1
|
Luo Z, Li W, Hu Z, Lu H, Wang C, Lan X, Mai S, Liu G, Zhang F, Chen X, You Z, Zeng Y, Chen Y, Liang Y, Chen Y, Zhou Y, Ning Y. Structural covariance network activity in the medial prefrontal cortex is modulated by childhood abuse in adolescents with depression. J Affect Disord 2024; 367:903-912. [PMID: 39251093 DOI: 10.1016/j.jad.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Aberrant structural covariance (SC) in the medial prefrontal cortex (mPFC) is believed to play a crucial role in adolescent-onset major depressive disorder (AO-MDD). However, the effect of childhood abuse (CA) on SC in AO-MDD patients is still unknown. Here, we measured anomalous SC in the mPFC of AO-MDD patients and assessed the potential modulation of this feature by CA. We acquired T1-weighted structural images of AO-MDD patients (n = 93) and healthy controls (HCs, n = 81). Using voxel-based morphometry analysis, we calculated gray matter volumes for each subject. Subsequently, we classified abnormal SC in the mPFC into three subtypes according to overall CA. Compared with HCs, AO-MDD patients showed alterations in the structural covariance network of the mPFC, which is a central region in the default mode network (DMN). We also found an anterior-posterior dissociation in the structural covariance connectivity of the DMN. A history of CA modulated bilateral mPFC SC. These changes were primarily focused on the SC between the mPFC and the limbic system, indicating a gap in the rate of neural maturation between these regions. In summary, the DMN and frontal-limbic system, which are involved in emotional processing, appear to play a significant role in the development of AO-MDD. These findings highlight the crucial effects of CA on neurophysiological alterations in individuals with AO-MDD.
Collapse
Affiliation(s)
- Zhanjie Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhibo Hu
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Siming Mai
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Guanxi Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaoyu Chen
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zerui You
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yexian Zeng
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yiying Chen
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanmei Liang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yifang Chen
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
2
|
Schmitt JE, Alexander-Bloch A, Seidlitz J, Raznahan A, Neale MC. The genetics of spatiotemporal variation in cortical thickness in youth. Commun Biol 2024; 7:1301. [PMID: 39390064 PMCID: PMC11467331 DOI: 10.1038/s42003-024-06956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Prior studies have shown strong genetic effects on cortical thickness (CT), structural covariance, and neurodevelopmental trajectories in childhood and adolescence. However, the importance of genetic factors on the induction of spatiotemporal variation during neurodevelopment remains poorly understood. Here, we explore the genetics of maturational coupling by examining 308 MRI-derived regional CT measures in a longitudinal sample of 677 twins and family members. We find dynamic inter-regional genetic covariation in youth, with the emergence of regional subnetworks in late childhood and early adolescence. Three critical neurodevelopmental epochs in genetically-mediated maturational coupling were identified, with dramatic network strengthening near eleven years of age. These changes are associated with statistically-significant (empirical p-value <0.0001) increases in network strength as measured by average clustering coefficient and assortativity. We then identify genes from the Allen Human Brain Atlas with similar co-expression patterns to genetically-mediated structural covariation in children. This set was enriched for genes involved in potassium transport and dendrite formation. Genetically-mediated CT-CT covariance was also strongly correlated with expression patterns for genes located in cells of neuronal origin.
Collapse
Affiliation(s)
- J Eric Schmitt
- Departments of Psychiatry and Radiology, Division of Neuroradiology, Brain Behavior Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Aaron Alexander-Bloch
- Department of Psychiatry, CHOP-Penn Brain-Gene-Development Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jakob Seidlitz
- Department of Psychiatry, CHOP-Penn Brain-Gene-Development Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Armin Raznahan
- Developmental Neurogenomics Unit, National Institutes of Mental Health, Building 10, Room 4C110, 10 Center Drive, Bethesda, MD, USA
| | - Michael C Neale
- Departments of Psychiatry and Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
3
|
Li H, Liu M, Zhang J, Liu S, Fang Z, Pan M, Sui X, Rang W, Xiao H, Jiang Y, Zheng Y, Ge X. The effect of preterm birth on thalamic development based on shape and structural covariance analysis. Neuroimage 2024; 297:120708. [PMID: 38950664 DOI: 10.1016/j.neuroimage.2024.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Acting as a central hub in regulating brain functions, the thalamus plays a pivotal role in controlling high-order brain functions. Considering the impact of preterm birth on infant brain development, traditional studies focused on the overall development of thalamus other than its subregions. In this study, we compared the volumetric growth and shape development of the thalamic hemispheres between the infants born preterm and full-term (Left volume: P = 0.027, Left normalized volume: P < 0.0001; Right volume: P = 0.070, Right normalized volume: P < 0.0001). The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus exhibit higher vulnerability to alterations induced by preterm birth. The structural covariance (SC) between the thickness of thalamus and insula in preterm infants (Left: corrected P = 0.0091, Right: corrected P = 0.0119) showed significant increase as compared to full-term controls. Current findings suggest that preterm birth affects the development of the thalamus and has differential effects on its subregions. The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus are more susceptible to the impacts of preterm birth.
Collapse
Affiliation(s)
- Hongzhuang Li
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Mengting Liu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
| | - Jianfeng Zhang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Shujuan Liu
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Zhicong Fang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Minmin Pan
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Xiaodan Sui
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Wei Rang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Hang Xiao
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Yanyun Jiang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Shandong, China.
| | - Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, Shandong, China.
| |
Collapse
|
4
|
Da Silveira RV, Magalhães TNC, Balthazar MLF, Castellano G. Differences between Alzheimer's disease and mild cognitive impairment using brain networks from magnetic resonance texture analysis. Exp Brain Res 2024; 242:1947-1955. [PMID: 38910159 DOI: 10.1007/s00221-024-06871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Several studies have aimed at identifying biomarkers in the initial phases of Alzheimer's disease (AD). Conversely, texture features, such as those from gray-level co-occurrence matrices (GLCMs), have highlighted important information from several types of medical images. More recently, texture-based brain networks have been shown to provide useful information in characterizing healthy individuals. However, no studies have yet explored the use of this type of network in the context of AD. This work aimed to employ texture brain networks to investigate the distinction between groups of patients with amnestic mild cognitive impairment (aMCI) and mild dementia due to AD, and a group of healthy subjects. Magnetic resonance (MR) images from the three groups acquired at two instances were used. Images were segmented and GLCM texture parameters were calculated for each region. Structural brain networks were generated using regions as nodes and the similarity among texture parameters as links, and graph theory was used to compute five network measures. An ANCOVA was performed for each network measure to assess statistical differences between groups. The thalamus showed significant differences between aMCI and AD patients for four network measures for the right hemisphere and one network measure for the left hemisphere. There were also significant differences between controls and AD patients for the left hippocampus, right superior parietal lobule, and right thalamus-one network measure each. These findings represent changes in the texture of these regions which can be associated with the cortical volume and thickness atrophies reported in the literature for AD. The texture networks showed potential to differentiate between aMCI and AD patients, as well as between controls and AD patients, offering a new tool to help understand these conditions and eventually aid early intervention and personalized treatment, thereby improving patient outcomes and advancing AD research.
Collapse
Affiliation(s)
- Rafael Vinícius Da Silveira
- Department of Cosmic Rays and Chronology, Gleb Wataghin Physics Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil.
| | - Thamires Naela Cardoso Magalhães
- Department of Neurology and Neuroimaging Laboratory, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcio Luiz Figueredo Balthazar
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
- Department of Neurology and Neuroimaging Laboratory, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Castellano
- Department of Cosmic Rays and Chronology, Gleb Wataghin Physics Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
5
|
Zhang P, Wan X, Jiang J, Liu Y, Wang D, Ai K, Liu G, Zhang X, Zhang J. A causal effect study of cortical morphology and related covariate networks in classical trigeminal neuralgia patients. Cereb Cortex 2024; 34:bhae337. [PMID: 39123310 DOI: 10.1093/cercor/bhae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Structural covariance networks and causal effects within can provide critical information on gray matter reorganization and disease-related hierarchical changes. Based on the T1WI data of 43 classical trigeminal neuralgia patients and 45 controls, we constructed morphological similarity networks of cortical thickness, sulcal depth, fractal dimension, and gyrification index. Moreover, causal structural covariance network analyses were conducted in regions with morphological abnormalities or altered nodal properties, respectively. We found that patients showed reduced sulcal depth, gyrification index, and fractal dimension, especially in the salience network and the default mode network. Additionally, the integration of the fractal dimension and sulcal depth networks was significantly reduced, accompanied by decreased nodal efficiency of the bilateral temporal poles, and right pericalcarine cortex within the sulcal depth network. Negative causal effects existed from the left insula to the right caudal anterior cingulate cortex in the gyrification index map, also from bilateral temporal poles to right pericalcarine cortex within the sulcal depth network. Collectively, patients exhibited impaired integrity of the covariance networks in addition to the abnormal gray matter morphology in the salience network and default mode network. Furthermore, the patients may experience progressive impairment in the salience network and from the limbic system to the sensory system in network topology, respectively.
Collapse
Affiliation(s)
- Pengfei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, No. 12, Urumqi Middle Road, Jingan District, Shanghai 200040, China
| | - Jingqi Jiang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Yang Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Danyang Wang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Kai Ai
- Department of Clinical and Technical Supports, Philips Healthcare, No. 64 West Section, South 2nd Ring Road, Yanta District, Xi'an 710000, China
| | - Guangyao Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinding Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
| | - Jing Zhang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| |
Collapse
|
6
|
Gui H, Xiao P, Xu B, Zhao X, Wang H, Tao L, Zhang X, Li Q, Zhang X, Chen H, Wang H, Lv F, Luo T, Cheng O, Luo J, Man Y, Xiao Z, Fang W. Machine learning models for diagnosis of essential tremor and dystonic tremor using grey matter morphological networks. Parkinsonism Relat Disord 2024; 124:106985. [PMID: 38718478 DOI: 10.1016/j.parkreldis.2024.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Essential tremor (ET) and dystonic tremor (DT) are the two most common tremor disorders, and misdiagnoses are very common due to similar tremor symptoms. In this study, we explore the structural network mechanisms of ET and DT using brain grey matter (GM) morphological networks and combine those with machine learning models. METHODS 3D-T1 structural images of 75 ET patients, 71 DT patients, and 79 healthy controls (HCs) were acquired. We used voxel-based morphometry to obtain GM images and constructed GM morphological networks based on the Kullback-Leibler divergence-based similarity (KLS) method. We used the GM volumes, morphological relations, and global topological properties of GM-KLS morphological networks as input features. We employed three classifiers to perform the classification tasks. Moreover, we conducted correlation analysis between discriminative features and clinical characteristics. RESULTS 16 morphological relations features and 1 global topological metric were identified as the discriminative features, and mainly involved the cerebello-thalamo-cortical circuits and the basal ganglia area. The Random Forest (RF) classifier achieved the best classification performance in the three-classification task, achieving a mean accuracy (mACC) of 78.7%, and was subsequently used for binary classification tasks. Specifically, the RF classifier demonstrated strong classification performance in distinguishing ET vs. HCs, ET vs. DT, and DT vs. HCs, with mACCs of 83.0 %, 95.2 %, and 89.3 %, respectively. Correlation analysis demonstrated that four discriminative features were significantly associated with the clinical characteristics. CONCLUSION This study offers new insights into the structural network mechanisms of ET and DT. It demonstrates the effectiveness of combining GM-KLS morphological networks with machine learning models in distinguishing between ET, DT, and HCs.
Collapse
Affiliation(s)
- Honge Gui
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Xiao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bintao Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaole Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyu Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyan Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiyue Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hansheng Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Man
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Liu B, Mao Z, Yan X, Yang H, Xu J, Feng Z, Zhang Y, Yu X. Structural network topologies are associated with deep brain stimulation outcomes in Meige syndrome. Neurotherapeutics 2024; 21:e00367. [PMID: 38679556 PMCID: PMC11284554 DOI: 10.1016/j.neurot.2024.e00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Deep brain stimulation (DBS) is an effective therapy for Meige syndrome (MS). However, the DBS efficacy varies across MS patients and the factors contributing to the variable responses remain enigmatic. We aim to explain the difference in DBS efficacy from a network perspective. We collected preoperative T1-weighted MRI images of 76 MS patients who received DBS in our center. According to the symptomatic improvement rates, all MS patients were divided into two groups: the high improvement group (HIG) and the low improvement group (LIG). We constructed group-level structural covariance networks in each group and compared the graph-based topological properties and interregional connections between groups. Subsequent functional annotation and correlation analyses were also conducted. The results indicated that HIG showed a higher clustering coefficient, longer characteristic path length, lower small-world index, and lower global efficiency compared with LIG. Different nodal betweennesses and degrees between groups were mainly identified in the precuneus, sensorimotor cortex, and subcortical nuclei, among which the gray matter volume of the left precentral gyrus and left thalamus were positively correlated with the symptomatic improvement rates. Moreover, HIG had enhanced interregional connections within the somatomotor network and between the somatomotor network and default-mode network relative to LIG. We concluded that the high and low DBS responders have notable differences in large-scale network architectures. Our study sheds light on the structural network underpinnings of varying DBS responses in MS patients.
