1
|
Ho JC, Grigsby EM, Damiani A, Liang L, Balaguer JM, Kallakuri S, Tang LW, Barrios-Martinez J, Karapetyan V, Fields D, Gerszten PC, Hitchens TK, Constantine T, Adams GM, Crammond DJ, Capogrosso M, Gonzalez-Martinez JA, Pirondini E. Potentiation of cortico-spinal output via targeted electrical stimulation of the motor thalamus. Nat Commun 2024; 15:8461. [PMID: 39353911 PMCID: PMC11445460 DOI: 10.1038/s41467-024-52477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for therapies aimed at improving volitional muscle activation. Here we hypothesize that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby immediately potentiating motor output. To test this hypothesis, we identify optimal thalamic targets and stimulation parameters that enhance upper-limb motor-evoked potentials and grip forces in anesthetized monkeys. This potentiation persists after white matter lesions. We replicate these results in humans during intra-operative testing. We then design a stimulation protocol that immediately improves strength and force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.
Collapse
Affiliation(s)
- Jonathan C Ho
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erinn M Grigsby
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arianna Damiani
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Josep-Maria Balaguer
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Sridula Kallakuri
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lilly W Tang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Vahagn Karapetyan
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theodora Constantine
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory M Adams
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald J Crammond
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jorge A Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
- University of Pittsburgh Clinical and Translational Science Institute (CTSI), Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Pirondini E, Grigsby E, Tang L, Damiani A, Ho J, Montanaro I, Nouduri S, Trant S, Constantine T, Adams G, Franzese K, Mahon B, Fiez J, Crammond D, Stipancic K, Gonzalez-Martinez J. Targeted deep brain stimulation of the motor thalamus improves speech and swallowing motor functions after cerebral lesions. RESEARCH SQUARE 2024:rs.3.rs-5085807. [PMID: 39399682 PMCID: PMC11469375 DOI: 10.21203/rs.3.rs-5085807/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Speech and swallowing are complex motor acts that depend upon the integrity of input neural signals from motor cortical areas to control muscles of the head and neck. Lesions damaging these neural pathways result in weakness of key muscles causing dysarthria and dysphagia, leading to profound social isolation and risk of aspiration and suffocation. Here we show that Deep Brain Stimulation (DBS) of the motor thalamus improved speech and swallowing functions in two participants with dysarthria and dysphagia. First, we proved that DBS increased excitation of the face motor cortex, augmenting motor evoked potentials, and range and speed of motion of orofacial articulators in n = 10 volunteers with intact neural pathways. Then, we demonstrated that this potentiation led to immediate improvement in swallowing functions in a patient with moderate dysphagia and profound dysarthria as a consequence of a traumatic brain lesion. In this subject and in another with mild dysarthria, we showed that DBS immediately ameliorated impairments of respiratory, phonatory, resonatory, and articulatory control thus resulting in a clinically significant improvement in speech intelligibility. Our data provide first-in-human evidence that DBS can be used to treat dysphagia and dysarthria in people with cerebral lesions.
Collapse
|
3
|
Zhang Z, Huang Y, Chen X, Li J, Yang Y, Lv L, Wang J, Wang M, Wang Y, Wang Z. State-specific Regulation of Electrical Stimulation in the Intralaminar Thalamus of Macaque Monkeys: Network and Transcriptional Insights into Arousal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402718. [PMID: 38938001 PMCID: PMC11434125 DOI: 10.1002/advs.202402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Long-range thalamocortical communication is central to anesthesia-induced loss of consciousness and its reversal. However, isolating the specific neural networks connecting thalamic nuclei with various cortical regions for state-specific anesthesia regulation is challenging, with the biological underpinnings still largely unknown. Here, simultaneous electroencephalogram-fuctional magnetic resonance imaging (EEG-fMRI) and deep brain stimulation are applied to the intralaminar thalamus in macaques under finely-tuned propofol anesthesia. This approach led to the identification of an intralaminar-driven network responsible for rapid arousal during slow-wave oscillations. A network-based RNA-sequencing analysis is conducted of region-, layer-, and cell-specific gene expression data from independent transcriptomic atlases and identifies 2489 genes preferentially expressed within this arousal network, notably enriched in potassium channels and excitatory, parvalbumin-expressing neurons, and oligodendrocytes. Comparison with human RNA-sequencing data highlights conserved molecular and cellular architectures that enable the matching of homologous genes, protein interactions, and cell types across primates, providing novel insight into network-focused transcriptional signatures of arousal.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Urumqi Middle Rd, Jing'an District, Shanghai, 200040, China
| | - Yichun Huang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Xiaoyu Chen
- Institute of Natural Sciences and School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Jiahui Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Yi Yang
- Department of Neurosurgery, Brain Computer Interface Transition Research Center, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Rd West, Fengtai District, Beijing, 100070, China
| | - Longbao Lv
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East of Jiaochang Rd, Kunming, Yunnan, 650223, China
| | - Jianhong Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East of Jiaochang Rd, Kunming, Yunnan, 650223, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Urumqi Middle Rd, Jing'an District, Shanghai, 200040, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
- School of Biomedical Engineering, Hainan University, 58 Renmin Avenue, Haikou, Hainan, 570228, China
| |
Collapse
|
4
|
Ho JC, Grigsby EM, Damiani A, Liang L, Balaguer JM, Kallakuri S, Barrios-Martinez J, Karapetyan V, Fields D, Gerszten PC, Kevin Hitchens T, Constantine T, Adams GM, Crammond DJ, Capogrosso M, Gonzalez-Martinez JA, Pirondini E. POTENTIATION OF CORTICO-SPINAL OUTPUT VIA TARGETED ELECTRICAL STIMULATION OF THE MOTOR THALAMUS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.08.23286720. [PMID: 36945514 PMCID: PMC10029067 DOI: 10.1101/2023.03.08.23286720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for new therapies aimed at improving volitional muscle activation. Here we hypothesized that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby potentiating motor output. To test this hypothesis, we identified optimal thalamic targets and stimulation parameters that enhanced upper-limb motor evoked potentials and grip forces in anesthetized monkeys. This potentiation persisted after white matter lesions. We replicated these results in humans during intra-operative testing. We then designed a stimulation protocol that immediately improved voluntary grip force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.
Collapse
Affiliation(s)
- Jonathan C. Ho
- School of Medicine, University of Pittsburgh, 3550 Terrace St, Pittsburgh, PA, USA 15213
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
| | - Erinn M. Grigsby
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, USA, 15213
| | - Arianna Damiani
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
| | - Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
| | - Josep-Maria Balaguer
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
| | - Sridula Kallakuri
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA, USA, 15260
| | - Jessica Barrios-Martinez
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Vahagn Karapetyan
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
| | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Peter C. Gerszten
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - T. Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop Street, Room E1440, Pittsburgh, PA, USA, 15213
| | - Theodora Constantine
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Gregory M. Adams
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Donald J. Crammond
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Jorge A. Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop Street, Room E1440, Pittsburgh, PA, USA, 15213
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop Street, Room E1440, Pittsburgh, PA, USA, 15213
| |
Collapse
|
5
|
Yu L, Noor MS, Kiss ZHT, Murari K. Monitoring stimulus-evoked hemodynamic response during deep brain stimulation with single fiber spectroscopy. JOURNAL OF BIOPHOTONICS 2022; 15:e202200076. [PMID: 36054592 DOI: 10.1002/jbio.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Deep brain stimulation (DBS) is a revolutionary treatment for movement disorders. Measuring DBS-induced hemodynamic responses may be useful for surgical guidance of DBS electrode implantation as well as to study the mechanism and assess therapeutic effects of DBS. In this study, we evaluated the performance of a single fiber spectroscopic (SFS) system for measuring hemodynamic response in different cortical layers in a DBS animal model. We showed that SFS is capable of measuring minute relative changes in oxygen saturation and blood volume fraction in-vivo at a sampling rate of 22-33 Hz. During stimulation, blood volume fraction increased, while oxygen saturation showed both increases and decreases at different cortical depths across animals. In addition, we showed the potential of using SFS for measuring other physiological parameters, for example, heart rate, and respiratory rate.
