognitive impairment and reduced amyloid plaque load, microgliosis, and astrogliosis associated with the AD phenotype of PSAPP mice when administered to pre-plaque (3-month-old) but was ineffective when administered to post-plaque (6-month-old) mice. No treatment-related toxicity was observed. CONCLUSION BPN-15606 appears efficacious when administered prior to significant pathology.
Collapse
Affiliation(s)
- Olga Prikhodko
- Department of Neurosciences, University of California San Diego, La Jolla, CA USA.,Present Address: Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kevin D Rynearson
- Department of Neurosciences, University of California San Diego, La Jolla, CA USA.,VA San Diego Healthcare System, La Jolla, CA, USA
| | - Travis Sekhon
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mike M Mante
- Department of Neurosciences, University of California San Diego, La Jolla, CA USA.,VA San Diego Healthcare System, La Jolla, CA, USA
| | - Phuong D Nguyen
- Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA USA.,VA San Diego Healthcare System, La Jolla, CA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California San Diego, La Jolla, CA USA.,VA San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
33
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
34
|
Modification of Glial Cell Activation through Dendritic Cell Vaccination: Promises for Treatment of Neurodegenerative Diseases. J Mol Neurosci 2021; 71:1410-1424. [PMID: 33713321 DOI: 10.1007/s12031-021-01818-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Accumulation of misfolded tau, amyloid β (Aβ), and alpha-synuclein (α-syn) proteins is the fundamental contributor to many neurodegenerative diseases, namely Parkinson's (PD) and AD. Such protein aggregations trigger activation of immune mechanisms in neuronal and glial, mainly M1-type microglia cells, leading to release of pro-inflammatory mediators, and subsequent neuronal dysfunction and apoptosis. Despite the described neurotoxic features for glial cells, recruitment of peripheral leukocytes to the brain and their conversion to neuroprotective M2-type microglia can mitigate neurodegeneration by clearing extracellular protein accumulations or residues. Based on these observations, it was speculated that Dendritic cell (DC)-based vaccination, by making use of DCs as natural adjuvants, could be used for treatment of neurodegenerative disorders. DCs potentiated by disease-specific antigens can also enhance T helper 2 (Th2)-specific immune response and by production of specific antibodies contribute to clearance of intracellular aggregations, as well as enhancing regulatory T cell response. Thus, enhancement of immune response by DC vaccine therapy can potentially augment glial polarization into the neuroprotective phenotype, enhance antibody production, and at the same time balance neuronal cells' repair, renewal, and protection. The characteristic feature of this method of treatment is to maintain the equilibrium in the immune response rather than targeting a single mediator in the disease and their application in other neurodegenerative diseases should be addressed. However, the safety of these methods should be investigated by clinical trials.
Collapse
|
35
|
Liang C, Zou T, Zhang M, Fan W, Zhang T, Jiang Y, Cai Y, Chen F, Chen X, Sun Y, Zhao B, Wang Y, Cui L. MicroRNA-146a switches microglial phenotypes to resist the pathological processes and cognitive degradation of Alzheimer's disease. Theranostics 2021; 11:4103-4121. [PMID: 33754051 PMCID: PMC7977456 DOI: 10.7150/thno.53418] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and currently has no effective treatment. Mainstream research on the mechanisms and therapeutic targets of AD is focused on the two most important hallmarks, Aβ and Tau, but the results from clinical studies are not encouraging. Abnormal microglial polarization is a clear typical pathological feature in the progression of AD. Microglia can be neuroprotective by degrading and removing Aβ and Tau. However, under AD conditions, microglia transform into a pro-inflammatory phenotype that decreases the phagocytic activity of microglia, damages neurons and promotes the pathology of AD. We previously reported that a miR-146a polymorphism is associated with sporadic AD risk, and the nasal administration of miR-146a mimics reduced cognitive impairment and the main pathological features of AD. However, it is not clear by what mechanism miR-146a resists the pathological process of AD. In this study, we discovered that microglia-specific miR-146a overexpression reduced cognitive deficits in learning and memory, attenuated neuroinflammation, reduced Aβ levels, ameliorated plaque-associated neuritic pathology, and prevented neuronal loss in APP/PS1 transgenic mice. In addition, we found that miR-146a switched the microglial phenotype, reduced pro-inflammatory cytokines and enhanced phagocytic function to protect neurons in vitro and in vivo. Moreover, transcriptional analysis confirmed that miR-146a opposed the pathological process of AD mainly through neuroinflammation-related pathways. In summary, our results provide sufficient evidence for the mechanism by which miR-146a opposes AD and strengthen the conclusion that miR-146a is a promising target for AD and other microglia-related diseases.
