1
|
Qian X, Lin X, Hu W, Zhang L, Chen W, Zhang S, Ge S, Xu X, Luo K. Intestinal homeostasis disrupted by Periodontitis exacerbates Alzheimer's Disease in APP/PS1 mice. J Neuroinflammation 2024; 21:263. [PMID: 39425119 PMCID: PMC11489998 DOI: 10.1186/s12974-024-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Periodontitis exacerbates Alzheimer's disease (AD) through multiple pathways. Both periodontitis and AD are intricately correlated to intestinal homeostasis, yet there is still a lack of direct evidence regarding whether periodontitis can regulate the progression of AD by modulating intestinal homeostasis. The current study induced experimental periodontitis in AD mice by bilaterally ligating the maxillary second molars with silk and administering Pg-LPS injections in APPswe/PS1ΔE9 (APP/PS1) mice. Behavioral tests and histological analyses of brain tissue were conducted after 8 weeks. Gut microbiota was analyzed and colon tissue were also evaluated. Then, fecal microbiota from mice with periodontitis was transplanted into antibiotic-treated mice to confirm the effects of periodontitis on AD and the potential mechanism was explored. The results indicated periodontitis exacerbated cognitive impairment and anxious behaviour in APP/PS1 mice, with increased Aβ deposition, microglial overactivation and neuroinflammation in brain. Moreover, the intestinal homeostasis of AD mice was altered by periodontitis, including affecting gut microbiota composition, causing colon inflammation and destroyed intestinal epithelial barrier. Furthermore, AD mice that underwent fecal transplantation from mice with periodontitis exhibited worsened AD progression and disrupted intestinal homeostasis. It also impaired intestinal barrier function, elevated peripheral inflammation, damaged blood-brain barrier (BBB) and caused neuroinflammation and synapses impairment. Taken together, the current study demonstrated that periodontitis could disrupt intestinal homeostasis to exacerbate AD progression potential via causing gut microbial dysbiosis, intestinal inflammation and intestinal barrier impairment to induce peripheral inflammation and damage BBB, ultimately leading to neuroinflammation and synapse impairment. It underscores the importance of maintaining both periodontal health and intestinal homeostasis to reduce the risk of AD.
Collapse
Affiliation(s)
- Xueshen Qian
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Xuxin Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Weiqiang Hu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Lu Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Wenqian Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, 210008, P.R. China
| | - Song Ge
- School and Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China.
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China.
| |
Collapse
|
2
|
Boulares A, Jdidi H, Bragazzi NL. Impact of Mouthwash-Induced Oral Microbiome Disruption on Alzheimer's Disease Risk: A Perspective Review. Int Dent J 2024:S0020-6539(24)00197-7. [PMID: 39379282 DOI: 10.1016/j.identj.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 10/10/2024] Open
Abstract
The widespread use of mouthwashes, particularly those containing chlorhexidine (CHX), has raised concerns about their impact on the oral microbiome and potential systemic health effects. This perspective review examines the current evidence linking CHX mouthwash use to disruptions in the oral microbiome and explores the potential indirect implications for Alzheimer's disease (AD) risk. CHX mouthwash is effective in reducing dental plaque and gingival inflammation, but it also significantly alters the composition of the oral microbiome, decreasing the abundance of nitrate-reducing bacteria critical for nitric oxide (NO) production. This disruption can lead to increased blood pressure, a major risk factor for AD. Given the established connection between hypertension and AD, the long-term use of CHX mouthwash may indirectly contribute to the onset of AD. However, the relationship between CHX mouthwash use and AD remains largely indirect, necessitating further longitudinal and cohort studies to investigate whether a direct causal link exists. The review aims to highlight the importance of maintaining a balanced oral microbiome for both oral and systemic health and calls for more research into safer oral hygiene practices and their potential impacts on neurodegenerative disease risk.
Collapse
Affiliation(s)
- Ayoub Boulares
- Laboratory Mobility, Faculty of Sport Sciences-STAPS, Aging & Exercise-ER20296, University of Poitiers, Poitiers, France
| | - Hela Jdidi
- Laboratory Mobility, Faculty of Sport Sciences-STAPS, Aging & Exercise-ER20296, University of Poitiers, Poitiers, France
| | - Nicola Luigi Bragazzi
- Department of Food and Drugs, Human Nutrition Unit (HNU), Medical School, University of Parma, Parma, Italy; Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Bertolini M, Clark D. Periodontal disease as a model to study chronic inflammation in aging. GeroScience 2024; 46:3695-3709. [PMID: 37285008 PMCID: PMC11226587 DOI: 10.1007/s11357-023-00835-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Periodontal disease is a chronic inflammatory condition that results in the destruction of the teeth supporting tissues, eventually leading to the loss of teeth and reduced quality of life. In severe cases, periodontal disease can limit proper nutritional intake, cause acute pain and infection, and cause a withdrawal from social situations due to esthetic and phonetic concerns. Similar to other chronic inflammatory conditions, periodontal disease increases in prevalence with age. Research into what drives periodontal disease pathogenesis in older adults is contributing to our general understanding of age-related chronic inflammation. This review will present periodontal disease as an age-related chronic inflammatory disease and as an effective geroscience model to study mechanisms of age-related inflammatory dysregulation. The current understanding of the cellular and molecular mechanisms that drive inflammatory dysregulation as a function of age will be discussed with a focus on the major pathogenic immune cells in periodontal disease, which include neutrophils, macrophages, and T cells. Research in the aging biology field has shown that the age-related changes in these immune cells result in the cells becoming less effective in the clearance of microbial pathogens, expansion of pathogenic subpopulations, or an increase in pro-inflammatory cytokine secretions. Such changes can be pathogenic and contribute to inflammatory dysregulation that is associated with a myriad of age-related disease including periodontal disease. An improved understanding is needed to develop better interventions that target the molecules or pathways that are perturbed with age in order to improve treatment of chronic inflammatory conditions, including periodontal disease, in older adult populations.
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Daniel Clark
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Bezerra B, Fisher M, Pirih FQ, Casarin M. The potential impact of periodontitis on cerebral small vessel disease. Mol Oral Microbiol 2024; 39:190-198. [PMID: 37929810 DOI: 10.1111/omi.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Cerebral small vessel disease (CSVD) is a term used to describe abnormalities in the intracranial microvasculature affecting small arteries, arterioles, capillaries, and venules. The etiology of these conditions is not fully understood but inflammation appears to play a significant role. Periodontal diseases have been associated with conditions such as stroke and dementia, which are clinical consequences of CSVD. Periodontitis is a highly prevalent chronic multifactorial inflammatory disease regulated by the host immune response against pathogenic bacterial colonization around the teeth. The inflammatory response and the microbial dysbiosis produce pro-inflammatory cytokines that can reach the brain and promote local changes. This review will explore the potential association between periodontitis and CSVD by assessing the impact of periodontitis-induced inflammation and periodontopathogenic bacteria on the underlying mechanisms leading to CSVD. Given the association of periodontitis with stroke and dementia, which are clinical features of CSVD, it may be possible to suggest a link with CSVD. Current evidence linking periodontitis with neuroimaging findings of CSVD enforces the possible link between these conditions.
Collapse
Affiliation(s)
- Beatriz Bezerra
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, UC Irvine Medical Center, Orange, California, USA
| | - Flavia Q Pirih
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California, USA
| | - Maísa Casarin
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California, USA
- School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
5
|
Kim YR, Son M, Kim SR. Association between statin compliance and risk of dementia among patients with chronic periodontitis. Oral Dis 2024; 30:3440-3451. [PMID: 37884358 DOI: 10.1111/odi.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVES We investigated the association between statin compliance and the risk of dementia among patients with chronic periodontitis. METHODS Chronic periodontitis patients were extracted from the National Health Insurance Service-Health Screening Cohort Database, covering the period from 2002 to 2019. A total of 22,089 subjects were included in the study and divided into three groups based on their compliance with statin administration. The Cox proportional hazard model was utilized to calculate hazard ratios and 95% confidence intervals for analyzing the risk of dementia. RESULTS In the restricted cubic spline of the multivariable-adjusted model, the hazard ratio for dementia decreased prominently with a higher medication possession ratio. The hazard ratios and 95% confidence intervals in the multivariable-adjusted model for dementia risk in the middle and high medication possession ratio groups, compared to the low medication possession ratio group, were confirmed as 0.70 (0.57-0.87) and 0.57 (0.45-0.72), respectively. In the subgroup analysis, a significant association between dementia and good statin medication possession ratio was found in both severe periodontitis and mild periodontitis cases. CONCLUSIONS Our findings suggest that a group of patients with chronic periodontitis who maintain good statin compliance are associated with a reduced risk of dementia.
Collapse
Affiliation(s)
- Yu-Rin Kim
- Department of Dental Hygiene, Silla University, Busan, Republic of Korea
| | - Minkook Son
- Department of Physiology, College of Medicine, Dong-A University, Busan, Korea
| | - Seon-Rye Kim
- Department of Healthcare Management, Youngsan University, Yangsan-si, Kyungsangnam-do, Korea
| |
Collapse
|
6
|
Kamer AR, Pushalkar S, Hamidi B, Janal MN, Tang V, Annam KRC, Palomo L, Gulivindala D, Glodzik L, Saxena D. Periodontal Inflammation and Dysbiosis Relate to Microbial Changes in the Gut. Microorganisms 2024; 12:1225. [PMID: 38930608 PMCID: PMC11205299 DOI: 10.3390/microorganisms12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Periodontal disease (PerioD) is a chronic inflammatory disease of dysbiotic etiology. Animal models and few human data showed a relationship between oral bacteria and gut dysbiosis. However, the effect of periodontal inflammation and subgingival dysbiosis on the gut is unknown. We hypothesized that periodontal inflammation and its associated subgingival dysbiosis contribute to gut dysbiosis even in subjects free of known gut disorders. We evaluated and compared elderly subjects with Low and High periodontal inflammation (assessed by Periodontal Inflamed Surface Area (PISA)) for stool and subgingival derived bacteria (assayed by 16S rRNA sequencing). The associations between PISA/subgingival dysbiosis and gut dysbiosis and bacteria known to produce short-chain fatty acid (SCFA) were assessed. LEfSe analysis showed that, in Low PISA, species belonging to Lactobacillus, Roseburia, and Ruminococcus taxa and Lactobacillus zeae were enriched, while species belonging to Coprococcus, Clostridiales, and Atopobium were enriched in High PISA. Regression analyses showed that PISA associated with indicators of dysbiosis in the gut mainly reduced abundance of SCFA producing bacteria (Radj = -0.38, p = 0.03). Subgingival bacterial dysbiosis also associated with reduced levels of gut SCFA producing bacteria (Radj = -0.58, p = 0.002). These results suggest that periodontal inflammation and subgingival microbiota contribute to gut bacterial changes.