Collapse
Affiliation(s)
- Linhui Yu
- Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - M Sohail Noor
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H T Kiss
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Kartikeya Murari
- Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Palma M, Khoshnevis M, Lion M, Zenga C, Kefs S, Fallegger F, Schiavone G, Flandin IG, Lacour S, Yvert B. Chronic recording of cortical activity underlying vocalization in awake minipigs. J Neurosci Methods 2022; 366:109427. [PMID: 34852254 DOI: 10.1016/j.jneumeth.2021.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Investigating brain dynamics underlying vocal production in animals is a powerful way to inform on the neural bases of human speech. In particular, brain networks underlying vocal production in non-human primates show striking similarities with the human speech production network. However, despite increasing findings also in birds and more recently in rodents, the extent to which the primate vocal cortical network model generalizes to other non-primate mammals remains unclear. Especially, no domestic species has yet been proposed to investigate vocal brain activity using electrophysiological approaches. NEW METHOD In the present study, we introduce a novel experimental paradigm to identify the cortical dynamics underlying vocal production in behaving minipigs. A key problem to chronically implant cortical probes in pigs is the presence and growth of frontal sinuses extending caudally to the parietal bone and preventing safe access to neural structures with conventional craniotomy in adult animals. RESULTS Here we first show that implantations of soft ECoG grids can be done safely using conventional craniotomy in minipigs younger than 5 months, a period when sinuses are not yet well developed. Using wireless recordings in behaving animals, we further show activation of the motor and premotor cortex around the onset of vocal production of grunts, the most common vocalization of pigs. CONCLUSION These results suggest that minipigs, which are very loquacious and social animals, can be a good experimental large animal model to study the cortical bases of vocal production.
Collapse
Affiliation(s)
- Marie Palma
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Mehrdad Khoshnevis
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marie Lion
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Cyril Zenga
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Samy Kefs
- CHU Grenoble Alpes, Clinique Universitaire de Cancérologie-Radiothérapie, 38000 Grenoble, France
| | - Florian Fallegger
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Geneva, Switzerland
| | - Giuseppe Schiavone
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Geneva, Switzerland
| | - Isabelle Gabelle Flandin
- CHU Grenoble Alpes, Clinique Universitaire de Cancérologie-Radiothérapie, 38000 Grenoble, France
| | - Stéphanie Lacour
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Geneva, Switzerland
| | - Blaise Yvert
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
7
|
Yi G, Wang J. Frequency-Dependent Energy Demand of Dendritic Responses to Deep Brain Stimulation in Thalamic Neurons: A Model-Based Study. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3056-3068. [PMID: 32730206 DOI: 10.1109/tnnls.2020.3009293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thalamic deep brain stimulation (DBS) generates excitatory postsynaptic currents and action potentials (APs) by triggering large numbers of synaptic inputs to local cells, which also activates axonal spikes to antidromically invade the soma and dendrites. To maintain signaling, the evoked dendritic responses require metabolic energy to restore ion gradients in each dendrite. The objective of this study is to estimate the energy demand associated with dendritic responses to thalamic DBS. We use a morphologically realistic computational model to simulate dendritic activity in thalamocortical (TC) relay neurons with axonal intracellular stimulation or DBS-like extracellular stimulation. We determine the metabolic cost by calculating the number of adenosine triphosphate (ATP) expended to pump Na+ and Ca2+ ions out of each dendrite. The ATP demand of dendritic activity exhibits frequency dependence, which is determined by the number of spikes in the dendrites. Each backpropagating AP from the soma activates a spike in the dendrites, and the dendritic firing is dominated by antidromic activation of the soma. High stimulus frequencies decrease dendritic ATP cost by reducing the fidelity of antidromic activation. Synaptic inputs and stimulus-induced polarization govern the ATP cost of dendritic responses by facilitating/suppressing antidromic activation, which also influences the ATP cost by depolarizing/hyperpolarizing each dendrite. These findings are important for understanding the synaptic signaling energy in TC relay neurons and metabolism-dependent functional imaging data of thalamic DBS.
Collapse
|
8
|
Nayak R, Lee J, Chantigian S, Fatemi M, Chang SY, Alizad A. Imaging the response to deep brain stimulation in rodent using functional ultrasound. Phys Med Biol 2021; 66:05LT01. [PMID: 33482648 PMCID: PMC7920924 DOI: 10.1088/1361-6560/abdee5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, we explored the feasibility of using functional ultrasound (fUS) imaging to visualize cerebral activation associated with thalamic deep brain stimulation (DBS), in rodents. The ventrolateral (VL) thalamus was stimulated using electrical pulses of low and high frequencies of 10 and 100 Hz, respectively, and multiple voltages (1-7 V) and pulse widths (50-1500 μs). The fUS imaging demonstrated DBS-evoked activation of cerebral cortex based on changes of cerebral blood volume, specifically at the primary motor cortex (PMC). Low frequency stimulation (LFS) demonstrated significantly higher PMC activation compared to higher frequency stimulation (HFS), at intensities (5-7 V). Whereas, at lower intensities (1-3 V), only HFS demonstrated visible PMC activation. Further, LFS-evoked cerebral activation was was primarily located at the PMC. Our data presents the functionality and feasibility of fUS imaging as an investigational tool to identify brain areas associated with DBS. This preliminary study is an important stepping stone towards conducting real-time functional ultrasound imaging of DBS in awake and behaving animal models, which is of significant interest to the community for studying motor-related disorders.
Collapse
Affiliation(s)
- Rohit Nayak
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| | - Jeyeon Lee
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| | - Siobhan Chantigian
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55902, United States
| |
Collapse
|
9
|
Stojakovic A, Trushin S, Sheu A, Khalili L, Chang SY, Li X, Christensen T, Salisbury JL, Geroux RE, Gateno B, Flannery PJ, Dehankar M, Funk CC, Wilkins J, Stepanova A, O'Hagan T, Galkin A, Nesbitt J, Zhu X, Tripathi U, Macura S, Tchkonia T, Pirtskhalava T, Kirkland JL, Kudgus RA, Schoon RA, Reid JM, Yamazaki Y, Kanekiyo T, Zhang S, Nemutlu E, Dzeja P, Jaspersen A, Kwon YIC, Lee MK, Trushina E. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol 2021; 4:61. [PMID: 33420340 PMCID: PMC7794523 DOI: 10.1038/s42003-020-01584-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.
