1
|
Nieberlein L, Martin S, Williams KA, Gussew A, Cyriaks SD, Scheer M, Rampp S, Prell J, Hartwigsen G. Semantic Integration Demands Modulate Large-Scale Network Interactions in the Brain. Hum Brain Mapp 2024; 45:e70113. [PMID: 39723465 DOI: 10.1002/hbm.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The ability to integrate semantic information into the context of a sentence is essential for human communication. Several studies have shown that the predictability of a final keyword based on the sentence context influences semantic integration on the behavioral, neurophysiological, and neural level. However, the architecture of the underlying network interactions for semantic integration across the lifespan remains unclear. In this study, 32 healthy participants (30-75 years) performed an auditory cloze probability task during functional magnetic resonance imaging (fMRI), requiring lexical decisions on the sentence's final words. Semantic integration demands were implicitly modulated by presenting sentences with expected, unexpected, anomalous, or pseudoword endings. To elucidate network interactions supporting semantic integration, we combined univariate task-based fMRI analyses with seed-based connectivity and between-network connectivity analyses. Behavioral data revealed typical semantic integration effects, with increased integration demands being associated with longer response latencies and reduced accuracy. Univariate results demonstrated increased left frontal and temporal brain activity for sentences with higher integration demands. Between-network interactions highlighted the role of task-positive and default mode networks for sentence processing with increased semantic integration demands. Furthermore, increasing integration demands led to a higher number of behaviorally relevant network interactions, suggesting that the increased between-network coupling becomes more relevant for successful task performance as integration demands increase. Our findings elucidate the complex network interactions underlying semantic integration across the aging continuum. Stronger interactions between various task-positive and default mode networks correlated with more efficient processing of sentences with increased semantic integration demands. These results may inform future studies with healthy old and clinical populations.
Collapse
Affiliation(s)
- Laura Nieberlein
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sandra Martin
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kathleen A Williams
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Alexander Gussew
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), Halle, Germany
- Halle MR Imaging Core Facility (HMRICF), Halle (Saale), Germany
| | - Sophia D Cyriaks
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Neurosurgery, University Hospital Halle (Saale), Halle, Germany
| | - Maximilian Scheer
- Department of Neurosurgery, University Hospital Halle (Saale), Halle, Germany
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Halle (Saale), Halle, Germany
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle (Saale), Halle, Germany
| | - Gesa Hartwigsen
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Li T, Fili M, Mohammadiarvejeh P, Dawson A, Hu G, Willette AA. Associations of Coffee and Tea Consumption on Neural Network Connectivity: Unveiling the Role of Genetic Factors in Alzheimer's Disease Risk. Nutrients 2024; 16:4303. [PMID: 39770924 PMCID: PMC11677865 DOI: 10.3390/nu16244303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Coffee and tea are widely consumed beverages, but their long-term effects on cognitive function and aging remain largely unexplored. Lifestyle interventions, particularly dietary habits, offer promising strategies for enhancing cognitive performance and preventing cognitive decline. METHODS This study utilized data from the UK Biobank cohort (n = 12,025) to examine the associations between filtered coffee, green tea, and standard tea consumption and neural network functional connectivity across seven resting-state networks. We focused on networks spanning prefrontal and occipital areas that are linked to complex cognitive and behavioral functions. Linear mixed models were used to assess the main effects of coffee and tea consumption, as well as their interactions with Apolipoprotein E (APOE) genetic risk-the strongest genetic risk factor for Alzheimer's disease (AD). RESULTS Higher filtered coffee consumption was associated with increased functional connectivity in several networks, including Motor Execution, Sensorimotor, Fronto-Cingular, and a Prefrontal + 'What' Pathway Network. Similarly, greater green tea intake was associated with enhanced connectivity in the Extrastriate Visual and Primary Visual Networks. In contrast, higher standard tea consumption was linked to reduced connectivity in networks such as Memory Consolidation, Motor Execution, Fronto-Cingular, and the "What" Pathway + Prefrontal Network. The APOE4 genotype and family history of AD influenced the relationship between coffee intake and connectivity in the Memory Consolidation Network. Additionally, the APOE4 genotype modified the association between standard tea consumption and connectivity in the Sensorimotor Network. CONCLUSIONS The distinct patterns of association between coffee, green tea, and standard tea consumption and resting-state brain activity may provide insights into AD-related brain changes. The APOE4 genotype, in particular, appears to play a significant role in modulating these relationships. These findings enhance our knowledge of how commonly consumed beverages may influence cognitive function and potentially AD risk among older adults.
Collapse
Affiliation(s)
- Tianqi Li
- Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA;
| | - Mohammad Fili
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
| | - Parvin Mohammadiarvejeh
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA
| | - Alice Dawson
- Chestnut Health Systems, Lighthouse Institute, Chicago, IL 60610, USA;
| | - Guiping Hu
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA; (M.F.); (P.M.); (G.H.)
| | - Auriel A. Willette
- Department of Neurology, Rutgers University, New Brunswick, NJ 08854, USA
| |
Collapse
|
3
|
Jensen KM, Turner JA, Uddin LQ, Calhoun VD, Iraji A. Addressing Inconsistency in Functional Neuroimaging: A Replicable Data-Driven Multi-Scale Functional Atlas for Canonical Brain Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612129. [PMID: 39314443 PMCID: PMC11419112 DOI: 10.1101/2024.09.09.612129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The advent of multiple neuroimaging methodologies has greatly aided in the conceptualization of large-scale functional brain networks in the field of cognitive neuroscience. However, there is inconsistency across studies in both nomenclature and the functional entities being described. There is a need for a unifying framework that standardizes terminology across studies while also bringing analyses and results into the same reference space. Here we present a whole-brain atlas of canonical functional brain networks derived from more than 100,000 resting-state fMRI datasets. These data-driven functional networks are highly replicable across datasets and capture information from multiple spatial scales. We have organized, labeled, and described the networks with terms familiar to the fields of cognitive and affective neuroscience in order to optimize their utility in future neuroimaging analyses and enhance the accessibility of new findings. The benefits of this atlas are not limited to future template-based or reference-guided analyses, but also extend to other data-driven neuroimaging approaches across modalities, such as those using blind independent component analysis (ICA). Future studies utilizing this atlas will contribute to greater harmonization and standardization in functional neuroimaging research.
Collapse
Affiliation(s)
- Kyle M. Jensen
- Georgia State University, Atlanta, GA, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | | | - Lucina Q. Uddin
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Vince D. Calhoun
- Georgia State University, Atlanta, GA, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Armin Iraji
- Georgia State University, Atlanta, GA, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| |
Collapse
|
4
|
Liu P, Lin T, Fischer H, Feifel D, Ebner NC. Effects of four-week intranasal oxytocin administration on large-scale brain networks in older adults. Neuropharmacology 2024; 260:110130. [PMID: 39182569 DOI: 10.1016/j.neuropharm.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oxytocin (OT) is a crucial modulator of social cognition and behavior. Previous work primarily examined effects of acute intranasal oxytocin administration (IN-OT) in younger males on isolated brain regions. Not well understood are (i) chronic IN-OT effects, (ii) in older adults, (iii) on large-scale brain networks, representative of OT's wider-ranging brain mechanisms. To address these research gaps, 60 generally healthy older adults (mean age = 70.12 years, range = 55-83) were randomly assigned to self-administer either IN-OT or placebo twice daily via nasal spray over four weeks. Chronic IN-OT reduced resting-state functional connectivity (rs-FC) of both the right insula and the left middle cingulate cortex with the salience network but enhanced rs-FC of the left medial prefrontal cortex with the default mode network as well as the left thalamus with the basal ganglia-thalamus network. No significant chronic IN-OT effects were observed for between-network rs-FC. However, chronic IN-OT increased selective rs-FC of the basal ganglia-thalamus network with the salience network and the default mode network, indicative of more specialized, efficient communication between these networks. Directly comparing chronic vs. acute IN-OT, reduced rs-FC of the right insula with the salience network and between the default mode network and the basal ganglia-thalamus network, and greater selective rs-FC of the salience network with the default mode network and the basal ganglia-thalamus network, were more pronounced after chronic than acute IN-OT. Our results delineate the modulatory role of IN-OT on large-scale brain networks among older adults.
Collapse
Affiliation(s)
- Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA.
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, SE-106 91, Sweden; Stockholm University Brain Imaging Centre (SUBIC), Stockholm University, Stockholm, SE-106 91, Sweden; Aging Research Centre, Karolinska Institute, Stockholm, SE-171 77, Stockholm, Sweden
| | - David Feifel
- Department of Psychiatry, University of California, San Diego, CA, 92093, USA
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA; Institute on Aging, University of Florida, Gainesville, FL, 32611, USA; Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
5
|
Kim Y, Fisher ZF, Pipiras V. Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity. Biom J 2024; 66:e202300370. [PMID: 39470131 DOI: 10.1002/bimj.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 10/30/2024]
Abstract
This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.
Collapse
Affiliation(s)
| | - Zachary F Fisher
- The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vladas Pipiras
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Rudroff T, Klén R, Rainio O, Tuulari J. The Untapped Potential of Dimension Reduction in Neuroimaging: Artificial Intelligence-Driven Multimodal Analysis of Long COVID Fatigue. Brain Sci 2024; 14:1209. [PMID: 39766408 PMCID: PMC11674449 DOI: 10.3390/brainsci14121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
This perspective paper explores the untapped potential of artificial intelligence (AI), particularly machine learning-based dimension reduction techniques in multimodal neuroimaging analysis of Long COVID fatigue. The complexity and high dimensionality of neuroimaging data from modalities such as positron emission tomography (PET) and magnetic resonance imaging (MRI) pose significant analytical challenges. Deep neural networks and other machine learning approaches offer powerful tools for managing this complexity and extracting meaningful patterns. The paper discusses current challenges in neuroimaging data analysis, reviews state-of-the-art AI approaches for dimension reduction and multimodal integration, and examines their potential applications in Long COVID research. Key areas of focus include the development of AI-based biomarkers, AI-informed treatment strategies, and personalized medicine approaches. The authors argue that AI-driven multimodal neuroimaging analysis represents a paradigm shift in studying complex brain disorders like Long COVID. While acknowledging technical and ethical challenges, the paper emphasizes the potential of these advanced techniques to uncover new insights into the condition, which might lead to improved diagnostic and therapeutic strategies for those affected by Long COVID fatigue. The broader implications for understanding and treating other complex neurological and psychiatric conditions are also discussed.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Turku PET Centre, University of Turku, Turku University Hospital, 20520 Turku, Finland; (R.K.); (O.R.); (J.T.)
| | | | | | | |
Collapse
|
7
|
Bajracharya P, Mirzaeian S, Fu Z, Calhoun V, Shultz S, Iraji A. Born Connected: Do Infants Already Have Adult-Like Multi-Scale Connectivity Networks? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625681. [PMID: 39651136 PMCID: PMC11623577 DOI: 10.1101/2024.11.27.625681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The human brain undergoes remarkable development with the first six postnatal months witnessing the most dramatic structural and functional changes, making this period critical for in-depth research. rsfMRI studies have identified intrinsic connectivity networks (ICNs), including the default mode network, in infants. Although early formation of these networks has been suggested, the specific identification and number of ICNs reported in infants vary widely, leading to inconclusive findings. In adults, ICNs have provided valuable insights into brain function, spanning various mental states and disorders. A recent study analyzed data from over 100,000 subjects and generated a template of 105 multi-scale ICNs enhancing replicability and generalizability across studies. Yet, the presence of these ICNs in infants has not been investigated. This study addresses this significant gap by evaluating the presence of these multi-scale ICNs in infants, offering critical insight into the early stages of brain development and establishing a baseline for longitudinal studies. To accomplish this goal, we employ two sets of analyses. First, we employ a fully data-driven approach to investigate the presence of these ICNs from infant data itself. Towards this aim, we also introduce burst independent component analysis (bICA), which provides reliable and unbiased network identification. The results reveal the presence of these multi-scale ICNs in infants, showing a high correlation with the template (rho > 0.5), highlighting the potential for longitudinal continuity in such studies. We next demonstrate that reference-informed ICA-based techniques can reliably estimate these ICNs in infants, highlighting the feasibility of leveraging the NeuroMark framework for robust brain network extraction. This approach not only enhances cross-study comparisons across lifespans but also facilitates the study of brain changes across different age ranges. In summary, our study highlights the novel discovery that the infant brain already possesses ICNs that are widely observed in older cohorts.