Collapse
Affiliation(s)
- Bin Liu
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinyuan Yan
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Hang Yang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Junpeng Xu
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhebin Feng
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
8
|
Makowski C, Brown TT, Zhao W, Hagler Jr DJ, Parekh P, Garavan H, Nichols TE, Jernigan TL, Dale AM. Leveraging the adolescent brain cognitive development study to improve behavioral prediction from neuroimaging in smaller replication samples. Cereb Cortex 2024; 34:bhae223. [PMID: 38880786 PMCID: PMC11180541 DOI: 10.1093/cercor/bhae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Neuroimaging is a popular method to map brain structural and functional patterns to complex human traits. Recently published observations cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state functional magnetic resonance imaging (MRI). We leverage baseline data from thousands of children in the Adolescent Brain Cognitive DevelopmentSM Study to inform the replication sample size required with univariate and multivariate methods across different imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working memory-related functional MRI, and ~ 100 subjects for structural and resting state MRI. Even with 100 random re-samplings of 100 subjects in discovery, prediction can be adequately powered with 66 subjects in replication for multivariate prediction of cognition with working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that are at the heart of many research programs and grants.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Timothy T Brown
- Department of Neurosciences, University of California San Diego, La Jolla, CA,, United States
| | - Weiqi Zhao
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
| | - Donald J Hagler Jr
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California San Diego, La Jolla, CA,, United States
| |
Collapse
|
9
|
Yan S, Lu J, Li Y, Tian T, Zhou Y, Zhu H, Qin Y, Zhu W. Impaired topological properties of cortical morphological brain networks correlate with motor symptoms in Parkinson's disease. J Neuroradiol 2024; 51:101155. [PMID: 37774912 DOI: 10.1016/j.neurad.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by loss of selectively vulnerable neurons within the basal ganglia circuit and progressive atrophy in subcortical and cortical regions. However, the impact of neurodegenerative pathology on the topological organization of cortical morphological networks has not been explored. The aims of this study were to investigate altered network patterns of covariance in cortical thickness and complexity, and to evaluate how morphological network integrity in PD is related to motor impairment. METHODS Individual morphological networks were constructed for 50 PD patients and 46 healthy controls (HCs) by estimating interregional similarity distributions in surface-based indices. We performed graph theoretical analysis and network-based statistics to detect PD-related alterations and further examined the correlation of network metrics with clinical scores. Furthermore, support vector regression based on topological characteristics was applied to predict the severity of motor impairment in PD. RESULTS Compared with HCs, PD patients showed lower local efficiency (p = 0.004), normalized characteristic path length (p = 0.022), and clustering coefficient (p = 0.005) for gyrification index-based morphological brain networks. Nodal topological abnormalities were mainly in the frontal, parietal and temporal regions, and impaired morphological connectivity was involved in the sensorimotor and default mode networks. The support vector regression model using network-based features allowed prediction of motor symptom severity with a correlation coefficient of 0.606. CONCLUSIONS This study identified a disrupted topological organization of cortical morphological networks that could substantially advance our understanding of the network degeneration mechanism of PD and might offer indicators for monitoring disease progression.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, China, 107 North Second Road
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Luo T, Zhang M, Li S, Situ M, Liu P, Wang M, Tao Y, Zhao S, Wang Z, Yang Y, Huang Y. Exome functional risk score and brain connectivity can predict social adaptability outcome of children with autism spectrum disorder in 4 years' follow up. Front Psychiatry 2024; 15:1384134. [PMID: 38818019 PMCID: PMC11137745 DOI: 10.3389/fpsyt.2024.1384134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder emerging in early childhood, with heterogeneous clinical outcomes across individuals. This study aims to recognize neuroimaging genetic factors associated with outcomes of ASD after a 4-year follow-up. Methods A total of 104 ASD children were included in this study; they underwent clinical assessments, MRI data acquisition, and the whole exome sequencing (WES). Exome functional risk score (EFRS) was calculated based on WES; and two modalities of brain connectivity were constructed based on MRI data, that is functional connectivity (FC) for functional MRI (fMRI), and individual differential structural covariance network (IDSCN) for structural MRI (sMRI), to explore the neuroimaging genetic biomarker of outcomes of ASD children. Results Regression analysis found EFRS predicts social adaptability at the 4-year follow-up (Y = -0.013X + 9.29, p = 0.003). We identified 19 pairs of FC associated with autism symptoms severity at follow-up, 10 pairs of FC and 4 pairs of IDSCN associated with social adaptability at follow-up, and 10 pairs of FC associated with ASD EFRS by support vector regression (SVR). Related brain regions with prognostic predictive effects are mainly distributed in superior frontal gyrus, occipital cortex, temporal cortex, parietal cortex, paracentral lobule, pallidum, and amygdala for FC, and temporal cortex, thalamus, and hippocampus for IDSCN. Mediation model showed that ASD EFRS affects the social communication of ASD children through the mediation of FC between left middle occipital gyrus and left pallidum (RMSEA=0.126, CMIN=80.66, DF=42, p< 0.001, CFI=0.867, AIC=152). Discussion Our findings underscore that both EFRS and brain connectivity can predict social adaptability, and that brain connectivity serving as mediator in the relationship of EFRS and behaviors of ASD, suggesting the intervention targets in the future clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Chen TY, Zhu JD, Tsai SJ, Yang AC. Exploring morphological similarity and randomness in Alzheimer's disease using adjacent grey matter voxel-based structural analysis. Alzheimers Res Ther 2024; 16:88. [PMID: 38654366 PMCID: PMC11036786 DOI: 10.1186/s13195-024-01448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Alzheimer's disease is characterized by large-scale structural changes in a specific pattern. Recent studies developed morphological similarity networks constructed by brain regions similar in structural features to represent brain structural organization. However, few studies have used local morphological properties to explore inter-regional structural similarity in Alzheimer's disease. METHODS Here, we sourced T1-weighted MRI images of 342 cognitively normal participants and 276 individuals with Alzheimer's disease from the Alzheimer's Disease Neuroimaging Initiative database. The relationships of grey matter intensity between adjacent voxels were defined and converted to the structural pattern indices. We conducted the information-based similarity method to evaluate the structural similarity of structural pattern organization between brain regions. Besides, we examined the structural randomness on brain regions. Finally, the relationship between the structural randomness and cognitive performance of individuals with Alzheimer's disease was assessed by stepwise regression. RESULTS Compared to cognitively normal participants, individuals with Alzheimer's disease showed significant structural pattern changes in the bilateral posterior cingulate gyrus, hippocampus, and olfactory cortex. Additionally, individuals with Alzheimer's disease showed that the bilateral insula had decreased inter-regional structural similarity with frontal regions, while the bilateral hippocampus had increased inter-regional structural similarity with temporal and subcortical regions. For the structural randomness, we found significant decreases in the temporal and subcortical areas and significant increases in the occipital and frontal regions. The regression analysis showed that the structural randomness of five brain regions was correlated with the Mini-Mental State Examination scores of individuals with Alzheimer's disease. CONCLUSIONS Our study suggested that individuals with Alzheimer's disease alter micro-structural patterns and morphological similarity with the insula and hippocampus. Structural randomness of individuals with Alzheimer's disease changed in temporal, frontal, and occipital brain regions. Morphological similarity and randomness provide valuable insight into brain structural organization in Alzheimer's disease.
Collapse
Affiliation(s)
- Ting-Yu Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Ding Zhu
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
12
|
Chung MK, Azizi T, Hanson JL, Alexander AL, Pollak SD, Davidson RJ. Altered topological structure of the brain white matter in maltreated children through topological data analysis. Netw Neurosci 2024; 8:355-376. [PMID: 38711544 PMCID: PMC11073548 DOI: 10.1162/netn_a_00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/30/2023] [Indexed: 05/08/2024] Open
Abstract
Childhood maltreatment may adversely affect brain development and consequently influence behavioral, emotional, and psychological patterns during adulthood. In this study, we propose an analytical pipeline for modeling the altered topological structure of brain white matter in maltreated and typically developing children. We perform topological data analysis (TDA) to assess the alteration in the global topology of the brain white matter structural covariance network among children. We use persistent homology, an algebraic technique in TDA, to analyze topological features in the brain covariance networks constructed from structural magnetic resonance imaging and diffusion tensor imaging. We develop a novel framework for statistical inference based on the Wasserstein distance to assess the significance of the observed topological differences. Using these methods in comparing maltreated children with a typically developing control group, we find that maltreatment may increase homogeneity in white matter structures and thus induce higher correlations in the structural covariance; this is reflected in the topological profile. Our findings strongly suggest that TDA can be a valuable framework to model altered topological structures of the brain. The MATLAB codes and processed data used in this study can be found at https://github.com/laplcebeltrami/maltreated.
Collapse
Affiliation(s)
- Moo K. Chung
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, USA
| | - Tahmineh Azizi
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jamie L. Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew L. Alexander
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Seth D. Pollak
- Department of Psychology, University of Wisconsin–Madison, Madison, WI, USA
| | | |
Collapse
|
13
|
Tsugawa S, Honda S, Noda Y, Wannan C, Zalesky A, Tarumi R, Iwata Y, Ogyu K, Plitman E, Ueno F, Mimura M, Uchida H, Chakravarty M, Graff-Guerrero A, Nakajima S. Associations Between Structural Covariance Network and Antipsychotic Treatment Response in Schizophrenia. Schizophr Bull 2024; 50:382-392. [PMID: 37978044 PMCID: PMC10919786 DOI: 10.1093/schbul/sbad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with widespread cortical thinning and abnormality in the structural covariance network, which may reflect connectome alterations due to treatment effect or disease progression. Notably, patients with treatment-resistant schizophrenia (TRS) have stronger and more widespread cortical thinning, but it remains unclear whether structural covariance is associated with treatment response in schizophrenia. STUDY DESIGN We organized a multicenter magnetic resonance imaging study to assess structural covariance in a large population of TRS and non-TRS, who had been resistant and responsive to non-clozapine antipsychotics, respectively. Whole-brain structural covariance for cortical thickness was assessed in 102 patients with TRS, 77 patients with non-TRS, and 79 healthy controls (HC). Network-based statistics were used to examine the difference in structural covariance networks among the 3 groups. Moreover, the relationship between altered individual differentiated structural covariance and clinico-demographics was also explored. STUDY RESULTS Patients with non-TRS exhibited greater structural covariance compared with HC, mainly in the fronto-temporal and fronto-occipital regions, while there were no significant differences in structural covariance between TRS and non-TRS or HC. Higher individual differentiated structural covariance was associated with lower general scores of the Positive and Negative Syndrome Scale in the non-TRS group, but not in the TRS group. CONCLUSIONS These findings suggest that reconfiguration of brain networks via coordinated cortical thinning is related to treatment response in schizophrenia. Further longitudinal studies are warranted to confirm if greater structural covariance could serve as a marker for treatment response in this disease.