Collapse
Affiliation(s)
- Andrea Stojakovic
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Anthony Sheu
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Layla Khalili
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Xing Li
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Trace Christensen
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Jeffrey L Salisbury
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Rachel E Geroux
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Benjamin Gateno
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Padraig J Flannery
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Mrunal Dehankar
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, 98109-5263, USA
| | - Jordan Wilkins
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Anna Stepanova
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Tara O'Hagan
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Alexander Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Xiujuan Zhu
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Utkarsh Tripathi
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Rachel A Kudgus
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Renee A Schoon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Joel M Reid
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Sihhiye, Ankara, 06100, Turkey
| | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Adam Jaspersen
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ye In Christopher Kwon
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Bello EM, Agnesi F, Xiao Y, Dao J, Johnson MD. Frequency-dependent spike-pattern changes in motor cortex during thalamic deep brain stimulation. J Neurophysiol 2020; 124:1518-1529. [PMID: 32965147 DOI: 10.1152/jn.00198.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebellar-receiving area of the motor thalamus is the primary anatomical target for treating essential tremor with deep brain stimulation (DBS). Although neuroimaging studies have shown that higher stimulation frequencies in this target correlate with increased cortical metabolic activity, less is known about the cellular-level functional changes that occur in the primary motor cortex (M1) with thalamic stimulation and how these changes depend on the frequency of DBS. In this study, we used a preclinical animal model of DBS to collect single-unit spike recordings in M1 before, during, and after DBS targeting the cerebellar-receiving area of the motor thalamus (VPLo, nucleus ventralis posterior lateralis pars oralis). The effects of VPLo-DBS on M1 spike rates, interspike interval entropy, and peristimulus phase-locking were compared across stimulus pulse train frequencies ranging from 10 to 130 Hz. Although VPLo-DBS modulated the spike rates of 20-50% of individual M1 cells in a frequency-dependent manner, the population-level average spike rate only weakly depended on stimulation frequency. In contrast, the population-level entropy measure showed a pronounced decrease with high-frequency stimulation, caused by a subpopulation of cells that exhibited strong phase-locking and general spike-pattern regularization. Contrarily, low-frequency stimulation induced an entropy increase (spike-pattern disordering) in a relatively large portion of the recorded population, which diminished with higher stimulation frequencies. These results also suggest that changes in phase-locking and spike-pattern entropy are not necessarily equivalent pattern phenomena, but rather that they should both be weighed when quantifying stimulation-induced spike-pattern changes.NEW & NOTEWORTHY The network mechanisms of thalamic deep brain stimulation (DBS) are not well understood at the cellular level. This study investigated the neuronal firing rate and pattern changes in the motor cortex resulting from stimulation of the cerebellar-receiving area of the motor thalamus. We showed that there is a nonintuitive relationship between general entropy-based spike-pattern measures and phase-locked regularization to DBS.
Collapse
Affiliation(s)
- Edward M Bello
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Filippo Agnesi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Yizi Xiao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Joan Dao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis
| |
Collapse
|
11
|
Slopsema JP, Canna A, Uchenik M, Lehto LJ, Krieg J, Wilmerding L, Koski DM, Kobayashi N, Dao J, Blumenfeld M, Filip P, Min HK, Mangia S, Johnson MD, Michaeli S. Orientation-selective and directional deep brain stimulation in swine assessed by functional MRI at 3T. Neuroimage 2020; 224:117357. [PMID: 32916285 PMCID: PMC7783780 DOI: 10.1016/j.neuroimage.2020.117357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Functional MRI (fMRI) has become an important tool for probing network-level effects of deep brain stimulation (DBS). Previous DBS-fMRI studies have shown that electrical stimulation of the ventrolateral (VL) thalamus can modulate sensorimotor cortices in a frequency and amplitude dependent manner. Here, we investigated, using a swine animal model, how the direction and orientation of the electric field, induced by VL-thalamus DBS, affects activity in the sensorimotor cortex. Adult swine underwent implantation of a novel 16-electrode (4 rows × 4 columns) directional DBS lead in the VL thalamus. A within-subject design was used to compare fMRI responses for (1) directional stimulation consisting of monopolar stimulation in four radial directions around the DBS lead, and (2) orientation-selective stimulation where an electric field dipole was rotated 0°−360° around a quadrangle of electrodes. Functional responses were quantified in the premotor, primary motor, and somatosensory cortices. High frequency electrical stimulation through leads implanted in the VL thalamus induced directional tuning in cortical response patterns to varying degrees depending on DBS lead position. Orientation-selective stimulation showed maximal functional response when the electric field was oriented approximately parallel to the DBS lead, which is consistent with known axonal orientations of the cortico-thalamocortical pathway. These results demonstrate that directional and orientation-selective stimulation paradigms in the VL thalamus can tune network-level modulation patterns in the sensorimotor cortex, which may have translational utility in improving functional outcomes of DBS therapy.
Collapse
Affiliation(s)
| | - Antonietta Canna
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | | | - Lauri J Lehto
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota
| | | | - Dee M Koski
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Naoharu Kobayashi
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Joan Dao
- Department of Biomedical Engineering, University of Minnesota
| | | | - Pavel Filip
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota; Institute for Translational Neuroscience, University of Minnesota
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota.
| |
Collapse
|
12
|
Multivariate pattern classification on BOLD activation pattern induced by deep brain stimulation in motor, associative, and limbic brain networks. Sci Rep 2020; 10:7528. [PMID: 32372021 PMCID: PMC7200672 DOI: 10.1038/s41598-020-64547-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) has been shown to be an effective treatment for movement disorders and it is now being extended to the treatment of psychiatric disorders. Functional magnetic resonance imaging (fMRI) studies indicate that DBS stimulation targets dependent brain network effects, in networks that respond to stimulation. Characterizing these patterns is crucial for linking DBS-induced therapeutic and adverse effects. Conventional DBS-fMRI, however, lacks the sensitivity needed for decoding multidimensional information such as spatially diffuse patterns. We report here on the use of a multivariate pattern analysis (MVPA) to demonstrate that stimulation of three DBS targets (STN, subthalamic nucleus; GPi, globus pallidus internus; NAc, nucleus accumbens) evoked a sufficiently distinctive blood-oxygen-level-dependent (BOLD) activation in swine brain. The findings indicate that STN and GPi evoke a similar motor network pattern, while NAc shows a districted associative and limbic pattern. The findings show that MVPA could be effectively applied to overlapping or sparse BOLD patterns which are often found in DBS. Future applications are expected employ MVPA fMRI to identify the proper stimulation target dependent brain circuitry for a DBS outcome.
Collapse
|
13
|
Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes. Nat Commun 2020; 11:1788. [PMID: 32286290 PMCID: PMC7156737 DOI: 10.1038/s41467-020-15570-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
Simultaneous deep brain stimulation (DBS) and functional magnetic resonance imaging (fMRI) constitutes a powerful tool for elucidating brain functional connectivity, and exploring neuromodulatory mechanisms of DBS therapies. Previous DBS-fMRI studies could not provide full activation pattern maps due to poor MRI compatibility of the DBS electrodes, which caused obstruction of large brain areas on MRI scans. Here, we fabricate graphene fiber (GF) electrodes with high charge-injection-capacity and little-to-no MRI artifact at 9.4T. DBS-fMRI with GF electrodes at the subthalamic nucleus (STN) in Parkinsonian rats reveal robust blood-oxygenation-level-dependent responses along the basal ganglia-thalamocortical network in a frequency-dependent manner, with responses from some regions not previously detectable. This full map indicates that STN-DBS modulates both motor and non-motor pathways, possibly through orthodromic and antidromic signal propagation. With the capability for full, unbiased activation pattern mapping, DBS-fMRI using GF electrodes can provide important insights into DBS therapeutic mechanisms in various neurological disorders. Combination of fMRI and deep brain stimulation (DBS) allows for large-scale mapping of brain responses to DBS. Here the authors develop highly MRI compatible graphene fiber electrodes for full brain activation pattern mapping under DBS in Parkinsonian rats.