Collapse
|
8
|
Santoro A, Battiston F, Lucas M, Petri G, Amico E. Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior. Nat Commun 2024; 15:10244. [PMID: 39592571 PMCID: PMC11599762 DOI: 10.1038/s41467-024-54472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Traditional models of human brain activity often represent it as a network of pairwise interactions between brain regions. Going beyond this limitation, recent approaches have been proposed to infer higher-order interactions from temporal brain signals involving three or more regions. However, to this day it remains unclear whether methods based on inferred higher-order interactions outperform traditional pairwise ones for the analysis of fMRI data. To address this question, we conducted a comprehensive analysis using fMRI time series of 100 unrelated subjects from the Human Connectome Project. We show that higher-order approaches greatly enhance our ability to decode dynamically between various tasks, to improve the individual identification of unimodal and transmodal functional subsystems, and to strengthen significantly the associations between brain activity and behavior. Overall, our approach sheds new light on the higher-order organization of fMRI time series, improving the characterization of dynamic group dependencies in rest and tasks, and revealing a vast space of unexplored structures within human functional brain data, which may remain hidden when using traditional pairwise approaches.
Collapse
Affiliation(s)
- Andrea Santoro
- Neuro-X Institute, EPFL, Geneva, Switzerland.
- CENTAI, Turin, Italy.
| | - Federico Battiston
- Department of Network and Data Science, Central European University, Vienna, Austria
| | - Maxime Lucas
- CENTAI, Turin, Italy
- Department of Mathematics & Namur Institute for Complex Systems (naXys), Université de Namur, Namur, Belgium
| | - Giovanni Petri
- CENTAI, Turin, Italy
- NPLab, Network Science Institute, Northeastern University London, London, UK
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Enrico Amico
- Neuro-X Institute, EPFL, Geneva, Switzerland.
- School of Mathematics, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
Kinsey S, Kazimierczak K, Camazón PA, Chen J, Adali T, Kochunov P, Adhikari BM, Ford J, van Erp TGM, Dhamala M, Calhoun VD, Iraji A. Networks extracted from nonlinear fMRI connectivity exhibit unique spatial variation and enhanced sensitivity to differences between individuals with schizophrenia and controls. NATURE. MENTAL HEALTH 2024; 2:1464-1475. [PMID: 39650801 PMCID: PMC11621020 DOI: 10.1038/s44220-024-00341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/24/2024] [Indexed: 12/11/2024]
Abstract
Schizophrenia is a chronic brain disorder associated with widespread alterations in functional brain connectivity. Although data-driven approaches such as independent component analysis are often used to study how schizophrenia impacts linearly connected networks, alterations within the underlying nonlinear functional connectivity structure remain largely unknown. Here we report the analysis of networks from explicitly nonlinear functional magnetic resonance imaging connectivity in a case-control dataset. We found systematic spatial variation, with higher nonlinear weight within core regions, suggesting that linear analyses underestimate functional connectivity within network centers. We also found that a unique nonlinear network incorporating default-mode, cingulo-opercular and central executive regions exhibits hypoconnectivity in schizophrenia, indicating that typically hidden connectivity patterns may reflect inefficient network integration in psychosis. Moreover, nonlinear networks including those previously implicated in auditory, linguistic and self-referential cognition exhibit heightened statistical sensitivity to schizophrenia diagnosis, collectively underscoring the potential of our methodology to resolve complex brain phenomena and transform clinical connectivity analysis.
Collapse
Affiliation(s)
- Spencer Kinsey
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA
- Neuroscience Institute, Georgia State University, Atlanta, GA USA
| | | | - Pablo Andrés Camazón
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, liSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore, MD USA
| | - Peter Kochunov
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Bhim M. Adhikari
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Judith Ford
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA USA
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA USA
| | - Mukesh Dhamala
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA
- Neuroscience Institute, Georgia State University, Atlanta, GA USA
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA USA
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA
- Neuroscience Institute, Georgia State University, Atlanta, GA USA
- Department of Computer Science, Georgia State University, Atlanta, GA USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA
- Neuroscience Institute, Georgia State University, Atlanta, GA USA
- Department of Computer Science, Georgia State University, Atlanta, GA USA
| |
Collapse
|
10
|
Park K, Chang I, Kim S. Resting state of human brain measured by fMRI experiment is governed more dominantly by essential mode as a global signal rather than default mode network. Neuroimage 2024; 301:120884. [PMID: 39378912 DOI: 10.1016/j.neuroimage.2024.120884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Resting-state of the human brain has been described by a combination of various basis modes including the default mode network (DMN) identified by fMRI BOLD signals in human brains. Whether DMN is the most dominant representation of the resting-state has been under question. Here, we investigated the unexplored yet fundamental nature of the resting-state. In the absence of global signal regression for the analysis of brain-wide spatial activity pattern, the fMRI BOLD spatiotemporal signals during the rest were completely decomposed into time-invariant spatial-expression basis modes (SEBMs) and their time-evolution basis modes (TEBMs). Contrary to our conventional concept above, similarity clustering analysis of the SEBMs from 166 human brains revealed that the most dominant SEBM cluster is an asymmetric mode where the distribution of the sign of the components is skewed in one direction, for which we call essential mode (EM), whereas the second dominant SEBM cluster resembles the spatial pattern of DMN. Having removed the strong 1/f noise in the power spectrum of TEBMs, the genuine oscillatory behavior embedded in TEBMs of EM and DMN-like mode was uncovered around the low-frequency range below 0.2 Hz.
Collapse
Affiliation(s)
- Kyeongwon Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Iksoo Chang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea; Supercomputing Bigdata Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sangyeol Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Scarano A, Fumero A, Baggio T, Rivero F, Marrero RJ, Olivares T, Peñate W, Álvarez-Pérez Y, Bethencourt JM, Grecucci A. The phobic brain: Morphometric features correctly classify individuals with small animal phobia. Psychophysiology 2024:e14716. [PMID: 39467845 DOI: 10.1111/psyp.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscientific literature. Moreover, the few previous studies on this topic have mostly employed univariate analyses, with limited and unbalanced samples, leading to inconsistent results. To overcome these limitations, and to characterize the neural underpinnings of SAP, this study aims to develop a classification model of individuals with SAP based on gray matter features, by using a machine learning method known as the binary support vector machine. Moreover, the contribution of specific structural macro-networks, such as the default mode, the salience, the executive, and the affective networks, in separating phobic subjects from controls was assessed. Thirty-two subjects with SAP and 90 matched healthy controls were tested to this aim. At a whole-brain level, we found a significant predictive model including brain structures related to emotional regulation, cognitive control, and sensory integration, such as the cerebellum, the temporal pole, the frontal cortex, temporal lobes, the amygdala and the thalamus. Instead, when considering macro-networks analysis, we found the Default, the Affective, and partially the Central Executive and the Sensorimotor networks, to significantly outperform the other networks in classifying SAP individuals. In conclusion, this study expands knowledge about the neural basis of SAP, proposing new research directions and potential diagnostic strategies.
Collapse
Affiliation(s)
- Alessandro Scarano
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Ascensión Fumero
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, La Laguna, Tenerife, Spain
- Departamento de Psicología, Facultad de Ciencias de la Salud, Universidad Europea de Canarias, La Orotava, Tenerife, Spain
| | - Teresa Baggio
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Francisco Rivero
- Departamento de Psicología, Facultad de Ciencias de la Salud, Universidad Europea de Canarias, La Orotava, Tenerife, Spain
| | - Rosario J Marrero
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Teresa Olivares
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Wenceslao Peñate
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Yolanda Álvarez-Pérez
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas, Spain
| | - Juan Manuel Bethencourt
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Center for Medical Sciences, University of Trento, Trento, Italy
| |
Collapse
|
12
|
Nicholson AA, Lieberman JM, Hosseini-Kamkar N, Eckstrand K, Rabellino D, Kearney B, Steyrl D, Narikuzhy S, Densmore M, Théberge J, Hosseiny F, Lanius RA. Exploring the impact of biological sex on intrinsic connectivity networks in PTSD: A data-driven approach. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111180. [PMID: 39447688 DOI: 10.1016/j.pnpbp.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION Sex as a biological variable (SABV) may help to account for the differential development and expression of post-traumatic stress disorder (PTSD) symptoms among trauma-exposed males and females. Here, we investigate the impact of SABV on PTSD-related neural alterations in resting-state functional connectivity (rsFC) within three core intrinsic connectivity networks (ICNs): the salience network (SN), central executive network (CEN), and default mode network (DMN). METHODS Using an independent component analysis (ICA), we compared rsFC of the SN, CEN, and DMN between males and females, with and without PTSD (n = 47 females with PTSD, n = 34 males with PTSD, n = 36 healthy control females, n = 20 healthy control males) via full factorial ANCOVAs. Additionally, linear regression analyses were conducted with clinical variables (i.e., PTSD and depression symptoms, childhood trauma scores) in order to determine intrinsic network connectivity characteristics specific to SABV. Furthermore, we utilized machine learning classification models to predict the biological sex and PTSD diagnosis of individual participants based on intrinsic network activity patterns. RESULTS Our findings revealed differential network connectivity patterns based on SABV and PTSD diagnosis. Males with PTSD exhibited increased intra-SN (i.e., SN-anterior insula) rsFC and increased DMN-right superior parietal lobule/precuneus/superior occipital gyrus rsFC as compared to females with PTSD. There were also differential network connectivity patterns for comparisons between the PTSD and healthy control groups for males and females, separately. We did not observe significant correlations between clinical measures of interest and brain region clusters which displayed significant between group differences as a function of biological sex, thus further reinforcing that SABV analyses are likely not confounded by these variables. Furthermore, machine learning classification models accurately predicted biological sex and PTSD diagnosis among novel/unseen participants based on ICN activation patterns. CONCLUSION This study reveals groundbreaking insights surrounding the impact of SABV on PTSD-related ICN alterations using data-driven methods. Our discoveries contribute to further defining neurobiological markers of PTSD among females and males and may offer guidance for differential sex-related treatment needs.
Collapse
Affiliation(s)
- Andrew A Nicholson
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ontario, Canada; School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| | - Jonathan M Lieberman
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Niki Hosseini-Kamkar
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ontario, Canada; Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada
| | - Kristen Eckstrand
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela Rabellino
- Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada
| | - Breanne Kearney
- Department of Neuroscience, Western University, London, Ontario, Canada
| | - David Steyrl
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Sandhya Narikuzhy
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Maria Densmore
- Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, Ontario, Canada; Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada; Department of Diagnostic Imaging, St. Joseph's Healthcare, London, Ontario, Canada
| | - Fardous Hosseiny
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada
| | - Ruth A Lanius
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada
| |
Collapse
|
13
|
Chen M, Shao H, Wang L, Ma J, Chen J, Li J, Zhong J, Zhu B, Bi B, Chen K, Wang J, Gong L. Aberrant individual large-scale functional network connectivity and topology in chronic insomnia disorder with and without depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111158. [PMID: 39368537 DOI: 10.1016/j.pnpbp.2024.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Insomnia is increasingly prevalent with significant associations with depression. Delineating specific neural circuits for chronic insomnia disorder (CID) with and without depressive symptoms is fundamental to develop precision diagnosis and treatment. In this study, we examine static, dynamic and network topology changes of individual large-scale functional network for CID with (CID-D) and without depression to reveal their specific neural underpinnings. Seventeen individual-specific functional brain networks are obtained using a regularized nonnegative matrix factorization technique. Disorders-shared and -specific differences in static and dynamic large-scale functional network connectivities within or between the cognitive control network, dorsal attention network, visual network, limbic network, and default mode network are found for CID and CID-D. Additionally, CID and CID-D groups showed compromised network topological architecture including reduced small-world properties, clustering coefficients and modularity indicating decreased network efficiency and impaired functional segregation. Moreover, the altered neuroimaging indices show significant associations with clinical manifestations and could serve as effective neuromarkers to distinguish among healthy controls, CID and CID-D. Taken together, these findings provide novel insights into the neural basis of CID and CID-D, which may facilitate developing new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Meiling Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China; Department of Clinical Psychology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Heng Shao
- Department of Geriatrics, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Libo Wang
- The Second People's Hospital of Yuxi, the Affiliated Hospital of Kunming University of Science and Technology, Yuxi, China
| | - Jianing Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Jin Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Junying Li
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China
| | - Jingmei Zhong
- Department of Clinical Psychology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Baosheng Zhu
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Bin Bi
- Department of Clinical Psychology, the Second People's Hospital of Guizhou Province, Guiyang, China..