Collapse
Affiliation(s)
- Angela R. Kamer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Smruti Pushalkar
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA;
| | - Babak Hamidi
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Malvin N. Janal
- Department of Epidemiology and Health Promotion, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA;
| | - Vera Tang
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Kumar Raghava Chowdary Annam
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Leena Palomo
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Deepthi Gulivindala
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, Brain Health Imaging Institute Cornell University, New York, NY 10021, USA
| | - Deepak Saxena
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA;
| |
Collapse
|
7
|
Olczak T, Śmiga M, Antonyuk SV, Smalley JW. Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution. Microbiol Mol Biol Rev 2024; 88:e0013123. [PMID: 38305743 PMCID: PMC10966948 DOI: 10.1128/mmbr.00131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
SUMMARY Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, the University of Liverpool, Liverpool, United Kingdom
| | - John W. Smalley
- Institute of Life Course and Medical Sciences, School of Dentistry, the University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Rubinstein T, Brickman AM, Cheng B, Burkett S, Park H, Annavajhala MK, Uhlemann A, Andrews H, Gutierrez J, Paster BJ, Noble JM, Papapanou PN. Periodontitis and brain magnetic resonance imaging markers of Alzheimer's disease and cognitive aging. Alzheimers Dement 2024; 20:2191-2208. [PMID: 38278517 PMCID: PMC10984451 DOI: 10.1002/alz.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION We examined the association of clinical, microbiological, and host response features of periodontitis with MRI markers of atrophy/cerebrovascular disease in the Washington Heights Inwood Columbia Aging Project (WHICAP) Ancillary Study of Oral Health. METHODS We analyzed 468 participants with clinical periodontal data, microbial plaque and serum samples, and brain MRIs. We tested the association of periodontitis features with MRI features, after adjusting for multiple risk factors for Alzheimer's disease/Alzheimer's disease-related dementia (AD/ADRD). RESULTS In fully adjusted models, having more teeth was associated with lower odds for infarcts, lower white matter hyperintensity (WMH) volume, higher entorhinal cortex volume, and higher cortical thickness. Higher extent of periodontitis was associated with lower entorhinal cortex volume and lower cortical thickness. Differential associations emerged between colonization by specific bacteria/serum antibacterial IgG responses and MRI outcomes. DISCUSSION In an elderly cohort, clinical, microbiological, and serological features of periodontitis were associated with MRI findings related to ADRD risk. Further investigation of causal associations is warranted.
Collapse
Affiliation(s)
- Tom Rubinstein
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| | - Adam M. Brickman
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Gertrude H. Sergievsky CenterNew YorkNew YorkUSA
| | - Bin Cheng
- Department of BiostatisticsMailman School of Public HealthNew YorkNew YorkUSA
| | - Sandra Burkett
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| | - Heekuk Park
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Medini K. Annavajhala
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Anne‐Catrin Uhlemann
- Division of Infectious DiseasesDepartment of MedicineVagelos College of Physicians and, Surgeons, Irving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Howard Andrews
- Department of BiostatisticsMailman School of Public HealthNew YorkNew YorkUSA
| | - Jose Gutierrez
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Bruce J. Paster
- The Forsyth InstituteCambridgeMassachusettsUSA
- Department of Oral Medicine, Infection and ImmunityHarvard School of Dental MedicineBostonMassachusettsUSA
| | - James M. Noble
- Department of NeurologyVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Gertrude H. Sergievsky CenterNew YorkNew YorkUSA
| | - Panos N. Papapanou
- Division of PeriodonticsSection of OralDiagnostic and Rehabilitation SciencesCollege of Dental MedicineNew YorkNew YorkUSA
| |
Collapse
|
9
|
Cichońska D, Mazuś M, Kusiak A. Recent Aspects of Periodontitis and Alzheimer's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2612. [PMID: 38473858 DOI: 10.3390/ijms25052612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Periodontitis is an inflammatory condition affecting the supporting structures of the teeth. Periodontal conditions may increase the susceptibility of individuals to various systemic illnesses, including Alzheimer's disease. Alzheimer's disease is a neurodegenerative condition characterized by a gradual onset and progressive deterioration, making it the primary cause of dementia, although the exact cause of the disease remains elusive. Both Alzheimer's disease and periodontitis share risk factors and clinical studies comparing the associations and occurrence of periodontitis among individuals with Alzheimer's disease have suggested a potential correlation between these conditions. Brains of individuals with Alzheimer's disease have substantiated the existence of microorganisms related to periodontitis, especially Porphyromonas gingivalis, which produces neurotoxic gingipains and may present the capability to breach the blood-brain barrier. Treponema denticola may induce tau hyperphosphorylation and lead to neuronal apoptosis. Lipopolysaccharides-components of bacterial cell membranes and mediators of inflammation-also have an impact on brain function. Further research could unveil therapeutic approaches targeting periodontal pathogens to potentially alleviate AD progression.
Collapse
Affiliation(s)
- Dominika Cichońska
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| | - Magda Mazuś
- Student Research Group of the Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| |
Collapse
|
10
|
Chen J, Chen JS, Li S, Zhang F, Deng J, Zeng LH, Tan J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer's Disease. Aging Dis 2024; 15:201-225. [PMID: 37307834 PMCID: PMC10796103 DOI: 10.14336/ad.2023.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 06/14/2023] Open
Abstract
Decades of research have demonstrated an incontrovertible role of amyloid-β (Aβ) in the etiology of Alzheimer's disease (AD). However, the overemphasis on the pathological impacts of Aβ may obscure the role of its metabolic precursor, amyloid precursor protein (APP), as a significant hub in the occurrence and progression of AD. The complicated enzymatic processing, ubiquitous receptor-like properties, and abundant expression of APP in the brain, as well as its close links with systemic metabolism, mitochondrial function and neuroinflammation, imply that APP plays multifaceted roles in AD. In this review, we briefly describe the evolutionarily conserved biological characteristics of APP, including its structure, functions and enzymatic processing. We also discuss the possible involvement of APP and its enzymatic metabolites in AD, both detrimental and beneficial. Finally, we describe pharmacological agents or genetic approaches with the capability to reduce APP expression or inhibit its cellular internalization, which can ameliorate multiple aspects of AD pathologies and halt disease progression. These approaches provide a basis for further drug development to combat this terrible disease.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Song Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Darabi M, Bakhtiari R, Jafari A, Mehran M, Eshraghi SS, Barati A. Early detection of oral bacteria causing gum infections and dental caries in children. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:49-55. [PMID: 38682052 PMCID: PMC11055450 DOI: 10.18502/ijm.v16i1.14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives Periodontal diseases are resulted from gum infections and dental plaques, which are mainly caused by the bacterial agents. Since dental monitoring includes important prognostic roles, the aim of this study was to detect the most common periodontal pathogenic bacteria in children. Materials and Methods A total of 200 clinical samples were collected from dental plaques and gingival grooves. Target-specific primers were designed for hbpA in Aggregatibacter actinomycetemcomitans, fimA in Porphyromonas gingivalis and 16S rRNA in Prevotella intermedia, Tannerella forsythia and Treponema denticola. Then, a multiplex polymerase chain reaction method was optimized for the highlighted bacterial agents. Results In general, the highest and the lowest bacterial prevalence rates belonged to Tannerella forsythia (88%) and Porphyromonas gingivalis (13%), respectively. Furthermore, prevalence rates of Aggregatibacter actinomycetemcomitans, Prevotella intermedia and Treponema denticola were 25, 21 and 45% in samples, respectively. Conclusion There were significant associations between dental/oral health and microbial community. Metabolism of the oral bacteria, including biofilm formation, can affect gums and develop dental plaques and hence dental caries, especially in children. Early diagnosis of dental caries in children via rapid, accurate molecular methods can increase the diagnostic capacity in clinical cases and therefore prevent periodontal infections in adulthood.
Collapse
Affiliation(s)
- Maryam Darabi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jafari
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatric Dentistry, School of Dentistry, Al-Hussain University College, Karbala, Iraq
| | - Majid Mehran
- Department of Pediatric Dentistry, School of Dentistry, Shahed University, Tehran, Iran
| | - Seyed Saeed Eshraghi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Anis Barati
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
12
|
Villar A, Paladini S, Cossatis J. Periodontal Disease and Alzheimer's: Insights from a Systematic Literature Network Analysis. J Prev Alzheimers Dis 2024; 11:1148-1165. [PMID: 39044527 PMCID: PMC11266257 DOI: 10.14283/jpad.2024.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/03/2024] [Indexed: 07/25/2024]
Abstract
This study investigated the relationship between periodontal disease (PD) and Alzheimer's Disease (AD) through a Systematic Literature Network Analysis (SLNA), combining bibliometric analysis with a Systematic Literature Review (SLR). Analyzing 328 documents from 2000 to 2023, we utilized the Bibliometrix R-package for multiple bibliometric analysis. The SLR primarily centered on the 47 most globally cited papers, highlighting influential research. Our study reveals a positive correlation between Periodontal Disease (PD) and Alzheimer's Disease (AD), grounded in both biological plausibility and a comprehensive review of the literature, yet the exact causal relationship remains a subject of ongoing scientific investigation. We conducted a detailed analysis of the two main pathways by which PD could contribute to brain inflammation: (a) the Inflammatory Cascade, and (b) Microbial Involvement. The results of our SLNA emphasize the importance of oral health in reducing Alzheimer's risk, suggesting that managing periodontal health could be an integral part of Alzheimer's prevention and treatment strategies. The insights from this SLNA pave the way for future research and clinical practices, underscoring the necessity of interdisciplinary methods in both the investigation and treatment of neurodegenerative diseases like Alzheimer's. Furthermore, our study presents a prospective research roadmap to support ongoing advancement in this field.