Collapse
Affiliation(s)
- Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Cassandra Wannan
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
| | - Andrew Zalesky
- Department of Biomedical Engineering, Melbourne School of Engineering, the University of Melbourne, Melbourne, Australia
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
- Department of Psychiatry, Komagino Hospital, Tokyo, Japan
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi, Yamanashi, Japan
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Eric Plitman
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Fumihiko Ueno
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | | | | |
Collapse
|
14
|
Zheng C, Zhao W, Yang Z, Tang D, Feng M, Guo S. Resolving heterogeneity in Alzheimer's disease based on individualized structural covariance network. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110873. [PMID: 37827426 DOI: 10.1016/j.pnpbp.2023.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
The heterogeneity of Alzheimer's disease (AD) poses a challenge to precision medicine. We aimed to identify distinct subtypes of AD based on the individualized structural covariance network (IDSCN) analysis and to research the underlying neurobiology mechanisms. In this study, 187 patients with AD (age = 73.57 ± 6.00, 50% female) and 143 matched normal controls (age = 74.30 ± 7.80, 44% female) were recruited from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project database, and T1 images were acquired. We utilized the IDSCN analysis to generate individual-level altered structural covariance network and performed k-means clustering to subtype AD based on structural covariance network. Cognition, disease progression, morphological features, and gene expression profiles were further compared between subtypes, to characterize the heterogeneity in AD. Two distinct AD subtypes were identified in a reproducible manner, and we named the two subtypes as slow progression type (subtype 1, n = 104, age = 76.15 ± 6.44, 42% female) and rapid progression type (subtype 2, n = 83, age = 71.98 ± 8.72, 47% female), separately. Subtype 1 had better baseline visuospatial function than subtype 2 (p < 0.05), whereas subtype 2 had better baseline memory function than subtype 1 (p < 0.05). Subtype 2 showed worse progression in memory (p = 0.003), language (p = 0.003), visuospatial function (p = 0.020), and mental state (p = 0.038) than subtype 1. Subtype 1 often shared increased structural covariance network, mainly in the frontal lobe and temporal lobe regions, whereas subtype 2 often shared increased structural covariance network, mainly in occipital lobe regions and temporal lobe regions. Functional annotation further revealed that all differential structural covariance network between the two AD subtypes were mainly implicated in memory, learning, emotion, and cognition. Additionally, differences in gray matter volume (GMV) between AD subtypes were identified, and genes associated with GMV differences were found to be enriched in the terms potassium ion transport, synapse organization, and histone modification and the pathways viral infection, neurodegeneration-multiple diseases, and long-term depression. The two distinct AD subtypes were identified and characterized with neuroanatomy, cognitive trajectories, and gene expression profiles. These comprehensive results have implications for neurobiology mechanisms and precision medicine.
Collapse
Affiliation(s)
- Chuchu Zheng
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Wei Zhao
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Zeyu Yang
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Dier Tang
- School of Mathematics, Jilin University, Changchun 130015, China
| | - Muyi Feng
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Shuixia Guo
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China.
| |
Collapse
|
15
|
Niu L, Fang K, Han S, Xu C, Sun X. Resolving heterogeneity in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder through individualized structural covariance network analysis. Cereb Cortex 2024; 34:bhad391. [PMID: 38142281 DOI: 10.1093/cercor/bhad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 12/25/2023] Open
Abstract
Disruptions in large-scale brain connectivity are hypothesized to contribute to psychiatric disorders, including schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. However, high inter-individual variation among patients with psychiatric disorders hinders achievement of unified findings. To this end, we adopted a newly proposed method to resolve heterogeneity of differential structural covariance network in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. This method could infer individualized structural covariance aberrance by assessing the deviation from healthy controls. T1-weighted anatomical images of 114 patients with psychiatric disorders (schizophrenia: n = 37; bipolar I disorder: n = 37; attention-deficit/hyperactivity disorder: n = 37) and 110 healthy controls were analyzed to obtain individualized differential structural covariance network. Patients exhibited tremendous heterogeneity in profiles of individualized differential structural covariance network. Despite notable heterogeneity, patients with the same disorder shared altered edges at network level. Moreover, individualized differential structural covariance network uncovered two distinct psychiatric subtypes with opposite differences in structural covariance edges, that were otherwise obscured when patients were merged, compared with healthy controls. These results provide new insights into heterogeneity and have implications for the nosology in psychiatric disorders.
Collapse
Affiliation(s)
- Lianjie Niu
- Department of Breast Disease, Henan Breast Cancer Center. The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Keke Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Chunmiao Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xianfu Sun
- Department of Breast Disease, Henan Breast Cancer Center. The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
16
|
Yee Y, Ellegood J, French L, Lerch JP. Organization of thalamocortical structural covariance and a corresponding 3D atlas of the mouse thalamus. Neuroimage 2024; 285:120453. [PMID: 37979895 DOI: 10.1016/j.neuroimage.2023.120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
For information from sensory organs to be processed by the brain, it is usually passed to appropriate areas of the cerebral cortex. Almost all of this information passes through the thalamus, a relay structure that reciprocally connects to the vast majority of the cortex. The thalamus facilitates this information transfer through a set of thalamocortical connections that vary in cellular structure, molecular profiles, innervation patterns, and firing rates. Additionally, corticothalamic connections allow for intracortical information transfer through the thalamus. These efferent and afferent connections between the thalamus and cortex have been the focus of many studies, and the importance of cortical connectivity in defining thalamus anatomy is demonstrated by multiple studies that parcellate the thalamus based on cortical connectivity profiles. Here, we examine correlated morphological variation between the thalamus and cortex, or thalamocortical structural covariance. For each voxel in the thalamus as a seed, we construct a cortical structural covariance map that represents correlated cortical volume variation, and examine whether high structural covariance is observed in cortical areas that are functionally relevant to the seed. Then, using these cortical structural covariance maps as features, we subdivide the thalamus into six non-overlapping regions (clusters of voxels), and assess whether cortical structural covariance is associated with cortical connectivity that specifically originates from these regions. We show that cortical structural covariance is high in areas of the cortex that are functionally related to the seed voxel, cortical structural covariance varies along cortical depth, and sharp transitions in cortical structural covariance profiles are observed when varying seed locations in the thalamus. Subdividing the thalamus based on structural covariance, we additionally demonstrate that the six thalamic clusters of voxels stratify cortical structural covariance along the dorsal-ventral, medial-lateral, and anterior-posterior axes. These cluster-associated structural covariance patterns are prominently detected in cortical regions innervated by fibers projecting out of their related thalamic subdivisions. Together, these results advance our understanding of how the thalamus and the cortex couple in their volumes. Our results indicate that these volume correlations reflect functional organization and structural connectivity, and further provides a novel segmentation of the mouse thalamus that can be used to examine thalamic structural variation and thalamocortical structural covariation in disease models.
Collapse
Affiliation(s)
- Yohan Yee
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Leon French
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Cai M, Ma J, Wang Z, Zhao Y, Zhang Y, Wang H, Xue H, Chen Y, Zhang Y, Wang C, Zhao Q, Xue K, Liu F. Individual-level brain morphological similarity networks: Current methodologies and applications. CNS Neurosci Ther 2023; 29:3713-3724. [PMID: 37519018 PMCID: PMC10651978 DOI: 10.1111/cns.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS The human brain is an extremely complex system in which neurons, clusters of neurons, or regions are connected to form a complex network. With the development of neuroimaging techniques, magnetic resonance imaging (MRI)-based brain networks play a key role in our understanding of the intricate architecture of human brain. Among them, the structural MRI-based brain morphological network approach has attracted increasing attention due to the advantages in data acquisition, image quality, and in revealing the structural organizing principles intrinsic to the brain. This review is to summarize the methodology and related applications of individual-level morphological networks. BACKGROUND There have been a growing number of studies related to brain morphological similarity networks. Conventional morphological networks are intersubject covariance networks constructed using a certain morphological indicator of a group of subjects; individual-level morphological networks, on the other hand, measure the morphological similarity between brain regions for individual brains and can reflect the morphological information of single subjects. In recent years, individual morphological networks have demonstrated significant worth in exploring the topological changes of the human brain under both normal and disease conditions. Such studies provided novel perspectives for understanding human brain development and exploring the pathological mechanisms of neuropsychiatric disorders. CONCLUSION This paper mainly focuses on the studies of brain morphological networks at the individual level, introduces several ways for network construction, reviews representative work in this field, and finally points out current problems and future directions.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Chunyang Wang
- Department of Scientific ResearchTianjin Medical University General HospitalTianjinChina
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
18
|
Makowski C, Brown TT, Zhao W, Hagler DJ, Parekh P, Garavan H, Nichols TE, Jernigan TL, Dale AM. Leveraging the Adolescent Brain Cognitive Development Study to improve behavioral prediction from neuroimaging in smaller replication samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545340. [PMID: 37398195 PMCID: PMC10312746 DOI: 10.1101/2023.06.16.545340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Magnetic resonance imaging (MRI) is a popular and useful non-invasive method to map patterns of brain structure and function to complex human traits. Recently published observations in multiple large scale studies cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state functional MRI, which seems to account for little behavioral variability. We leverage baseline data from thousands of children in the Adolescent Brain Cognitive DevelopmentSM (ABCD®) Study to inform the replication sample size required with both univariate and multivariate methods across different imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working memory-related functional MRI, and ~100 subjects for structural MRI. Even with 100 random re-samplings of 50 subjects in the discovery sample, prediction can be adequately powered with 98 subjects in the replication sample for multivariate prediction of cognition with working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that are at the heart of many investigators' research programs and grants.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Timothy T Brown
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Weiqi Zhao
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, California USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, Vermont, USA
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU
| | - Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, La Jolla, California USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
19
|
da Silveira RV, Li LM, Castellano G. Texture-based brain networks for characterization of healthy subjects from MRI. Sci Rep 2023; 13:16421. [PMID: 37775531 PMCID: PMC10541866 DOI: 10.1038/s41598-023-43544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Brain networks have been widely used to study the relationships between brain regions based on their dynamics using, e.g. fMRI or EEG, and to characterize their real physical connections using DTI. However, few studies have investigated brain networks derived from structural properties; and those have been based on cortical thickness or gray matter volume. The main objective of this work was to investigate the feasibility of obtaining useful information from brain networks derived from structural MRI, using texture features. We also wanted to verify if texture brain networks had any relation with established functional networks. T1-MR images were segmented using AAL and texture parameters from the gray-level co-occurrence matrix were computed for each region, for 760 subjects. Individual texture networks were used to evaluate the structural connections between regions of well-established functional networks; assess possible gender differences; investigate the dependence of texture network measures with age; and single out brain regions with different texture-network characteristics. Although around 70% of texture connections between regions belonging to the default mode, attention, and visual network were greater than the mean connection value, this effect was small (only between 7 and 15% of these connections were larger than one standard deviation), implying that texture-based morphology does not seem to subside function. This differs from cortical thickness-based morphology, which has been shown to relate to functional networks. Seventy-five out of 86 evaluated regions showed significant (ANCOVA, p < 0.05) differences between genders. Forty-four out of 86 regions showed significant (ANCOVA, p < 0.05) dependence with age; however, the R2 indicates that this is not a linear relation. Thalamus and putamen showed a very unique texture-wise structure compared to other analyzed regions. Texture networks were able to provide useful information regarding gender and age-related differences, as well as for singling out specific brain regions. We did not find a morphological texture-based subsidy for the evaluated functional brain networks. In the future, this approach will be extended to neurological patients to investigate the possibility of extracting biomarkers to help monitor disease evolution or treatment effectiveness.
Collapse
Affiliation(s)
- Rafael Vinícius da Silveira
- Department of Cosmic Rays and Chronology, Gleb Wataghin Physics Institute, University of Campinas - UNICAMP, R. Sérgio Buarque de Holanda, 777, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-859, Brazil.
- Brazilian Institute of Neuroscience and Neurotechnology - BRAINN, Campinas, SP, 13083-887, Brazil.
| | - Li Min Li
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, R. Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology - BRAINN, Campinas, SP, 13083-887, Brazil
| | - Gabriela Castellano
- Department of Cosmic Rays and Chronology, Gleb Wataghin Physics Institute, University of Campinas - UNICAMP, R. Sérgio Buarque de Holanda, 777, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-859, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology - BRAINN, Campinas, SP, 13083-887, Brazil
| |
Collapse
|
20
|
Yang CC, Totzek JF, Lepage M, Lavigne KM. Sex differences in cognition and structural covariance-based morphometric connectivity: evidence from 28,000+ UK Biobank participants. Cereb Cortex 2023; 33:10341-10354. [PMID: 37557917 DOI: 10.1093/cercor/bhad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/11/2023] Open
Abstract
There is robust evidence for sex differences in domain-specific cognition, where females typically show an advantage for verbal memory, whereas males tend to perform better in spatial memory. Sex differences in brain connectivity are well documented and may provide insight into these differences. In this study, we examined sex differences in cognition and structural covariance, as an index of morphometric connectivity, of a large healthy sample (n = 28,821) from the UK Biobank. Using T1-weighted magnetic resonance imaging scans and regional cortical thickness values, we applied jackknife bias estimation and graph theory to obtain subject-specific measures of structural covariance, hypothesizing that sex-related differences in brain network global efficiency, or overall covariance, would underlie cognitive differences. As predicted, females demonstrated better verbal memory and males showed a spatial memory advantage. Females also demonstrated faster processing speed, with no observed sex difference in executive functioning. Males showed higher global efficiency, as well as higher regional covariance (nodal strengths) in both hemispheres relative to females. Furthermore, higher global efficiency in males mediated sex differences in verbal memory and processing speed. Findings contribute to an improved understanding of how biological sex and differences in cognition are related to morphometric connectivity as derived from graph-theoretic methods.