Collapse
|
14
|
Murris SR, Arsenault JT, Vanduffel W. Frequency- and State-Dependent Network Effects of Electrical Stimulation Targeting the Ventral Tegmental Area in Macaques. Cereb Cortex 2020; 30:4281-4296. [PMID: 32279076 PMCID: PMC7325806 DOI: 10.1093/cercor/bhaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
The ventral tegmental area (VTA) is a midbrain structure at the heart of the dopaminergic system underlying adaptive behavior. Endogenous firing rates of dopamine cells in the VTA vary from fast phasic bursts to slow tonic activity. Artificial perturbations of the VTA, through electrical or optogenetic stimulation methods, generate different and sometimes even contrasting behavioral outcomes depending on stimulation parameters such as frequency, amplitude, and pulse width. Here, we investigate the global functional effects of electrical stimulation frequency (10, 20, 50, and 100 Hz) of the VTA in rhesus monkeys. We stimulated 2 animals with chronic electrodes, either awake or anesthetized, while concurrently acquiring whole-brain functional magnetic resonance imaging (fMRI) signals. In the awake state, activity as a function of stimulation frequency followed an inverted U-shape in many cortical and subcortical structures, with highest activity observed at 20 and 50 Hz and lower activity at 10 and 100 Hz. Under anesthesia, the hemodynamic responses in connected brain areas were slightly positive at 10 Hz stimulation, but decreased linearly as a function of higher stimulation frequencies. A speculative explanation for the remarkable frequency dependence of stimulation-induced fMRI activity is that the VTA makes use of different frequency channels to communicate with different postsynaptic sites.
Collapse
Affiliation(s)
- Sjoerd R Murris
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - John T Arsenault
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| |
Collapse
|
15
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
16
|
Cho S, Hachmann JT, Balzekas I, In MH, Andres-Beck LG, Lee KH, Min HK, Jo HJ. Resting-state functional connectivity modulates the BOLD activation induced by nucleus accumbens stimulation in the swine brain. Brain Behav 2019; 9:e01431. [PMID: 31697455 PMCID: PMC6908867 DOI: 10.1002/brb3.1431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION While the clinical efficacy of deep brain stimulation (DBS) the treatment of motor-related symptoms is well established, the mechanism of action of the resulting cognitive and behavioral effects has been elusive. METHODS By combining functional magnetic resonance imaging (fMRI) and DBS, we investigated the pattern of blood-oxygenation-level-dependent (BOLD) signal changes induced by stimulating the nucleus accumbens in a large animal model. RESULTS We found that diffused BOLD activation across multiple functional networks, including the prefrontal, limbic, and thalamic regions during the stimulation, resulted in a significant change in inter-regional functional connectivity. More importantly, the magnitude of the modulation was closely related to the strength of the inter-regional resting-state functional connectivity. CONCLUSIONS Nucleus accumbens stimulation affects the functional activity in networks that underlie cognition and behavior. Our study provides an insight into the nature of the functional connectivity, which mediates activation effect via brain networks.
Collapse
Affiliation(s)
- Shinho Cho
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Jan T Hachmann
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Irena Balzekas
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Myung-Ho In
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Lindsey G Andres-Beck
- Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Hang Joon Jo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
17
|
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, Manto M, McCambridge AB, Nitsche MA, Taib NOB, Popa T, Tanaka M, Timmann D, Steinberg GK, Wang EH, Wichmann T, Xie T, Sillitoe RV. Consensus Paper: Experimental Neurostimulation of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1064-1097. [PMID: 31165428 PMCID: PMC6867990 DOI: 10.1007/s12311-019-01041-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kenneth B Baker
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jaclyn Beckinghausen
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Lynley V Bradnam
- Department of Exercise Science, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Jessica Cooperrider
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mahlon R DeLong
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN, 38163, USA
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
- NIDOD Department, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, Utrecht, Netherlands
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Department of Chronic Disease Epidemiology, Yale School of Public Health, Center for Neuroepidemiology and Clinical Research, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Andre Machado
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium
| | - Alana B McCambridge
- Graduate School of Health, Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Michael A Nitsche
- Department of Psychology and Neurosiences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | | - Traian Popa
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
- R281 Department of Neurosurgery, Stanfod University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eric H Wang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Tao Xie
- Department of Neurology, University of Chicago, 5841 S. Maryland Avenue, MC 2030, Chicago, IL, 60637-1470, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Lee J, Jo HJ, Kim I, Lee J, Min HK, In MH, Knight EJ, Chang SY. Mapping BOLD Activation by Pharmacologically Evoked Tremor in Swine. Front Neurosci 2019; 13:985. [PMID: 31619955 PMCID: PMC6759958 DOI: 10.3389/fnins.2019.00985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022] Open
Abstract
Harmaline-induced tremor is one of the most commonly utilized disease models for essential tremor (ET). However, the underlying neural networks involved in harmaline-induced tremor and the degree to which these are a representative model of the pathophysiologic mechanism of ET are incompletely understood. In this study, we evaluated the functional brain network effects induced by systemic injection of harmaline using pharmacological functional magnetic resonance imaging (ph-fMRI) in the swine model. With harmaline administration, we observed significant activation changes in cerebellum, thalamus, and inferior olivary nucleus (ION). In addition, inter-regional correlations in activity between cerebellum and deep cerebellar nuclei and between cerebellum and thalamus were significantly enhanced. These harmaline-induced effects gradually decreased with repeated administration of drug, replicating the previously demonstrated ‘tolerance’ effect. This study demonstrates that harmaline-induced tremor is associated with activity changes in brain regions previously implicated in humans with ET. Thus, harmaline-induction of tremor in the swine may be a useful model to explore the neurological effects of novel therapeutic agents and/or neuromodulation techniques for ET.
Collapse
Affiliation(s)
- Jeyeon Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Hang Joon Jo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Radiology, Mayo Clinic, Rochester, MN, United States.,Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Inyong Kim
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Jihyun Lee
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Emily J Knight
- Department of Developmental Behavioral Pediatrics, University of Rochester, Rochester, NY, United States
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Hoffe B, Holahan MR. The Use of Pigs as a Translational Model for Studying Neurodegenerative Diseases. Front Physiol 2019; 10:838. [PMID: 31354509 PMCID: PMC6635594 DOI: 10.3389/fphys.2019.00838] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, the move to study neurodegenerative disease using larger animal models with brains that are more similar to humans has gained interest. While pigs have been used for various biomedical applications and research, it has only been recently that they have been used to study neurodegenerative diseases due to their neuroanatomically similar gyrencephalic brains and similar neurophysiological processes as seen in humans. This review focuses on the use of pigs in the study of Alzheimer’s disease (AD) and traumatic brain injury (TBI). AD is considered the most common neurodegenerative disease in elderly populations. Head impacts from falls are the most common form of injury in the elderly and recent literature has shown an association between repetitive head impacts and the development of AD. This review summarizes research into the pathological mechanisms underlying AD and TBI as well as the advantages and disadvantages of using pigs in the neuroscientific study of these disease processes. With the lack of successful therapeutics for neurodegenerative diseases, and an increasing elderly population, the use of pigs may provide a better translational model for understanding and treating these diseases.