Collapse
Affiliation(s)
- A Villar
- Alice Villar, Faculty of Medicine, University Castelo Branco (UCB), Brazil,
| | | | | |
Collapse
|
13
|
Na HS, Jung NY, Song Y, Kim SY, Kim HJ, Lee JY, Chung J. A distinctive subgingival microbiome in patients with periodontitis and Alzheimer's disease compared with cognitively unimpaired periodontitis patients. J Clin Periodontol 2024; 51:43-53. [PMID: 37853506 DOI: 10.1111/jcpe.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
AIM Periodontitis is caused by dysbiosis of oral microbes and is associated with increased cognitive decline in Alzheimer's disease (AD), and recently, a potential functional link was proposed between oral microbes and AD. We compared the oral microbiomes of patients with or without AD to evaluate the association between oral microbes and AD in periodontitis. MATERIALS AND METHODS Periodontitis patients with AD (n = 15) and cognitively unimpaired periodontitis patients (CU) (n = 14) were recruited for this study. Each patient underwent an oral examination and neuropsychological evaluation. Buccal, supragingival and subgingival plaque samples were collected, and microbiomes were analysed by next-generation sequencing. Alpha diversity, beta diversity, linear discriminant analysis effect size, analysis of variance-like differential expression analysis and network analysis were used to compare group oral microbiomes. RESULTS All 29 participants had moderate to severe periodontitis. Group buccal and supragingival samples were indistinguishable, but subgingival samples demonstrated significant alpha and beta diversity differences. Differential analysis showed subgingival samples of the AD group had higher prevalence of Atopobium rimae, Dialister pneumosintes, Olsenella sp. HMT 807, Saccharibacteria (TM7) sp. HMT 348 and several species of Prevotella than the CU group. Furthermore, subgingival microbiome network analysis revealed a distinct, closely connected network in the AD group comprised of various Prevotella spp. and several anaerobic bacteria. CONCLUSIONS A unique microbial composition was discovered in the subgingival region in the AD group. Specifically, potential periodontal pathogens were found to be more prevalent in the subgingival plaque samples of the AD group. These bacteria may possess a potential to worsen periodontitis and other systemic diseases. We recommend that AD patients receive regular, careful dental check-ups to ensure proper oral hygiene management.
Collapse
Affiliation(s)
- Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Yangsan, Republic of Korea
| | - Yuri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Si Yeong Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Joo Kim
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Dental Research Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ju Youn Lee
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Dental Research Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
14
|
Kim D, Choi H, Oh H, Lee J, Hwang Y, Kang SS. Mutanolysin-Digested Peptidoglycan of Lactobacillus reuteri Promotes the Inhibition of Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammatory Responses through the Regulation of Signaling Cascades via TLR4 Suppression. Int J Mol Sci 2023; 25:42. [PMID: 38203215 PMCID: PMC10779245 DOI: 10.3390/ijms25010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Periodontitis is an oral infectious disease caused by various pathogenic bacteria, such as Porphyromonas gingivalis. Although probiotics and their cellular components have demonstrated positive effects on periodontitis, the beneficial impact of peptidoglycan (PGN) from probiotic Lactobacillus remains unclear. Therefore, our study sought to investigate the inhibitory effect of PGN isolated from L. reuteri (LrPGN) on P. gingivalis-induced inflammatory responses. Pretreatment with LrPGN significantly inhibited the production of interleukin (IL)-1β, IL-6, and CCL20 in RAW 264.7 cells induced by P. gingivalis lipopolysaccharide (LPS). LrPGN reduced the phosphorylation of PI3K/Akt and MAPKs, as well as NF-κB activation, which were induced by P. gingivalis LPS. Furthermore, LrPGN dose-dependently reduced the expression of Toll-like receptor 4 (TLR4), indicating that LrPGN inhibits periodontal inflammation by regulating cellular signaling cascades through TLR4 suppression. Notably, LrPGN exhibited stronger inhibition of P. gingivalis LPS-induced production of inflammatory mediators compared to insoluble LrPGN and proteinase K-treated LrPGN. Moreover, MDP, a minimal bioactive PGN motif, also dose-dependently inhibited P. gingivalis LPS-induced inflammatory mediators, suggesting that MDP-like molecules present in the LrPGN structure may play a crucial role in the inhibition of inflammatory responses. Collectively, these findings suggest that LrPGN can mitigate periodontal inflammation and could be a useful agent for the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Donghan Kim
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hanhee Choi
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyeonjun Oh
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Jiyeon Lee
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Yongjin Hwang
- Novalacto Co., Ltd., Daejon 34016, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
15
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
16
|
Kaminska M, Benedyk-Machaczka M, Adamowicz K, Aliko A, Drzazga K, Słysz K, Bielecka E, Potempa J, Mydel P. Bestatin as a treatment modality in experimental periodontitis. J Periodontol 2023; 94:1338-1350. [PMID: 37021727 DOI: 10.1002/jper.22-0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Chronic periodontitis (CP), the most prevalent dysbiotic bacteria-driven chronic inflammatory disease, is an underestimated global health problem in itself, and due to a causative relationship with other disorders such as cardiovascular diseases or Alzheimer disease. The CP pathogenesis is primarily driven by Porphyromonas gingivalis in humans, and Porphyromonas gulae in dogs. These microorganisms initiate a pathogenic shift in the composition of the tooth-surface microflora. Our objective was to evaluate antimicrobial effects of bestatin, a potential CP drug candidate. METHODS We evaluated bestatin bacteriostatic efficiency against periodontopathogens in planktonic cultures via microplate assay, and mono- and multispecies oral biofilm models. Neutrophil bactericidal activities, such as phagocytosis, were investigated in vitro using granulocytes isolated from the peripheral blood. The therapeutic efficacy and the immunomodulatory function of bestatin was assessed in a murine model of CP. RESULTS Bestatin exhibited bacteriostatic activity against both P. gingivalis and P. gulae, and controlled the formation and species composition of the biofilm. We demonstrated that bestatin promotes the phagocytosis of periodontopathogens by neutrophils. Finally, we found that providing bestatin in the animal feed prevented alveolar bone resorption. CONCLUSIONS We show that in a murine model of CP bestatin not only shifted the biofilm species composition from pathogenic to a commensal one, but also promoted bacteria clearance by immune cells and alleviated inflammation. Taken together, these results suggest that bestatin is a promising drug choice for the treatment and/or prevention of periodontitis and clinical trials are required to fully evaluate its potency.
Collapse
Affiliation(s)
- Marta Kaminska
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Malgorzata Benedyk-Machaczka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ardita Aliko
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kamila Drzazga
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Klaudia Słysz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewa Bielecka
- Małopolska Biotechnology Centre, Jagiellonian University, Kraków, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
17
|
Zhao C, Kuraji R, Ye C, Gao L, Radaic A, Kamarajan P, Taketani Y, Kapila YL. Nisin a probiotic bacteriocin mitigates brain microbiome dysbiosis and Alzheimer's disease-like neuroinflammation triggered by periodontal disease. J Neuroinflammation 2023; 20:228. [PMID: 37803465 PMCID: PMC10557354 DOI: 10.1186/s12974-023-02915-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
INTRODUCTION Periodontitis-related oral microbial dysbiosis is thought to contribute to Alzheimer's disease (AD) neuroinflammation and brain amyloid production. Since probiotics can modulate periodontitis/oral dysbiosis, this study examined the effects of a probiotic/lantibiotic, nisin, in modulating brain pathology triggered by periodontitis. METHODS A polymicrobial mouse model of periodontal disease was used to evaluate the effects of this disease on brain microbiome dysbiosis, neuroinflammation, Alzheimer's-related changes, and nisin's therapeutic potential in this context. RESULTS 16S sequencing and real-time PCR data revealed that Nisin treatment mitigated the changes in the brain microbiome composition, diversity, and community structure, and reduced the levels of periodontal pathogen DNA in the brain induced by periodontal disease. Nisin treatment significantly decreased the mRNA expression of pro-inflammatory cytokines (Interleukin-1β/IL-1 β, Interleukin 6/IL-6, and Tumor Necrosis Factor α/TNF-α) in the brain that were elevated by periodontal infection. In addition, the concentrations of amyloid-β 42 (Aβ42), total Tau, and Tau (pS199) (445.69 ± 120.03, 1420.85 ± 331.40, 137.20 ± 36.01) were significantly higher in the infection group compared to the control group (193.01 ± 31.82, 384.27 ± 363.93, 6.09 ± 10.85), respectively. Nisin treatment markedly reduced the Aβ42 (261.80 ± 52.50), total Tau (865.37 ± 304.93), and phosphorylated Tau (82.53 ± 15.77) deposition in the brain of the infection group. DISCUSSION Nisin abrogation of brain microbiome dysbiosis induces beneficial effects on AD-like pathogenic changes and neuroinflammation, and thereby may serve as a potential therapeutic for periodontal-dysbiosis-related AD.
Collapse
Affiliation(s)
- Chuanjiang Zhao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, 102-8159, Japan
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, West China School of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610093, China
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Yoshimasa Taketani
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
- Division of Periodontology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, 350-0283, Japan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA.
- Section of Biosystems and Function, Section of Periodontology, UCLA School of Dentistry, 10833 Le Conte Ave, Box 951668, Los Angeles, CA, 90095-1668, USA.
| |
Collapse
|
18
|
Shah S, Turner ML, Chen X, Ances BM, Hammoud DA, Tucker EW. The Promise of Molecular Imaging: Focus on Central Nervous System Infections. J Infect Dis 2023; 228:S311-S321. [PMID: 37788502 PMCID: PMC11009511 DOI: 10.1093/infdis/jiad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Central nervous system (CNS) infections can lead to high mortality and severe morbidity. Diagnosis, monitoring, and assessing response to therapy of CNS infections is particularly challenging with traditional tools, such as microbiology, due to the dangers associated with invasive CNS procedures (ie, biopsy or surgical resection) to obtain tissues. Molecular imaging techniques like positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging have long been used to complement anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI), for in vivo evaluation of disease pathophysiology, progression, and treatment response. In this review, we detail the use of molecular imaging to delineate host-pathogen interactions, elucidate antimicrobial pharmacokinetics, and monitor treatment response. We also discuss the utility of pathogen-specific radiotracers to accurately diagnose CNS infections and strategies to develop radiotracers that would cross the blood-brain barrier.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitchell L Turner
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Xueyi Chen
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Beau M Ances
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth W Tucker
- Department of Anesthesiology and Critical Care Medicine, Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Bouziane A, Lattaf S, Abdallaoui Maan L. Effect of Periodontal Disease on Alzheimer's Disease: A Systematic Review. Cureus 2023; 15:e46311. [PMID: 37916259 PMCID: PMC10616904 DOI: 10.7759/cureus.46311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
The aim of this review was to evaluate the relationship between periodontal disease (PD) and the onset and progression of Alzheimer's disease (AD) and to determine whether patients with PD would be at greater risk of developing AD compared to periodontally healthy subjects. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An electronic search for cross-sectional, cohort, or case-control studies was conducted on five databases (PubMed, ScienceDirect, EBSCO, Web of Science, and Scopus). No restrictions were applied to the language and year of publication. Exposure was PD, and the outcome of interest was the onset and/or progression of AD. The risk of bias of the included studies was assessed using the Newcastle-Ottawa Scale (NOS) designed for non-randomized studies. Six studies fulfilling the selection criteria were included in this systematic review. Four of the studies were of cohort design and two were of case-control design. All except one showed a significant association between PD and the risk of AD onset and progression. According to the NOS bias risk assessment, three studies were found to be of good quality, and three other cohort studies were of low quality. Data from this systematic review indicate that patients with PD present a significantly higher risk of AD compared to individuals with healthy periodontium. However, results should be interpreted with caution given the methodological limitations found. For future research, powerful and comparable epidemiological studies are needed to evaluate the relationship between PD and AD.