Collapse
Affiliation(s)
- Crystal C Yang
- Department of Psychology, McGill University, Montréal, QC H4H 1R3, Canada
| | - Jana F Totzek
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6211 LK, Netherlands
- Department of Psychiatry, McGill University, Montréal, QC H4H 1R3, Canada
- Douglas Research Centre, Montréal, QC, H4H 1R3, Canada
| | - Martin Lepage
- Department of Psychology, McGill University, Montréal, QC H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montréal, QC H4H 1R3, Canada
- Douglas Research Centre, Montréal, QC, H4H 1R3, Canada
| | - Katie M Lavigne
- Department of Psychiatry, McGill University, Montréal, QC H4H 1R3, Canada
- Douglas Research Centre, Montréal, QC, H4H 1R3, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H4H 1R3, Canada
| |
Collapse
|
21
|
Gao Y, Wang S, Xin H, Feng M, Zhang Q, Sui C, Guo L, Liang C, Wen H. Disrupted Gray Matter Networks Associated with Cognitive Dysfunction in Cerebral Small Vessel Disease. Brain Sci 2023; 13:1359. [PMID: 37891728 PMCID: PMC10605932 DOI: 10.3390/brainsci13101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to investigate the disrupted topological organization of gray matter (GM) structural networks in cerebral small vessel disease (CSVD) patients with cerebral microbleeds (CMBs). Subject-wise structural networks were constructed from GM volumetric features of 49 CSVD patients with CMBs (CSVD-c), 121 CSVD patients without CMBs (CSVD-n), and 74 healthy controls. The study used graph theory to analyze the global and regional properties of the network and their correlation with cognitive performance. We found that both the control and CSVD groups exhibited efficient small-world organization in GM networks. However, compared to controls, CSVD-c and CSVD-n patients exhibited increased global and local efficiency (Eglob/Eloc) and decreased shortest path lengths (Lp), indicating increased global integration and local specialization in structural networks. Although there was no significant global topology change, partially reorganized hub distributions were found between CSVD-c and CSVD-n patients. Importantly, regional topology in nonhub regions was significantly altered between CSVD-c and CSVD-n patients, including the bilateral anterior cingulate gyrus, left superior parietal gyrus, dorsolateral superior frontal gyrus, and right MTG, which are involved in the default mode network (DMN) and sensorimotor functional modules. Intriguingly, the global metrics (Eglob, Eloc, and Lp) were significantly correlated with MoCA, AVLT, and SCWT scores in the control group but not in the CSVD-c and CSVD-n groups. In contrast, the global metrics were significantly correlated with the SDMT score in the CSVD-s and CSVD-n groups but not in the control group. Patients with CSVD show a disrupted balance between local specialization and global integration in their GM structural networks. The altered regional topology between CSVD-c and CSVD-n patients may be due to different etiological contributions, which may offer a novel understanding of the neurobiological processes involved in CSVD with CMBs.
Collapse
Affiliation(s)
- Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Shengpei Wang
- Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100040, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-Chun St., Xicheng District, Beijing 100054, China; (H.X.); (M.F.)
| | - Mengmeng Feng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-Chun St., Xicheng District, Beijing 100054, China; (H.X.); (M.F.)
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, New York. 407 East 61st Street, New York, NY 10044, USA;
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-Wu Road No. 324, Jinan 250021, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
Han S, Zheng R, Li S, Zhou B, Jiang Y, Fang K, Wei Y, Pang J, Li H, Zhang Y, Chen Y, Cheng J. Resolving heterogeneity in depression using individualized structural covariance network analysis. Psychol Med 2023; 53:5312-5321. [PMID: 35959558 DOI: 10.1017/s0033291722002380] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Elucidating individual aberrance is a critical first step toward precision medicine for heterogeneous disorders such as depression. The neuropathology of depression is related to abnormal inter-regional structural covariance indicating a brain maturational disruption. However, most studies focus on group-level structural covariance aberrance and ignore the interindividual heterogeneity. For that reason, we aimed to identify individualized structural covariance aberrance with the help of individualized differential structural covariance network (IDSCN) analysis. METHODS T1-weighted anatomical images of 195 first-episode untreated patients with depression and matched healthy controls (n = 78) were acquired. We obtained IDSCN for each patient and identified subtypes of depression based on shared differential edges. RESULTS As a result, patients with depression demonstrated tremendous heterogeneity in the distribution of differential structural covariance edges. Despite this heterogeneity, altered edges within subcortical-cerebellum network were often shared by most of the patients. Two robust neuroanatomical subtypes were identified. Specifically, patients in subtype 1 often shared decreased motor network-related edges. Patients in subtype 2 often shared decreased subcortical-cerebellum network-related edges. Functional annotation further revealed that differential edges in subtype 2 were mainly implicated in reward/motivation-related functional terms. CONCLUSIONS In conclusion, we investigated individualized differential structural covariance and identified that decreased edges within subcortical-cerebellum network are often shared by patients with depression. The identified two subtypes provide new insights into taxonomy and facilitate potential clues to precision diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jianyue Pang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengfen Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| |
Collapse
|
23
|
Wang W, Kang Y, Niu X, Zhang Z, Li S, Gao X, Zhang M, Cheng J, Zhang Y. Connectome-based predictive modeling of smoking severity using individualized structural covariance network in smokers. Front Neurosci 2023; 17:1227422. [PMID: 37547147 PMCID: PMC10400777 DOI: 10.3389/fnins.2023.1227422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Abnormal interactions among distributed brain systems are implicated in the mechanisms of nicotine addiction. However, the relationship between the structural covariance network, a measure of brain connectivity, and smoking severity remains unclear. To fill this gap, this study aimed to investigate the relationship between structural covariance network and smoking severity in smokers. Methods A total of 101 male smokers and 51 male non-smokers were recruited, and they underwent a T1-weighted anatomical image scan. First, an individualized structural covariance network was derived via a jackknife-bias estimation procedure for each participant. Then, a data-driven machine learning method called connectome-based predictive modeling (CPM) was conducted to infer smoking severity measured with Fagerström Test for Nicotine Dependence (FTND) scores using an individualized structural covariance network. The performance of CPM was evaluated using the leave-one-out cross-validation and a permutation testing. Results As a result, CPM identified the smoking severity-related structural covariance network, as indicated by a significant correlation between predicted and actual FTND scores (r = 0.23, permutation p = 0.020). Identified networks comprised of edges mainly located between the subcortical-cerebellum network and networks including the frontoparietal default model and motor and visual networks. Discussion These results identified smoking severity-related structural covariance networks and provided a new insight into the neural underpinnings of smoking severity.
Collapse
|
24
|
Leming MJ, Bron EE, Bruffaerts R, Ou Y, Iglesias JE, Gollub RL, Im H. Challenges of implementing computer-aided diagnostic models for neuroimages in a clinical setting. NPJ Digit Med 2023; 6:129. [PMID: 37443276 DOI: 10.1038/s41746-023-00868-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Advances in artificial intelligence have cultivated a strong interest in developing and validating the clinical utilities of computer-aided diagnostic models. Machine learning for diagnostic neuroimaging has often been applied to detect psychological and neurological disorders, typically on small-scale datasets or data collected in a research setting. With the collection and collation of an ever-growing number of public datasets that researchers can freely access, much work has been done in adapting machine learning models to classify these neuroimages by diseases such as Alzheimer's, ADHD, autism, bipolar disorder, and so on. These studies often come with the promise of being implemented clinically, but despite intense interest in this topic in the laboratory, limited progress has been made in clinical implementation. In this review, we analyze challenges specific to the clinical implementation of diagnostic AI models for neuroimaging data, looking at the differences between laboratory and clinical settings, the inherent limitations of diagnostic AI, and the different incentives and skill sets between research institutions, technology companies, and hospitals. These complexities need to be recognized in the translation of diagnostic AI for neuroimaging from the laboratory to the clinic.
Collapse
Affiliation(s)
- Matthew J Leming
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Rose Bruffaerts
- Computational Neurology, Experimental Neurobiology Unit (ENU), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Yangming Ou
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA
| | - Juan Eugenio Iglesias
- Center for Medical Image Computing, University College London, London, UK
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
25
|
Ren T, Li Z, Wang C, Li BM. Early Gray Matter Structural Covariance Predicts Longitudinal Gain in Arithmetic Ability in Children. Dev Neurosci 2023; 46:119-135. [PMID: 37279707 DOI: 10.1159/000531419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
Previous neuroimaging studies on arithmetic development have mainly focused on functional activation or functional connectivity between brain regions. It remains largely unknown how brain structures support arithmetic development. The present study investigated whether early gray matter structural covariance contributes to later gain in arithmetic ability in children. We used a public longitudinal sample comprising 63 typically developing children. The participants received structural magnetic resonance imaging scanning when they were 11 years old and were tested with a multiplication task at 11 years old (time 1) and 13 years old (time 2), respectively. Mean gray matter volumes were extracted from eight brain regions of interest to anchor salience network (SN), frontal-parietal network (FPN), motor network (MN), and default mode network (DMN) at time 1. We found that longitudinal gain in arithmetic ability was associated with stronger structural covariance of the SN seed with frontal and parietal regions and stronger structural covariance of the FPN seed with insula, but weaker structural covariance of the FPN seed with motor and temporal regions, weaker structural covariance of the MN seed with frontal and motor regions, and weaker structural covariance of the DMN seed with temporal region. However, we did not detect correlation between longitudinal gain in arithmetic ability and behavioral measure or regional gray matter volume at time 1. Our study provides novel evidence for a specific contribution of gray matter structural covariance to longitudinal gain in arithmetic ability in childhood.
Collapse
Affiliation(s)
- Tian Ren
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China,
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China,
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China,
| | - Zheng Li
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
| | - Chunjie Wang
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Bao-Ming Li
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
26
|
Prasad KM, Muldoon B, Theis N, Iyengar S, Keshavan MS. Multipronged investigation of morphometry and connectivity of hippocampal network in relation to risk for psychosis using ultrahigh field MRI. Schizophr Res 2023; 256:88-97. [PMID: 37196534 PMCID: PMC10363272 DOI: 10.1016/j.schres.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Hippocampal abnormalities are associated with psychosis-risk states. Given the complexity of hippocampal anatomy, we conducted a multipronged examination of morphometry of regions connected with hippocampus, and structural covariance network (SCN) and diffusion-weighted circuitry among 27 familial high-risk (FHR) individuals who were past the highest risk for conversion to psychoses and 41 healthy controls using ultrahigh-field high-resolution 7 Tesla (7T) structural and diffusion MRI data. We obtained fractional anisotropy and diffusion streams of white matter connections and examined correspondence of diffusion streams with SCN edges. Nearly 89 % of the FHR group had an axis-I disorder including 5 with schizophrenia. Therefore, we compared the entire FHR group regardless of the diagnosis (All_FHR = 27) and FHR-without-schizophrenia (n = 22) with 41 controls in this integrative multimodal analysis. We found striking volume loss in bilateral hippocampus, particularly the head, bilateral thalamus, caudate, and prefrontal regions. All_FHR and FHR-without-SZ SCNs showed significantly lower assortativity and transitivity but higher diameter compared to controls, but FHR-without-SZ SCN differed on every graph metric compared to All_FHR suggesting disarrayed network with no hippocampal hubs. Fractional anisotropy and diffusion streams were lower in FHR suggesting white matter network impairment. White matter edges showed significantly higher correspondence with SCN edges in FHR compared to controls. These differences correlated with psychopathology and cognitive measures. Our data suggest that hippocampus may be a "neural hub" contributing to psychosis risk. Higher correspondence of white matter tracts with SCN edges suggest that shared volume loss may be more coordinated among regions within the hippocampal white matter circuitry.