Collapse
Affiliation(s)
- Brendan Hoffe
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
20
|
Yi G, Grill WM. Average firing rate rather than temporal pattern determines metabolic cost of activity in thalamocortical relay neurons. Sci Rep 2019; 9:6940. [PMID: 31061521 PMCID: PMC6502890 DOI: 10.1038/s41598-019-43460-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Thalamocortical (TC) relay cells exhibit different temporal patterns of activity, including tonic mode and burst mode, to transmit sensory information to the cortex. Our aim was to quantify the metabolic cost of different temporal patterns of neural activity across a range of average firing rates. We used a biophysically-realistic model of a TC relay neuron to simulate tonic and burst patterns of firing. We calculated the metabolic cost by converting the calculated ion fluxes into the demand for ATP to maintain homeostasis of intracellular ion concentrations. Most energy was expended on reversing Na+ entry during action potentials and pumping Ca2+ out of the cell. Average firing rate determined the ATP cost across firing patterns by controlling the overall number of spikes. Varying intraburst frequency or spike number in each burst influenced the metabolic cost by altering the interactions of inward and outward currents on multiple timescales, but temporal pattern contributed substantially less to the metabolic demand of neural activity as compared to average firing rate. These predictions should be considered when interpreting findings of functional imaging studies that rely of estimates of neuronal metabolic demand, e.g., functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Guosheng Yi
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.,School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States. .,Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States. .,Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States. .,Department of Neurosurgery, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
21
|
Yi G, Wang J, Wei X, Che Y. Energy Cost of Action Potential Generation and Propagation in Thalamocortical Relay Neurons During Deep Brain Stimulation. IEEE Trans Biomed Eng 2019; 66:3457-3471. [PMID: 30932816 DOI: 10.1109/tbme.2019.2906114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Thalamocortical (TC) relay neurons generate antidromic and orthodromic action potentials (APs) during thalamic deep brain stimulation (DBS). To maintain signaling, each AP requires Na+/K+ pump to expend adenosine triphosphate (ATP) to restore Na+ and K+ gradients. Our aim was to estimate the energy demand associated with AP generation and propagation within TC relay cells during DBS. We used a morphology-based computational model to simulate the APs at different locations. We determined AP energy cost by calculating the amount of ATP required to reverse Na+ influx during the spike and measured metabolic efficiency by using Na+/K+ charge overlap. The ATP cost for AP generation exhibited location dependence, which was determined by spike shape, spatial morphology, and heterogeneously distributed currents. The APs in the axonal initial segment (AIS) were energetically efficient, but backpropagation to the soma and forward propagation to the axon were inefficient. Due to large surface area, the soma and AIS dominated the overall ATP usage. The AP cost also depended on membrane potential, which controlled T-type Ca2+ conductance and degree of availability of Na+ and K+ channels. The excitatory/inhibitory synaptic inputs affected spike cost by increasing/reducing the excitability of local cells. There was a tradeoff between AP cost and firing rate at high firing frequencies. We explained a fundamental link between biophysics of ionic currents, spatial morphology of neural segments, and ATP cost per AP. The predictions should be considered when understanding the functional magnetic resonance imaging data of thalamic DBS.
Collapse
|
22
|
Edwards CA, Rusheen AE, Oh Y, Paek SB, Jacobs J, Lee KH, Dennis KD, Bennet KE, Kouzani AZ, Lee KH, Goerss SJ. A novel re-attachable stereotactic frame for MRI-guided neuronavigation and its validation in a large animal and human cadaver model. J Neural Eng 2018; 15:066003. [PMID: 30124202 DOI: 10.1088/1741-2552/aadb49] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Stereotactic frame systems are the gold-standard for stereotactic surgeries, such as implantation of deep brain stimulation (DBS) devices for treatment of medically resistant neurologic and psychiatric disorders. However, frame-based systems require that the patient is awake with a stereotactic frame affixed to their head for the duration of the surgical planning and implantation of the DBS electrodes. While frameless systems are increasingly available, a reusable re-attachable frame system provides unique benefits. As such, we created a novel reusable MRI-compatible stereotactic frame system that maintains clinical accuracy through the detachment and reattachment of its stereotactic devices used for MRI-guided neuronavigation. APPROACH We designed a reusable arc-centered frame system that includes MRI-compatible anchoring skull screws for detachment and re-attachment of its stereotactic devices. We validated the stability and accuracy of our system through phantom, in vivo mock-human porcine DBS-model and human cadaver testing. MAIN RESULTS Phantom testing achieved a root mean square error (RMSE) of 0.94 ± 0.23 mm between the ground truth and the frame-targeted coordinates; and achieved an RMSE of 1.11 ± 0.40 mm and 1.33 ± 0.38 mm between the ground truth and the CT- and MRI-targeted coordinates, respectively. In vivo and cadaver testing achieved a combined 3D Euclidean localization error of 1.85 ± 0.36 mm (p < 0.03) between the pre-operative MRI-guided placement and the post-operative CT-guided confirmation of the DBS electrode. SIGNIFICANCE Our system demonstrated consistent clinical accuracy that is comparable to conventional frame and frameless stereotactic systems. Our frame system is the first to demonstrate accurate relocation of stereotactic frame devices during in vivo MRI-guided DBS surgical procedures. As such, this reusable and re-attachable MRI-compatible system is expected to enable more complex, chronic neuromodulation experiments, and lead to a clinically available re-attachable frame that is expected to decrease patient discomfort and costs of DBS surgery.
Collapse
Affiliation(s)
- Christine A Edwards
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia. Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States of America. Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Coquery N, Meurice P, Janvier R, Bobillier E, Quellec S, Fu M, Roura E, Saint-Jalmes H, Val-Laillet D. fMRI-Based Brain Responses to Quinine and Sucrose Gustatory Stimulation for Nutrition Research in the Minipig Model: A Proof-of-Concept Study. Front Behav Neurosci 2018; 12:151. [PMID: 30140206 PMCID: PMC6094987 DOI: 10.3389/fnbeh.2018.00151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/03/2018] [Indexed: 01/08/2023] Open
Abstract
The minipig model is of high interest for brain research in nutrition and associated pathologies considering the similarities to human nutritional physiology, brain structures, and functions. In the context of a gustatory stimulation paradigm, fMRI can provide crucial information about the sensory, cognitive, and hedonic integration of exteroceptive stimuli in healthy and pathological nutritional conditions. Our aims were (i) to validate the experimental setup, i.e., fMRI acquisition and SPM-based statistical analysis, with a visual stimulation; (ii) to implement the fMRI procedure in order to map the brain responses to different gustatory stimulations, i.e., sucrose (5%) and quinine (10 mM), and (ii) to investigate the differential effects of potentially aversive (quinine) and appetitive/pleasant (sucrose) oral stimulation on brain responses, especially in the limbic and reward circuits. Six Yucatan minipigs were imaged on an Avanto 1.5-T MRI under isoflurane anesthesia and mechanical ventilation. BOLD signal was recorded during visual or gustatory (artificial saliva, sucrose, or quinine) stimulation with a block paradigm. With the visual stimulation, brain responses were detected in the visual cortex, thus validating our experimental and statistical setup. Quinine and sucrose stimulation promoted different cerebral activation patterns that were concordant, to some extent, to results from human studies. The insular cortex (i.e., gustatory cortex) was activated with both sucrose and quinine, but other regions were specifically activated by one or the other stimulation. Gustatory stimulation combined with fMRI analysis in large animals such as minipigs is a promising approach to investigate the integration of gustatory stimulation in healthy or pathological conditions such as obesity, eating disorders, or dysgeusia. To date, this is the first intent to describe gustatory stimulation in minipigs using fMRI.