Collapse
Affiliation(s)
- Amal Bouziane
- Department of Periodontology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, MAR
- Laboratory of Biostatistics, Epidemiology, and Clinical Research, Mohammed V University in Rabat, Rabat, MAR
| | - Sara Lattaf
- Department of Periodontology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, MAR
| | - Lamiaa Abdallaoui Maan
- Department of Periodontology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, MAR
| |
Collapse
|
20
|
Banakar M, Sadabadi Y, Mehran M, Abbasi F. Beyond the mouth: the impact of periodontal disease on dementia. Evid Based Dent 2023; 24:138-139. [PMID: 37558763 DOI: 10.1038/s41432-023-00925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
DATA SOURCES The authors searched Medline via PubMed, Scopus, CINAHL, Web of Science, and PsycINFO for relevant studies published until April 2022. STUDY SELECTION Longitudinal studies that assessed periodontal health as the exposure and cognitive decline and/or dementia as the outcome were included. Case reports, reviews, cross-sectional studies, and animal studies were excluded. DATA EXTRACTION AND SYNTHESIS: Two authors independently reviewed studies for inclusion, extracted data, and assessed study quality. Meta-analysis was conducted to generate pooled odds ratios (ORs) for cognitive decline and hazard ratios (HRs) for dementia. Sources of heterogeneity were explored through subgroup analyses. RESULTS A total of 24 studies were included for cognitive decline and 23 for dementia. Poor periodontal health was associated with increased odds of cognitive decline (OR = 1.23; 95% CI: 1.05-1.44) and dementia (HR = 1.21; 95% CI: 1.07-1.38). Tooth loss also appeared to increase the risk independently. However, significant heterogeneity existed between studies. CONCLUSIONS Poor periodontal health may increase the risk of cognitive decline and dementia, but the quality of evidence was low. Further high-quality, longitudinal studies with standardized assessments are needed to establish causality.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran.
| | - Yoones Sadabadi
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Majid Mehran
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Farid Abbasi
- Department of Oral Medicine, Faculty of Dentistry, Shahed University, Tehran, Iran
| |
Collapse
|
21
|
Pezzotti G, Adachi T, Imamura H, Bristol DR, Adachi K, Yamamoto T, Kanamura N, Marin E, Zhu W, Kawai T, Mazda O, Kariu T, Waku T, Nichols FC, Riello P, Rizzolio F, Limongi T, Okuma K. In Situ Raman Study of Neurodegenerated Human Neuroblastoma Cells Exposed to Outer-Membrane Vesicles Isolated from Porphyromonas gingivalis. Int J Mol Sci 2023; 24:13351. [PMID: 37686157 PMCID: PMC10488263 DOI: 10.3390/ijms241713351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to elucidate the chemistry of cellular degeneration in human neuroblastoma cells upon exposure to outer-membrane vesicles (OMVs) produced by Porphyromonas gingivalis (Pg) oral bacteria by monitoring their metabolomic evolution using in situ Raman spectroscopy. Pg-OMVs are a key factor in Alzheimer's disease (AD) pathogenesis, as they act as efficient vectors for the delivery of toxins promoting neuronal damage. However, the chemical mechanisms underlying the direct impact of Pg-OMVs on cell metabolites at the molecular scale still remain conspicuously unclear. A widely used in vitro model employing neuroblastoma SH-SY5Y cells (a sub-line of the SK-N-SH cell line) was spectroscopically analyzed in situ before and 6 h after Pg-OMV contamination. Concurrently, Raman characterizations were also performed on isolated Pg-OMVs, which included phosphorylated dihydroceramide (PDHC) lipids and lipopolysaccharide (LPS), the latter in turn being contaminated with a highly pathogenic class of cysteine proteases, a key factor in neuronal cell degradation. Raman characterizations located lipopolysaccharide fingerprints in the vesicle structure and unveiled so far unproved aspects of the chemistry behind protein degradation induced by Pg-OMV contamination of SH-SY5Y cells. The observed alterations of cells' Raman profiles were then discussed in view of key factors including the formation of amyloid β (Aβ) plaques and hyperphosphorylated Tau neurofibrillary tangles, and the formation of cholesterol agglomerates that exacerbate AD pathologies.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy;
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Davide Redolfi Bristol
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Keiji Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
| | - Toru Kariu
- Department of Life Science, Shokei University, Chuo-ku, Kuhonji, Kumamoto 862-8678, Japan;
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Frank C. Nichols
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, 263 Farmington Avenue, Storrs, CT 06030, USA;
| | - Pietro Riello
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy;
| | - Kazu Okuma
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| |
Collapse
|
22
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
23
|
Catumbela CSG, Giridharan VV, Barichello T, Morales R. Clinical evidence of human pathogens implicated in Alzheimer's disease pathology and the therapeutic efficacy of antimicrobials: an overview. Transl Neurodegener 2023; 12:37. [PMID: 37496074 PMCID: PMC10369764 DOI: 10.1186/s40035-023-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
A wealth of pre-clinical reports and data derived from human subjects and brain autopsies suggest that microbial infections are relevant to Alzheimer's disease (AD). This has inspired the hypothesis that microbial infections increase the risk or even trigger the onset of AD. Multiple models have been developed to explain the increase in pathogenic microbes in AD patients. Although this hypothesis is well accepted in the field, it is not yet clear whether microbial neuroinvasion is a cause of AD or a consequence of the pathological changes experienced by the demented brain. Along the same line, the gut microbiome has also been proposed as a modulator of AD. In this review, we focus on human-based evidence demonstrating the elevated abundance of microbes and microbe-derived molecules in AD hosts as well as their interactions with AD hallmarks. Further, the direct-purpose and potential off-target effects underpinning the efficacy of anti-microbial treatments in AD are also addressed.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993, Santiago, Chile.
| |
Collapse
|
24
|
Weber C, Dilthey A, Finzer P. The role of microbiome-host interactions in the development of Alzheimer´s disease. Front Cell Infect Microbiol 2023; 13:1151021. [PMID: 37333848 PMCID: PMC10272569 DOI: 10.3389/fcimb.2023.1151021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer`s disease (AD) is the most prevalent cause of dementia. It is often assumed that AD is caused by an aggregation of extracellular beta-amyloid and intracellular tau-protein, supported by a recent study showing reduced brain amyloid levels and reduced cognitive decline under treatment with a beta-amyloid-binding antibody. Confirmation of the importance of amyloid as a therapeutic target notwithstanding, the underlying causes of beta-amyloid aggregation in the human brain, however, remain to be elucidated. Multiple lines of evidence point towards an important role of infectious agents and/or inflammatory conditions in the etiology of AD. Various microorganisms have been detected in the cerebrospinal fluid and brains of AD-patients and have thus been hypothesized to be linked to the development of AD, including Porphyromonas gingivalis (PG) and Spirochaetes. Intriguingly, these microorganisms are also found in the oral cavity under normal physiological conditions, which is often affected by multiple pathologies like caries or tooth loss in AD patients. Oral cavity pathologies are mostly accompanied by a compositional shift in the community of oral microbiota, mainly affecting commensal microorganisms and referred to as 'dysbiosis'. Oral dysbiosis seems to be at least partly mediated by key pathogens such as PG, and it is associated with a pro-inflammatory state that promotes the destruction of connective tissue in the mouth, possibly enabling the translocation of pathogenic microbiota from the oral cavity to the nervous system. It has therefore been hypothesized that dysbiosis of the oral microbiome may contribute to the development of AD. In this review, we discuss the infectious hypothesis of AD in the light of the oral microbiome and microbiome-host interactions, which may contribute to or even cause the development of AD. We discuss technical challenges relating to the detection of microorganisms in relevant body fluids and approaches for avoiding false-positives, and introduce the antibacterial protein lactoferrin as a potential link between the dysbiotic microbiome and the host inflammatory reaction.
Collapse
|
25
|
Mayer C, Walther C, Borof K, Nägele FL, Petersen M, Schell M, Gerloff C, Kühn S, Heydecke G, Beikler T, Cheng B, Thomalla G, Aarabi G. Association between periodontal disease and microstructural brain alterations in the Hamburg City Health Study. J Clin Periodontol 2023. [PMID: 37263624 DOI: 10.1111/jcpe.13828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
AIM The aim of the PAROBRAIN study was to examine the association of periodontal health with microstructural white matter integrity and cerebral small vessel disease (CSVD) in the Hamburg City Health Study, a large population-based cohort with dental examination and brain magnetic resonance imaging (MRI). MATERIALS AND METHODS Periodontal health was determined by measuring clinical attachment loss (CAL) and plaque index. Additionally, the decayed/missing/filled teeth (DMFT) index was quantified. 3D-FLAIR and 3D-T1-weighted images were used for white matter hyperintensity (WMH) segmentation. Diffusion-weighted MRI was used to quantify peak width of skeletonized mean diffusivity (PSMD). RESULTS Data from 2030 participants were included in the analysis. Median age was 65 years, with 43% female participants. After adjusting for age and sex, an increase in WMH load was significantly associated with more CAL, higher plaque index and higher DMFT index. PSMD was significantly associated with the plaque index and DMFT. Additional adjustment for education and cardiovascular risk factors revealed a significant association of PSMD with plaque index (p < .001) and DMFT (p < .01), whereas effects of WMH load were attenuated (p > .05). CONCLUSIONS These findings suggest an adverse effect of periodontal health on CSVD and white matter integrity. Further research is necessary to examine whether early treatment of periodontal disease can prevent microstructural brain damage.