Collapse
Affiliation(s)
- Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States of America; VA Pittsburgh Healthcare System, Pittsburgh, PA, United States of America.
| | - Brendan Muldoon
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Nicholas Theis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
27
|
Lewis M, Santini T, Theis N, Muldoon B, Dash K, Rubin J, Keshavan M, Prasad K. Modular architecture and resilience of structural covariance networks in first-episode antipsychotic-naive psychoses. Sci Rep 2023; 13:7751. [PMID: 37173346 PMCID: PMC10181992 DOI: 10.1038/s41598-023-34210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Structural covariance network (SCN) studies on first-episode antipsychotic-naïve psychosis (FEAP) have examined less granular parcellations on one morphometric feature reporting lower network resilience among other findings. We examined SCNs of volume, cortical thickness, and surface area using the Human Connectome Project atlas-based parcellation (n = 358 regions) from 79 FEAP and 68 controls to comprehensively characterize the networks using a descriptive and perturbational network neuroscience approach. Using graph theoretical methods, we examined network integration, segregation, centrality, community structure, and hub distribution across the small-worldness threshold range and correlated them with psychopathology severity. We used simulated nodal "attacks" (removal of nodes and all their edges) to investigate network resilience, calculated DeltaCon similarity scores, and contrasted the removed nodes to characterize the impact of simulated attacks. Compared to controls, FEAP SCN showed higher betweenness centrality (BC) and lower degree in all three morphometric features and disintegrated with fewer attacks with no change in global efficiency. SCNs showed higher similarity score at the first point of disintegration with ≈ 54% top-ranked BC nodes attacked. FEAP communities consisted of fewer prefrontal, auditory and visual regions. Lower BC, and higher clustering and degree, were associated with greater positive and negative symptom severity. Negative symptoms required twice the changes in these metrics. Globally sparse but locally dense network with more nodes of higher centrality in FEAP could result in higher communication cost compared to controls. FEAP network disintegration with fewer attacks suggests lower resilience without impacting efficiency. Greater network disarray underlying negative symptom severity possibly explains the therapeutic challenge.
Collapse
Affiliation(s)
- Madison Lewis
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3811 O'Hara St, Pittsburgh, PA, 15213, USA
| | - Tales Santini
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3811 O'Hara St, Pittsburgh, PA, 15213, USA
| | - Nicholas Theis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Brendan Muldoon
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Katherine Dash
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3811 O'Hara St, Pittsburgh, PA, 15213, USA
| | - Jonathan Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Konasale Prasad
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3811 O'Hara St, Pittsburgh, PA, 15213, USA.
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Veterans Affairs Pittsburgh Health System, University Drive, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
28
|
Vecchio D, Piras F, Ciullo V, Piras F, Natalizi F, Ducci G, Ambrogi S, Spalletta G, Banaj N. Brain Network Topology in Deficit and Non-Deficit Schizophrenia: Application of Graph Theory to Local and Global Indices. J Pers Med 2023; 13:jpm13050799. [PMID: 37240969 DOI: 10.3390/jpm13050799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Patients with deficit schizophrenia (SZD) suffer from primary and enduring negative symptoms. Limited pieces of evidence and neuroimaging studies indicate they differ from patients with non-deficit schizophrenia (SZND) in neurobiological aspects, but the results are far from conclusive. We applied for the first time, graph theory analyses to discriminate local and global indices of brain network topology in SZD and SZND patients compared with healthy controls (HC). High-resolution T1-weighted images were acquired for 21 SZD patients, 21 SZND patients, and 21 HC to measure cortical thickness from 68 brain regions. Graph-based metrics (i.e., centrality, segregation, and integration) were computed and compared among groups, at both global and regional networks. When compared to HC, at the regional level, SZND were characterized by temporoparietal segregation and integration differences, while SZD showed widespread alterations in all network measures. SZD also showed less segregated network topology at the global level in comparison to HC. SZD and SZND differed in terms of centrality and integration measures in nodes belonging to the left temporoparietal cortex and to the limbic system. SZD is characterized by topological features in the network architecture of brain regions involved in negative symptomatology. Such results help to better define the neurobiology of SZD (SZD: Deficit Schizophrenia; SZND: Non-Deficit Schizophrenia; SZ: Schizophrenia; HC: healthy controls; CC: clustering coefficient; L: characteristic path length; E: efficiency; D: degree; CCnode: CC of a node; CCglob: the global CC of the network; Eloc: efficiency of the information transfer flow either within segregated subgraphs or neighborhoods nodes; Eglob: efficiency of the information transfer flow among the global network; FDA: Functional Data Analysis; and Dmin: estimated minimum densities).
Collapse
Affiliation(s)
- Daniela Vecchio
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Federica Natalizi
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Ducci
- Department of Mental Health, ASL Roma 1, 00135 Rome, Italy
| | - Sonia Ambrogi
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| |
Collapse
|
29
|
Rakesh G, Logue MW, Clarke-Rubright E, Haswell CC, Thompson PM, De Bellis MD, Morey RA, Sun D. Network Centrality and Modularity of Structural Covariance Networks in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study. Brain Connect 2023; 13:211-225. [PMID: 36511392 PMCID: PMC10325816 DOI: 10.1089/brain.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction: Cortical thickness (CT) and surface area (SA) are established biomarkers of brain pathology in posttraumatic stress disorder (PTSD). Structural covariance networks (SCNs) are represented as graphs with brain regions as nodes and correlations between nodes as edges. Methods: We built SCNs for PTSD and control groups using 148 CT and SA measures that were harmonized for site in n = 3439 subjects from Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA)-Psychiatric Genomics Consortium (PGC) PTSD. We compared centrality between PTSD and controls as well as interactions of diagnostic group with age, sex, and comorbid major depressive disorder (MDD) status. We investigated associations between network modularity and diagnostic grouping. Results: Nodes with higher CT-based centrality in PTSD compared with controls included the left inferior frontal sulcus, left fusiform gyrus, left superior temporal gyrus, and right inferior temporal gyrus. Children (<10 years) and adolescents (10-21) with PTSD showed greater centrality in frontotemporal areas compared with young (22-39) and middle-aged adults (40-59) with PTSD, who showed higher centrality in occipital areas. The PTSD diagnostic group interactions with sex and comorbid MDD showed altered centrality in occipital regions, along with greater visual network (VN) modularity in PTSD subjects compared with controls. Conclusion: Structural covariance in PTSD is associated with centrality differences in occipital areas and VN modularity differences in a large well-powered sample. In the context of extensive structural covariance remodeling taking place before and during adolescence, the present findings suggest a process of cortical remodeling that commences with trauma and/or the onset of PTSD but may also predate these events. Impact statement Centrality is a graph theory measure that offers insights into a node's relationship with all other nodes in the brain. Centrality pinpoints the drivers of brain communication within networks and nodes and may be a promising target for treatments such as neuromodulation. Modularity can pinpoint modules that exist within larger networks and quantify the connections between these modules. Centrality and modularity complement functional and structural connectivity measurements within specific brain networks.
Collapse
Affiliation(s)
- Gopalkumar Rakesh
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina, USA
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- Biomedical Genetics, Boston University, Boston, Massachusetts, USA
| | - Emily Clarke-Rubright
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina, USA
| | - Courtney C. Haswell
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Marina del Rey, California, USA
| | - Michael D. De Bellis
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina, USA
| | - Rajendra A. Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina, USA
| | - Delin Sun
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina, USA
| |
Collapse
|
30
|
Ratcliffe C, Adan G, Marson A, Solomon T, Saini J, Sinha S, Keller SS. Neurocysticercosis-related Seizures: Imaging Biomarkers. Seizure 2023; 108:13-23. [PMID: 37060627 DOI: 10.1016/j.seizure.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Neurocysticercosis (NCC)-a parasitic CNS infection endemic to developing nations-has been called the leading global cause of acquired epilepsy yet remains understudied. It is currently unknown why a large proportion of patients develop recurrent seizures, often following the presentation of acute seizures. Furthermore, the presentation of NCC is heterogenous and the features that predispose to the development of an epileptogenic state remain uncertain. Perilesional factors (such as oedema and gliosis) have been implicated in NCC-related ictogenesis, but the effects of cystic factors, including lesion load and location, seem not to play a role in the development of habitual epilepsy. In addition, the cytotoxic consequences of the cyst's degenerative stages are varied and the majority of research, relying on retrospective data, lacks the necessary specificity to distinguish between acute symptomatic and unprovoked seizures. Previous research has established that epileptogenesis can be the consequence of abnormal network connectivity, and some imaging studies have suggested that a causative link may exist between NCC and aberrant network organisation. In wider epilepsy research, network approaches have been widely adopted; studies benefiting predominantly from the rich, multimodal data provided by advanced MRI methods are at the forefront of the field. Quantitative MRI approaches have the potential to elucidate the lesser-understood epileptogenic mechanisms of NCC. This review will summarise the current understanding of the relationship between NCC and epilepsy, with a focus on MRI methodologies. In addition, network neuroscience approaches with putative value will be highlighted, drawing from current imaging trends in epilepsy research.
Collapse
Affiliation(s)
- Corey Ratcliffe
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.
| | - Guleed Adan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Anthony Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- The Walton Centre NHS Foundation Trust, Liverpool, UK; Veterinary and Ecological Sciences, National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, University of Liverpool, Liverpool, UK; Tropical and Infectious Diseases Unit, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
31
|
Broce IJ, Caverzasi E, Sacco S, Nillo RM, Paoletti M, Desikan RS, Geschwind M, Sugrue LP. PRNP expression predicts imaging findings in sporadic Creutzfeldt-Jakob disease. Ann Clin Transl Neurol 2023; 10:536-552. [PMID: 36744645 PMCID: PMC10109249 DOI: 10.1002/acn3.51739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE We explored the relationship between regional PRNP expression from healthy brain tissue and patterns of increased and decreased diffusion and regional brain atrophy in patients with sporadic Creutzfeldt-Jakob disease (sCJD). METHODS We used PRNP microarray data from 6 healthy adult brains from Allen Brain Institute and T1-weighted and diffusion-weighted MRIs from 34 patients diagnosed with sCJD and 30 age- and sex-matched healthy controls to construct partial correlation matrices across brain regions for specific measures of interest: PRNP expression, mean diffusivity, volume, cortical thickness, and local gyrification index, a measure of cortical folding. RESULTS Regional patterns of PRNP expression in the healthy brain correlated with regional patterns of diffusion signal abnormalities and atrophy in sCJD. Among different measures of cortical morphology, regional patterns of local gyrification index in sCJD most strongly correlated with regional patterns of PRNP expression. At the vertex-wise level, different molecular subtypes of sCJD showed distinct regional correlations in local gyrification index across the cortex. Local gyrification index correlation patterns most closely matched patterns of PRNP expression in sCJD subtypes known to have greatest pathologic involvement of the cerebral cortex. INTERPRETATION These results suggest that the specific genetic and molecular environment in which the prion protein is expressed confer variable vulnerability to misfolding across different brain regions that is reflected in patterns of imaging findings in sCJD. Further work in larger samples will be needed to determine whether these regional imaging patterns can serve as reliable markers of distinct disease subtypes to improve diagnosis and treatment targeting.