Collapse
Affiliation(s)
- Nicolas Coquery
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Paul Meurice
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Régis Janvier
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Eric Bobillier
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | | | - Minghai Fu
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Hervé Saint-Jalmes
- CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, Université de Rennes, Rennes, France
| | - David Val-Laillet
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| |
Collapse
|
24
|
Edwards CA, Kouzani A, Lee KH, Ross EK. Neurostimulation Devices for the Treatment of Neurologic Disorders. Mayo Clin Proc 2017; 92:1427-1444. [PMID: 28870357 DOI: 10.1016/j.mayocp.2017.05.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/16/2017] [Accepted: 05/01/2017] [Indexed: 12/01/2022]
Abstract
Rapid advancements in neurostimulation technologies are providing relief to an unprecedented number of patients affected by debilitating neurologic and psychiatric disorders. Neurostimulation therapies include invasive and noninvasive approaches that involve the application of electrical stimulation to drive neural function within a circuit. This review focuses on established invasive electrical stimulation systems used clinically to induce therapeutic neuromodulation of dysfunctional neural circuitry. These implantable neurostimulation systems target specific deep subcortical, cortical, spinal, cranial, and peripheral nerve structures to modulate neuronal activity, providing therapeutic effects for a myriad of neuropsychiatric disorders. Recent advances in neurotechnologies and neuroimaging, along with an increased understanding of neurocircuitry, are factors contributing to the rapid rise in the use of neurostimulation therapies to treat an increasingly wide range of neurologic and psychiatric disorders. Electrical stimulation technologies are evolving after remaining fairly stagnant for the past 30 years, moving toward potential closed-loop therapeutic control systems with the ability to deliver stimulation with higher spatial resolution to provide continuous customized neuromodulation for optimal clinical outcomes. Even so, there is still much to be learned about disease pathogenesis of these neurodegenerative and psychiatric disorders and the latent mechanisms of neurostimulation that provide therapeutic relief. This review provides an overview of the increasingly common stimulation systems, their clinical indications, and enabling technologies.
Collapse
Affiliation(s)
- Christine A Edwards
- School of Engineering, Deakin University, Geelong, Victoria, Australia; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Abbas Kouzani
- School of Engineering, Deakin University, Geelong, Victoria, Australia
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN.
| |
Collapse
|
25
|
MB-SWIFT functional MRI during deep brain stimulation in rats. Neuroimage 2017; 159:443-448. [PMID: 28797739 DOI: 10.1016/j.neuroimage.2017.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 12/24/2022] Open
Abstract
Recently introduced 3D radial MRI pulse sequence entitled Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) having virtually zero acquisition delay was used to obtain functional MRI (fMRI) contrast in rat's brain at 9.4 T during deep brain stimulation (DBS). The results demonstrate that MB-SWIFT allows functional images free of susceptibility artifacts, and provides an excellent fMRI activation contrast in the brain. Flip angle dependence of the MB-SWIFT fMRI signal and elimination of the fMRI contrast while using saturation bands, indicate a blood flow origin of the observed fMRI contrast. MB-SWIFT fMRI modality permits activation studies in the close proximity to an implanted lead, which is not possible to achieve with conventionally used gradient echo and spin echo - echo planar imaging fMRI techniques. We conclude that MB-SWIFT fMRI is a powerful imaging modality for investigations of functional responses during DBS.
Collapse
|
26
|
Fiveland E, Madhavan R, Prusik J, Linton R, Dimarzio M, Ashe J, Pilitsis J, Hancu I. EKG‐based detection of deep brain stimulation in fMRI studies. Magn Reson Med 2017; 79:2432-2439. [DOI: 10.1002/mrm.26868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/11/2023]
|
27
|
Arani A, Min HK, Fattahi N, Wetjen NM, Trzasko JD, Manduca A, Jack CR, Lee KH, Ehman RL, Huston J. Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: initial feasibility in an in vivo large animal model. Magn Reson Med 2017; 79:1043-1051. [PMID: 28488326 PMCID: PMC5811891 DOI: 10.1002/mrm.26738] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE The homeostasis of intracranial pressure (ICP) is of paramount importance for maintaining normal brain function. A noninvasive technique capable of making direct measurements of ICP currently does not exist. MR elastography (MRE) is capable of noninvasively measuring brain tissue stiffness in vivo, and may act as a surrogate to measure ICP. The objective of this study was to investigate the impact of changing ICP on brain stiffness using MRE in a swine model. METHODS Baseline MRE measurements were obtained, and then catheters were surgically placed into the left and right lateral ventricles of three animals. ICP was systematically increased over the range of 0 to 55 millimeters mercury (mmHg), and stiffness measurements were made using brain MRE at vibration frequencies of 60 hertz (Hz), 90 Hz, 120 Hz, and 150 Hz. RESULTS A significant linear correlation between stiffness and ICP in the cross-subject comparison was observed for all tested vibrational frequencies (P ≤ 0.01). The 120 Hz (0.030 ± 0.004 kilopascal (kPa)/mmHg, P < 0.0001) and 150 Hz (0.031 ± 0.008 kPa/mmHg, P = 0.01) vibrational frequencies had nearly identical slopes, which were approximately two- to three-fold higher than the 90 Hz (0.017 ± 0.002 kPa/mmHg, P < 0.0001) and 60 Hz (0.009 ± 0.002 kPa/mmHg, P = 0.001) slopes, respectively. CONCLUSION In this study, MRE demonstrated the potential for noninvasive measurement of changes in ICP. Magn Reson Med 79:1043-1051, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Collapse
Affiliation(s)
- Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Nikoo Fattahi
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Pires AO, Teixeira FG, Mendes-Pinheiro B, Serra SC, Sousa N, Salgado AJ. Old and new challenges in Parkinson's disease therapeutics. Prog Neurobiol 2017; 156:69-89. [PMID: 28457671 DOI: 10.1016/j.pneurobio.2017.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and/or loss od neuronal projections, in several dopaminergic networks. Current treatments for idiopathic PD rely mainly on the use of pharmacologic agents to improve motor symptomatology of PD patients. Nevertheless, so far PD remains an incurable disease. Therefore, it is of utmost importance to establish new therapeutic strategies for PD treatment. Over the last 20 years, several molecular, gene and cell/stem-cell therapeutic approaches have been developed with the aim of counteracting or retarding PD progression. The scope of this review is to provide an overview of PD related therapies and major breakthroughs achieved within this field. In order to do so, this review will start by focusing on PD characterization and current treatment options covering thereafter molecular, gene and cell/stem cell-based therapies that are currently being studied in animal models of PD or have recently been tested in clinical trials. Among stem cell-based therapies, those using MSCs as possible disease modifying agents for PD therapy and, specifically, the MSCs secretome contribution to meet the clinical challenge of counteracting or retarding PD progression, will be more deeply explored.