Collapse
|
36
|
Khan A, Das S, Sergi C. Therapeutic Potential of Neu1 in Alzheimer's Disease Via the Immune System. Am J Alzheimers Dis Other Demen 2021; 36:1533317521996147. [PMID: 33719595 PMCID: PMC10624071 DOI: 10.1177/1533317521996147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's Disease (AD) is pathologically characterized by the accumulation of soluble oligomers causing extracellular beta-amyloid deposits in form of neuritic plaques and tau-containing intraneuronal neurofibrillary tangles in brain. One proposed mechanism explaining the formation of these proteins is impaired phagocytosis by microglia/macrophages resulting in defective clearance of soluble oligomers of beta-amyloid stimulating aggregation of amyloid plaques subsequently causing AD. However, research indicates that activating macrophages in M2 state may reduce toxic oligomers. NEU1 mutation is associated with a rare disease, sialidosis. NEU1 deficiency may also cause AD-like amyloidogenic process. Amyloid plaques have successfully been reduced using NEU1.Thus, NEU1 is suggested to have therapeutic potential for AD, with lysosomal exocytosis being suggested as underlying mechanism. Studies however demonstrate that NEU1 may activate macrophages in M2 state, which as noted earlier, is crucial to reducing toxic oligomers. In this review, authors discuss the potential therapeutic role of NEU1 in AD via immune system.
Collapse
Affiliation(s)
- Aiza Khan
- Section of Pediatric Pathology, Department of Laboratory Medicine and Pathology, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Sumit Das
- Section of Neuropathology, Department of Laboratory Medicine and Pathology, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato Sergi
- Section of Pediatric Pathology, Department of Laboratory Medicine and Pathology, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
- Department of Pediatrics, Stollery Children’s Hospital, University of Alberta Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Label-free vibrational imaging of different Aβ plaque types in Alzheimer's disease reveals sequential events in plaque development. Acta Neuropathol Commun 2020; 8:222. [PMID: 33308303 PMCID: PMC7733282 DOI: 10.1186/s40478-020-01091-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
The neuropathology of Alzheimer’s disease (AD) is characterized by hyperphosphorylated tau neurofibrillary tangles (NFTs) and amyloid-beta (Aβ) plaques. Aβ plaques are hypothesized to follow a development sequence starting with diffuse plaques, which evolve into more compact plaques and finally mature into the classic cored plaque type. A better molecular understanding of Aβ pathology is crucial, as the role of Aβ plaques in AD pathogenesis is under debate. Here, we studied the deposition and fibrillation of Aβ in different plaque types with label-free infrared and Raman imaging. Fourier-transform infrared (FTIR) and Raman imaging was performed on native snap-frozen brain tissue sections from AD cases and non-demented control cases. Subsequently, the scanned tissue was stained against Aβ and annotated for the different plaque types by an AD neuropathology expert. In total, 160 plaques (68 diffuse, 32 compact, and 60 classic cored plaques) were imaged with FTIR and the results of selected plaques were verified with Raman imaging. In diffuse plaques, we detect evidence of short antiparallel β-sheets, suggesting the presence of Aβ oligomers. Aβ fibrillation significantly increases alongside the proposed plaque development sequence. In classic cored plaques, we spatially resolve cores containing predominantly large parallel β-sheets, indicating Aβ fibrils. Combining label-free vibrational imaging and immunohistochemistry on brain tissue samples of AD and non-demented cases provides novel insight into the spatial distribution of the Aβ conformations in different plaque types. This way, we reconstruct the development process of Aβ plaques in human brain tissue, provide insight into Aβ fibrillation in the brain, and support the plaque development hypothesis.