Collapse
Affiliation(s)
- Iris J. Broce
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California, San Francisco, UCSFSan FranciscoCaliforniaUSA
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoCaliforniaUSA
| | - Eduardo Caverzasi
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California, San Francisco, UCSFSan FranciscoCaliforniaUSA
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Simone Sacco
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California, San Francisco, UCSFSan FranciscoCaliforniaUSA
- Division of Neuroimaging, Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
| | - Ryan Michael Nillo
- Neuroradiology Section, Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Matteo Paoletti
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California, San Francisco, UCSFSan FranciscoCaliforniaUSA
- Advanced Imaging and Radiomics Center, Neuroradiology DepartmentIRCCS Mondino FoundationPaviaItaly
| | - Rahul S. Desikan
- Neuroradiology Section, Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Michael Geschwind
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California, San Francisco, UCSFSan FranciscoCaliforniaUSA
| | - Leo P. Sugrue
- Neuroradiology Section, Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
32
|
Gao J, Chen M, Xiao D, Li Y, Zhu S, Li Y, Dai X, Lu F, Wang Z, Cai S, Wang J. Classification of major depressive disorder using an attention-guided unified deep convolutional neural network and individual structural covariance network. Cereb Cortex 2023; 33:2415-2425. [PMID: 35641181 DOI: 10.1093/cercor/bhac217] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Major depressive disorder (MDD) is the second leading cause of disability worldwide. Currently, the structural magnetic resonance imaging-based MDD diagnosis models mainly utilize local grayscale information or morphological characteristics in a single site with small samples. Emerging evidence has demonstrated that different brain structures in different circuits have distinct developmental timing, but mature coordinately within the same functional circuit. Thus, establishing an attention-guided unified classification framework with deep learning and individual structural covariance networks in a large multisite dataset could facilitate developing an accurate diagnosis strategy. Our results showed that attention-guided classification could improve the classification accuracy from primary 75.1% to ultimate 76.54%. Furthermore, the discriminative features of regional covariance connectivities and local structural characteristics were found to be mainly located in prefrontal cortex, insula, superior temporal cortex, and cingulate cortex, which have been widely reported to be closely associated with depression. Our study demonstrated that our attention-guided unified deep learning framework may be an effective tool for MDD diagnosis. The identified covariance connectivities and structural features may serve as biomarkers for MDD.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mingren Chen
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Die Xiao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yue Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shunli Zhu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
| | - Xin Dai
- School of Automation, Chongqing University, Chongqing 400044, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shimin Cai
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiaojian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
33
|
Han S, Xue K, Chen Y, Xu Y, Li S, Song X, Guo HR, Fang K, Zheng R, Zhou B, Chen J, Wei Y, Zhang Y, Cheng J. Identification of shared and distinct patterns of brain network abnormality across mental disorders through individualized structural covariance network analysis. Psychol Med 2023; 53:1-12. [PMID: 36876493 DOI: 10.1017/s0033291723000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Mental disorders, including depression, obsessive compulsive disorder (OCD), and schizophrenia, share a common neuropathy of disturbed large-scale coordinated brain maturation. However, high-interindividual heterogeneity hinders the identification of shared and distinct patterns of brain network abnormalities across mental disorders. This study aimed to identify shared and distinct patterns of altered structural covariance across mental disorders. METHODS Subject-level structural covariance aberrance in patients with mental disorders was investigated using individualized differential structural covariance network. This method inferred structural covariance aberrance at the individual level by measuring the degree of structural covariance in patients deviating from matched healthy controls (HCs). T1-weighted anatomical images of 513 participants (105, 98, 190 participants with depression, OCD and schizophrenia, respectively, and 130 age- and sex-matched HCs) were acquired and analyzed. RESULTS Patients with mental disorders exhibited notable heterogeneity in terms of altered edges, which were otherwise obscured by group-level analysis. The three disorders shared high difference variability in edges attached to the frontal network and the subcortical-cerebellum network, and they also exhibited disease-specific variability distributions. Despite notable variability, patients with the same disorder shared disease-specific groups of altered edges. Specifically, depression was characterized by altered edges attached to the subcortical-cerebellum network; OCD, by altered edges linking the subcortical-cerebellum and motor networks; and schizophrenia, by altered edges related to the frontal network. CONCLUSIONS These results have potential implications for understanding heterogeneity and facilitating personalized diagnosis and interventions for mental disorders.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yinhuan Xu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui-Rong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| |
Collapse
|
34
|
Fan YS, Xu Y, Li Q, Chen Y, Guo X, Yang S, Guo J, Sheng W, Wang C, Gao Q, Chen H. Systematically mapping gray matter abnormal patterns in drug-naïve first-episode schizophrenia from childhood to adolescence. Cereb Cortex 2023; 33:1452-1461. [PMID: 35396845 DOI: 10.1093/cercor/bhac148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Schizophrenia originates early in neurodevelopment, underscoring the need to elaborate on anomalies in the still maturing brain of early-onset schizophrenia (EOS). METHODS Gray matter (GM) volumes were evaluated in 94 antipsychotic-naïve first-episode EOS patients and 100 typically developing (TD) controls. The anatomical profiles of changing GM deficits in EOS were detected using 2-way analyses of variance with diagnosis and age as factors, and its timing was further charted using stage-specific group comparisons. Interregional relationships of GM alterations were established using structural covariance network analyses. RESULTS Antagonistic interaction results suggested dynamic GM abnormalities of the left fusiform gyrus, inferior occipital gyrus, and lingual gyrus in EOS. These regions comprise a dominating part of the ventral stream, a ventral occipitotemporal (vOT) network engaged in early social information processing. GM abnormalities were mainly located in the vOT regions in childhood-onset patients, whereas in the rostral prefrontal cortex (rPFC) in adolescent-onset patients. Moreover, compared with TD controls, patients' GM synchronization with the ventral stream was disrupted in widespread high-order social perception regions including the rPFC and salience network. CONCLUSIONS The current findings reveal age-related anatomical abnormalities of the social perception system in pediatric patients with schizophrenia.
Collapse
Affiliation(s)
- Yun-Shuang Fan
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030000, China
| | - Qiang Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030000, China
| | - Yuyan Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Siqi Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jing Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Sheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chong Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qing Gao
- MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Huafu Chen
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
35
|
Dang M, Yang C, Chen K, Lu P, Li H, Zhang Z. Hippocampus-centred grey matter covariance networks predict the development and reversion of mild cognitive impairment. Alzheimers Res Ther 2023; 15:27. [PMID: 36732782 PMCID: PMC9893696 DOI: 10.1186/s13195-023-01167-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) has been thought of as the transitional stage between normal ageing and Alzheimer's disease, involving substantial changes in brain grey matter structures. As most previous studies have focused on single regions (e.g. the hippocampus) and their changes during MCI development and reversion, the relationship between grey matter covariance among distributed brain regions and clinical development and reversion of MCI remains unclear. METHODS With samples from two independent studies (155 from the Beijing Aging Brain Rejuvenation Initiative and 286 from the Alzheimer's Disease Neuroimaging Initiative), grey matter covariance of default, frontoparietal, and hippocampal networks were identified by seed-based partial least square analyses, and random forest models were applied to predict the progression from normal cognition to MCI (N-t-M) and the reversion from MCI to normal cognition (M-t-N). RESULTS With varying degrees, the grey matter covariance in the three networks could predict N-t-M progression (AUC = 0.692-0.792) and M-t-N reversion (AUC = 0.701-0.809). Further analyses indicated that the hippocampus has emerged as an important region in reversion prediction within all three brain networks, and even though the hippocampus itself could predict the clinical reversion of M-t-N, the grey matter covariance showed higher prediction accuracy for early progression of N-t-M. CONCLUSIONS Our findings are the first to report grey matter covariance changes in MCI development and reversion and highlight the necessity of including grey matter covariance changes along with hippocampal degeneration in the early detection of MCI and Alzheimer's disease.
Collapse
Affiliation(s)
- Mingxi Dang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, 100875 China
| | - Caishui Yang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, 100875 China ,grid.20513.350000 0004 1789 9964School of Systems Science, Beijing Normal University, Beijing, 100875 China
| | - Kewei Chen
- grid.418204.b0000 0004 0406 4925Banner Alzheimer’s Institute, Phoenix, AZ 85006 USA
| | - Peng Lu
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, 100875 China
| | - He Li
- grid.410318.f0000 0004 0632 3409Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | | |
Collapse
|
36
|
Mahony BW, Tu D, Rau S, Liu S, Lalonde FM, Alexander-Bloch AF, Satterthwaite TD, Shinohara RT, Bassett DS, Milham MP, Raznahan A. IQ Modulates Coupling Between Diverse Dimensions of Psychopathology in Children and Adolescents. J Am Acad Child Adolesc Psychiatry 2023; 62:59-73. [PMID: 35868430 PMCID: PMC9805478 DOI: 10.1016/j.jaac.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Correlations between cognitive ability and psychopathology are well recognized, but prior research has been limited by focusing on individuals with intellectual disability, single-diagnosis psychiatric populations, or few measures of psychopathology. Here, we quantify relationships between full-scale IQ and multiple dimensions of psychopathology in a diverse care-seeking population, with a novel focus on differential coupling between psychopathology dimensions as a function of IQ. METHOD A total of 70 dimensional measures of psychopathology, plus IQ and demographic data, were collated for 2,752 children and adolescents from the Healthy Brain Network dataset. We first examined univariate associations between IQ and psychopathology, and then characterized how the correlational architecture of psychopathology differs between groups at extremes of the IQ distribution. RESULTS Associations with IQ vary in magnitude between different domains of psychopathology: IQ shows the strongest negative correlations with attentional and social impairments, but is largely unrelated to affective symptoms and psychopathy. Lower IQ is associated with stronger coupling between internalizing problems and aggression, repetitive behaviors, and hyperactivity/inattentiveness. CONCLUSION Our analyses reveal that variation in general cognitive ability is associated not only with significant and selective shifts in severity of psychopathology, but also in the coupling between different dimensions of psychopathology. These findings have relevance for the clinical assessment of mental health in populations with varying IQ, and may also inform ongoing efforts to improve the measurement of psychopathology and to understand how relationships between cognition and behavior are reflected in brain organization. DIVERSITY & INCLUSION STATEMENT We worked to ensure sex and gender balance in the recruitment of human participants. We worked to ensure sex balance in the selection of non-human subjects. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. One or more of the authors of this paper received support from a program designed to increase minority representation in science. We actively worked to promote sex and gender balance in our author group. We actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our author group. While citing references scientifically relevant for this work, we also actively worked to promote sex and gender balance in our reference list. The author list of this paper includes contributors from the location and/or community where the research was conducted who participated in the data collection, design, analysis, and/or interpretation of the work. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science.
Collapse
Affiliation(s)
| | - Danni Tu
- Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Srishti Rau
- National Institute of Mental Health, Bethesda, Maryland; Children's National Health System, Rockville, Maryland
| | - Siyuan Liu
- National Institute of Mental Health, Bethesda, Maryland
| | | | | | | | | | - Dani S Bassett
- Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania, Philadelphia; Santa Fe Institute, New Mexico
| | | | - Armin Raznahan
- National Institute of Mental Health, Bethesda, Maryland.
| |
Collapse
|
37
|
Schmitt JE, DeBevits JJ, Roalf DR, Ruparel K, Gallagher RS, Gur RC, Alexander-Bloch A, Eom TY, Alam S, Steinberg J, Akers W, Khairy K, Crowley TB, Emanuel B, Zakharenko SS, McDonald-McGinn DM, Gur RE. A Comprehensive Analysis of Cerebellar Volumes in the 22q11.2 Deletion Syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:79-90. [PMID: 34848384 PMCID: PMC9162086 DOI: 10.1016/j.bpsc.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND The presence of a 22q11.2 microdeletion (22q11.2 deletion syndrome [22q11DS]) ranks among the greatest known genetic risk factors for the development of psychotic disorders. There is emerging evidence that the cerebellum is important in the pathophysiology of psychosis. However, there is currently limited information on cerebellar neuroanatomy in 22q11DS specifically. METHODS High-resolution 3T magnetic resonance imaging was acquired in 79 individuals with 22q11DS and 70 typically developing control subjects (N = 149). Lobar and lobule-level cerebellar volumes were estimated using validated automated segmentation algorithms, and subsequently group differences were compared. Hierarchical clustering, principal component analysis, and graph theoretical models were used to explore intercerebellar relationships. Cerebrocerebellar structural connectivity with cortical thickness was examined via linear regression models. RESULTS Individuals with 22q11DS had, on average, 17.3% smaller total cerebellar volumes relative to typically developing subjects (p < .0001). The lobules of the superior posterior cerebellum (e.g., VII and VIII) were particularly affected in 22q11DS. However, all cerebellar lobules were significantly smaller, even after adjusting for total brain volumes (all cerebellar lobules p < .0002). The superior posterior lobule was disproportionately associated with cortical thickness in the frontal lobes and cingulate cortex, brain regions known be affected in 22q11DS. Exploratory analyses suggested that the superior posterior lobule, particularly Crus I, may be associated with psychotic symptoms in 22q11DS. CONCLUSIONS The cerebellum is a critical but understudied component of the 22q11DS neuroendophenotype.