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, China.
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China.
| | - Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, China.
| |
Collapse
|
14
|
Faghiri A, Yang K, Faria A, Ishizuka K, Sawa A, Adali T, Calhoun V. Frequency modulation increases the specificity of time-resolved connectivity: A resting-state fMRI study. Netw Neurosci 2024; 8:734-761. [PMID: 39355435 PMCID: PMC11349031 DOI: 10.1162/netn_a_00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/06/2024] [Indexed: 10/03/2024] Open
Abstract
Representing data using time-resolved networks is valuable for analyzing functional data of the human brain. One commonly used method for constructing time-resolved networks from data is sliding window Pearson correlation (SWPC). One major limitation of SWPC is that it applies a high-pass filter to the activity time series. Therefore, if we select a short window (desirable to estimate rapid changes in connectivity), we will remove important low-frequency information. Here, we propose an approach based on single sideband modulation (SSB) in communication theory. This allows us to select shorter windows to capture rapid changes in the time-resolved functional network connectivity (trFNC). We use simulation and real resting-state functional magnetic resonance imaging (fMRI) data to demonstrate the superior performance of SSB+SWPC compared to SWPC. We also compare the recurring trFNC patterns between individuals with the first episode of psychosis (FEP) and typical controls (TC) and show that FEPs stay more in states that show weaker connectivity across the whole brain. A result exclusive to SSB+SWPC is that TCs stay more in a state with negative connectivity between subcortical and cortical regions. Based on all the results, we argue that SSB+SWPC is more sensitive for capturing temporal variation in trFNC.
Collapse
Affiliation(s)
- Ashkan Faghiri
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreia Faria
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Genetic Medicine, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Tülay Adali
- Deptartment of CSEE, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Mirzaeian S, Faghiri A, Calhoun VD, Iraji A. A Telescopic Independent Component Analysis on Functional Magnetic Resonance Imaging Data Set. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581086. [PMID: 39386484 PMCID: PMC11463639 DOI: 10.1101/2024.02.19.581086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Brain function can be modeled as the dynamic interactions between functional sources at different spatial scales, and each spatial scale can contain its functional sources with unique information, thus using a single scale may provide an incomplete view of brain function. This paper introduces a novel approach, termed "telescopic independent component analysis (TICA)," designed to construct spatial functional hierarchies and estimate functional sources across multiple spatial scales using fMRI data. The method employs a recursive ICA strategy, leveraging information from a larger network to guide the extraction of information about smaller networks. We apply our model to the default mode network (DMN), visual network (VN), and right frontoparietal network (RFPN). We investigate further on DMN by evaluating the difference between healthy people and individuals with schizophrenia. We show that the TICA approach can detect the spatial hierarchy of DMN, VS, and RFPN. In addition, TICA revealed DMN-associated group differences between cohorts that may not be captured if we focus on a single-scale ICA. In sum, our proposed approach represents a promising new tool for studying functional sources.
Collapse
Affiliation(s)
- Shiva Mirzaeian
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - Ashkan Faghiri
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
16
|
Soleimani N, Iraji A, Pearlson G, Preda A, Calhoun VD. Unraveling the Neural Landscape of Mental Disorders using Double Functional Independent Primitives (dFIPs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606076. [PMID: 39131299 PMCID: PMC11312551 DOI: 10.1101/2024.08.01.606076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Mental illnesses extract a high personal and societal cost, and thus explorations of the links between mental illness and functional connectivity in the brain are critical. Investigating major mental illnesses, believed to arise from disruptions in sophisticated neural connections, allows us to comprehend how these neural network disruptions may be linked to altered cognition, emotional regulation, and social interactions. Although neuroimaging has opened new avenues to explore neural alterations linked to mental illnesses, the field still requires precise and sensitive methodologies to inspect these neural substrates of various psychological disorders. In this study, we employ a hierarchical methodology to derive double functionally independent primitives (dFIPs) from resting state functional magnetic resonance neuroimaging data (rs-fMRI). These dFIPs encapsulate canonical overlapping patterns of functional network connectivity (FNC) within the brain. Our investigation focuses on the examination of how combinations of these dFIPs relate to different mental disorder diagnoses. The central aim is to unravel the complex patterns of FNC that correspond to the diverse manifestations of mental illnesses. To achieve this objective, we used a large brain imaging dataset from multiple sites, comprising 5805 total individuals diagnosed with schizophrenia (SCZ), autism spectrum disorder (ASD), bipolar disorder (BPD), major depressive disorder (MDD), and controls. The key revelations of our study unveil distinct patterns associated with each mental disorder through the combination of dFIPs. Notably, certain individual dFIPs exhibit disorder-specific characteristics, while others demonstrate commonalities across disorders. This approach offers a novel, data-driven synthesis of intricate neuroimaging data, thereby illuminating the functional changes intertwined with various mental illnesses. Our results show distinct signatures associated with psychiatric disorders, revealing unique connectivity patterns such as heightened cerebellar connectivity in SCZ and sensory domain hyperconnectivity in ASD, both contrasted with reduced cerebellar-subcortical connectivity. Utilizing the dFIP concept, we pinpoint specific functional connections that differentiate healthy controls from individuals with mental illness, underscoring its utility in identifying neurobiological markers. In summary, our findings delineate how dFIPs serve as unique fingerprints for different mental disorders.
Collapse
Affiliation(s)
- Najme Soleimani
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Godfrey Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Khan AF, Yuan H, Smith ZA, Ding L. Distinct Time-Resolved Brain-Wide Coactivations in Oxygenated and Deoxygenated Hemoglobin. IEEE Trans Biomed Eng 2024; 71:2463-2472. [PMID: 38478444 PMCID: PMC11364165 DOI: 10.1109/tbme.2024.3377109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
OBJECTIVE Human resting-state networks (RSNs) estimated from oxygenated (HbO) and deoxygenated hemoglobin (HbR) data exhibit strong similarities, while task-based studies show different dynamics in HbR and HbO responses. Such a discrepancy might be explained due to time-averaged estimations of RSNs. Our study investigated differences between HbO and HbR on time-resolved brain-wide coactivation patterns (CAPs). METHODS Diffuse optical tomography was reconstructed from resting-state whole-head functional near-infrared spectroscopy data of HbR and HbO in individual healthy participants. Time-averaged RSNs were obtained using the group-level independent component analysis. Time-resolved CAPs were estimated using a clustering approach on the time courses of all obtained RSNs. Characteristics of the RSNs and CAPs from HbR and HbO were compared. RESULTS Spatial patterns of HbR and HbO RSNs exhibited significant similarities. Meanwhile, HbR CAPs revealed much more organized spatial and dynamic characteristics than HbO CAPs. The entire set of HbR CAPs suggests a superstructure resulted from brain-wide neuronal dynamics, which is less evident in the set of HbO CAPs. These differences between HbO and HbR CAPs were consistently replicated in individual session data. CONCLUSION Our results suggest that human resting brain-wide neuronal activations are preserved better in time-resolved brain-wide patterns, i.e., CAPs, from HbR than those from HbO, while such a difference is lost between time-averaged HbR and HbO RSNs. SIGNIFICANCE Our results reveal, for the first time, HbR concentration fluctuations are more directly coupled with resting dynamics of brain-wide neuronal activations in human brains.
Collapse
|
18
|
Vaughn KA, Tamber-Rosenau BJ, Hernandez AE. The Role of the Dorsolateral Prefrontal Cortex in Bilingual Language Switching and Non-Linguistic Task-Switching: Evidence from Multi-Voxel Pattern Analysis. BILINGUALISM (CAMBRIDGE, ENGLAND) 2024; 27:690-699. [PMID: 39583202 PMCID: PMC11580812 DOI: 10.1017/s1366728923000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Previous research suggests that bilingual language control requires domain-general cognitive control. Recent research suggests that exploration of individual differences is key for understanding the relationship between bilingual language control and cognitive control. The current study used multi-voxel pattern analysis (MVPA) to examine within-subject patterns of fMRI activity in the dorsolateral prefrontal cortex (DLPFC) during bilingual language switching and non-linguistic task-switching. We hypothesized that bilinguals would have identifiable, within-subject patterns of DLPFC activity for both types of switching and that bilinguals and monolinguals would differ in patterns of DLPFC activity for task-switching. We were unable to identify patterns of DLPFC activity associated with bilingual language switching. Task-switching was related to patterns of left DLPFC activity for both bilinguals and monolinguals, and there were identifiable patterns of right DLPFC activity for the bilinguals only. These findings suggest that the DLPFC is not the key brain structure connecting bilingual language and task-switching.
Collapse
Affiliation(s)
- Kelly A. Vaughn
- University of Houston
- University of Texas Health Science Center at Houston
| | | | | |
Collapse
|
19
|
Park HG. Bayesian estimation of covariate assisted principal regression for brain functional connectivity. Biostatistics 2024:kxae023. [PMID: 38981041 DOI: 10.1093/biostatistics/kxae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/25/2024] [Accepted: 06/02/2024] [Indexed: 07/11/2024] Open
Abstract
This paper presents a Bayesian reformulation of covariate-assisted principal regression for covariance matrix outcomes to identify low-dimensional components in the covariance associated with covariates. By introducing a geometric approach to the covariance matrices and leveraging Euclidean geometry, we estimate dimension reduction parameters and model covariance heterogeneity based on covariates. This method enables joint estimation and uncertainty quantification of relevant model parameters associated with heteroscedasticity. We demonstrate our approach through simulation studies and apply it to analyze associations between covariates and brain functional connectivity using data from the Human Connectome Project.
Collapse
Affiliation(s)
- Hyung G Park
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, 180 Madison Ave., New York, NY 10016, USA
| |
Collapse
|
20
|
Cao C, Fu H, Li G, Wang M, Gao X. ADHD diagnosis guided by functional brain networks combined with domain knowledge. Comput Biol Med 2024; 177:108611. [PMID: 38788375 DOI: 10.1016/j.compbiomed.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/13/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Utilizing functional magnetic resonance imaging (fMRI) to model functional brain networks (FBNs) is increasingly prominent in attention-deficit/hyperactivity disorder (ADHD) research, revealing neural impact and mechanisms through the exploration of activated brain regions. However, current FBNs-based methods face two major challenges. The primary challenge stems from the limitations of existing modeling methods in accurately capturing both regional correlations and long-distance dependencies (LDDs) within the dynamic brain, thereby affecting the diagnostic accuracy of FBNs as biomarkers. Additionally, limited sample size and class imbalance also pose a challenge to the learning performance of the model. To address the issues, we propose an automated diagnostic framework, which integrates modeling, multimodal fusion, and classification into a unified process. It aims to extract representative FBNs and efficiently incorporate domain knowledge to guide ADHD classification. Our work mainly includes three-fold: 1) A multi-head attention-based region-enhancement module (MAREM) is designed to simultaneously capture regional correlations and LDDs across the entire sequence of brain activity, which facilitates the construction of representative FBNs. 2) The multimodal supplementary learning module (MSLM) is proposed to integrate domain knowledge from phenotype data with FBNs from neuroimaging data, achieving information complementarity and alleviating the problems of insufficient medical data and unbalanced sample categories. 3) An ADHD automatic diagnosis framework guided by FBNs and domain knowledge (ADF-FAD) is proposed to help doctors make more accurate decisions, which is applied to the ADHD-200 dataset to confirm its effectiveness. The results indicate that the FBNs extracted by MAREM perform well in modeling and classification. After with MSLM, the model achieves accuracy of 92.4%, 74.4%, and 80% at NYU, PU, and KKI, respectively, demonstrating its ability to effectively capture crucial information related to ADHD diagnosis. Codes are available at https://github.com/zhuimengxuebao/ADF-FAD.