Collapse
|
38
|
Peli1 impairs microglial Aβ phagocytosis through promoting C/EBPβ degradation. PLoS Biol 2020; 18:e3000837. [PMID: 33017390 PMCID: PMC7561136 DOI: 10.1371/journal.pbio.3000837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/15/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
Amyloid-β (Aβ) accumulation in the brain is a hallmark of Alzheimer’s disease (AD) pathology. However, the molecular mechanism controlling microglial Aβ phagocytosis is poorly understood. Here we found that the E3 ubiquitin ligase Pellino 1 (Peli1) is induced in the microglia of AD-like five familial AD (5×FAD) mice, whose phagocytic efficiency for Aβ was then impaired, and therefore Peli1 depletion suppressed the Aβ deposition in the brains of 5×FAD mice. Mechanistic characterizations indicated that Peli1 directly targeted CCAAT/enhancer-binding protein (C/EBP)β, a major transcription factor responsible for the transcription of scavenger receptor CD36. Peli1 functioned as a direct E3 ubiquitin ligase of C/EBPβ and mediated its ubiquitination-induced degradation. Consequently, loss of Peli1 increased the protein levels of C/EBPβ and the expression of CD36 and thus, promoted the phagocytic ability in microglial cells. Together, our findings established Peli1 as a critical regulator of microglial phagocytosis and highlighted the therapeutic potential by targeting Peli1 for the treatment of microglia-mediated neurological diseases. This study identifies Peli1, an E3 ubiqitin ligase enriched in microglia, as a restraining factor that curtails microglial phagocytosis of the amyloid Aβ. Correspondingly, deletion of Peli1 enhances Aβ phagocytosis and clearance in Alzheimer’s disease, implicating Peli1 as a therapeutic target with significant potential for the treatment of microglia-mediated neurological disease.
Collapse
|
39
|
Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiol Dis 2020; 144:105010. [PMID: 32682954 PMCID: PMC7365083 DOI: 10.1016/j.nbd.2020.105010] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) and tau proteins currently represent the two most promising targets to treat Alzheimer's disease. The most extensively developed method to treat the pathologic forms of these proteins is through the administration of exogenous antibodies, or passive immunotherapy. In this review, we discuss the molecular-level strategies that researchers are using to design an effective therapeutic antibody, given the challenges in treating this disease. These challenges include selectively targeting a protein that has misfolded or is pathological rather than the more abundant, healthy protein, designing strategic constructs for immunizing an animal to raise an antibody that has the appropriate conformational selectivity to achieve this end, and clearing the pathological protein species before prion-like cell-to-cell spread of misfolded protein has irreparably damaged neurons, without invoking damaging inflammatory responses in the brain that naturally arise when the innate immune system is clearing foreign agents. The various solutions to these problems in current clinical trials will be discussed.
Collapse
Affiliation(s)
- Steven S Plotkin
- University of British Columbia, Department of Physics and Astronomy and Genome Sciences and Technology Program, Vancouver, BC V6T 1Z1, Canada.
| | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
40
|
Zhang Y, Bander ED, Lee Y, Muoser C, Schaffer CB, Nishimura N. Microvessel occlusions alter amyloid-beta plaque morphology in a mouse model of Alzheimer's disease. J Cereb Blood Flow Metab 2020; 40:2115-2131. [PMID: 31744388 PMCID: PMC7786844 DOI: 10.1177/0271678x19889092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/04/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022]
Abstract
Vascular dysfunction is correlated to the incidence and severity of Alzheimer's disease. In a mouse model of Alzheimer's disease (APP/PS1) using in vivo, time-lapse, multiphoton microscopy, we found that occlusions of the microvasculature alter amyloid-beta (Aβ) plaques. We used several models of vascular injury that varied in severity. Femtosecond laser-induced occlusions in single capillaries generated a transient increase in small, cell-sized, Aβ deposits visualized with methoxy-X04, a label of fibrillar Aβ. After occlusions of penetrating arterioles, some plaques changed morphology, while others disappeared, and some new plaques appeared within a week after the lesion. Antibody labeling of Aβ revealed a transient increase in non-fibrillar Aβ one day after the occlusion that coincided with the disappearance of methoxy-X04-labeled plaques. Four days after the lesion, anti-Aβ labeling decreased and only remained in patches unlabeled by methoxy-X04 near microglia. Histology in two additional models, sparse embolic occlusions from intracarotid injections of beads and infarction from photothrombosis, demonstrated increased labeling intensity in plaques after injury. These results suggest that microvascular lesions can alter the deposition and clearance of Aβ and confirm that Aβ plaques are dynamic structures, complicating the interpretation of plaque burden as a marker of Alzheimer's disease progression.