Collapse
Affiliation(s)
- J Eric Schmitt
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania; Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - John J DeBevits
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Kosha Ruparel
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - R Sean Gallagher
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Ruben C Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Aaron Alexander-Bloch
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shahinur Alam
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffrey Steinberg
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Walter Akers
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Khaled Khairy
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Beverly Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania; Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Kong L, Lui SSY, Wang Y, Hung KSY, Ho KKH, Wang Y, Huang J, Mak HKF, Sham PC, Cheung EFC, Chan RCK. Structural network alterations and their association with neurological soft signs in schizophrenia: Evidence from clinical patients and unaffected siblings. Schizophr Res 2022; 248:345-352. [PMID: 34872833 DOI: 10.1016/j.schres.2021.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Grey matter abnormalities and neurological soft signs (NSS) have been found in schizophrenia patients and their unaffected relatives. Evidence suggested that NSS are associated with grey matter morphometrical alterations in multiple regions in schizophrenia. However, the association between NSS and structural abnormalities at network level remains largely unexplored, especially in the schizophrenia and unaffected siblings. METHOD We used source-based morphometry (SBM) to examine the association of structural brain network characteristics with NSS in 62 schizophrenia patients, 25 unaffected siblings, and 60 healthy controls. RESULTS Two components, namely the IC-5 (superior temporal gyrus, inferior frontal gyrus and insula network) and the IC-10 (parahippocampal gyrus, fusiform, thalamus and insula network) showed significant grey matter reductions in schizophrenia patients compared to healthy controls and unaffected siblings. Further association analysis demonstrated separate NSS-related grey matter covarying patterns in schizophrenia, unaffected siblings and healthy controls. Specifically, NSS were negatively associated with IC-1 (hippocampus, caudate and thalamus network) and IC-5 in schizophrenia, but with IC-3 (caudate, superior and middle frontal cortices network) in unaffected siblings and with IC-5 in healthy controls. CONCLUSION Our results confirmed the key cortical and subcortical network abnormalities and NSS-related grey matter covarying patterns in the schizophrenia and unaffected siblings. Our findings suggest that brain regions implicating genetic liability to schizophrenia are partly separated from brain regions implicating neural abnormalities.
Collapse
Affiliation(s)
- Li Kong
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Simon S Y Lui
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; Castle Peak Hospital, Hong Kong, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, the University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, the University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, the University of Chinese Academy of Sciences, Beijing, China
| | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, the University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, the University of Hong Kong, Hong Kong, China; Centre for PanorOmic Sciences, the University of Hong Kong, Hong Kong, China
| | | | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, the University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Mo X, He M, Zhou L, Liu Y, Zhu H, Huang X, Zeng G, Zhang J, Li L. Mapping structural covariance networks in children and adolescents with post-traumatic stress disorder after earthquake. Front Psychiatry 2022; 13:923572. [PMID: 36186852 PMCID: PMC9520616 DOI: 10.3389/fpsyt.2022.923572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
For children and adolescents, there is a high risk of developing post-traumatic stress disorder (PTSD) after suffering from catastrophic events. Previous studies have identified brain functionally and subcortical brain volumes structurally abnormalities in this population. However, up till now, researches exploring alterations of regional cortical thickness (CTh) and brain interregional structural covariance networks (SCNs) are scarce. In this cross-sectional study, CTh measures are derived from 3-Tesla Tl-weighted MRI imaging data in a well-characterized combined group of children and adolescents with PTSD after an earthquake (N = 35) and a traumatized healthy control group (N = 24). By using surface-based morphometry (SBM) techniques, the regional CTh analysis was conducted. To map interregional SCNs derived from CTh, twenty-five altered brain regions reported in the PTSD population were selected as seeds. Whole-brain SBM analysis discovered a significant thickness reduction in the left medial orbitofrontal cortex for the subjects with PTSD. Similarly, analysis of SCNs associated with "seed" regions primarily located in default mode network (DMN), midline cortex structures, motor cortex, auditory association cortex, limbic system, and visual cortex demonstrated that children and adolescents with PTSD are associated with altered structural covariance with six key regions. This study provides evidence for distinct CTh correlates of PTSD that are present across children and adolescents, suggesting that brain cortical abnormalities related to trauma exposure are present in this population, probably by driving specific symptom clusters associated with disrupted extinction recall mechanisms for fear, episodic memory network and visuospatial attention.
Collapse
Affiliation(s)
- Xian Mo
- College of Electrical Engineering, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China
| | - Meirong He
- College of Electrical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Lijun Zhou
- College of Electrical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yunfei Liu
- College of Electrical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Hongru Zhu
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guojun Zeng
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junran Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China
| | - Lingjiang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Yokota S, Takeuchi H, Asano K, Asano M, Sassa Y, Taki Y, Kawashima R. Sex interaction of white matter microstructure and verbal IQ in corpus callosum in typically developing children and adolescents. Brain Dev 2022; 44:531-539. [PMID: 35489976 DOI: 10.1016/j.braindev.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Childhood is an extremely important time for neural development that has a critical role in human intelligence. Efficient information processing is crucial for higher intelligence, so the intra- or inter-hemispheric interaction is vital. However, the relationship between neuroanatomical connections and intelligence in typically developing children, as well as sex differences in this relationship, remains unknown. METHODS Participants were 253 typically developing children (121 boys and 132 girls) aged 5-18. We acquired diffusion tensor imaging data and intelligence using an age-appropriate version of the IQ test; Wechsler Intelligence Scale for Children (WISC) or Wechsler Adult Intelligence Scale (WAIS). We conducted whole-brain multiple regression analysis to investigate the association between fractional anisotropy (FA), which reflects white matter microstructural properties, and each composite score of IQ test (full-scale IQ, performance IQ, and verbal IQ). RESULTS FA was positively correlated with full-scale IQ in bilateral inferior occipitofrontal fasciculus, genu, and splenium of corpus callosum (CC). FA in the right superior longitudinal fasciculus, bilateral inferior longitudinal fasciculus, and splenium of CC were also positively correlated with performance IQ. Furthermore, we found significant sex interaction between FA in the CC and verbal IQ. FA was positively correlated in boys, and negatively correlated in girls. CONCLUSION Results suggest that efficient anatomical connectivity between parietal and frontal regions is crucial for children's intelligence. Moreover, inter-hemispheric connections play a critical role in verbal abilities in boys.
Collapse
Affiliation(s)
- Susumu Yokota
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan.
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Asano
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Michiko Asano
- Department of Child and Adolescent Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Nuclear Medicine & Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Smart Ageing International Research Centre, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
41
|
The Dorsolateral Prefrontal Cortex Presents Structural Variations Associated with Empathy and Emotion Regulation in Psychotherapists. Brain Topogr 2022; 35:613-626. [DOI: 10.1007/s10548-022-00910-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
|
42
|
Larivière S, Royer J, Rodríguez-Cruces R, Paquola C, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Yasuda CL, Bonilha L, Gleichgerrcht E, Focke NK, Domin M, von Podewills F, Langner S, Rummel C, Wiest R, Martin P, Kotikalapudi R, O'Brien TJ, Sinclair B, Vivash L, Desmond PM, Lui E, Vaudano AE, Meletti S, Tondelli M, Alhusaini S, Doherty CP, Cavalleri GL, Delanty N, Kälviäinen R, Jackson GD, Kowalczyk M, Mascalchi M, Semmelroch M, Thomas RH, Soltanian-Zadeh H, Davoodi-Bojd E, Zhang J, Winston GP, Griffin A, Singh A, Tiwari VK, Kreilkamp BAK, Lenge M, Guerrini R, Hamandi K, Foley S, Rüber T, Weber B, Depondt C, Absil J, Carr SJA, Abela E, Richardson MP, Devinsky O, Severino M, Striano P, Tortora D, Kaestner E, Hatton SN, Vos SB, Caciagli L, Duncan JS, Whelan CD, Thompson PM, Sisodiya SM, Bernasconi A, Labate A, McDonald CR, Bernasconi N, Bernhardt BC. Structural network alterations in focal and generalized epilepsy assessed in a worldwide ENIGMA study follow axes of epilepsy risk gene expression. Nat Commun 2022; 13:4320. [PMID: 35896547 PMCID: PMC9329287 DOI: 10.1038/s41467-022-31730-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | | | - Antonio Gambardella
- Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy
- Institute of Neurology, University Magna Græcia, Catanzaro, CZ, Italy
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - Simon S Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Fernando Cendes
- Department of Neurology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Niels K Focke
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Felix von Podewills
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Soenke Langner
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Patricia M Desmond
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Elaine Lui
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
- Primary Care Department, Azienda Sanitaria Locale di Modena, Modena, Italy
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Colin P Doherty
- Department of Neurology, St James' Hospital, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland
- Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Magdalena Kowalczyk
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mario Mascalchi
- Neuroradiology Research Program, Meyer Children Hospital of Florence, University of Florence, Florence, Italy
| | - Mira Semmelroch
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Rhys H Thomas
- Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hamid Soltanian-Zadeh
- Contol and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China
| | - Gavin P Winston
- Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Aoife Griffin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | | | - Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
- Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Khalid Hamandi
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Whales, Cardiff, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Theodor Rüber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah J A Carr
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eugenio Abela
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mark P Richardson
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, US
| | | | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Domenico Tortora
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Erik Kaestner
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Sean N Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Christopher D Whelan
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Angelo Labate
- Neurology, BIOMORF Dipartment, University of Messina, Messina, Italy
| | - Carrie R McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
43
|
Long Z. SPAMRI: A MATLAB Toolbox for Surface-Based Processing and Analysis of Magnetic Resonance Imaging. Front Hum Neurosci 2022; 16:946156. [PMID: 35874152 PMCID: PMC9301123 DOI: 10.3389/fnhum.2022.946156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Structural magnetic resonance imaging (MRI) has elicited increasing attention in morphological surface studies due to its stability and sensitivity to neurodegenerative processes, particularly in exploring brain aging and psychiatric disease. However, a user-friendly toolbox for the surface-based analysis of structural MRI is still lacking. On the basis of certain software functions in FreeSurfer, CAT and ANTs, a MATLAB toolbox called "surface-based processing and analysis of MRI" (SPAMRI) has been developed, which can be performed in Windows, Linux and Mac-OS. SPAMRI contains several features as follows: (1) open-source MATLAB-based package with a graphical user interface (GUI); (2) a set of images that can be generated for quality checking, such as Talairach transform, skull strip, and surface reconstruction; (3) user-friendly GUI with capabilities on statistical analysis, multiple comparison corrections, reporting of results, and surface measurement extraction; and (4) provision of a conversion tool between surface files (e.g., mesh files) and volume files (e.g., NIFTI files). SPAMRI is applied to a publicly released structural MRI dataset of 44 healthy young adults and 39 old adults. Findings showed that old people have decreased cortical thickness, especially in prefrontal cortex, relative to those of young adults, thereby suggesting a cognitive decline in the former. SPAMRI is anticipated to substantially simplify surface-based image processing and MRI dataset analyses and subsequently open new opportunities to investigate structural morphologies.
Collapse
Affiliation(s)
- Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
44
|
Bolton TAW, Van De Ville D, Régis J, Witjas T, Girard N, Levivier M, Tuleasca C. Morphometric features of drug-resistant essential tremor and recovery after stereotactic radiosurgical thalamotomy. Netw Neurosci 2022; 6:850-869. [PMID: 36605417 PMCID: PMC9810368 DOI: 10.1162/netn_a_00253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/02/2022] [Indexed: 01/09/2023] Open
Abstract
Essential tremor (ET) is the most common movement disorder. Its neural underpinnings remain unclear. Here, we quantified structural covariance between cortical thickness (CT), surface area (SA), and mean curvature (MC) estimates in patients with ET before and 1 year after ventro-intermediate nucleus stereotactic radiosurgical thalamotomy, and contrasted the observed patterns with those from matched healthy controls. For SA, complex rearrangements within a network of motion-related brain areas characterized patients with ET. This was complemented by MC alterations revolving around the left middle temporal cortex and the disappearance of positive-valued covariance across both modalities in the right fusiform gyrus. Recovery following thalamotomy involved MC readjustments in frontal brain centers, the amygdala, and the insula, capturing nonmotor characteristics of the disease. The appearance of negative-valued CT covariance between the left parahippocampal gyrus and hippocampus was another recovery mechanism involving high-level visual areas. This was complemented by the appearance of negative-valued CT/MC covariance, and positive-valued SA/MC covariance, in the right inferior temporal cortex and bilateral fusiform gyrus. Our results demonstrate that different morphometric properties provide complementary information to understand ET, and that their statistical cross-dependences are also valuable. They pinpoint several anatomical features of the disease and highlight routes of recovery following thalamotomy.