Collapse
Affiliation(s)
- Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - F G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - B Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
29
|
Settell ML, Testini P, Cho S, Lee JH, Blaha CD, Jo HJ, Lee KH, Min HK. Functional Circuitry Effect of Ventral Tegmental Area Deep Brain Stimulation: Imaging and Neurochemical Evidence of Mesocortical and Mesolimbic Pathway Modulation. Front Neurosci 2017; 11:104. [PMID: 28316564 PMCID: PMC5334355 DOI: 10.3389/fnins.2017.00104] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background: The ventral tegmental area (VTA), containing mesolimbic and mesocortical dopaminergic neurons, is implicated in processes involving reward, addiction, reinforcement, and learning, which are associated with a variety of neuropsychiatric disorders. Electrical stimulation of the VTA or the medial forebrain bundle and its projection target the nucleus accumbens (NAc) is reported to improve depressive symptoms in patients affected by severe, treatment-resistant major depressive disorder (MDD) and depressive-like symptoms in animal models of depression. Here we sought to determine the neuromodulatory effects of VTA deep brain stimulation (DBS) in a normal large animal model (swine) by combining neurochemical measurements with functional magnetic resonance imaging (fMRI). Methods: Animals (n = 8 swine) were implanted with a unilateral DBS electrode targeting the VTA. During stimulation (130 Hz frequency, 0.25 ms pulse width, and 3 V amplitude), fMRI was performed. Following fMRI, fast-scan cyclic voltammetry in combination with carbon fiber microelectrodes was performed to quantify VTA-DBS-evoked dopamine release in the ipsilateral NAc. In a subset of swine, the blood oxygen level-dependent (BOLD) percent change evoked by stimulation was performed at increasing voltages (1, 2, and 3 V). Results: A significant increase in VTA-DBS-evoked BOLD signal was found in the following regions: the ipsilateral dorsolateral prefrontal cortex, anterior and posterior cingulate, insula, premotor cortex, primary somatosensory cortex, and striatum. A decrease in the BOLD signal was also observed in the contralateral parahippocampal cortex, dorsolateral and anterior prefrontal cortex, insula, inferior temporal gyrus, and primary somatosensory cortex (Bonferroni-corrected < 0.001). During neurochemical measurements, stimulation time-locked changes in dopamine release were recorded in the NAc, confirming that mesolimbic dopaminergic neurons were stimulated by DBS. In the parametric study, BOLD signal changes were positively correlated with stimulation amplitude. Conclusions: In this study, the modulation of the neural circuitry associated with VTA-DBS was characterized in a large animal. Our findings suggest that VTA-DBS could affect the activity of neural systems and brain regions implicated in reward, mood regulation, and in the pathophysiology of MDD. In addition, we showed that a combination of fMRI and electrochemically-based neurochemical detection platform is an effective investigative tool for elucidating the circuitry involved in VTA-DBS.
Collapse
Affiliation(s)
- Megan L. Settell
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
- Mayo Graduate School, Mayo ClinicRochester, MN, USA
| | - Paola Testini
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
- Department of Surgery, Mayo ClinicRochester, MN, USA
| | - Shinho Cho
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| | - Jannifer H. Lee
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| | | | - Hang J. Jo
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo ClinicRochester, MN, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo ClinicRochester, MN, USA
- Department of Radiology, Mayo ClinicRochester, MN, USA
| |
Collapse
|
30
|
Van Den Berge N, Albaugh DL, Salzwedel A, Vanhove C, Van Holen R, Gao W, Stuber GD, Shih YYI. Functional circuit mapping of striatal output nuclei using simultaneous deep brain stimulation and fMRI. Neuroimage 2017; 146:1050-1061. [PMID: 27825979 PMCID: PMC5322177 DOI: 10.1016/j.neuroimage.2016.10.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/08/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023] Open
Abstract
The substantia nigra pars reticulata (SNr) and external globus pallidus (GPe) constitute the two major output targets of the rodent striatum. Both the SNr and GPe converge upon thalamic relay nuclei (directly or indirectly, respectively), and are traditionally modeled as functionally antagonistic relay inputs. However, recent anatomical and functional studies have identified unanticipated circuit connectivity in both the SNr and GPe, demonstrating their potential as far more than relay nuclei. In the present study, we employed simultaneous deep brain stimulation and functional magnetic resonance imaging (DBS-fMRI) with cerebral blood volume (CBV) measurements to functionally and unbiasedly map the circuit- and network level connectivity of the SNr and GPe. Sprague-Dawley rats were implanted with a custom-made MR-compatible stimulating electrode in the right SNr (n=6) or GPe (n=7). SNr- and GPe-DBS, conducted across a wide range of stimulation frequencies, revealed a number of surprising evoked responses, including unexpected CBV decreases within the striatum during DBS at either target, as well as GPe-DBS-evoked positive modulation of frontal cortex. Functional connectivity MRI revealed global modulation of neural networks during DBS at either target, sensitive to stimulation frequency and readily reversed following cessation of stimulation. This work thus contributes to a growing literature demonstrating extensive and unanticipated functional connectivity among basal ganglia nuclei.
Collapse
Affiliation(s)
- Nathalie Van Den Berge
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Daniel L Albaugh
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew Salzwedel
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Vanhove
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Roel Van Holen
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Wei Gao
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Garret D Stuber
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
31
|
Baizabal-Carvallo JF, Alonso-Juarez M. Low-frequency deep brain stimulation for movement disorders. Parkinsonism Relat Disord 2016; 31:14-22. [DOI: 10.1016/j.parkreldis.2016.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
|
32
|
Kuo SH, Lin CY, Wang J, Liou JY, Pan MK, Louis RJ, Wu WP, Gutierrez J, Louis ED, Faust PL. Deep brain stimulation and climbing fiber synaptic pathology in essential tremor. Ann Neurol 2016; 80:461-5. [PMID: 27422481 DOI: 10.1002/ana.24728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/18/2016] [Accepted: 07/10/2016] [Indexed: 01/22/2023]
Abstract
Essential tremor (ET) patients have abnormal climbing fiber (CF) synapses in the parallel fiber territory in the cerebellum, and these abnormal CF synapses are inversely correlated with tremor severity. We therefore examined CF synaptic pathology in ET cases with and without thalamic deep brain stimulation (DBS) and assessed the association with tremor severity. We found that CF synaptic pathology was inversely correlated with tremor severity in ET cases without DBS, and this correlation disappeared in ET cases with DBS. Our data suggest that DBS might have effects in modulating excitatory synapses in ET cerebellum, in addition to its symptomatic effects on tremor. Ann Neurol 2016;80:461-465.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.
| | - Chi-Ying Lin
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jie Wang
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Basic and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jyun-You Liou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ming-Kai Pan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Medical Research, National Taiwan University, Taipei, Taiwan
| | - Ravi J Louis
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Wei-Pu Wu
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jesus Gutierrez
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT.,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT.,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY
| |
Collapse
|
33
|
Lee HJ, Weitz AJ, Bernal-Casas D, Duffy BA, Choy M, Kravitz AV, Kreitzer AC, Lee JH. Activation of Direct and Indirect Pathway Medium Spiny Neurons Drives Distinct Brain-wide Responses. Neuron 2016; 91:412-24. [PMID: 27373834 DOI: 10.1016/j.neuron.2016.06.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/06/2016] [Accepted: 05/27/2016] [Indexed: 12/28/2022]
Abstract
A central theory of basal ganglia function is that striatal neurons expressing the D1 and D2 dopamine receptors exert opposing brain-wide influences. However, the causal influence of each population has never been measured at the whole-brain scale. Here, we selectively stimulated D1 or D2 receptor-expressing neurons while visualizing whole-brain activity with fMRI. Excitation of either inhibitory population evoked robust positive BOLD signals within striatum, while downstream regions exhibited significantly different and generally opposing responses consistent with-though not easily predicted from-contemporary models of basal ganglia function. Importantly, positive and negative signals within the striatum, thalamus, GPi, and STN were all associated with increases and decreases in single-unit activity, respectively. These findings provide direct evidence for the opposing influence of D1 and D2 receptor-expressing striatal neurons on brain-wide circuitry and extend the interpretability of fMRI studies by defining cell-type-specific contributions to the BOLD signal.