Collapse
Affiliation(s)
- Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Walther
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Borof
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix L Nägele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Heydecke
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghazal Aarabi
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Matuck B, Ferraz da Silva LF, Warner BM, Byrd KM. The need for integrated research autopsies in the era of precision oral medicine. J Am Dent Assoc 2023; 154:194-205. [PMID: 36710158 PMCID: PMC9974796 DOI: 10.1016/j.adaj.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Autopsy has benefited the practice of medicine for centuries; however, its use to advance the practice of oral health care is relatively limited. In the era of precision oral medicine, the research autopsy is poised to play an important role in understanding oral-systemic health, including infectious disease, autoimmunity, craniofacial genetics, and cancer. TYPES OF STUDIES REVIEWED The authors reviewed relevant articles that used medical and dental research autopsies to summarize the advantages of minimally invasive autopsies of dental, oral, and craniofacial tissues and to outline practices for supporting research autopsies of the oral and craniofacial complex. RESULTS The authors provide a historical summary of research autopsy in dentistry and provide a perspective on the value of autopsies for high-resolution multiomic studies to benefit precision oral medicine. As the promise of high-resolution multiomics is being realized, there is a need to integrate the oral and craniofacial complex into the practice of autopsy in medicine. Furthermore, the collaboration of autopsy centers with researchers will accelerate the understanding of dental, oral, and craniofacial tissues as part of the whole body. CONCLUSIONS Autopsies must integrate oral and craniofacial tissues as part of biobanking procedures. As new technologies allow for high-resolution, multimodal phenotyping of human samples, using optimized sampling procedures will allow for unprecedented understanding of common and rare dental, oral, and craniofacial diseases in the future. PRACTICAL IMPLICATIONS The COVID-19 pandemic highlighted the oral cavity as a site for viral infection and transmission potential; this was only discovered via clinical autopsies. The realization of the integrated autopsy's value in full body health initiatives will benefit patients across the globe.
Collapse
Affiliation(s)
- Bruno Matuck
- Department of Pathology, School of Medicine University of São Paulo, São Paulo, Brazil
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Blake M. Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Matthew Byrd
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation and Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
| |
Collapse
|
27
|
Kondaveeti SN, Thekkekkara D, T LN, Manjula SN, Tausif YM, Babu A, Meheronnisha SK. A Deep Insight into the Correlation Between Gut Dysbiosis and Alzheimer’s Amyloidopathy. J Pharmacol Pharmacother 2023. [DOI: 10.1177/0976500x221150310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Background Recent research has shown a strong correlation between gut dysbiosis and Alzheimer’s disease (AD). Purpose To investigate the relationship between gut dysbiosis, immune system activation, and the onset of AD and to examine current breakthroughs in microbiota-targeted AD therapeutics. Methods A review of scientific literature was conducted to assess the correlation between gut dysbiosis and AD and the various factors associated. Results Gut dysbiosis produces an increase in harmful substances, such as bacterial amyloids, which makes the gut barrier and blood-brain barrier more permeable. This leads to the stimulation of immunological responses and an increase in cytokines such as interleukin-1β (IL-1β). As a result, gut dysbiosis accelerates the progression of AD. Conclusion The review highlights the connection between gut dysbiosis and AD and the potential for microbiota-targeted therapies in AD treatment. Pictorial Abstract
Collapse
Affiliation(s)
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Lakshmi Narayanan T
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - S. N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Y Mohammed Tausif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Amrita Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - SK Meheronnisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
28
|
Tang V, Hamidi B, Janal MN, Barber CA, Godder B, Palomo L, Kamer AR. Periodontal Inflamed Surface Area (PISA) associates with composites of salivary cytokines. PLoS One 2023; 18:e0280333. [PMID: 36791096 PMCID: PMC9931150 DOI: 10.1371/journal.pone.0280333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/27/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Periodontal disease (PerioD) is a chronic, complex inflammatory condition resulting from the interaction between subgingival dysbiotic bacteria and the host immune response leading to local inflammation. Since periodontal inflammation is characterized by multiple cytokines effects we investigated whether Periodontal Inflamed Surface Area (PISA), a continuous measure of clinical periodontal inflammation is a predictor of composite indexes of salivary cytokines. METHODS AND FINDINGS In a cross-sectional study of 67 healthy, well-educated individuals, we evaluated PISA and several cytokines expressed in whole stimulated saliva. Two salivary cytokine indexes were constructed using weighted and unweighted approaches based on a Principal Component Analysis [named Cytokine Component Index (CCI)] or averaging the (standardized) level of all cytokines [named Composite Inflammatory Index (CII)]. In regression analysis we found that PISA scores were significantly associated with both salivary cytokine constructs, (CCI: part R = 0.51, p<0.001; CII: part R = 0.40, p = 0.001) independent of age, gender and BMI showing that single scores summarizing salivary cytokines correlated with severity of clinical periodontal inflammation. CONCLUSIONS Clinical periodontal inflammation may be reflected by a single score encompassing several salivary cytokines. These results are consistent with the complexity of interactions characterizing periodontal disease. In addition, Type I error is likely to be avoided.
Collapse
Affiliation(s)
- Vera Tang
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, United States of America
| | - Bubak Hamidi
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, United States of America
| | - Malvin N. Janal
- Department of Epidemiology and Health Promotion, College of Dentistry, New York University, New York, New York, United States of America
| | - Cheryl A. Barber
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, New York, New York, United States of America
| | - Benjamin Godder
- Cariology and Comprehensive Care, College of Dentistry, New York University, New York, New York, United States of America
| | - Leena Palomo
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, United States of America
| | - Angela R. Kamer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Movilla S, Martí S, Roca M, Moliner V. Computational Study of the Inhibition of RgpB Gingipain, a Promising Target for the Treatment of Alzheimer's Disease. J Chem Inf Model 2023; 63:950-958. [PMID: 36648276 PMCID: PMC10882967 DOI: 10.1021/acs.jcim.2c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease represents one of the most ambitious challenges for biomedical sciences due to the growing number of cases worldwide in the elderly population and the lack of efficient treatments. One of the recent attempts to develop a treatment points to the cysteine protease RgpB as a promising drug target. In this attempt, several small-molecule covalent inhibitors of this enzyme have been proposed. Here, we report a computational study at the atomic level of the inhibition mechanism of the most promising reported compounds. Molecular dynamics simulations were performed on six of them, and their binding energies in the active site of the protein were computed. Contact maps and interaction energies were decomposed by residues to disclose those key interactions with the enzyme. Finally, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations were performed to evaluate the reaction mechanism by which these drug candidates lead to covalently bound complexes, inhibiting the RgpB protease. The results provide a guide for future re-design of prospective and efficient inhibitors for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Santiago Movilla
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Sergio Martí
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Maite Roca
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
30
|
Dhami M, Raj K, Singh S. Relevance of Gut Microbiota to Alzheimer's Disease (AD): Potential Effects of Probiotic in Management of AD. AGING AND HEALTH RESEARCH 2023. [DOI: 10.1016/j.ahr.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
31
|
Lamphere AK, Nieto VK, Kiser JR, Haddlesey CB. Potential mechanisms between periodontitis and Alzheimer's disease: a scoping review. CANADIAN JOURNAL OF DENTAL HYGIENE : CJDH = JOURNAL CANADIEN DE L'HYGIENE DENTAIRE : JCHD 2023; 57:52-60. [PMID: 36968797 PMCID: PMC10032644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/03/2022] [Accepted: 10/25/2022] [Indexed: 03/29/2023]
Abstract
Background Research has suggested 2 potential mechanisms by which the periodontal inflammatory response may communicate to distant organs: 1) direct translocation of periodontal bacteria from the oral cavity to another organ system; and 2) inflammation as a result of metastatic periodontal inflammation. The purpose of this scoping review is to explore these mechanisms as potential mediators between periodontitis and Alzheimer's disease. Methods A reiterative literature search of peer-reviewed articles was performed in the PubMed and Scopus databases using keywords or combinations such as Alzheimer's disease AND periodontitis OR periodontal disease AND inflammation. Results A total of 777 articles were identified. After eliminating duplicates and reviewing titles and abstracts, 84 articles were selected for full-text review. Following full-text review, 19 articles met the eligibility criteria for the study. Discussion The review of the literature highlights how periodontitis may contribute to neuroinflammation by the introduction of periodontal bacteria and/or proinflammatory cytokines locally produced at the periodontium. Conclusion Inflammation is an important mechanism in the onset and progression of both periodontitis and Alzheimer's disease. Nevertheless, further studies are necessary to better understand the multifactorial pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Abrielle K Lamphere
- Assistant clinical professor in dentistry, University of Indiana School of Dentistry, Indianapolis, IN, USA
| | - Valerie K Nieto
- Clinical lecturer in dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jessica R Kiser
- Adjunct clinical lecturer in dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Chris B Haddlesey
- Adjunct clinical lecturer in dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
32
|
MORIKAWA TETSURO, UEHARA OSAMU, PAUDEL DURGA, YOSHIDA KOKI, HARADA FUMIYA, HIRAKI DAICHI, SATO JUN, MATSUOKA HIROFUMI, KURAMITSU YASUHIRO, MICHIKAWA MAKOTO, ABIKO YOSHIHIRO. Systemic Administration of Lipopolysaccharide from Porphyromonas gingivalis Decreases Neprilysin Expression in the Mouse Hippocampus. In Vivo 2023; 37:163-172. [PMID: 36593043 PMCID: PMC9843806 DOI: 10.21873/invivo.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIM Alzheimer's disease is the most common type of neurodegenerative disorder in elderly individuals worldwide. Increasing evidence suggests that periodontal diseases are involved in the pathogenesis of Alzheimer's disease, and an association between periodontitis and amyloid-β deposition in elderly individuals has been demonstrated. The aim of the present study was to examine the effects of systemic administration of Porphyromonas gingivalis-derived lipopolysaccharide (PG-LPS) on neprilysin expression in the hippocampus of adult and senescence-accelerated mice. MATERIALS AND METHODS PG-LPS diluted in saline was intraperitoneally administered to male C57BL/6J and senescence-accelerated mouse prone 8 (SAMP8) mice at a dose of 5 mg/kg every 3 days for 3 months. Both C57BL/6J and SAMP8 mice administered saline without PG-LPS comprised the control group. The mRNA expression levels of neprilysin and interleukin (IL)-10 were evaluated using the quantitative reverse transcriptase-polymerase chain reaction. The protein levels of neprilysin were assessed using western blotting. Sections of the brain tissues were immunohistochemically stained. RESULTS The serum IL-10 concentration significantly increased in both mouse strains after stimulation with PG-LPS. Neprilysin expression at both mRNA and protein levels was significantly lower in the SAMP8 PG-LPS group than those in the SAMP8 control group; however, they did not differ in PG-LPS-treated or non-treated C57BL/6J mice. Additionally, the immunofluorescence intensity of neprilysin in the CA3 region of the hippocampus in PG-LPS-treated SAMP8 mice was significantly lower than that in control SAMP8 mice. CONCLUSION Porphyromonas gingivalis may reduce the expression of neprilysin in elderly individuals and thus increase amyloid-β deposition.