Collapse
Affiliation(s)
- Thomas A. W. Bolton
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland,Connectomics Laboratory, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland,* Corresponding Author:
| | - Dimitri Van De Ville
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Jean Régis
- Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Tatiana Witjas
- Neurology Department, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Nadine Girard
- Department of Diagnostic and Interventional Neuroradiology, Centre de Résonance Magnétique Biologique et Médicale, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland,Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Constantin Tuleasca
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland,Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland,Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
45
|
Huang G, Xin M, Hao Y, Bai S, Liu J, Zhang C. Cerebral Metabolic Network in Patients With Anti-N-Methyl-D-Aspartate Receptor Encephalitis on 18F-FDG PET Imaging. Front Neurosci 2022; 16:885425. [PMID: 35573296 PMCID: PMC9098961 DOI: 10.3389/fnins.2022.885425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAnti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common autoimmune encephalitis (AE), and the prognosis may significantly be improved if identified earlier and immune-related treated more effectively. This study evaluated the brain metabolic network using fluorodeoxyglucose positron emission tomography (FDG PET).Material and methodsFDG PET imaging of patients with NMDAR encephalitis was used to investigate the metabolic connectivity network, which was analyzed using the graph theory. The results in patients were compared to those in age- and sex-matched healthy controls.ResultsThe hub nodes were mainly in the right frontal lobe in patients with NMDAR encephalitis. The global and local efficiencies in most brain regions were significantly reduced, and the shortest characteristic path length was significantly longer, especially in the temporal and occipital lobes. Significant network functions of topology properties were enhanced in the right frontal, caudate nucleus, and cingulate gyrus. In addition, the internal connection integration in the left cerebral hemisphere was poor, and the transmission efficiency of Internet information was low.ConclusionThe present findings indicate that those characteristic and connections of metabolic network were changed in the brain by graph theory analysis quantitatively, which is helpful to better understand neuropathological and physiological mechanisms in patients with anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Gan Huang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei Xin
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Hao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuwei Bai
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Chenpeng Zhang
| | - Chenpeng Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Jianjun Liu
| |
Collapse
|
46
|
Sha Z, van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Bernhardt B, Bolte S, Busatto GF, Calderoni S, Calvo R, Daly E, Deruelle C, Duan M, Duran FLS, Durston S, Ecker C, Ehrlich S, Fair D, Fedor J, Fitzgerald J, Floris DL, Franke B, Freitag CM, Gallagher L, Glahn DC, Haar S, Hoekstra L, Jahanshad N, Jalbrzikowski M, Janssen J, King JA, Lazaro L, Luna B, McGrath J, Medland SE, Muratori F, Murphy DGM, Neufeld J, O'Hearn K, Oranje B, Parellada M, Pariente JC, Postema MC, Remnelius KL, Retico A, Rosa PGP, Rubia K, Shook D, Tammimies K, Taylor MJ, Tosetti M, Wallace GL, Zhou F, Thompson PM, Fisher SE, Buitelaar JK, Francks C. Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Mol Psychiatry 2022; 27:2114-2125. [PMID: 35136228 PMCID: PMC9126820 DOI: 10.1038/s41380-022-01452-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/23/2021] [Accepted: 01/14/2022] [Indexed: 12/30/2022]
Abstract
Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium's ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Universit, CNRS, Marseille, France
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sven Bolte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sara Calderoni
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosa Calvo
- Department of Child and Adolescent Psychiatry and Psychology Hospital Clinic, Psychiatry Unit, Department of Medicine, 2017SGR881, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience King's College London, London, UK
| | - Christine Deruelle
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Universit, CNRS, Marseille, France
| | - Meiyu Duan
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Fabio Luis Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sarah Durston
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
- The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry & Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Damien Fair
- Institute of Child Development, Department of Pediatrics, Masonic Institute of the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer Fedor
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline Fitzgerald
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115-5724, USA
- Olin Neuropsychiatric Research Center, Hartford, CT, USA
| | - Shlomi Haar
- Department of Brain Sciences, Imperial College London, London, UK
| | - Liesbeth Hoekstra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joost Janssen
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Joseph A King
- Department of Child and Adolescent Psychiatry & Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology Hospital Clinic, Psychiatry Unit, Department of Medicine, 2017SGR881, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jane McGrath
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Declan G M Murphy
- The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Behavioural Genetics Clinic, Adult Autism Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley Foundation NHS Trust, London, UK
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Kirsten O'Hearn
- Department of Physiology and Pharmacology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Bob Oranje
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Jose C Pariente
- Magnetic Resonance Image Core Facility, IDIBAPS (Institut d'Investigacions Biomdiques August Pi i Sunyer), Barcelona, Spain
| | - Merel C Postema
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Karl Lundin Remnelius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Alessandra Retico
- National Institute for Nuclear Physics, Pisa Division, Largo B. Pontecorvo 3, Pisa, Italy
| | - Pedro Gomes Penteado Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Katya Rubia
- Institute of Psychiatry, King's College London, London, UK
| | - Devon Shook
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristiina Tammimies
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region, Stockholm, Sweden
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Womens and Childrens Health, Karolinska Institutet and Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Margot J Taylor
- Diagnostic Imaging, The Hospital for Sick Children, and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Gregory L Wallace
- Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC, USA
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Simon E Fisher
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Clyde Francks
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
47
|
Wang X, Hu W, Wang H, Gao D, Liu Y, Zhang X, Jiang Y, Mo J, Meng F, Zhang K, Zhang JG. Altered Structural Brain Network Topology in Patients With Primary Craniocervical Dystonia. Front Neurol 2022; 13:763305. [PMID: 35432176 PMCID: PMC9005792 DOI: 10.3389/fneur.2022.763305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeRegional cortical thickness or volume analyses based upon structural MRI scans have been employed to study the pathophysiology of primary craniocervical dystonia (CCD). In the present study, brain connectivity network analyses based upon morphological distribution similarities among different brain areas were used to study the network disruption in individuals affected by CCD.MethodsThe T1 MRI scans were completed for 37 patients with CCD and 30 healthy controls, with individual brain structural networks being constructed based upon gray matter (GM) similarities in 90 regions within the brain. Area under the curve (AUC) values for each network parameter were determined, and the GRETNA program was used to conduct a graph theory-based measurement of nodal and global network properties. These properties were then compared between healthy controls and those with CCD. In addition, relationships between nodal properties and the severity of clinical dystonia were assessed through Spearman's correlation analyses.ResultsRelative to individuals in the control group, patients with CCD exhibited decreased local nodal properties in the right globus pallidus, right middle frontal gyrus, and right superior temporal pole. The degree of centrality as well as the node efficiency of the right globus pallidus were found to be significantly correlated with ocular dystonic symptom. The node efficiency of right middle frontal gyrus was significantly related to the total motor severity. No nodal properties were significantly correlated with oral dystonic motor scores. Among CCD patients, the right hemisphere exhibited more widespread decreases in connectivity associated with the motor related brain areas, associative cortex, and limbic system, particularly in the middle frontal gyrus, globus pallidus, and cingulate gyrus.ConclusionsThe assessment of morphological correlations between different areas in the brain may represent a sensitive approach for detecting alterations in brain structures and to understand the mechanistic basis for CCD at the network level. Based on the nodal properties identified in this study, the right middle frontal gyrus and globus pallidus were the most severely affected in patients with CCD. The widespread alterations in morphological connectivity, such as the cortico-cortical and cortico-subcortical networks, further support the network mechanism as a basis for CCD.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wenhan Hu
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Huimin Wang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Functional Neurosurgery, Medical Alliance of Beijing Tian Tan Hospital, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Dongmei Gao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yuye Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Fangang Meng
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Kai Zhang
| | - Jian-guo Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- *Correspondence: Jian-guo Zhang
| |
Collapse
|
48
|
Disrupted default mode network and executive control network are associated with depression severity on structural network. Neuroreport 2022; 33:227-235. [PMID: 35287146 DOI: 10.1097/wnr.0000000000001773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a psychiatric disorder with a relatively limited response to treatment. It is necessary to better understand the neuroanatomical mechanisms of structural networks. METHODS The current study recruited 181 first-onset, untreated adult MDD patients: slight MDD (SD, N = 23), moderate MDD (MD, N = 77), Heavy MDD (HD, N = 81) groups; along with a healthy control group (HC, N = 81) with matched general clinical data. FreeSurfer was used to preprocess T1 images for gray matter volume (GMV), and the default mode network (DMN) and the execution control network (ECN) were analyzed by structural covariance network (SCN). RESULTS Present study found that the GMV of brain regions reduced with the severity of the disease. Specifically, the GMV of the left anterior cingulate gyrus (ACC.L) is negatively correlated with MDD severity. In addition, the SCN connectivity of the whole-brain network increases with the increase of severity in MDD. ACC.L is a key brain region with increased connectivity between the left orbitofrontal in DMN and between the right orbitofrontal in ECN, which leads to damage to the balance of neural circuits. CONCLUSIONS Patients with smaller GMV of ACC.L are more likely to develop severe MDD, and as a key region in both networks which have distinct structural network models in DMN and ECN. MDD patients with different severity have different neuroimaging changes in DMN and ECN.
Collapse
|
49
|
He M, Ping L, Chu Z, Zeng C, Shen Z, Xu X. Identifying Changes of Brain Regional Homogeneity and Cingulo-Opercular Network Connectivity in First-Episode, Drug-Naïve Depressive Patients With Suicidal Ideation. Front Neurosci 2022; 16:856366. [PMID: 35310111 PMCID: PMC8924659 DOI: 10.3389/fnins.2022.856366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Adult patients with major depressive disorder (MDD) may not actively reveal their suicidal ideation (SI). Therefore, this study is committed to finding the alterations in the cingulo-opercular network (CON) that are closely related to SI with multi-imaging methods, thus providing neuroimaging basis for SI. Method A total of 198 participants (129 MDD patients and 69 healthy controls) were recruited and evaluated with the Montgomery–Asberg Depression Rating Scale (MADRS). The healthy individuals formed the HC group, while the MDD patients were subdivided into no SI MDD (NSI, n = 32), mild SI MDD (MSI, n = 64), and severe SI MDD (SSI, n = 33) according to their MADRS item 10. We obtained MRI data of all participants and applied regional homogeneity (ReHo) analysis to verify a previous finding that links CON abnormality to SI. In addition, we employed the structural covariance network (SCN) analysis to investigate the correlation between abnormal structural connectivity of CON and SI severity. Results Compared to those of the HC group, MDD ReHo values and gray matter volume (GMV) were consistently found abnormal in CON. ReHo values and GMV of the right orbital inferior frontal gyrus (ORBinf.R) in the MDD group decreased with the increase of SI. Compared to the HC group, the MDD patients showed enhanced structural connectivity of three pairs of brain regions in CON [ACC.L–left superior frontal gyrus (SFG.L), SFG.L–left middle temporal gyrus (MTG.L), and the SFG.L–left post-central gyrus (PoCG.L)]. Compared with that of the NSI and MSI groups, the structural connectivity of three pairs of brain regions in CON is enhanced in the SSI groups [ORBinf.L–right ventral posterior cingulate gyrus (VPCC.R), VPCC.R–SFG.R, and SFG.R–PoCG.R]. Conclusion Our findings showed the distinctive ReHo, GMV, and SCN pattern of CON in MDD patients with SI; and with the severity of suicide, abnormal brain regions increased. Our finding suggested that MDD patients with different severity of SI have different neuroimaging changes.
Collapse
Affiliation(s)
- Mengxin He
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Mental Health Institute of Yunnan, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liangliang Ping
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Zhaosong Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunqiang Zeng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Mental Health Institute of Yunnan, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Research Center for Mental Disorders, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Zonglin Shen,
| | - Xiufeng Xu
- Mental Health Institute of Yunnan, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Research Center for Mental Disorders, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Xiufeng Xu,
| |
Collapse
|
50
|
Frieske J, Pareto D, García-Vidal A, Cuypers K, Meesen RL, Alonso J, Arévalo MJ, Galán I, Renom M, Vidal-Jordana Á, Auger C, Montalban X, Rovira À, Sastre-Garriga J. Can cognitive training reignite compensatory mechanisms in advanced multiple sclerosis patients? An explorative morphological network approach. Neuroscience 2022; 495:86-96. [DOI: 10.1016/j.neuroscience.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|