Collapse
Affiliation(s)
- Chunhong Cao
- MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, 411100, China
| | - Huawei Fu
- MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, 411100, China
| | - Gai Li
- MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, 411100, China
| | - Mengyang Wang
- MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, 411100, China
| | - Xieping Gao
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
21
|
He X, Calhoun VD, Du Y. SMART (Splitting-Merging Assisted Reliable) Independent Component Analysis for Extracting Accurate Brain Functional Networks. Neurosci Bull 2024; 40:905-920. [PMID: 38491231 PMCID: PMC11637147 DOI: 10.1007/s12264-024-01184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/08/2023] [Indexed: 03/18/2024] Open
Abstract
Functional networks (FNs) hold significant promise in understanding brain function. Independent component analysis (ICA) has been applied in estimating FNs from functional magnetic resonance imaging (fMRI). However, determining an optimal model order for ICA remains challenging, leading to criticism about the reliability of FN estimation. Here, we propose a SMART (splitting-merging assisted reliable) ICA method that automatically extracts reliable FNs by clustering independent components (ICs) obtained from multi-model-order ICA using a simplified graph while providing linkages among FNs deduced from different-model orders. We extend SMART ICA to multi-subject fMRI analysis, validating its effectiveness using simulated and real fMRI data. Based on simulated data, the method accurately estimates both group-common and group-unique components and demonstrates robustness to parameters. Using two age-matched cohorts of resting fMRI data comprising 1,950 healthy subjects, the resulting reliable group-level FNs are greatly similar between the two cohorts, and interestingly the subject-specific FNs show progressive changes while age increases. Furthermore, both small-scale and large-scale brain FN templates are provided as benchmarks for future studies. Taken together, SMART ICA can automatically obtain reliable FNs in analyzing multi-subject fMRI data, while also providing linkages between different FNs.
Collapse
Affiliation(s)
- Xingyu He
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, USA
| | - Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China.
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, USA.
| |
Collapse
|
22
|
Soleimani N, Iraji A, van Erp TGM, Belger A, Calhoun VD. A method for estimating dynamic functional network connectivity gradients (dFNG) from ICA captures smooth inter-network modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583731. [PMID: 38559041 PMCID: PMC10979844 DOI: 10.1101/2024.03.06.583731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Dynamic functional network connectivity (dFNC) analysis is a widely used approach for studying brain function and offering insight into how brain networks evolve over time. Typically, dFNC studies utilized fixed spatial maps and evaluate transient changes in coupling among time courses estimated from independent component analysis (ICA). This manuscript presents a complementary approach that relaxes this assumption by spatially reordering the components dynamically at each timepoint to optimize for a smooth gradient in the FNC (i.e., a smooth gradient among ICA connectivity values). Several methods are presented to summarize dynamic FNC gradients (dFNGs) over time, starting with static FNC gradients (sFNGs), then exploring the reordering properties as well as the dynamics of the gradients themselves. We then apply this approach to a dataset of schizophrenia (SZ) patients and healthy controls (HC). Functional dysconnectivity between different brain regions has been reported in schizophrenia, yet the neural mechanisms behind it remain elusive. Using resting state fMRI and ICA on a dataset consisting of 151 schizophrenia patients and 160 age and gender-matched healthy controls, we extracted 53 intrinsic connectivity networks (ICNs) for each subject using a fully automated spatially constrained ICA approach. We develop several summaries of our functional network connectivity gradient analysis, both in a static sense, computed as the Pearson correlation coefficient between full time series, and a dynamic sense, computed using a sliding window approach followed by reordering based on the computed gradient, and evaluate group differences. Static connectivity analysis revealed significantly stronger connectivity between subcortical (SC), auditory (AUD) and visual (VIS) networks in patients, as well as hypoconnectivity in sensorimotor (SM) network relative to controls. sFNG analysis highlighted distinctive clustering patterns in patients and HCs along cognitive control (CC)/ default mode network (DMN), as well as SC/ AUD/ SM/ cerebellar (CB), and VIS gradients. Furthermore, we observed significant differences in the sFNGs between groups in SC and CB domains. dFNG analysis suggested that SZ patients spend significantly more time in a SC/ CB state based on the first gradient, while HCs favor the SM/DMN state. For the second gradient, however, patients exhibited significantly higher activity in CB domains, contrasting with HCs' DMN engagement. The gradient synchrony analysis conveyed more shifts between SM/ SC networks and transmodal CC/ DMN networks in patients. In addition, the dFNG coupling revealed distinct connectivity patterns between SC, SM and CB domains in SZ patients compared to HCs. To recap, our results advance our understanding of brain network modulation by examining smooth connectivity trajectories. This provides a more complete spatiotemporal summary of the data, contributing to the growing body of current literature regarding the functional dysconnectivity in schizophrenia patients. By employing dFNG, we highlight a new perspective to capture large scale fluctuations across the brain while maintaining the convenience of brain networks and low dimensional summary measures.
Collapse
Affiliation(s)
- Najme Soleimani
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, UC Irvine, Irvine, California, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Batta I, Abrol A, Calhoun VD. Multimodal active subspace analysis for computing assessment oriented subspaces from neuroimaging data. J Neurosci Methods 2024; 406:110109. [PMID: 38494061 PMCID: PMC11100582 DOI: 10.1016/j.jneumeth.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND For successful biomarker discovery, it is essential to develop computational frameworks that summarize high-dimensional neuroimaging data in terms of involved sub-systems of the brain, while also revealing underlying heterogeneous functional and structural changes covarying with specific cognitive and biological traits. However, unsupervised decompositions do not inculcate clinical assessment information, while supervised approaches extract only individual feature importance, thereby impeding qualitative interpretation at the level of subspaces. NEW METHOD We present a novel framework to extract robust multimodal brain subspaces associated with changes in a given cognitive or biological trait. Our approach involves active subspace learning on the gradients of a trained machine learning model followed by clustering to extract and summarize the most salient and consistent subspaces associated with the target variable. RESULTS Through a rigorous cross-validation procedure on an Alzheimer's disease (AD) dataset, our framework successfully extracts multimodal subspaces specific to a given clinical assessment (e.g., memory and other cognitive skills), and also retains predictive performance in standard machine learning algorithms. We also show that the salient active subspace directions occur consistently across randomly sub-sampled repetitions of the analysis. COMPARISON WITH EXISTING METHOD(S) Compared to existing unsupervised decompositions based on principle component analysis, the subspace components in our framework retain higher predictive information. CONCLUSIONS As an important step towards biomarker discovery, our framework not only uncovers AD-related brain regions in the associated brain subspaces, but also enables automated identification of multiple underlying structural and functional sub-systems of the brain that collectively characterize changes in memory and proficiency in cognitive skills related to brain disorders like AD.
Collapse
Affiliation(s)
- Ishaan Batta
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA; Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
| | - Anees Abrol
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA
| | - Vince D Calhoun
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA; Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
24
|
Scaglione A, Resta F, Goretti F, Pavone FS. Group ICA of wide-field calcium imaging data reveals the retrosplenial cortex as a major contributor to cortical activity during anesthesia. Front Cell Neurosci 2024; 18:1258793. [PMID: 38799987 PMCID: PMC11116703 DOI: 10.3389/fncel.2024.1258793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/14/2024] [Indexed: 05/29/2024] Open
Abstract
Large-scale cortical dynamics play a crucial role in many cognitive functions such as goal-directed behaviors, motor learning and sensory processing. It is well established that brain states including wakefulness, sleep, and anesthesia modulate neuronal firing and synchronization both within and across different brain regions. However, how the brain state affects cortical activity at the mesoscale level is less understood. This work aimed to identify the cortical regions engaged in different brain states. To this end, we employed group ICA (Independent Component Analysis) to wide-field imaging recordings of cortical activity in mice during different anesthesia levels and the awake state. Thanks to this approach we identified independent components (ICs) representing elements of the cortical networks that are common across subjects under decreasing levels of anesthesia toward the awake state. We found that ICs related to the retrosplenial cortices exhibited a pronounced dependence on brain state, being most prevalent in deeper anesthesia levels and diminishing during the transition to the awake state. Analyzing the occurrence of the ICs we found that activity in deeper anesthesia states was characterized by a strong correlation between the retrosplenial components and this correlation decreases when transitioning toward wakefulness. Overall these results indicate that during deeper anesthesia states coactivation of the posterior-medial cortices is predominant over other connectivity patterns, whereas a richer repertoire of dynamics is expressed in lighter anesthesia levels and the awake state.
Collapse
Affiliation(s)
- Alessandro Scaglione
- Department of Physics and Astronomy, University of Florence, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Florence, Italy
| | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy (LENS), Florence, Italy
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
| | - Francesco Goretti
- European Laboratory for Non-Linear Spectroscopy (LENS), Florence, Italy
| | - Francesco S. Pavone
- Department of Physics and Astronomy, University of Florence, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Florence, Italy
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Fu Z, Batta I, Wu L, Abrol A, Agcaoglu O, Salman MS, Du Y, Iraji A, Shultz S, Sui J, Calhoun VD. Searching Reproducible Brain Features using NeuroMark: Templates for Different Age Populations and Imaging Modalities. Neuroimage 2024; 292:120617. [PMID: 38636639 PMCID: PMC11416721 DOI: 10.1016/j.neuroimage.2024.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
A primary challenge to the data-driven analysis is the balance between poor generalizability of population-based research and characterizing more subject-, study- and population-specific variability. We previously introduced a fully automated spatially constrained independent component analysis (ICA) framework called NeuroMark and its functional MRI (fMRI) template. NeuroMark has been successfully applied in numerous studies, identifying brain markers reproducible across datasets and disorders. The first NeuroMark template was constructed based on young adult cohorts. We recently expanded on this initiative by creating a standardized normative multi-spatial-scale functional template using over 100,000 subjects, aiming to improve generalizability and comparability across studies involving diverse cohorts. While a unified template across the lifespan is desirable, a comprehensive investigation of the similarities and differences between components from different age populations might help systematically transform our understanding of the human brain by revealing the most well-replicated and variable network features throughout the lifespan. In this work, we introduced two significant expansions of NeuroMark templates first by generating replicable fMRI templates for infants, adolescents, and aging cohorts, and second by incorporating structural MRI (sMRI) and diffusion MRI (dMRI) modalities. Specifically, we built spatiotemporal fMRI templates based on 6,000 resting-state scans from four datasets. This is the first attempt to create robust ICA templates covering dynamic brain development across the lifespan. For the sMRI and dMRI data, we used two large publicly available datasets including more than 30,000 scans to build reliable templates. We employed a spatial similarity analysis to identify replicable templates and investigate the degree to which unique and similar patterns are reflective in different age populations. Our results suggest remarkably high similarity of the resulting adapted components, even across extreme age differences. With the new templates, the NeuroMark framework allows us to perform age-specific adaptations and to capture features adaptable to each modality, therefore facilitating biomarker identification across brain disorders. In sum, the present work demonstrates the generalizability of NeuroMark templates and suggests the potential of new templates to boost accuracy in mental health research and advance our understanding of lifespan and cross-modal alterations.
Collapse
Affiliation(s)
- Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States.
| | - Ishaan Batta
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Lei Wu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Anees Abrol
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Oktay Agcaoglu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Mustafa S Salman
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Yuhui Du
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
26
|
Ghin F, Eggert E, Gholamipourbarogh N, Talebi N, Beste C. Response stopping under conflict: The integrative role of representational dynamics associated with the insular cortex. Hum Brain Mapp 2024; 45:e26643. [PMID: 38664992 PMCID: PMC11046082 DOI: 10.1002/hbm.26643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 04/29/2024] Open
Abstract
Coping with distracting inputs during goal-directed behavior is a common challenge, especially when stopping ongoing responses. The neural basis for this remains debated. Our study explores this using a conflict-modulation Stop Signal task, integrating group independent component analysis (group-ICA), multivariate pattern analysis (MVPA), and EEG source localization analysis. Consistent with previous findings, we show that stopping performance is better in congruent (nonconflicting) trials than in incongruent (conflicting) trials. Conflict effects in incongruent trials compromise stopping more due to the need for the reconfiguration of stimulus-response (S-R) mappings. These cognitive dynamics are reflected by four independent neural activity patterns (ICA), each coding representational content (MVPA). It is shown that each component was equally important in predicting behavioral outcomes. The data support an emerging idea that perception-action integration in action-stopping involves multiple independent neural activity patterns. One pattern relates to the precuneus (BA 7) and is involved in attention and early S-R processes. Of note, three other independent neural activity patterns were associated with the insular cortex (BA13) in distinct time windows. These patterns reflect a role in early attentional selection but also show the reiterated processing of representational content relevant for stopping in different S-R mapping contexts. Moreover, the insular cortex's role in automatic versus complex response selection in relation to stopping processes is shown. Overall, the insular cortex is depicted as a brain hub, crucial for response selection and cancellation across both straightforward (automatic) and complex (conditional) S-R mappings, providing a neural basis for general cognitive accounts on action control.