Collapse
Affiliation(s)
- TETSURO MORIKAWA
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - OSAMU UEHARA
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - DURGA PAUDEL
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - KOKI YOSHIDA
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - FUMIYA HARADA
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - DAICHI HIRAKI
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - JUN SATO
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - HIROFUMI MATSUOKA
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - YASUHIRO KURAMITSU
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - MAKOTO MICHIKAWA
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - YOSHIHIRO ABIKO
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| |
Collapse
|
33
|
Moreno CM, Boeree E, Freitas CMT, Weber KS. Immunomodulatory role of oral microbiota in inflammatory diseases and allergic conditions. FRONTIERS IN ALLERGY 2023; 4:1067483. [PMID: 36873050 PMCID: PMC9981797 DOI: 10.3389/falgy.2023.1067483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
In recent years, the interplay between oral microbiota and systemic disease has gained attention as poor oral health is associated with several pathologies. The oral microbiota plays a role in the maintenance of overall health, and its dysbiosis influences chronic inflammation and the pathogenesis of gum diseases. Periodontitis has also been associated with other diseases and health complications such as cancer, neurogenerative and autoimmune disorders, chronic kidney disease, cardiovascular diseases, rheumatic arthritis, respiratory health, and adverse pregnancy outcomes. The host microbiota can influence immune cell development and immune responses, and recent evidence suggests that changes in oral microbiota composition may also contribute to sensitization and the development of allergic reactions, including asthma and peanut allergies. Conversely, there is also evidence that allergic reactions within the gut may contribute to alterations in oral microbiota composition. Here we review the current evidence of the role of the oral microbiota in inflammatory diseases and health complications, as well as its future relevance in improving health and ameliorating allergic disease.
Collapse
Affiliation(s)
- Carlos M Moreno
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Ellie Boeree
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Claudia M Tellez Freitas
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
34
|
周 陆, 陈 柏, 李 雨, 段 胜. [Oral Microbiome and Systemic Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1-6. [PMID: 36647635 PMCID: PMC10409018 DOI: 10.12182/20230160504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/18/2023]
Abstract
As one of the most diverse microbial communities within the human body, the oral microbiome is an important component that contributes to the maintenance of human health. The microbial composition of different sites in the oral cavity varies significantly and a dynamic equilibrium is maintained through communications with the environment and oral and distal organs of the host. It has been reported that there is significant correlation between dysbiotic oral microbiome and the occurrence or progression of a variety of systemic diseases. In this review, we summarized recent advances in research on the relationship between oral microbiome and systemic health, focusing on the interaction and pathological mechanisms between oral microbiome and systemic health and hoping to provide new avenues for the early prevention and clinical diagnosis and treatment of systemic diseases.
Collapse
Affiliation(s)
- 陆军 周
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - 柏延 陈
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - 雨霖 李
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - 胜仲 段
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
35
|
Saji N, Ishihara Y, Murotani K, Uchiyama A, Takeda A, Sakurai T, Matsushita K. Cross-Sectional Analysis of Periodontal Disease and Cognitive Impairment Conducted in a Memory Clinic: The Pearl Study. J Alzheimers Dis 2023; 96:369-380. [PMID: 37781808 PMCID: PMC10657689 DOI: 10.3233/jad-230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Periodontal disease (PeD) is a risk factor of Alzheimer's disease and is associated with cognitive decline in older adults. However, the relationships between subitems of neuropsychological tests and PeD have not been fully clarified. OBJECTIVE To evaluate associations between PeD and subitems of neuropsychological tests. METHODS We performed a cross-sectional analysis of data of 183 participants (women: 50%, mean age: 79 years) from a clinical study. We enrolled patients who visited our memory clinic and assessed demographics, dementia-related risk factors, neuropsychological tests, brain magnetic resonance images, and a dental screening check. We evaluated the relationships between cognitive function and PeD using multivariable logistic regression analyses. RESULTS Participants with dementia were less likely to make periodical visits to the dentist, had fewer teeth, had less frequent tooth brushing habits, and were more likely to have PeD. Impaired cognitive function was significantly associated with an increasing degree of PeD. In multivariable logistic regression analyses, impaired visuospatial function and attention were associated with twice the risk of moderate or severe PeD compared with individuals with preserved visuospatial function and attention (odds ratio: 2.11, 95% confidence interval: 1.04-4.29, p = 0.037). Impaired word recall and recognition and following commands were associated with increased risk of PeD (odds ratio: 2.80, 95% confidence interval: 1.41-5.32, p = 0.003). CONCLUSIONS Cognitive decline, such as impaired visuospatial function, attention, word recall and recognition, and inability to follow commands were independently and strongly associated with PeD. These items can be assessed easily on a daily basis.
Collapse
Affiliation(s)
- Naoki Saji
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | | - Kenta Murotani
- Biostatistics Center, Graduate School of Medicine, Kurume University, Fukuoka, Japan
| | | | - Akinori Takeda
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- Department of Cognition and Behavioral Science, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| |
Collapse
|
36
|
Abstract
Periodontitis, being a multifactorial disorder is found to be the most common oral disease denoted by the inflammation of gingiva and resorption of tooth supporting alveolar bone. The disease being closely linked with fast life style and determined by unhygienic behavioural factors, the internal milieu of oral cavity and formation of plaque biofilm on the dental and gingival surfaces. Porphyromonas gingivalis, being the major keystone pathogen of the periodontal biofilm evokes host immune responses that causes damage of gingival tissues and resorption of bones. The biofilm associated microbial community progressively aggravates the condition resulting in chronic inflammation and finally tooth loss. The disease often maintains bidirectional relationship with different systemic, genetic, autoimmune, immunodeficiency diseases and even psychological disorders. The disease can be diagnosed and predicted by various genetic, radiographic and computer-aided design (CAD) & computer-aided engineering (CAE) and artificial neural network (ANN). The elucidation of genetic background explains the inheritance of the disease. The therapeutic approaches commonly followed include mechanical removal of dental plaque with the use of systemic antibiotics. Awareness generation amongst local people, adoption of good practice of timely tooth brushing preferably with fluoride paste or with nanoconjugate pastes will reduce the chance of periodontal plaque formation. Modern tissue engineering technology like 3D bioprinting of periodontal tissue may help in patient specific flawless regeneration of tooth structures and associated bones.
Collapse
Affiliation(s)
- Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, India.
- Department of Biotechnology and Bioinformatics, Sambalpur University, FVHM+9QP, Jyoti Vihar, Burla, Odisha, 768019, India.
| |
Collapse
|
37
|
Shahoumi LA, Saleh MHA, Meghil MM. Virulence Factors of the Periodontal Pathogens: Tools to Evade the Host Immune Response and Promote Carcinogenesis. Microorganisms 2023; 11:115. [PMID: 36677408 PMCID: PMC9860638 DOI: 10.3390/microorganisms11010115] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is the most common chronic, inflammatory oral disease that affects more than half of the population in the United States. The disease leads to destruction of the tooth-supporting tissue called periodontium, which ultimately results in tooth loss if uncured. The interaction between the periodontal microbiota and the host immune cells result in the induction of a non-protective host immune response that triggers host tissue destruction. Certain pathogens have been implicated periodontal disease formation that is triggered by a plethora of virulence factors. There is a collective evidence on the impact of periodontal disease progression on systemic health. Of particular interest, the role of the virulence factors of the periodontal pathogens in facilitating the evasion of the host immune cells and promotion of carcinogenesis has been the focus of many researchers. The aim of this review is to examine the influence of the periodontal pathogens Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum) in the modulation of the intracellular signaling pathways of the host cells in order to evade the host immune response and interfere with normal host cell death and the role of their virulence factors in this regard.
Collapse
Affiliation(s)
- Linah A. Shahoumi
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Muhammad H. A. Saleh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Mohamed M. Meghil
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
38
|
Matsumoto H, Tagai K, Endo H, Matsuoka K, Takado Y, Kokubo N, Shimada H, Goto T, Goto TK, Higuchi M. Association of Tooth Loss with Alzheimer's Disease Tau Pathologies Assessed by Positron Emission Tomography. J Alzheimers Dis 2023; 96:1253-1265. [PMID: 37980663 PMCID: PMC10741329 DOI: 10.3233/jad-230581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Deterioration of the oral environment is one of the risk factors for dementia. A previous study of an Alzheimer's disease (AD) model mouse suggests that tooth loss induces denervation of the mesencephalic trigeminal nucleus and neuroinflammation, possibly leading to accelerated tau dissemination from the nearby locus coeruleus (LC). OBJECTIVE To elucidate the relevance of oral conditions and amyloid-β (Aβ) and tau pathologies in human participants. METHODS We examined the number of remaining teeth and the biofilm-gingival interface index in 24 AD-spectrum patients and 19 age-matched healthy controls (HCs). They also underwent positron emission tomography (PET) imaging of Aβ and tau with specific radiotracers, 11C-PiB and 18F-PM-PBB3, respectively. All AD-spectrum patients were Aβ-positive, and all HCs were Aβ-negative. We analyzed the correlation between the oral parameters and radiotracer retention. RESULTS No differences were found in oral conditions between the AD and HC groups. 11C-PiB retentions did not correlate with the oral indices in either group. In AD-spectrum patients, brain-wide, voxel-based image analysis highlighted several regions, including the LC and associated brainstem substructures, as areas where 18F-PM-PBB3 retentions negatively correlated with the remaining teeth and revealed the correlation of tau deposits in the LC (r = -0.479, p = 0.018) primarily with the hippocampal and neighboring areas. The tau deposition in none of the brain regions was associated with the periodontal status. CONCLUSIONS Our findings with previous preclinical evidence imply that tooth loss may enhance AD tau pathogenesis, promoting tau spreading from LC to the hippocampal formation.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, Tokyo, Japan
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Psychiatry, The Jikei University of Medicine, Tokyo, Japan
| | - Hironobu Endo
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naomi Kokubo
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tazuko K. Goto
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, Tokyo, Japan
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
39
|
Porphyromonas gingivalis-Derived Lipopolysaccharide Promotes Glioma Cell Proliferation and Migration via Activating Akt Signaling Pathways. Cells 2022; 11:cells11244088. [PMID: 36552854 PMCID: PMC9777333 DOI: 10.3390/cells11244088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is significantly associated with the risk of cancers in the lung and the digestive system. Emerging evidence shows a plausible link between periodontitis and several types of brain diseases. However, the association between periodontal infection and glioma remains unclear. In the cultured GL261 glioma cells, P. gingivalis lipopolysaccharide (LPS) significantly promoted cell proliferation at concentrations ranging from 10 to 1000 ng/mL. It promoted cell migration at a higher concentration (100 and 1000 ng/mL). Additionally, exposure to 100 ng/mL P. gingivalis LPS induced a significant increase in the expression of TNF-α, TGF-β, MMP2, and MMP9, as well as the phosphorylation level of Akt at Ser473. These changes induced by P. gingivalis LPS were significantly antagonized by the Akt inhibitor. Furthermore, a total of 48 patients with brain tumors were enrolled to investigate their periodontal status before receiving tumor management. Poor periodontal status [probing depth (PD) ≥ 6 mm and attachment loss (AL) >5 mm] was found in 42.9% (9/21) of patients with glioma, which was significantly higher than that in patients with benign tumors and the relevant data in the 4th National Oral Health Survey in China. The glioma patients with both AL > 5 mm and PD ≥ 6 mm had a higher ki-67 labeling index than those with AL ≤ 5 mm or PD < 6 mm. These findings support the association between periodontal infection and glioma progression.