Collapse
Affiliation(s)
- Yuying Zhang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Evan D Bander
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yurim Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Celia Muoser
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
Thomas AJ, Hamilton CA, Donaghy PC, Martin-Ruiz C, Morris CM, Barnett N, Olsen K, Taylor JP, O'Brien JT. Prospective longitudinal evaluation of cytokines in mild cognitive impairment due to AD and Lewy body disease. Int J Geriatr Psychiatry 2020; 35:1250-1259. [PMID: 32557792 DOI: 10.1002/gps.5365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We conducted a prospective longitudinal study of plasma cytokines during the Mild Cognitive Impairment (MCI) stage of Lewy body disease and Alzheimer's disease, hypothesizing that cytokine levels would decrease over time and that this would be correlated with decline in cognition. METHODS Older (≥60) people with MCI were recruited from memory services in healthcare trusts in North East England, UK. MCI was diagnosed as due to Alzheimer's disease (MCI-AD) or Lewy body disease (MCI-LB). Baseline and repeat annual clinical and cognitive assessments were undertaken and plasma samples were obtained at the same time. Cytokine assays were performed on all samples using the Meso Scale Discovery V-Plex Plus Proinflammatory Panel 1, which included IFNγ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13 and TNFα. RESULTS Fifty-six patients (21 MCI-AD, 35 MCI-LB) completed prospective evaluations and provided samples up to 3 years after baseline. Six cytokines (IFNγ, IL-1β, IL-2, IL-4, IL-6 and IL-10) showed highly significant (P < .002) decreases over time. AD and LB did not differ in rate of decrease nor were there any effects related to age or general morbidity. Decrease in five of these cytokines (IFNγ, IL-1β, IL-2, IL-4, and IL-10) was highly correlated with decrease in cognition (P < .003). CONCLUSIONS Peripheral inflammation decreased in both disease groups during MCI suggesting this may be a therapeutic window for future anti-inflammatory agents.
Collapse
Affiliation(s)
- Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Carmen Martin-Ruiz
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris M Morris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nicola Barnett
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsty Olsen
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Sebastian Monasor L, Müller SA, Colombo AV, Tanrioever G, König J, Roth S, Liesz A, Berghofer A, Piechotta A, Prestel M, Saito T, Saido TC, Herms J, Willem M, Haass C, Lichtenthaler SF, Tahirovic S. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. eLife 2020; 9:54083. [PMID: 32510331 PMCID: PMC7279888 DOI: 10.7554/elife.54083] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/02/2020] [Indexed: 12/20/2022] Open
Abstract
Microglial dysfunction is a key pathological feature of Alzheimer's disease (AD), but little is known about proteome-wide changes in microglia during the course of AD and their functional consequences. Here, we performed an in-depth and time-resolved proteomic characterization of microglia in two mouse models of amyloid β (Aβ) pathology, the overexpression APPPS1 and the knock-in APP-NL-G-F (APP-KI) model. We identified a large panel of Microglial Aβ Response Proteins (MARPs) that reflect heterogeneity of microglial alterations during early, middle and advanced stages of Aβ deposition and occur earlier in the APPPS1 mice. Strikingly, the kinetic differences in proteomic profiles correlated with the presence of fibrillar Aβ, rather than dystrophic neurites, suggesting that fibrillar Aβ may trigger the AD-associated microglial phenotype and the observed functional decline. The identified microglial proteomic fingerprints of AD provide a valuable resource for functional studies of novel molecular targets and potential biomarkers for monitoring AD progression or therapeutic efficacy. Alzheimer’s disease is a progressive, irreversible brain disorder. Patients with Alzheimer’s have problems with memory and other mental skills, which lead to more severe cognitive decline and, eventually, premature death. This is due to increasing numbers of nerve cells in the brain dying over time. A distinctive feature of Alzheimer’s is the abnormally high accumulation of a protein called amyloid-β, which forms distinctive clumps in the brain termed ‘plaques’. The brain has a type of cells called the microglia that identify infections, toxic material and damaged cells, and prevent these from building up by clearing them away. In Alzheimer’s disease, however, the microglia do not work properly, which is thought to contribute to the accumulation of amyloid-β plaques. This means that people with mutations in the genes important for the microglia activity are also at higher risk of developing the disease. Although problems with the microglia play an important role in Alzheimer’s, researchers still do not fully understand why microglia stop working in the first place. It is also not known exactly when and how the microglia change as Alzheimer’s disease progresses. To unravel this mystery, Sebastian Monasor, Müller et al. carried out a detailed study of the molecular ‘fingerprints’ of microglia at each key stage of Alzheimer’s disease. The