Collapse
Affiliation(s)
- Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Andrew J Weitz
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - David Bernal-Casas
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Ben A Duffy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - ManKin Choy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anatol C Kreitzer
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Gibson WS, Jo HJ, Testini P, Cho S, Felmlee JP, Welker KM, Klassen BT, Min HK, Lee KH. Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor. Brain 2016; 139:2198-210. [PMID: 27329768 PMCID: PMC4958905 DOI: 10.1093/brain/aww145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/03/2016] [Indexed: 01/05/2023] Open
Abstract
Thalamic deep brain stimulation (DBS) is an effective therapy for essential tremor. Gibson et al. use functional MRI to reveal patterns of activation that correlate with stimulation-induced therapeutic and adverse effects. Their results suggest that thalamic DBS controls tremor, and induces paraesthesias, through distal modulation of tremor-related network nodes. Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation.
Collapse
Affiliation(s)
- William S Gibson
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Hang Joon Jo
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Paola Testini
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Shinho Cho
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Joel P Felmlee
- 2 Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Kirk M Welker
- 2 Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Bryan T Klassen
- 3 Department of Neurology, Mayo Clinic, Rochester, MN, USA 55905, USA
| | - Hoon-Ki Min
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA 2 Department of Radiology, Mayo Clinic, Rochester, MN, USA 55905, USA 4 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kendall H Lee
- 1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA 55905, USA 4 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
35
|
Gibson WS, Ross EK, Han SR, Van Gompel JJ, Min HK, Lee KH. Anterior Thalamic Deep Brain Stimulation: Functional Activation Patterns in a Large Animal Model. Brain Stimul 2016; 9:770-773. [PMID: 27160467 DOI: 10.1016/j.brs.2016.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the anterior thalamic nucleus (ATN) exerts its effects by modulating neural circuits involved in seizures. However, these networks remain incompletely characterized. OBJECTIVE Investigate the effects of ATN DBS on network activity in a large animal model using 3-T fMRI. METHODS Anesthetized swine underwent ATN DBS using stimulation parameters applied in the Stimulation of the Anterior Thalamus for the Treatment of Epilepsy (SANTE) trial. Stimulation amplitude, frequency, and temporal paradigm were varied and the resulting blood oxygen level-dependent signal was measured. RESULTS ATN DBS resulted in activation within temporal, prefrontal, and sensorimotor cortex. An amplitude-dependent increase in cluster volume was observed at 60 Hz and 145 Hz stimulation. CONCLUSION ATN DBS in swine induced parameter-dependent activation in cortical regions including but not limited to the Papez circuit. These findings may hold clinical implications for treatment of epilepsy in patients with temporal or extratemporal seizure foci.
Collapse
Affiliation(s)
- William S Gibson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Seong Rok Han
- Department of Neurosurgery, Ilsan Paik Hospital, College of Medicine, Inje University, Goyang, Republic of Korea
| | - Jamie J Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
36
|
Klooster DCW, de Louw AJA, Aldenkamp AP, Besseling RMH, Mestrom RMC, Carrette S, Zinger S, Bergmans JWM, Mess WH, Vonck K, Carrette E, Breuer LEM, Bernas A, Tijhuis AG, Boon P. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols. Neurosci Biobehav Rev 2016; 65:113-41. [PMID: 27021215 DOI: 10.1016/j.neubiorev.2016.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
Neuromodulation is a field of science, medicine, and bioengineering that encompasses implantable and non-implantable technologies for the purpose of improving quality of life and functioning of humans. Brain neuromodulation involves different neurostimulation techniques: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), which are being used both to study their effects on cognitive brain functions and to treat neuropsychiatric disorders. The mechanisms of action of neurostimulation remain incompletely understood. Insight into the technical basis of neurostimulation might be a first step towards a more profound understanding of these mechanisms, which might lead to improved clinical outcome and therapeutic potential. This review provides an overview of the technical basis of neurostimulation focusing on the equipment, the present understanding of induced electric fields, and the stimulation protocols. The review is written from a technical perspective aimed at supporting the use of neurostimulation in clinical practice.
Collapse
Affiliation(s)
- D C W Klooster
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A J A de Louw
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - A P Aldenkamp
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - R M H Besseling
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - R M C Mestrom
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - S Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - S Zinger
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - J W M Bergmans
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - W H Mess
- Departments of Clinical Neurophysiology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - K Vonck
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - E Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - L E M Breuer
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands.
| | - A Bernas
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A G Tijhuis
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - P Boon
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
37
|
Noor MS, Murari K, McCracken CB, Kiss ZHT. Spatiotemporal dynamics of cortical perfusion in response to thalamic deep brain stimulation. Neuroimage 2015; 126:131-9. [PMID: 26578359 DOI: 10.1016/j.neuroimage.2015.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 12/12/2022] Open
Abstract
Deep brain stimulation (DBS) has revolutionized the treatment of movement disorders. The parameters of electrical stimulation are important to its therapeutic effect and remain a source of clinical controversy. DBS exerts its actions not only locally at the site of stimulation but also remotely through afferent and efferent connections, which are vital to its clinical effects. Yet, only a few studies have examined how cortical activity changes in response to various electrical parameters. Here, we investigated how the parameters of thalamic DBS alter cortical perfusion in rats using intrinsic optical imaging. We hypothesized that thalamic DBS will increase perfusion in primary motor cortex (M1), proportional to amplitude, pulse width, or frequency of the stimulation applied. We applied 45 different combinations of amplitude, pulse width and frequency in the ventro-lateral (VL) nucleus of the thalamus in anesthetized rats while measuring perfusion in M1. VL thalamic DBS reduced cortical reflectance, which corresponds to an increase in cortical perfusion. We computed the maximum change in reflectance (MCR) as well as the spatial spread of MCR in each trial. Both MCR and spatial spread increased linearly with increases in current amplitude or pulse width of stimulation; however, the effect of frequency was non-linear. Stimulation at 20 Hz was significantly different from that at higher frequencies while stimulation at higher frequencies did not differ significantly from each other. Moreover, the effect of pulse width on MCR was larger than the effect of amplitude. The proportional increase in M1 perfusion due to increase in amplitude or pulse width suggests that both activate more neural elements and increase the volume of tissue activated. These results should help clinicians set parameters of DBS. The use of optical imaging to monitor effects of DBS on M1 may not only help understand DBS mechanisms, but may also provide feedback for closed loop DBS devices.
Collapse
Affiliation(s)
- M Sohail Noor
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Kartikeya Murari
- Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Clinton B McCracken
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zelma H T Kiss
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
38
|
Gunduz A, Morita H, Rossi PJ, Allen WL, Alterman RL, Bronte-Stewart H, Butson CR, Charles D, Deckers S, de Hemptinne C, DeLong M, Dougherty D, Ellrich J, Foote KD, Giordano J, Goodman W, Greenberg BD, Greene D, Gross R, Judy JW, Karst E, Kent A, Kopell B, Lang A, Lozano A, Lungu C, Lyons KE, Machado A, Martens H, McIntyre C, Min HK, Neimat J, Ostrem J, Pannu S, Ponce F, Pouratian N, Reymers D, Schrock L, Sheth S, Shih L, Stanslaski S, Steinke GK, Stypulkowski P, Tröster AI, Verhagen L, Walker H, Okun MS. Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What's in the Pipeline. Int J Neurosci 2015; 125:475-85. [PMID: 25526555 PMCID: PMC4743588 DOI: 10.3109/00207454.2014.999268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.
Collapse
|