Collapse
Affiliation(s)
- Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Negin Gholamipourbarogh
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| |
Collapse
|
27
|
Xie S, Zeng D, Wang Y. Identifying temporal pathways using biomarkers in the presence of latent non-Gaussian components. Biometrics 2024; 80:ujae033. [PMID: 38708763 DOI: 10.1093/biomtc/ujae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Time-series data collected from a network of random variables are useful for identifying temporal pathways among the network nodes. Observed measurements may contain multiple sources of signals and noises, including Gaussian signals of interest and non-Gaussian noises, including artifacts, structured noise, and other unobserved factors (eg, genetic risk factors, disease susceptibility). Existing methods, including vector autoregression (VAR) and dynamic causal modeling do not account for unobserved non-Gaussian components. Furthermore, existing methods cannot effectively distinguish contemporaneous relationships from temporal relations. In this work, we propose a novel method to identify latent temporal pathways using time-series biomarker data collected from multiple subjects. The model adjusts for the non-Gaussian components and separates the temporal network from the contemporaneous network. Specifically, an independent component analysis (ICA) is used to extract the unobserved non-Gaussian components, and residuals are used to estimate the contemporaneous and temporal networks among the node variables based on method of moments. The algorithm is fast and can easily scale up. We derive the identifiability and the asymptotic properties of the temporal and contemporaneous networks. We demonstrate superior performance of our method by extensive simulations and an application to a study of attention-deficit/hyperactivity disorder (ADHD), where we analyze the temporal relationships between brain regional biomarkers. We find that temporal network edges were across different brain regions, while most contemporaneous network edges were bilateral between the same regions and belong to a subset of the functional connectivity network.
Collapse
Affiliation(s)
- Shanghong Xie
- School of Statistics, Southwestern University of Finance and Economics, Chengdu 611130, China
| | - Donglin Zeng
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| |
Collapse
|
28
|
Sendi M, Fu Z, Harnett N, van Rooij S, Vergara V, Pizzagalli D, Daskalakis N, House S, Beaudoin F, An X, Neylan T, Clifford G, Jovanovic T, Linnstaedt S, Germine L, Bollen K, Rauch S, Haran J, Storrow A, Lewandowski C, Musey P, Hendry P, Sheikh S, Jones C, Punches B, Swor R, Gentile N, Murty V, Hudak L, Pascual J, Seamon M, Harris E, Chang A, Pearson C, Peak D, Merchant R, Domeier R, Rathlev N, O'Neil B, Sergot P, Sanchez L, Bruce S, Sheridan J, Harte S, Kessler R, Koenen K, McLean S, Stevens J, Calhoun V, Ressler K. Brain dynamics reflecting an intra-network brain state is associated with increased posttraumatic stress symptoms in the early aftermath of trauma. RESEARCH SQUARE 2024:rs.3.rs-4004473. [PMID: 38496567 PMCID: PMC10942549 DOI: 10.21203/rs.3.rs-4004473/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This study examines the association between brain dynamic functional network connectivity (dFNC) and current/future posttraumatic stress (PTS) symptom severity, and the impact of sex on this relationship. By analyzing 275 participants' dFNC data obtained ~2 weeks after trauma exposure, we noted that brain dynamics of an inter-network brain state link negatively with current (r=-0.179, pcorrected= 0.021) and future (r=-0.166, pcorrected= 0.029) PTS symptom severity. Also, dynamics of an intra-network brain state correlated with future symptom intensity (r = 0.192, pcorrected = 0.021). We additionally observed that the association between the network dynamics of the inter-network brain state with symptom severity is more pronounced in females (r=-0.244, pcorrected = 0.014). Our findings highlight a potential link between brain network dynamics in the aftermath of trauma with current and future PTSD outcomes, with a stronger protective effect of inter-network brain states against symptom severity in females, underscoring the importance of sex differences.
Collapse
Affiliation(s)
| | - Zening Fu
- d Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University
| | | | | | | | | | | | | | - Francesca Beaudoin
- The Alpert Medical School of Brown University, Rhode Island Hospital and The Miriam Hospital
| | - Xinming An
- University of North Carolina at Chapel Hill
| | - Thomas Neylan
- San Francisco VA Healthcare System; University of California San Francisco
| | - Gari Clifford
- Emory University School of Medicine; Georgia Institute of Technology
| | | | | | | | | | | | - John Haran
- University of Massachusetts Medical School
| | | | | | | | | | | | | | - Brittany Punches
- University of Cincinnati College of Medicine & University of Cincinnati College of Nursing
| | | | | | | | | | - Jose Pascual
- Perelman School of Medicine at the University of Pennsylvania
| | | | | | | | | | | | | | | | | | | | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth
| | | | | | | | | | | | | | | | | | - Vince Calhoun
- Georgia Institute of Technology, Emory University and Georgia State University
| | | |
Collapse
|
29
|
Grecucci A, Monachesi B, Messina I. Reduced GM-WM concentration inside the Default Mode Network in individuals with high emotional intelligence and low anxiety: a data fusion mCCA+jICA approach. Soc Cogn Affect Neurosci 2024; 19:nsae018. [PMID: 38451879 PMCID: PMC10919484 DOI: 10.1093/scan/nsae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/05/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
The concept of emotional intelligence (EI) refers to the ability to recognize and regulate emotions to appropriately guide cognition and behaviour. Unfortunately, studies on the neural bases of EI are scant, and no study so far has exhaustively investigated grey matter (GM) and white matter (WM) contributions to it. To fill this gap, we analysed trait measure of EI and structural MRI data from 128 healthy participants to shed new light on where and how EI is encoded in the brain. In addition, we explored the relationship between the neural substrates of trait EI and trait anxiety. A data fusion unsupervised machine learning approach (mCCA + jICA) was used to decompose the brain into covarying GM-WM networks and to assess their association with trait-EI. Results showed that high levels trait-EI are associated with decrease in GM-WM concentration in a network spanning from frontal to parietal and temporal regions, among which insula, cingulate, parahippocampal gyrus, cuneus and precuneus. Interestingly, we also found that the higher the GM-WM concentration in the same network, the higher the trait anxiety. These findings encouragingly highlight the neural substrates of trait EI and their relationship with anxiety. The network is discussed considering its overlaps with the Default Mode Network.
Collapse
Affiliation(s)
- Alessandro Grecucci
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto (TN), Italy 38068, Italy
- Centre for Medical Sciences, CISMed, University of Trento, Trento, Italy 38122, Italy
| | - Bianca Monachesi
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto (TN), Italy 38068, Italy
| | - Irene Messina
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto (TN), Italy 38068, Italy
- Faculty of Social and Communication Sciences, Universitas Mercatorum, Rome, Italy
| |
Collapse
|
30
|
Jensen KM, Calhoun VD, Fu Z, Yang K, Faria AV, Ishizuka K, Sawa A, Andrés-Camazón P, Coffman BA, Seebold D, Turner JA, Salisbury DF, Iraji A. A whole-brain neuromark resting-state fMRI analysis of first-episode and early psychosis: Evidence of aberrant cortical-subcortical-cerebellar functional circuitry. Neuroimage Clin 2024; 41:103584. [PMID: 38422833 PMCID: PMC10944191 DOI: 10.1016/j.nicl.2024.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Psychosis (including symptoms of delusions, hallucinations, and disorganized conduct/speech) is a main feature of schizophrenia and is frequently present in other major psychiatric illnesses. Studies in individuals with first-episode (FEP) and early psychosis (EP) have the potential to interpret aberrant connectivity associated with psychosis during a period with minimal influence from medication and other confounds. The current study uses a data-driven whole-brain approach to examine patterns of aberrant functional network connectivity (FNC) in a multi-site dataset comprising resting-state functional magnetic resonance images (rs-fMRI) from 117 individuals with FEP or EP and 130 individuals without a psychiatric disorder, as controls. Accounting for age, sex, race, head motion, and multiple imaging sites, differences in FNC were identified between psychosis and control participants in cortical (namely the inferior frontal gyrus, superior medial frontal gyrus, postcentral gyrus, supplementary motor area, posterior cingulate cortex, and superior and middle temporal gyri), subcortical (the caudate, thalamus, subthalamus, and hippocampus), and cerebellar regions. The prominent pattern of reduced cerebellar connectivity in psychosis is especially noteworthy, as most studies focus on cortical and subcortical regions, neglecting the cerebellum. The dysconnectivity reported here may indicate disruptions in cortical-subcortical-cerebellar circuitry involved in rudimentary cognitive functions which may serve as reliable correlates of psychosis.
Collapse
Affiliation(s)
- Kyle M Jensen
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA.
| | - Vince D Calhoun
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Zening Fu
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Kun Yang
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreia V Faria
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pablo Andrés-Camazón
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA; Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Brian A Coffman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dylan Seebold
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica A Turner
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Dean F Salisbury
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Armin Iraji
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| |
Collapse
|
31
|
Yang L, He P, Zhang L, Li K. Altered resting-state brain functional activities and networks in Crohn's disease: a systematic review. Front Neurosci 2024; 18:1319359. [PMID: 38332859 PMCID: PMC10851432 DOI: 10.3389/fnins.2024.1319359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Background Crohn's disease (CD) is a non-specific chronic inflammatory disease of the gastrointestinal tract and is a phenotype of inflammatory bowel disease (IBD). The current study sought to compile the resting-state functional differences in the brain between CD patients and healthy controls. Methods The online databases PubMed, Web of Science Core, and EMBASE were used to find the published neuroimage studies. The search period was from the beginning through December 15, 2023. The predetermined inclusion and exclusion criteria allowed for the identification of the studies. The studies were assembled by two impartial reviewers, who also assessed their quality and bias. Results This review comprised 16 resting-state fMRI studies in total. The included studies generally had modest levels of bias. According to the research, emotional processing and pain processing were largely linked to increased or decreased brain activity in patients with CD. The DMN, CEN, and limbic systems may have abnormalities in patients with CD, according to research on brain networks. Several brain regions showed functional changes in the active CD group compared to the inactive CD group and the healthy control group, respectively. The abnormalities in brain areas were linked to changes in mood fluctuations (anxiety, melancholy) in patients with CD. Conclusion Functional neuroimaging helps provide a better understanding of the underlying neuropathological processes in patients with CD. In this review, we summarize as follows: First, these findings indicate alterations in brain function in patients with CD, specifically affecting brain regions associated with pain, emotion, cognition, and visceral sensation; second, disease activity may have an impact on brain functions in patients with CD; and third, psychological factors may be associated with altered brain functions in patients with CD.
Collapse
Affiliation(s)
- Ling Yang
- Radiology Department, Chongqing General Hospital, Chongqing, China
- Department of Radiology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Peipei He
- Radiology Department, Chongqing General Hospital, Chongqing, China
| | - Lingqin Zhang
- Radiology Department, Chongqing General Hospital, Chongqing, China
| | - Kang Li
- Radiology Department, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
32
|
Saha DK, Bohsali A, Saha R, Hajjar I, Calhoun VD. Neuromark PET: A multivariate method for Estimating and comparing whole brain functional networks and connectomes from fMRI and PET data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575131. [PMID: 38260682 PMCID: PMC10802620 DOI: 10.1101/2024.01.10.575131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are both widely used neuroimaging techniques to study brain function. Although whole brain resting functional MRI (fMRI) connectomes are widely used, the integration or association of whole brain functional connectomes with PET data are rarely done. This likely stems from the fact that PET data is typically analyzed by using a regions of interest approach, while whole brain spatial networks and their connectivity (covariation) receive much less attention. As a result, to date, there have been no direct comparisons between whole brain PET and fMRI connectomes. In this study, we present a method that uses spatially constrained independent component analysis (scICA) to estimate corresponding PET and fMRI connectomes and examine the relationship between them using mild cognitive impairment (MCI) datasets. Our results demonstrate highly modularized PET connectome patterns that complement those identified from resting fMRI. In particular, fMRI showed strong intra-domain connectivity with interdomain anticorrelation in sensorimotor and visual domains as well as default mode network. PET amyloid data showed similar strong intra-domain effects, but showed much higher correlations within cognitive control and default mode domains, as well as anticorrelation between cerebellum and other domains. The estimated PET networks have similar, but not identical, network spatial patterns to the resting fMRI networks, with the PET networks being slightly smoother and, in some cases, showing variations in subnodes. We also analyzed the differences between individuals with MCI receiving medication versus a placebo. Results show both common and modality specific treatment effects on fMRI and PET connectomes. From our fMRI analysis, we observed higher activation differences in various regions, such as the connection between the thalamus and middle occipital gyrus, as well as the insula and right middle occipital gyrus. Meanwhile, the PET analysis revealed increased activation between the anterior cingulate cortex and the left inferior parietal lobe, along with other regions, in individuals who received medication versus placebo. In sum, our novel approach identifies corresponding whole-brain PET and fMRI networks and connectomes. While we observed common patterns of network connectivity, our analysis of the MCI treatment and placebo groups revealed that each modality identifies a unique set of networks, highlighting differences between the two groups.