experiments used microglia cells from two different strains of genetically altered mice, both of which develop the hallmarks of Alzheimer’s disease, including amyloid-β plaques, at similar rates. Analysis of the proteins in microglia cells from both strains revealed distinctive, large-scale changes corresponding to successive stages of the disease – reflecting the gradual accumulation of plaques. Obvious defects in microglia function also appeared soon after plaques started to build up. Microscopy imaging of the brain tissue showed that although amyloid-β plaques appeared at the same time, they looked different in each mouse strain. In one, plaques were more compact, while in the other, plaques appeared ‘fluffier’, like cotton wool. In mice with more compacted plaques, microglia recognized the plaques earlier and stopped working sooner, suggesting that plaque structure and microglia defects could be linked. These results shed new light on the role of microglia and their changing protein ‘signals’ during the different stages of Alzheimer’s disease. In the future, this information could help identify people at risk for the disease, so that they can be treated as soon as possible, and to design new therapies to make microglia work again.
Collapse
Affiliation(s)
- Laura Sebastian Monasor
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Gaye Tanrioever
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jasmin König
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Faculty of Chemistry, Technical University of Munich, Garching, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anna Berghofer
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University, Munich, Germany
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Matthias Prestel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, Japan.,Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, Japan
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University, Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
43
|
Baschieri F, Porshneva K, Montagnac G. Frustrated clathrin-mediated endocytosis – causes and possible functions. J Cell Sci 2020; 133:133/11/jcs240861. [DOI: 10.1242/jcs.240861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Clathrin-mediated endocytosis is the main entry route for most cell surface receptors and their ligands. It is regulated by clathrin-coated structures that are endowed with the ability to cluster receptors and to locally bend the plasma membrane, resulting in the formation of receptor-containing vesicles that bud into the cytoplasm. This canonical role of clathrin-coated structures has been shown to play a fundamental part in many different aspects of cell physiology. However, it has recently become clear that the ability of clathrin-coated structures to deform membranes can be perturbed. In addition to chemical or genetic alterations, numerous environmental conditions can physically prevent or slow down membrane bending and/or budding at clathrin-coated structures. The resulting ‘frustrated endocytosis’ is emerging as not merely a passive consequence, but one that actually fulfils some very specific and important cellular functions. In this Review, we provide an historical and defining perspective on frustrated endocytosis in the clathrin pathway of mammalian cells, before discussing its causes and highlighting the possible functional consequences in physiology and diseases.
Collapse
Affiliation(s)
- Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| | - Kseniia Porshneva
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
44
|
Cavalli E, Battaglia G, Basile MS, Bruno V, Petralia MC, Lombardo SD, Pennisi M, Kalfin R, Tancheva L, Fagone P, Nicoletti F, Mangano K. Exploratory Analysis of iPSCS-Derived Neuronal Cells as Predictors of Diagnosis and Treatment of Alzheimer Disease. Brain Sci 2020; 10:brainsci10030166. [PMID: 32183090 PMCID: PMC7139610 DOI: 10.3390/brainsci10030166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) represents the most common neurodegenerative disorder, with 47 million affected people worldwide. Current treatment strategies are aimed at reducing the symptoms and do slow down the progression of the disease, but inevitably fail in the long-term. Induced pluripotent stem cells (iPSCs)-derived neuronal cells from AD patients have proven to be a reliable model for AD pathogenesis. Here, we have conducted an in silico analysis aimed at identifying pathogenic gene-expression profiles and novel drug candidates. The GSE117589 microarray dataset was used for the identification of Differentially Expressed Genes (DEGs) between iPSC-derived neuronal progenitor (NP) cells and neurons from AD patients and healthy donors. The Discriminant Analysis Module (DAM) algorithm was used for the identification of biomarkers of disease. Drugs with anti-signature gene perturbation profiles were identified using the L1000FWD software. DAM analysis was used to identify a list of potential biomarkers among the DEGs, able to discriminate AD patients from healthy people. Finally, anti-signature perturbation analysis identified potential anti-AD drugs. This study set the basis for the investigation of potential novel pharmacological strategies for AD. Furthermore, a subset of genes for the early diagnosis of AD is proposed.