Collapse
|
40
|
Kanagasingam S, von Ruhland C, Welbury R, Singhrao SK. Ex vivo Detection of Amyloid-β in Naturally Formed Oral Biofilm. J Alzheimers Dis Rep 2022; 6:757-773. [PMID: 36721488 PMCID: PMC9837734 DOI: 10.3233/adr-220076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Oral infection has been implicated in the possible etiology of Alzheimer's disease. Objective To detect amyloid-β (Aβ) within microbial biofilms. Methods Freshly extracted teeth (N = 87) with periodontal disease were separated into Group A (N = 11), with primary root canal infection and Group B (N = 21) with failed endodontic treatment identified by the presence of, gutta percha root filling. Biofilm characteristics were observed by scanning electron microscopy (SEM). Demineralized paraffin wax embedded tooth sections and mineralized calculus biofilm were immunostained with the anti-Aβ antibody. The gutta perchas were processed either for on-section acrylic resin tissue immunocolloidal gold silver staining (IGSS) using the anti-Aβ antibody or in Araldite resin for ultrastructure. Results SEM demonstrated calculus and gutta percha in situ harboring a polymicrobial biofilm featuring extracellular polymeric substance (EPS) and water channels. Immunohistochemistry on rehydrated paraffin wax tooth sections from Group A, demonstrated Aβ staining on external (calculus and plaque) and all intracanal infected regions. In Group B, the gutta percha biofilm IGSS gave an inconclusive result for Aβ. Transmission electron microscopy of selected teeth with infected intra-canals (Group A) and 20% of gutta percha biofilm (Group B) EPS contained electron dense fibrils of variable sizes, some of which were typical of human Aβ fibrils. Conclusion This study detected both soluble and insoluble Aβ fibrils within the EPS of periodontal and endodontic natural biofilm, strongly suggesting its role as an antimicrobial peptide in combatting local infection, with potential risk for cross-seeding into the brain for AD development.
Collapse
Affiliation(s)
- Shalini Kanagasingam
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Christopher von Ruhland
- Electron and Light Microscopy Facility, College of Biomedical and Life Sciences, Cardiff University, Wales, UK
| | - Richard Welbury
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sim K. Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
41
|
He X, Yan C, Zhao S, Zhao Y, Huang R, Li Y. The preventive effects of probiotic Akkermansia muciniphila on D-galactose/AlCl3 mediated Alzheimer's disease-like rats. Exp Gerontol 2022; 170:111959. [PMID: 36152776 DOI: 10.1016/j.exger.2022.111959] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/19/2022] [Accepted: 09/17/2022] [Indexed: 12/29/2022]
Abstract
AIMS We induced the AD-like rat models injected by AlCl3 and D-galactose, to explore the effects of an oral treatment of A. muciniphila on AD-like rats with periodontitis and its possible mechanism. MAIN METHODS We used Morris water maze test and micro-CT to assess the cognitive impairment and bone loss; Aβ1-42 deposition was tested by IHC; Serum LPS level and TG, HDL-C and AST/ALT levels were detected by LAL Test and biochemical tests; The gut microbiota was analyzed by 16S rRNA gene sequence. KEY FINDINGS We found that A. muciniphila could alleviate AD-like rats' cognitive impairment and mitigate ligature-induced periodontitis. Furthermore, A. muciniphila reduced Aβ1-42 deposition in the cortex and regions of the rats' brain, and altered TG, HDL-C and AST/ALT levels but had little ability to change circulating LPS level and cross the blood-brain barrier. Notably, A. muciniphila treatment could improve the abundance of some short chain fatty acid (SCFA)-producing or neurotransmitter-producing gut microbiome such as Blautia, Staphylococcus and Lactococcus, while the abundance of pathogenic Aerococcus and Streptococcus, which were associated inflammation, were decreased. SIGNIFICANCE Our findings suggested that A. muciniphila has a remissive effect on AD-like pathologies, potentially by regulating gut-brain axis through altering composition and function of gut microbial community or moderating peripheral circulation metabolism.
Collapse
Affiliation(s)
- Xiaoya He
- Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Caixia Yan
- Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuyang Zhao
- Queen Mary School of Medical College, Jiangxi Medical College, Qianhu Campus, Nanchang University, No. 1290 Xuefu Street, Jiangxi 330031, China
| | - Yuxi Zhao
- Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Huang
- Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Yan Li
- Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
42
|
Li C, Yu R, Ding Y. Association between Porphyromonas Gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol 2022; 12:1026457. [PMID: 36467726 PMCID: PMC9712990 DOI: 10.3389/fcimb.2022.1026457] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
The association between periodontal disease and systemic disease has become a research hotspot. Porphyromonas gingivalis (P. gingivalis), a crucial periodontal pathogen, affects the development of systemic diseases. The pathogenicity of P. gingivalis is largely linked to interference with the host's immunity. This review aims to discover the role of P. gingivalis in the modulation of the host's adaptive immune system through a large number of virulence factors and the manipulation of cellular immunological responses (mainly mediated by T cells). These factors may affect the cause of large numbers of systemic diseases, such as atherosclerosis, hypertension, adverse pregnancy outcomes, inflammatory bowel disease, diabetes mellitus, non-alcoholic fatty liver disease, rheumatoid arthritis, and Alzheimer's disease. The point of view of adaptive immunity may provide a new idea for treating periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
43
|
Nemergut M, Batkova T, Vigasova D, Bartos M, Hlozankova M, Schenkmayerova A, Liskova B, Sheardova K, Vyhnalek M, Hort J, Laczó J, Kovacova I, Sitina M, Matej R, Jancalek R, Marek M, Damborsky J. Increased occurrence of Treponema spp. and double-species infections in patients with Alzheimer's disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157114. [PMID: 35787909 DOI: 10.1016/j.scitotenv.2022.157114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Although the link between microbial infections and Alzheimer's disease (AD) has been demonstrated in multiple studies, the involvement of pathogens in the development of AD remains unclear. Here, we investigated the frequency of the 10 most commonly cited viral (HSV-1, EBV, HHV-6, HHV-7, and CMV) and bacterial (Chlamydia pneumoniae, Helicobacter pylori, Borrelia burgdorferi, Porphyromonas gingivalis, and Treponema spp.) pathogens in serum, cerebrospinal fluid (CSF) and brain tissues of AD patients. We have used an in-house multiplex PCR kit for simultaneous detection of five bacterial and five viral pathogens in serum and CSF samples from 50 AD patients and 53 healthy controls (CTRL). We observed a significantly higher frequency rate of AD patients who tested positive for Treponema spp. compared to controls (AD: 62.2 %; CTRL: 30.3 %; p-value = 0.007). Furthermore, we confirmed a significantly higher occurrence of cases with two or more simultaneous infections in AD patients compared to controls (AD: 24 %; CTRL 7.5 %; p-value = 0.029). The studied pathogens were detected with comparable frequency in serum and CSF. In contrast, Borrelia burgdorferi, human herpesvirus 7, and human cytomegalovirus were not detected in any of the studied samples. This study provides further evidence of the association between microbial infections and AD and shows that paralleled analysis of multiple sample specimens provides complementary information and is advisable for future studies.
Collapse
Affiliation(s)
- Michal Nemergut
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Tereza Batkova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Masaryk University, St. Anne's University Hospital Brno, Brno, Czech Republic; BioVendor R&D, Brno, Czech Republic
| | - Dana Vigasova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | | | | | - Andrea Schenkmayerova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Barbora Liskova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Katerina Sheardova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Masaryk University, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Vyhnalek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jan Laczó
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Ingrid Kovacova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michal Sitina
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne's University Hospital Brno, Brno, Czech Republic and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Marek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
44
|
Treponema denticola Induces Neuronal Apoptosis by Promoting Amyloid-β Accumulation in Mice. Pathogens 2022; 11:pathogens11101150. [PMID: 36297207 PMCID: PMC9610539 DOI: 10.3390/pathogens11101150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Neuronal apoptosis is a major contributor to Alzheimer's disease (AD). Periodontitis is a significant risk factor for AD. The periodontal pathogens Porphyromonas gingivalis and Treponema denticola have been shown to initiate the hallmark pathologies and behavioral symptoms of AD. Studies have found that T. denticola infection induced Tau hyperphosphorylation and amyloid β accumulation in the hippocampi of mice. Aβ accumulation is closely associated with neuronal apoptosis. However, the roles of T. denticola in neuronal apoptosis remain unclear and its roles in AD pathology need further study. Objective: This study aimed to investigate whether oral infection with T. denticola induced alveolar bone loss and neuronal apoptosis in mice. Methods: C57BL/6 mice were orally administered with T. denticola, Micro-CT was employed to assess the alveolar bone resorption. Western blotting, quantitative PCR, and TUNEL staining were utilized to detect the apoptosis-associated changes in mouse hippocampi. N2a were co-cultured with T. denticola to verify in vivo results. Results: Mice infected with T. denticola exhibited more alveolar bone loss compared with the control mice. T. denticola oral infection induced neuronal apoptosis in hippocampi of mice. Consistent results of the apoptosis-associated protein expression were observed in N2a cells treated with T. denticola and Aβ1-42 in vitro. However, the Aβ inhibitor reversed these results, suggesting that Aβ1-42 mediates T. denticola infection-induced neuronal apoptosis. Conclusions: This study found that oral infected T. denticola caused alveolar bone loss, and induced neuronal apoptosis by promoting Aβ accumulation in mice, providing evidence for the link between periodontitis and AD.