Collapse
Affiliation(s)
- Debbrata K. Saha
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303
| | - Anastasia Bohsali
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303
| | - Rekha Saha
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303
| | - Ihab Hajjar
- University of Texas Southwestern Dallas, TX 75390
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303
| |
Collapse
|
33
|
Verdijk JPAJ, van de Mortel LA, Ten Doesschate F, Pottkämper JCM, Stuiver S, Bruin WB, Abbott CC, Argyelan M, Ousdal OT, Bartsch H, Narr K, Tendolkar I, Calhoun V, Lukemire J, Guo Y, Oltedal L, van Wingen G, van Waarde JA. Longitudinal resting-state network connectivity changes in electroconvulsive therapy patients compared to healthy controls. Brain Stimul 2024; 17:140-147. [PMID: 38101469 PMCID: PMC11145948 DOI: 10.1016/j.brs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is effective for major depressive episodes. Understanding of underlying mechanisms has been increased by examining changes of brain connectivity but studies often do not correct for test-retest variability in healthy controls (HC). In this study, we investigated changes in resting-state networks after ECT in a multicenter study. METHODS Functional resting-state magnetic resonance imaging data, acquired before start and within one week after ECT, from 90 depressed patients were analyzed, as well as longitudinal data of 24 HC. Group-information guided independent component analysis (GIG-ICA) was used to spatially restrict decomposition to twelve canonical resting-state networks. Selected networks of interest were the default mode network (DMN), salience network (SN), and left and right frontoparietal network (LFPN, and RFPN). Whole-brain voxel-wise analyses were used to assess group differences at baseline, group by time interactions, and correlations with treatment effectiveness. In addition, between-network connectivity and within-network strengths were computed. RESULTS Within-network strength of the DMN was lower at baseline in ECT patients which increased after ECT compared to HC, after which no differences were detected. At baseline, ECT patients showed lower whole-brain voxel-wise DMN connectivity in the precuneus. Increase of within-network strength of the LFPN was correlated with treatment effectiveness. We did not find whole-brain voxel-wise or between-network changes. CONCLUSION DMN within-network connectivity normalized after ECT. Within-network increase of the LFPN in ECT patients was correlated with higher treatment effectiveness. In contrast to earlier studies, we found no whole-brain voxel-wise changes, which highlights the necessity to account for test-retest effects.
Collapse
Affiliation(s)
- Joey P A J Verdijk
- Rijnstate Hospital, Department of Psychiatry, P.O. Box 9555, 6800 TA Arnhem, the Netherlands; University of Twente, Department of Clinical Neurophysiology, Enschede, the Netherlands.
| | - Laurens A van de Mortel
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Freek Ten Doesschate
- Rijnstate Hospital, Department of Psychiatry, P.O. Box 9555, 6800 TA Arnhem, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Julia C M Pottkämper
- Rijnstate Hospital, Department of Psychiatry, P.O. Box 9555, 6800 TA Arnhem, the Netherlands; University of Twente, Department of Clinical Neurophysiology, Enschede, the Netherlands
| | - Sven Stuiver
- Rijnstate Hospital, Department of Psychiatry, P.O. Box 9555, 6800 TA Arnhem, the Netherlands; University of Twente, Department of Clinical Neurophysiology, Enschede, the Netherlands
| | - Willem B Bruin
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Miklos Argyelan
- Center for Psychiatric Neuroscience at the Feinstein Institute for Medical Research, New York, NY, USA
| | - Olga T Ousdal
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Hauke Bartsch
- Department of Computer Science, University of Bergen, Bergen, Norway; Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Katherine Narr
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry, Nijmegen, the Netherlands
| | - Vince Calhoun
- Tri-institutional center for Translational Research in Neuroimaging and Data Science (TReNDS) Center, Emory University, USA
| | - Joshua Lukemire
- Emory Center for Biomedical Imaging Statistics, Emory University, USA
| | - Ying Guo
- Emory Center for Biomedical Imaging Statistics, Emory University, USA
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Guido van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jeroen A van Waarde
- Rijnstate Hospital, Department of Psychiatry, P.O. Box 9555, 6800 TA Arnhem, the Netherlands
| |
Collapse
|
34
|
Kurkin SA, Smirnov NM, Paunova R, Kandilarova S, Stoyanov D, Mayorova L, Hramov AE. Beyond Pairwise Interactions: Higher-Order Q-Analysis of fMRI-Based Brain Functional Networks in Patients With Major Depressive Disorder. IEEE ACCESS 2024; 12:197168-197186. [DOI: 10.1109/access.2024.3521249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- Semen A. Kurkin
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Nikita M. Smirnov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Larisa Mayorova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Solnechnogorsk, Russia
| | - Alexander E. Hramov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
35
|
Iraji A, Fu Z, Faghiri A, Duda M, Chen J, Rachakonda S, DeRamus T, Kochunov P, Adhikari BM, Belger A, Ford JM, Mathalon DH, Pearlson GD, Potkin SG, Preda A, Turner JA, van Erp TGM, Bustillo JR, Yang K, Ishizuka K, Faria A, Sawa A, Hutchison K, Osuch EA, Theberge J, Abbott C, Mueller BA, Zhi D, Zhuo C, Liu S, Xu Y, Salman M, Liu J, Du Y, Sui J, Adali T, Calhoun VD. Identifying canonical and replicable multi-scale intrinsic connectivity networks in 100k+ resting-state fMRI datasets. Hum Brain Mapp 2023; 44:5729-5748. [PMID: 37787573 PMCID: PMC10619392 DOI: 10.1002/hbm.26472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 10/04/2023] Open
Abstract
Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.
Collapse
Affiliation(s)
- A. Iraji
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Z. Fu
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - A. Faghiri
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - M. Duda
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - J. Chen
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - S. Rachakonda
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - T. DeRamus
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - P. Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of MedicineUniversity of MarylandBaltimoreMarylandUSA
| | - B. M. Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, School of MedicineUniversity of MarylandBaltimoreMarylandUSA
| | - A. Belger
- Department of PsychiatryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - J. M. Ford
- Department of PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - D. H. Mathalon
- Department of PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - G. D. Pearlson
- Departments of Psychiatry and Neuroscience, School of MedicineYale UniversityNew HavenConnecticutUSA
| | - S. G. Potkin
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - A. Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - J. A. Turner
- Department of Psychiatry and Behavioral HealthOhio State University Medical Center in ColumbusColumbusOhioUSA
| | - T. G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - J. R. Bustillo
- Department of Psychiatry and Behavioral SciencesUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - K. Yang
- Department of Psychiatry, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - K. Ishizuka
- Department of Psychiatry, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - A. Faria
- Department of Psychiatry, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - A. Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Pharmacology, and Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Mental HealthJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - K. Hutchison
- Department of PsychologyUniversity of ColoradoBoulderColoradoUSA
| | - E. A. Osuch
- Department of Psychiatry, Schulich School of Medicine and DentistryLondon Health Sciences Centre, Lawson Health Research InstituteLondonCanada
| | - J. Theberge
- Department of Psychiatry, Schulich School of Medicine and DentistryLondon Health Sciences Centre, Lawson Health Research InstituteLondonCanada
| | - C. Abbott
- Department of Psychiatry (CCA)University of New MexicoAlbuquerqueNew MexicoUSA
| | - B. A. Mueller
- Department of PsychiatryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - D. Zhi
- The State Key Lab of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - C. Zhuo
- Tianjin Mental Health CenterNankai University Affiliated Anding HospitalTianjinChina
| | - S. Liu
- The Department of PsychiatryFirst Clinical Medical College/First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Y. Xu
- The Department of PsychiatryFirst Clinical Medical College/First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - M. Salman
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- School of Electrical & Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - J. Liu
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Y. Du
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- School of Computer and Information TechnologyShanxi UniversityTaiyuanChina
| | - J. Sui
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- The State Key Lab of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - T. Adali
- Department of CSEEUniversity of Maryland Baltimore CountyBaltimoreMarylandUSA
| | - V. D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
- Department of Psychiatry, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- School of Electrical & Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
36
|
Zhang C, Lin Q, Niu Y, Li W, Gong X, Cong F, Wang Y, Calhoun VD. Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data. Hum Brain Mapp 2023; 44:5712-5728. [PMID: 37647216 PMCID: PMC10619417 DOI: 10.1002/hbm.26471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/27/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Brain networks extracted by independent component analysis (ICA) from magnitude-only fMRI data are usually denoised using various amplitude-based thresholds. By contrast, spatial source phase (SSP) or the phase information of ICA brain networks extracted from complex-valued fMRI data, has provided a simple yet effective way to perform the denoising using a fixed phase change. In this work, we extend the approach to magnitude-only fMRI data to avoid testing various amplitude thresholds for denoising magnitude maps extracted by ICA, as most studies do not save the complex-valued data. The main idea is to generate a mathematical SSP map for a magnitude map using a mapping framework, and the mapping framework is built using complex-valued fMRI data with a known SSP map. Here we leverage the fact that the phase map derived from phase fMRI data has similar phase information to the SSP map. After verifying the use of the magnitude data of complex-valued fMRI, this framework is generalized to work with magnitude-only data, allowing use of our approach even without the availability of the corresponding phase fMRI datasets. We test the proposed method using both simulated and experimental fMRI data including complex-valued data from University of New Mexico and magnitude-only data from Human Connectome Project. The results provide evidence that the mathematical SSP denoising with a fixed phase change is effective for denoising spatial maps from magnitude-only fMRI data in terms of retaining more BOLD-related activity and fewer unwanted voxels, compared with amplitude-based thresholding. The proposed method provides a unified and efficient SSP approach to denoise ICA brain networks in fMRI data.
Collapse
Affiliation(s)
- Chao‐Ying Zhang
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
| | - Qiu‐Hua Lin
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
| | - Yan‐Wei Niu
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
| | - Wei‐Xing Li
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
| | - Xiao‐Feng Gong
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
- Faculty of Information TechnologyUniversity of JyväskyläJyväskyläFinland
| | - Yu‐Ping Wang
- Tulane UniversityBiomedical Engineering DepartmentNew OrleansLouisianaUSA
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
37
|
Saha DK, Silva RF, Baker BT, Saha R, Calhoun VD. dcSBM: A federated constrained source-based morphometry approach for multivariate brain structure mapping. Hum Brain Mapp 2023; 44:5892-5905. [PMID: 37837630 PMCID: PMC10619413 DOI: 10.1002/hbm.26483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/16/2023] Open
Abstract
The examination of multivariate brain morphometry patterns has gained attention in recent years, especially for their powerful exploratory capabilities in the study of differences between patients and controls. Among the many existing methods and tools for the analysis of brain anatomy based on structural magnetic resonance imaging data, data-driven source-based morphometry (SBM) focuses on the exploratory detection of such patterns. Here, we implement a semi-blind extension of SBM, called constrained source-based morphometry (constrained SBM), which enables the extraction of maximally independent reference-alike sources using the constrained independent component analysis (ICA) approach. To do this, we combine SBM with a set of reference components covering the full brain, derived from a large independent data set (UKBiobank), to provide a fully automated SBM framework. This also allows us to implement a federated version of constrained SBM (cSBM) to allow analysis of data that is not locally accessible. In our proposed decentralized constrained source-based morphometry (dcSBM), the original data never leaves the local site. Each site operates constrained ICA on its private local data using a common distributed computation platform. Next, an aggregator/master node aggregates the results estimated from each local site and applies statistical analysis to estimate the significance of the sources. Finally, we utilize two additional multisite patient data sets to validate our model by comparing the resulting group difference estimates from both cSBM and dcSBM.