Collapse
Affiliation(s)
- Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (E.C.); (M.S.B.); (S.D.L.); (M.P.); (F.N.); (K.M.)
| | - Giuseppe Battaglia
- University Sapienza, Piazzale A. Moro, 5, 00185 Roma, Italy; (G.B.); (V.B.)
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli (IS), Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (E.C.); (M.S.B.); (S.D.L.); (M.P.); (F.N.); (K.M.)
| | - Valeria Bruno
- University Sapienza, Piazzale A. Moro, 5, 00185 Roma, Italy; (G.B.); (V.B.)
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli (IS), Italy
| | | | - Salvo Danilo Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (E.C.); (M.S.B.); (S.D.L.); (M.P.); (F.N.); (K.M.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (E.C.); (M.S.B.); (S.D.L.); (M.P.); (F.N.); (K.M.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 23, 1113 Sofia, Bulgaria; (R.K.); (L.T.)
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 23, 1113 Sofia, Bulgaria; (R.K.); (L.T.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (E.C.); (M.S.B.); (S.D.L.); (M.P.); (F.N.); (K.M.)
- Correspondence: ; Tel.: +39-095-478-1284
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (E.C.); (M.S.B.); (S.D.L.); (M.P.); (F.N.); (K.M.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (E.C.); (M.S.B.); (S.D.L.); (M.P.); (F.N.); (K.M.)
| |
Collapse
|
45
|
Xu Q, Xu W, Cheng H, Yuan H, Tan X. Efficacy and mechanism of cGAMP to suppress Alzheimer's disease by elevating TREM2. Brain Behav Immun 2019; 81:495-508. [PMID: 31283973 DOI: 10.1016/j.bbi.2019.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/27/2022] Open
Abstract
Innate immune responses are considered to play crucial roles in the progression of Alzheimer's disease (AD). Recently, immunotherapy is emerging as an innovative and highly conceivable strategy for AD treatment. The cGAMP-STING-IRF3 signaling pathway plays a pivotal role in mediating innate immune responses. In this study, we provide pioneering investigation to find that the STING stimulator, cGAMP, significantly ameliorates cognitive deficits, improves pathological changes, decreases Aβ plaque load and reduces neuron apoptosis in APP/PS1 transgenetic mice. The stimulation of cGAMP-STING-IRF3 pathway induces expression of triggering receptor expressed on myeloid cells 2 (TREM2), and the overexpression of TREM2 further decreases Aβ deposition and neuron loss while improves AD pathomorphology and cognitive impairment. Additionally, TREM2 regulates microglia polarization from M1 towards M2 phenotype thereby achieves reduction of neuroinflammation in AD. These findings support that the enhancement of TREM2 exerts beneficial effects in ameliorating AD development. Taken together, our results demonstrate that cGAMP is a potential candidate for applications in Alzheimer's disease immunotherapy.