Collapse
|
45
|
Tarawneh R, Penhos E. The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neurosci Biobehav Rev 2022; 141:104814. [PMID: 35934087 PMCID: PMC9637435 DOI: 10.1016/j.neubiorev.2022.104814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Structural and functional alterations to the gut microbiome, referred to as gut dysbiosis, have emerged as potential key mediators of neurodegeneration and Alzheimer disease (AD) pathogenesis through the "gut -brain" axis. Emerging data from animal and clinical studies support an important role for gut dysbiosis in mediating neuroinflammation, central and peripheral immune dysregulation, abnormal brain protein aggregation, and impaired intestinal and brain barrier permeability, leading to neuronal loss and cognitive impairment. Gut dysbiosis has also been shown to directly influence various mechanisms involved in neuronal growth and repair, synaptic plasticity, and memory and learning functions. Aging and lifestyle factors including diet, exercise, sleep, and stress influence AD risk through gut dysbiosis. Furthermore, AD is associated with characteristic gut microbial signatures which offer value as potential markers of disease severity and progression. Together, these findings suggest the presence of a complex bidirectional relationship between AD and the gut microbiome and highlight the utility of gut modulation strategies as potential preventative or therapeutic strategies in AD. We here review the current literature regarding the role of the gut-brain axis in AD pathogenesis and its potential role as a future therapeutic target in AD treatment and/or prevention.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, Alzheimer Disease Research Center, The University of New Mexico, Albuquerque, NM 87106, USA.
| | - Elena Penhos
- College of Medicine, The Ohio State University, Columbus, OH, USA 43210
| |
Collapse
|
46
|
Sabbagh MN, Decourt B. COR388 (atuzaginstat): an investigational gingipain inhibitor for the treatment of Alzheimer disease. Expert Opin Investig Drugs 2022; 31:987-993. [PMID: 36003033 PMCID: PMC10275298 DOI: 10.1080/13543784.2022.2117605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Evidence from in vitro and in vivo studies demonstrates that amyloid beta (Aβ) oligomers have potent, broad-spectrum antimicrobial properties created by fibrils that entrap pathogens and disrupt their membranes. Data suggest that Aβ may play a protective role in the innate immune response to microbial infections and that Aβ in the brain plays a damaging role when the inflammatory response is not well controlled. AREAS COVERED This paper describes the relationship between periodontal disease and Alzheimer disease (AD), the role of Porphyromonas gingivalis and its secreted gingipains in AD, and the potential of the gingipain inhibitor atuzaginstat (COR388) to modulate AD neuropathologies. EXPERT OPINION P. gingivalis is opsonized by Aβ42, is capable of entering the brain, and is an accelerant of neuropathologies in rodent models of AD. Thus, in our opinion, this bacteria is highly likely to be a pathogen capable of initiating or precipitating the progression of AD, which agrees with the pathogen hypothesis of clinical AD development.
Collapse
Affiliation(s)
- Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix Arizona, USA
| | - Boris Decourt
- Translational Neuroscience Lab, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| |
Collapse
|
47
|
Elwakil BH, Bakr BA, Aljeldah MM, Shehata NS, Shahin YH, Olama ZA, Augustyniak M, Aboul-Soud MAM, El Wakil A. Memory Impairment, Pro-Inflammatory Host Response and Brain Histopathologic Severity in Rats Infected with K. pneumoniae or P. aeruginosa Meningitis. Pathogens 2022; 11:933. [PMID: 36015052 PMCID: PMC9416464 DOI: 10.3390/pathogens11080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Meningitis caused by Klebsiella pneumoniae and Pseudomonas aeruginosa has lately become a prevalent cause of the central nervous system (CNS) infection. Bacterial invasion into the subarachnoid space prompts the releasing mechanism of chemokines and pro-inflammatory cytokines. The present study aimed to compare K. pneumoniae and P. aeruginosa meningitis concerning the memory, pro-inflammatory mediators and brain histopathological changes at different time intervals in adult Albino rats. The animals were sacrificed at three time intervals comprising 5, 10 and 15 days after meningitis induction. Cerebrospinal fluid (CSF) culture, relative brain weights, complete blood analysis, biochemical markers, levels of cytokine, chemokine and brain-derived neurotrophic factor (BDNF), neurotransmitter acetylcholine esterase (AChE) activity, and the brain histopathology of the infected rats in comparison to those in the control group were assessed. There was a significant increase in the levels of pro-inflammatory cytokines and chemokines including TNF-α, IL-1β, IL-6 and AChE after 5 days of bacterial meningitis infection with both K. pneumoniae and P. aeruginosa. The histopathological analysis of the cerebral cortex in the P. aeruginosa meningitis model at different time intervals revealed abundant numbers of dilated and congested blood vessels with severe hemorrhage, cerebral infarct, intracellular and extracellular vacuoles, and gliosis. Fifteen days post infection, a significant reduction in the brain tissue weight was observed. The meningitis model employing P. aeruginosa exhibited more evident time-dependent severity compared to K. pneumoniae, which may advocate its validity as a simple and effective research model to study meningitis of the CNS. This model may be utilized for further investigation to ascertain the molecular and biological association between bacterial meningitis and the development of the pathophysiological hallmarks underlying Alzheimer's disease in preclinical and clinical setups. Clinical extrapolation based on studies employing animal disease models should be carefully interpreted.
Collapse
Affiliation(s)
- Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria P.O. Box 21311, Egypt
| | - Basant A. Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria P.O. Box 21568, Egypt
| | - Mohammed M. Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Nourhan S. Shehata
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria P.O. Box 21311, Egypt
| | - Yahya H. Shahin
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria P.O. Box 21311, Egypt
| | - Zakia A. Olama
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria P.O. Box 21568, Egypt
| | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mourad A. M. Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria P.O. Box 21526, Egypt
| |
Collapse
|
48
|
Tran VTA, Lee LP, Cho H. Neuroinflammation in neurodegeneration via microbial infections. Front Immunol 2022; 13:907804. [PMID: 36052093 PMCID: PMC9425114 DOI: 10.3389/fimmu.2022.907804] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological studies show a noticeable correlation between chronic microbial infections and neurological disorders. However, the underlying mechanisms are still not clear due to the biological complexity of multicellular and multiorgan interactions upon microbial infections. In this review, we show the infection leading to neurodegeneration mediated by multiorgan interconnections and neuroinflammation. Firstly, we highlight three inter-organ communications as possible routes from infection sites to the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we described the biological crosstalk between microglia and astrocytes upon pathogenic infection. Finally, our study indicates how neuroinflammation is a critical player in pathogen-mediated neurodegeneration. Taken together, we envision that antibiotics targeting neuro-pathogens could be a potential therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, United States
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| |
Collapse
|
49
|
Castillo-Álvarez F, Marzo-Sola ME. Role of the gut microbiota in the development of various neurological diseases. NEUROLOGÍA (ENGLISH EDITION) 2022; 37:492-498. [PMID: 35779869 DOI: 10.1016/j.nrleng.2019.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION In recent years, the scientific evidence supporting a relationship between the microbiota and various diseases has increased significantly; this trend has also been observed for neurological diseases. This has given rise to the concept of the gut-brain axis and the idea of a relationship between the gut microbiota and several neurological diseases whose aetiopathogenesis is yet to be clearly defined. DEVELOPMENT We review the role of the gut microbiota in the gut-brain axis and analyse those neurological diseases in which alterations in the gut microbiota have been described as a result of human studies: specifically, Parkinson's disease, Alzheimer disease, amyotrophic lateral sclerosis, neuromyelitis optica, and multiple sclerosis. CONCLUSIONS The body of evidence linking the gut microbiota to various neurological diseases has grown considerably. Several interesting studies show a relationship between the gut microbiota and Parkinson's disease, Alzheimer disease, neuromyelitis optica, and multiple sclerosis, whereas other controversial studies implicate it in amyotrophic lateral sclerosis. Many of these studies place considerable emphasis on modulation of inflammation, particularly by bacteria capable of producing short-chain fatty acids. Despite these encouraging results, many questions remain, and there is a need to demonstrate causality, determine the role of fungi or viruses, and research possible treatment through diet, probiotics, or faecal microbiota transplantation.
Collapse
Affiliation(s)
| | - M E Marzo-Sola
- Servicio de Neurología, Hospital San Pedro, Logroño, La Rioja, Spain
| |
Collapse
|
50
|
Castillo-Álvarez F, Marzo-Sola ME. Role of the gut microbiota in the development of various neurological diseases. Neurologia 2022; 37:492-498. [PMID: 31340904 DOI: 10.1016/j.nrl.2019.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION In recent years, the scientific evidence supporting a relationship between the microbiota and various diseases has increased significantly; this trend has also been observed for neurological diseases. This has given rise to the concept of the gut-brain axis and the idea of a relationship between the gut microbiota and several neurological diseases whose aetiopathogenesis is yet to be clearly defined. DEVELOPMENT We review the role of the gut microbiota in the gut-brain axis and analyse those neurological diseases in which alterations in the gut microbiota have been described as a result of human studies: specifically, Parkinson's disease, Alzheimer disease, amyotrophic lateral sclerosis, neuromyelitis optica, and multiple sclerosis. CONCLUSIONS The body of evidence linking the gut microbiota to various neurological diseases has grown considerably. Several interesting studies show a relationship between the gut microbiota and Parkinson's disease, Alzheimer disease, neuromyelitis optica, and multiple sclerosis, whereas other controversial studies implicate it in amyotrophic lateral sclerosis. Many of these studies place considerable emphasis on modulation of inflammation, particularly by bacteria capable of producing short-chain fatty acids. Despite these encouraging results, many questions remain, and there is a need to demonstrate causality, determine the role of fungi or viruses, and research possible treatment through diet, probiotics, or faecal microbiota transplantation.
Collapse
Affiliation(s)
| | - M E Marzo-Sola
- Servicio de Neurología, Hospital San Pedro, Logroño (La Rioja), España
| |
Collapse
|