Collapse
Affiliation(s)
- Debbrata K. Saha
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Rogers F. Silva
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Bradley T. Baker
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Rekha Saha
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
38
|
Geenjaar EP, Lewis NL, Fedorov A, Wu L, Ford JM, Preda A, Plis SM, Calhoun VD. Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi-informed insights into schizophrenia. Hum Brain Mapp 2023; 44:5828-5845. [PMID: 37753705 PMCID: PMC10619380 DOI: 10.1002/hbm.26479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. We apply our proposed framework, which disentangles multimodal data into private and shared sets of features from pairs of structural (sMRI), functional (sFNC and ICA), and diffusion MRI data (FA maps). With our approach, we find that heterogeneity in schizophrenia is potentially a function of modality pairs. Results show (1) schizophrenia is highly multimodal and includes changes in specific networks, (2) non-linear relationships with schizophrenia are observed when interpolating among shared latent dimensions, and (3) we observe a decrease in the modularity of functional connectivity and decreased visual-sensorimotor connectivity for schizophrenia patients for the FA-sFNC and sMRI-sFNC modality pairs, respectively. Additionally, our results generally indicate decreased fractional corpus callosum anisotropy, and decreased spatial ICA map and voxel-based morphometry strength in the superior frontal lobe as found in the FA-sFNC, sMRI-FA, and sMRI-ICA modality pair clusters. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data which we hope challenges the reader to think differently about how modalities interact.
Collapse
Affiliation(s)
- Eloy P.T. Geenjaar
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Noah L. Lewis
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
- School of Computational Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Alex Fedorov
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Lei Wu
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Judith M. Ford
- San Francisco Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Adrian Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Sergey M. Plis
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Vince D. Calhoun
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
- School of Computational Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
39
|
Harikumar A, Solovyeva KP, Misiura M, Iraji A, Plis SM, Pearlson GD, Turner JA, Calhoun VD. Revisiting Functional Dysconnectivity: a Review of Three Model Frameworks in Schizophrenia. Curr Neurol Neurosci Rep 2023; 23:937-946. [PMID: 37999830 PMCID: PMC11126894 DOI: 10.1007/s11910-023-01325-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Over the last decade, evidence suggests that a combination of behavioral and neuroimaging findings can help illuminate changes in functional dysconnectivity in schizophrenia. We review the recent connectivity literature considering several vital models, considering connectivity findings, and relationships with clinical symptoms. We reviewed resting state fMRI studies from 2017 to 2023. We summarized the role of two sets of brain networks (cerebello-thalamo-cortical (CTCC) and the triple network set) across three hypothesized models of schizophrenia etiology (neurodevelopmental, vulnerability-stress, and neurotransmitter hypotheses). RECENT FINDINGS The neurotransmitter and neurodevelopmental models best explained CTCC-subcortical dysfunction, which was consistently connected to symptom severity and motor symptoms. Triple network dysconnectivity was linked to deficits in executive functioning, and the salience network (SN)-default mode network dysconnectivity was tied to disordered thought and attentional deficits. This paper links behavioral symptoms of schizophrenia (symptom severity, motor, executive functioning, and attentional deficits) to various hypothesized mechanisms.
Collapse
Affiliation(s)
- Amritha Harikumar
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Kseniya P Solovyeva
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Maria Misiura
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Armin Iraji
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Sergey M Plis
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Jessica A Turner
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vince D Calhoun
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA.
| |
Collapse
|
40
|
Kinsey S, Kazimierczak K, Camazón PA, Chen J, Adali T, Kochunov P, Adhikari B, Ford J, van Erp TGM, Dhamala M, Calhoun VD, Iraji A. Networks extracted from nonlinear fMRI connectivity exhibit unique spatial variation and enhanced sensitivity to differences between individuals with schizophrenia and controls. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.566292. [PMID: 38014169 PMCID: PMC10680735 DOI: 10.1101/2023.11.16.566292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Functional magnetic resonance imaging (fMRI) studies often estimate brain intrinsic connectivity networks (ICNs) from temporal relationships between hemodynamic signals using approaches such as independent component analysis (ICA). While ICNs are thought to represent functional sources that play important roles in various psychological phenomena, current approaches have been tailored to identify ICNs that mainly reflect linear statistical relationships. However, the elements comprising neural systems often exhibit remarkably complex nonlinear interactions that may be involved in cognitive operations and altered in psychiatric conditions such as schizophrenia. Consequently, there is a need to develop methods capable of effectively capturing ICNs from measures that are sensitive to nonlinear relationships. Here, we advance a novel approach to estimate ICNs from explicitly nonlinear whole-brain functional connectivity (ENL-wFC) by transforming resting-state fMRI (rsfMRI) data into the connectivity domain, allowing us to capture unique information from distance correlation patterns that would be missed by linear whole-brain functional connectivity (LIN-wFC) analysis. Our findings provide evidence that ICNs commonly extracted from linear (LIN) relationships are also reflected in explicitly nonlinear (ENL) connectivity patterns. ENL ICN estimates exhibit higher reliability and stability, highlighting our approach's ability to effectively quantify ICNs from rsfMRI data. Additionally, we observed a consistent spatial gradient pattern between LIN and ENL ICNs with higher ENL weight in core ICN regions, suggesting that ICN function may be subserved by nonlinear processes concentrated within network centers. We also found that a uniquely identified ENL ICN distinguished individuals with schizophrenia from healthy controls while a uniquely identified LIN ICN did not, emphasizing the valuable complementary information that can be gained by incorporating measures that are sensitive to nonlinearity in future analyses. Moreover, the ENL estimates of ICNs associated with auditory, linguistic, sensorimotor, and self-referential processes exhibit heightened sensitivity towards differentiating between individuals with schizophrenia and controls compared to LIN counterparts, demonstrating the translational value of our approach and of the ENL estimates of ICNs that are frequently reported as disrupted in schizophrenia. In summary, our findings underscore the tremendous potential of connectivity domain ICA and nonlinear information in resolving complex brain phenomena and revolutionizing the landscape of clinical FC analysis.
Collapse
Affiliation(s)
- Spencer Kinsey
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Pablo Andrés Camazón
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Tülay Adali
- Department of CSEE, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Peter Kochunov
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center Houston, Houston, TX
| | - Bhim Adhikari
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Judith Ford
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Mukesh Dhamala
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
41
|
Smith BB, Zhao Y, Lindquist MA, Caffo B. Regression models for partially localized fMRI connectivity analyses. FRONTIERS IN NEUROIMAGING 2023; 2:1178359. [PMID: 38025311 PMCID: PMC10679340 DOI: 10.3389/fnimg.2023.1178359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Background Brain functional connectivity analysis of resting-state functional magnetic resonance imaging (fMRI) data is typically performed in a standardized template space assuming consistency of connections across subjects. Analysis methods can come in the form of one-edge-at-a-time analyses or dimension reduction/decomposition methods. Common to these approaches is an assumption that brain regions are functionally aligned across subjects; however, it is known that this functional alignment assumption is often violated. Methods In this paper, we use subject-level regression models to explain intra-subject variability in connectivity. Covariates can include factors such as geographic distance between two pairs of brain regions, whether the two regions are symmetrically opposite (homotopic), and whether the two regions are members of the same functional network. Additionally, a covariate for each brain region can be included, to account for the possibility that some regions have consistently higher or lower connectivity. This style of analysis allows us to characterize the fraction of variation explained by each type of covariate. Additionally, comparisons across subjects can then be made using the fitted connectivity regression models, offering a more parsimonious alternative to edge-at-a-time approaches. Results We apply our approach to Human Connectome Project data on 268 regions of interest (ROIs), grouped into eight functional networks. We find that a high proportion of variation is explained by region covariates and network membership covariates, while geographic distance and homotopy have high relative importance after adjusting for the number of predictors. We also find that the degree of data repeatability using our connectivity regression model-which uses only partial location information about pairs of ROI's-is comparably as high as the repeatability obtained using full location information. Discussion While our analysis uses data that have been transformed into a common template-space, we also envision the method being useful in multi-atlas registration settings, where subject data remains in its own geometry and templates are warped instead. These results suggest the tantalizing possibility that fMRI connectivity analysis can be performed in subject-space, using less aggressive registration, such as simple affine transformations, multi-atlas subject-space registration, or perhaps even no registration whatsoever.
Collapse
Affiliation(s)
- Bonnie B. Smith
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Martin A. Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
42
|
Wang S, Cushing CA, Lau H, Craske MG, Taschereau-Dumouchel V. Multi-voxel neuro-reinforcement changes resting-state functional connectivity: A pilot study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298400. [PMID: 37986826 PMCID: PMC10659461 DOI: 10.1101/2023.11.10.23298400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Multi-voxel neuro-reinforcement has been shown to selectively reduce amygdala reactivity in response to feared stimuli, but the precise mechanisms supporting these effects are still unknown. The current pilot study seeks to identify potential intermediaries of change using functional brain connectivity at rest. Methods Individuals (N = 11) diagnosed with at least two animal subtype specific phobias took part in a double-blind multi-voxel neuro-reinforcement clinical trial targeting one of two phobic animals, with the untargeted animal as placebo control. Changes in whole-brain resting state functional connectivity from pre-treatment to post-treatment were measured using group ICA. These changes were tested to see if they predicted the previously observed decreases in amygdala reactivity in response to images of target phobic animals. Results A common functional connectivity network overlapping with the visual network was identified in resting state data pre-treatment and post-treatment. Significant increases in functional connectivity in this network from pre-treatment to post-treatment were found in higher level visual and cognitive processing regions of the brain. Increases in functional connectivity in these regions also significantly predicted decreases in task-based amygdala reactivity to targeted phobic animals following multi-voxel neuro-reinforcement. Specifically, greater increases of functional connectivity pre-treatment to post-treatment were associated with greater decreases of amygdala reactivity to target phobic stimuli pre-treatment to post-treatment. Conclusions These findings provide preliminary evidence that multi-voxel neuro-reinforcement can induce persisting functional connectivity changes in the brain. Moreover, these changes in functional connectivity were not limited to the direct area of neuro-reinforcement, suggesting neuro-reinforcement may change how the targeted region interacts with other brain regions. Identification of these brain regions represent a first step towards explaining the underlying mechanisms of change in previous multi-voxel neuro-reinforcement studies. Future research should seek to replicate these effects in a larger sample size to further assess their role in the effects observed from multi-voxel neuro-reinforcement.
Collapse
|
43
|
Wu W, Hoffman P. Age differences in the neural processing of semantics, within and beyond the core semantic network. Neurobiol Aging 2023; 131:88-105. [PMID: 37603932 DOI: 10.1016/j.neurobiolaging.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Aging is associated with functional activation changes in domain-specific regions and large-scale brain networks. This preregistered Functional magnetic resonance imaging (fMRI) study investigated these effects within the domain of semantic cognition. Participants completed 1 nonsemantic and 2 semantic tasks. We found no age differences in semantic activation in core semantic regions. However, the right inferior frontal gyrus showed difficulty-related increases in both age groups. This suggests that age-related upregulation of this area may be a compensatory response to increased processing demands. At a network level, older people showed more engagement in the default mode network and less in the executive multiple-demand network, aligning with older people's greater knowledge reserves and executive declines. In contrast, activation was age-invariant in semantic control regions. Finally, older adults showed reduced demand-related modulation of multiple-demand network activation in the nonsemantic task but not the semantic tasks. These findings provide a new perspective on the neural basis of semantic cognition in aging, suggesting that preserved function in specialized semantic networks may help to maintain semantic cognition in later life.
Collapse
Affiliation(s)
- Wei Wu
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK.