Collapse
Affiliation(s)
- Qiming Xu
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Wei Xu
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hao Cheng
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hong Yuan
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangshi Tan
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
46
|
Microglial activation, but not tau pathology, is independently associated with amyloid positivity and memory impairment. Neurobiol Aging 2019; 85:11-21. [PMID: 31698286 DOI: 10.1016/j.neurobiolaging.2019.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
We sought to determine if upstream amyloid accumulation and downstream cognitive impairment have independent relationships with microglial activation and tau pathology. Fifty-eight older adults were stratified by amyloid and cognitive status based on 18F-florbetaben PET, history, and neuropsychological testing. Of these, 57 had 11C-PBR28 PET to measure microglial activation and 43 had 18F-MK-6240 PET to measure tau pathology. Amyloid and cognitive status were associated with increased overall binding for both 11C-PBR28 and 18F-MK-6240 (p's < 0.01). While there was no interaction between amyloid and cognitive status in their association with 11C-PBR28 binding (p = 0.6722), there was an interaction in their association with 18F-MK-6240 binding (p = 0.0115). Binding of both radioligands was greater in amyloid-positive controls than in amyloid-negative controls; however, this difference was seen in neocortical regions for 11C-PBR28 and only in medial temporal cortex for 18F-MK-6240. We conclude that, in the absence of cognitive symptoms, amyloid deposition has a greater association with microglial activation than with tau pathology.
Collapse
|
47
|
Xu J, Sun J, Perrin RJ, Mach RH, Bales KR, Morris JC, Benzinger TLS, Holtzman DM. Translocator protein in late stage Alzheimer's disease and Dementia with Lewy bodies brains. Ann Clin Transl Neurol 2019; 6:1423-1434. [PMID: 31402620 PMCID: PMC6689696 DOI: 10.1002/acn3.50837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Increased translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), in glial cells of the brain has been used as a neuroinflammation marker in the early and middle stages of neurodegenerative diseases, such as Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB). In this study, we investigated the changes in TSPO density with respect to late stage AD and DLB. METHODS TSPO density was measured in multiple regions of postmortem human brains in 20 different cases: seven late stage AD cases (Braak amyloid average: C; Braak tangle average: VI; Aged 74-88, mean: 83 ± 5 years), five DLB cases (Braak amyloid average: C; Braak tangle average: V; Aged 79-91, mean: 84 ± 4 years), and eight age-matched normal control cases (3 males, 5 females: aged 77-92 years; mean: 87 ± 6 years). Measurements were taken by quantitative autoradiography using [3 H]PK11195 and [3 H]PBR28. RESULTS No significant changes were found in TSPO density of the frontal cortex, striatum, thalamus, or red nucleus of the AD and DLB brains. A significant reduction in TSPO density was found in the substantia nigra (SN) of the AD and DLB brains compared to that of age-matched healthy controls. INTERPRETATION This distinct pattern of TSPO density change in late stage AD and DLB cases may imply the occurrence of microglia dystrophy in late stage neurodegeneration. Furthermore, TSPO may not only be a microglia activation marker in early stage AD and DLB, but TSPO may also be used to monitor microglia dysfunction in the late stage of these diseases.
Collapse
Affiliation(s)
- Jinbin Xu
- Department of RadiologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| | - Jianjun Sun
- Department of RadiologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| | - Richard J. Perrin
- Department of Pathology & ImmunologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| | - Robert H. Mach
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | | | - John C. Morris
- Department of NeurologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| | - Tammie L. S. Benzinger
- Department of RadiologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| | - David M. Holtzman
- Department of NeurologyWashington University School of Medicine510 S. Kingshighway BlvdSt. LouisMissouri63110
| |
Collapse
|
48
|
Yao K, Zu HB. Microglial polarization: novel therapeutic mechanism against Alzheimer's disease. Inflammopharmacology 2019; 28:95-110. [PMID: 31264132 DOI: 10.1007/s10787-019-00613-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that results in progressive dementia, and exhibits high disability and fatality rates. Recent evidence has demonstrated that neuroinflammation is critical in the pathophysiological processes of AD, which is characterized by the activation of microglia and astrocytes. Under different stimuli, microglia are usually activated into two polarized states, termed the classical 'M1' phenotype and the alternative 'M2' phenotype. M1 microglia are considered to promote inflammatory injury in AD; in contrast, M2 microglia exert neuroprotective effects. Imbalanced microglial polarization, in the form of excessive activation of M1 microglia and dysfunction of M2 microglia, markedly promotes the development of AD. Furthermore, an increasing number of studies have shown that the transition of microglia from the M1 to M2 phenotype could potently alleviate pathological damage in AD. Hence, this article reviews the current knowledge regarding the role of microglial M1/M2 polarization in the pathophysiology of AD. In addition, we summarize several approaches that protect against AD by altering the polarization states of microglia. This review aims to contribute to a better understanding of the pathogenesis of AD and, moreover, to explore the potential of novel drugs for the treatment of AD in the future.
Collapse
Affiliation(s)
- Kai Yao
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
49
|
Paarmann K, Prakash SR, Krohn M, Möhle L, Brackhan M, Brüning T, Eiriz I, Pahnke J. French maritime pine bark treatment decelerates plaque development and improves spatial memory in Alzheimer's disease mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:39-48. [PMID: 30668321 DOI: 10.1016/j.phymed.2018.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plant extracts are increasingly investigated as potential drugs against Alzheimer's disease (AD) and dementia in general. Pycnogenol is an extract from the bark of the French maritime pine (Pinus pinaster Aiton subsp. atlantica) with known anti-oxidative and neuroprotective effects. HYPOTHESIS/PURPOSE Pycnogenol is thought to improve cognitive functions in elderly. We wanted to investigate and quantify these effects in a model system of cerebral ß-amyloidosis/AD. STUDY DESIGN/METHODS This study experimentally assessed the effects of Pycnogenol on AD-related pathology in a ß-amyloidosis mouse model. APP-transgenic mice and controls were treated orally in a pre-onset and post-onset treatment paradigm. The effects of Pycnogenol were characterized by analysing ß-amyloid (Aß) plaques, number of neurons, glia coverage, myelination pattern, and cortical coverage with axons using immunohistochemistry. Aß levels were quantified using ELISA and gene expression levels of APP-processing enzymes ADAM10, BACE1 and IDE protein levels were determined by Western blot. Behavioural changes in circadian rhythm were monitored and spatial memory / cognition was assessed using a water maze test. RESULTS Pycnogenol significantly decreased the number of plaques in both treatment paradigms but did not alter levels of soluble Aß or the gene expression of APP-processing enzymes. The morphological analyses revealed no changes in the number of neurons, astrocytes, microglia, the myelination pattern, or the morphology of axons. Behavioural testing revealed an improvement of the spatial memory in the pre-onset treatment paradigm only. CONCLUSION Our results suggest to evaluate clinically a potential use of Pycnogenol in the prevention or in early stages of mild cognitive impairment (MCI) and AD.
Collapse
Affiliation(s)
- K Paarmann
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway; LIED, University of Lübeck, Lübeck, Germany
| | - S R Prakash
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - M Krohn
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - L Möhle
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway; Department for Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - M Brackhan
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - T Brüning
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - I Eiriz
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - J Pahnke
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway; LIED, University of Lübeck, Lübeck, Germany; Department for Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany; Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia.
| |
Collapse
|
50
|
Nichols MR, St-Pierre MK, Wendeln AC, Makoni NJ, Gouwens LK, Garrad EC, Sohrabi M, Neher JJ, Tremblay ME, Combs CK. Inflammatory mechanisms in neurodegeneration. J Neurochem 2019; 149:562-581. [PMID: 30702751 DOI: 10.1111/jnc.14674] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/28/2022]
Abstract
This review discusses the profound connection between microglia, neuroinflammation, and Alzheimer's disease (AD). Theories have been postulated, tested, and modified over several decades. The findings have further bolstered the belief that microglia-mediated inflammation is both a product and contributor to AD pathology and progression. Distinct microglia phenotypes and their function, microglial recognition and response to protein aggregates in AD, and the overall role of microglia in AD are areas that have received considerable research attention and yielded significant results. The following article provides a historical perspective of microglia, a detailed discussion of multiple microglia phenotypes including dark microglia, and a review of a number of areas where microglia intersect with AD and other pathological neurological processes. The overall breadth of important discoveries achieved in these areas significantly strengthens the hypothesis that neuroinflammation plays a key role in AD. Future determination of the exact mechanisms by which microglia respond to, and attempt to mitigate, protein aggregation in AD may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Michael R Nichols
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Département de médecine moléculaire, Université Laval, Québec, Quebec, Canada
| | - Ann-Christin Wendeln
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nyasha J Makoni
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Lisa K Gouwens
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Evan C Garrad
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Mona Sohrabi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Département de médecine moléculaire, Université Laval, Québec, Quebec, Canada
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|