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
44
|
Tahedl M, Schwarzbach JV. An automated pipeline for obtaining labeled ICA-templates corresponding to functional brain systems. Hum Brain Mapp 2023; 44:5202-5211. [PMID: 37516917 PMCID: PMC10543103 DOI: 10.1002/hbm.26435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
The complexity of our actions and thinking is likely reflected in functional brain networks. Independent component analysis (ICA) is a popular data-driven method to compute group differences between such networks. A common way to investigate network differences is based on ICA maps which are generated from study-specific samples. However, this approach limits the generalizability and reproducibility of the results. Alternatively, network ICA templates can be used, but up to date, few such templates exist and are limited in terms of the functional systems they cover. Here, we propose a simple two-step procedure to obtain ICA-templates corresponding to functional brain systems of the researcher's choice: In step 1, the functional system of interest needs to be defined by means of a statistical parameter map (input), which one can generate with open-source software such as NeuroSynth or BrainMap. In step 2, that map is correlated to group-ICA maps provided by the Human Connectome Project (HCP), which is based on a large sample size and uses high quality and standardized acquisition procedures. The HCP-provided ICA-map with the highest correlation to the input map is then used as an ICA template representing the functional system of interest, for example, for subsequent analyses such as dual regression. We provide a toolbox to complete step 2 of the suggested procedure and demonstrate the usage of our pipeline by producing an ICA templates that corresponds to "motor function" and nine additional brain functional systems resulting in an ICA maps with excellent alignment with the gray matter/white matter boundaries of the brain. Our toolbox generates data in two different file formats: volumetric-based (NIFTI) and combined surface/volumetric files (CIFTI). Compared to 10 existing templates, our procedure output component maps with systematically stronger contribution of gray matter to the ICA z-values compared to white matter voxels in 9/10 cases by at least a factor of 2. The toolbox allows users to investigate functional networks of interest, which will enhance interpretability, reproducibility, and standardization of research investigating functional brain networks.
Collapse
Affiliation(s)
- Marlene Tahedl
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
| | - Jens V. Schwarzbach
- Department of Psychiatry and PsychotherapyUniversity of RegensburgRegensburgGermany
| |
Collapse
|
45
|
Sidulova M, Park CH. Conditional Variational Autoencoder for Functional Connectivity Analysis of Autism Spectrum Disorder Functional Magnetic Resonance Imaging Data: A Comparative Study. Bioengineering (Basel) 2023; 10:1209. [PMID: 37892939 PMCID: PMC10604768 DOI: 10.3390/bioengineering10101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Generative models, such as Variational Autoencoders (VAEs), are increasingly employed for atypical pattern detection in brain imaging. During training, these models learn to capture the underlying patterns within "normal" brain images and generate new samples from those patterns. Neurodivergent states can be observed by measuring the dissimilarity between the generated/reconstructed images and the input images. This paper leverages VAEs to conduct Functional Connectivity (FC) analysis from functional Magnetic Resonance Imaging (fMRI) scans of individuals with Autism Spectrum Disorder (ASD), aiming to uncover atypical interconnectivity between brain regions. In the first part of our study, we compare multiple VAE architectures-Conditional VAE, Recurrent VAE, and a hybrid of CNN parallel with RNN VAE-aiming to establish the effectiveness of VAEs in application FC analysis. Given the nature of the disorder, ASD exhibits a higher prevalence among males than females. Therefore, in the second part of this paper, we investigate if introducing phenotypic data could improve the performance of VAEs and, consequently, FC analysis. We compare our results with the findings from previous studies in the literature. The results showed that CNN-based VAE architecture is more effective for this application than the other models.
Collapse
Affiliation(s)
- Mariia Sidulova
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA;
| | - Chung Hyuk Park
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA;
- Department of Computer Science, School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
46
|
Khalilullah KMI, Agcaoglu O, Sui J, Adali T, Duda M, Calhoun VD. Multimodal fusion of multiple rest fMRI networks and MRI gray matter via parallel multilink joint ICA reveals highly significant function/structure coupling in Alzheimer's disease. Hum Brain Mapp 2023; 44:5167-5179. [PMID: 37605825 PMCID: PMC10502647 DOI: 10.1002/hbm.26456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
In this article, we focus on estimating the joint relationship between structural magnetic resonance imaging (sMRI) gray matter (GM), and multiple functional MRI (fMRI) intrinsic connectivity networks (ICNs). To achieve this, we propose a multilink joint independent component analysis (ml-jICA) method using the same core algorithm as jICA. To relax the jICA assumption, we propose another extension called parallel multilink jICA (pml-jICA) that allows for a more balanced weight distribution over ml-jICA/jICA. We assume a shared mixing matrix for both the sMRI and fMRI modalities, while allowing for different mixing matrices linking the sMRI data to the different ICNs. We introduce the model and then apply this approach to study the differences in resting fMRI and sMRI data from patients with Alzheimer's disease (AD) versus controls. The results of the pml-jICA yield significant differences with large effect sizes that include regions in overlapping portions of default mode network, and also hippocampus and thalamus. Importantly, we identify two joint components with partially overlapping regions which show opposite effects for AD versus controls, but were able to be separated due to being linked to distinct functional and structural patterns. This highlights the unique strength of our approach and multimodal fusion approaches generally in revealing potentially biomarkers of brain disorders that would likely be missed by a unimodal approach. These results represent the first work linking multiple fMRI ICNs to GM components within a multimodal data fusion model and challenges the typical view that brain structure is more sensitive to AD than fMRI.
Collapse
Affiliation(s)
- K. M. Ibrahim Khalilullah
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Oktay Agcaoglu
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Jing Sui
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Tülay Adali
- Department of Electrical and Computer EngineeringUniversity of MarylandBaltimoreMarylandUSA
| | - Marlena Duda
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
47
|
Okuno T, Hata J, Haga Y, Muta K, Tsukada H, Nakae K, Okano H, Woodward A. Group Surrogate Data Generating Models and similarity quantification of multivariate time-series: A resting-state fMRI study. Neuroimage 2023; 279:120329. [PMID: 37591477 DOI: 10.1016/j.neuroimage.2023.120329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Advancements in non-invasive brain analysis through novel approaches such as big data analytics and in silico simulation are essential for explaining brain function and associated pathologies. In this study, we extend the vector auto-regressive surrogate technique from a single multivariate time-series to group data using a novel Group Surrogate Data Generating Model (GSDGM). This methodology allowed us to generate biologically plausible human brain dynamics representative of a large human resting-state (rs-fMRI) dataset obtained from the Human Connectome Project. Simultaneously, we defined a novel similarity measure, termed the Multivariate Time-series Ensemble Similarity Score (MTESS). MTESS showed high accuracy and f-measure in subject identification, and it can directly compare the similarity between two multivariate time-series. We used MTESS to analyze both human and marmoset rs-fMRI data. Our results showed similarity differences between cortical and subcortical regions. We also conducted MTESS and state transition analysis between single and group surrogate techniques, and confirmed that a group surrogate approach can generate plausible group centroid multivariate time-series. Finally, we used GSDGM and MTESS for the fingerprint analysis of human rs-fMRI data, successfully distinguishing normal and outlier sessions. These new techniques will be useful for clinical applications and in silico simulation.
Collapse
Affiliation(s)
- Takuto Okuno
- Connectome Analysis Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Junichi Hata
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Yawara Haga
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kanako Muta
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Hiromichi Tsukada
- Center for Mathematical Science and Artificial Intelligence, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Ken Nakae
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Aichi, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Alexander Woodward
- Connectome Analysis Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
48
|
Barbero JA, Unadkat P, Choi YY, Eidelberg D. Functional Brain Networks to Evaluate Treatment Responses in Parkinson's Disease. Neurotherapeutics 2023; 20:1653-1668. [PMID: 37684533 PMCID: PMC10684458 DOI: 10.1007/s13311-023-01433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Network analysis of functional brain scans acquired with [18F]-fluorodeoxyglucose positron emission tomography (FDG PET, to map cerebral glucose metabolism), or resting-state functional magnetic resonance imaging (rs-fMRI, to map blood oxygen level-dependent brain activity) has increasingly been used to identify and validate reproducible circuit abnormalities associated with neurodegenerative disorders such as Parkinson's disease (PD). In addition to serving as imaging markers of the underlying disease process, these networks can be used singly or in combination as an adjunct to clinical diagnosis and as a screening tool for therapeutics trials. Disease networks can also be used to measure rates of progression in natural history studies and to assess treatment responses in individual subjects. Recent imaging studies in PD subjects scanned before and after treatment have revealed therapeutic effects beyond the modulation of established disease networks. Rather, other mechanisms of action may be at play, such as the induction of novel functional brain networks directly by treatment. To date, specific treatment-induced networks have been described in association with novel interventions for PD such as subthalamic adeno-associated virus glutamic acid decarboxylase (AAV2-GAD) gene therapy, as well as sham surgery or oral placebo under blinded conditions. Indeed, changes in the expression of these networks with treatment have been found to correlate consistently with clinical outcome. In aggregate, these attributes suggest a role for functional brain networks as biomarkers in future clinical trials.
Collapse
Affiliation(s)
- János A Barbero
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Prashin Unadkat
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, 11030, USA
| | - Yoon Young Choi
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Molecular Medicine and Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
49
|
Zhao L, Wu Z, Dai H, Liu Z, Hu X, Zhang T, Zhu D, Liu T. A generic framework for embedding human brain function with temporally correlated autoencoder. Med Image Anal 2023; 89:102892. [PMID: 37482031 DOI: 10.1016/j.media.2023.102892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/19/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Learning an effective and compact representation of human brain function from high-dimensional fMRI data is crucial for studying the brain's functional organization. Traditional representation methods such as independent component analysis (ICA) and sparse dictionary learning (SDL) mainly rely on matrix decomposition which represents the brain function as spatial brain networks and the corresponding temporal patterns. The correspondence of those brain networks across individuals are built by viewing them as one-hot vectors and then performing the matching. However, those one-hot vectors do not encode the regularity and/or variability of different brains very well, and thus are limited in effectively representing the functional brain activities across individuals and among different time points. To address this problem, in this paper, we formulate the human brain functional representation as an embedding problem, and propose a novel embedding framework based on the Transformer model to encode the brain function in a compact, stereotyped and comparable latent space where the brain activities are represented as dense embedding vectors. We evaluate the proposed embedding framework on the publicly available Human Connectome Project (HCP) task fMRI dataset. The experiments on brain state prediction task indicate the effectiveness and generalizability of the learned embedding. We also explore the interpretability of the learned embedding from both spatial and temporal perspective. In general, our approach provides novel insights on representing the regularity and variability of human brain function in a general, comparable, and stereotyped latent space.
Collapse
Affiliation(s)
- Lin Zhao
- School of Computing, The University of Georgia, Athens 30602, USA
| | - Zihao Wu
- School of Computing, The University of Georgia, Athens 30602, USA
| | - Haixing Dai
- School of Computing, The University of Georgia, Athens 30602, USA
| | - Zhengliang Liu
- School of Computing, The University of Georgia, Athens 30602, USA
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington 76019, USA.
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens 30602, USA.
| |
Collapse
|
50
|
Qiang N, Gao J, Dong Q, Yue H, Liang H, Liu L, Yu J, Hu J, Zhang S, Ge B, Sun Y, Liu Z, Liu T, Li J, Song H, Zhao S. Functional brain network identification and fMRI augmentation using a VAE-GAN framework. Comput Biol Med 2023; 165:107395. [PMID: 37669583 DOI: 10.1016/j.compbiomed.2023.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/04/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
Recently, deep learning models have achieved superior performance for mapping functional brain networks from functional magnetic resonance imaging (fMRI) data compared with traditional methods. However, due to the lack of sufficient data and the high dimensionality of brain volume, deep learning models of fMRI tend to suffer from overfitting. In addition, existing methods rarely studied fMRI data augmentation and its application. To address these issues, we developed a VAE-GAN framework that combined a VAE (variational auto-encoder) with a GAN (generative adversarial net) for functional brain network identification and fMRI augmentation. As a generative model, the VAE-GAN models the distribution of fMRI so that it enables the extraction of more generalized features, and thus relieve the overfitting issue. The VAE-GAN is easier to train on fMRI than a standard GAN since it uses latent variables from VAE to generate fake data rather than relying on random noise that is used in a GAN, and it can generate higher quality of fake data than VAE since the discriminator can promote the training of the generator. In other words, the VAE-GAN inherits the advantages of VAE and GAN and avoids their limitations in modeling of fMRI data. Extensive experiments on task fMRI datasets from HCP have proved the effectiveness and superiority of the proposed VAE-GAN framework for identifying both temporal features and functional brain networks compared with existing models, and the quality of fake data is higher than those from VAE and GAN. The results on resting state fMRI of Attention Deficit Hyperactivity Disorder (ADHD)-200 dataset further demonstrated that the fake data generated by the VAE-GAN can help improve the performance of brain network modeling and ADHD classification.
Collapse
Affiliation(s)
- Ning Qiang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China; Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Jie Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Qinglin Dong
- Advanced Medical Computing and Analysis, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Huiji Yue
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Hongtao Liang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Lili Liu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Jing Hu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Bao Ge
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China; Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Yifei Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Zhengliang Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Jin Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China.
| | - Hujie Song
- Xi'an TCM Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Xi'an, China.
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|