1
|
Moujaes F, Ji JL, Rahmati M, Burt JB, Schleifer C, Adkinson BD, Savic A, Santamauro N, Tamayo Z, Diehl C, Kolobaric A, Flynn M, Rieser N, Fonteneau C, Camarro T, Xu J, Cho Y, Repovs G, Fineberg SK, Morgan PT, Seifritz E, Vollenweider FX, Krystal JH, Murray JD, Preller KH, Anticevic A. Ketamine induces multiple individually distinct whole-brain functional connectivity signatures. eLife 2024; 13:e84173. [PMID: 38629811 PMCID: PMC11023699 DOI: 10.7554/elife.84173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/15/2024] [Indexed: 04/19/2024] Open
Abstract
Background Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine's molecular mechanisms connect to its neural and behavioral effects. Methods We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets. Results We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine's data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level. Conclusions These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry. Funding This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1-190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016-0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 - 2056) (FXV). Clinical trial number NCT03842800.
Collapse
Affiliation(s)
- Flora Moujaes
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Masih Rahmati
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Joshua B Burt
- Department of Physics, Yale UniversityBostonUnited States
| | - Charles Schleifer
- David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | | | - Nicole Santamauro
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Zailyn Tamayo
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Caroline Diehl
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | | | - Morgan Flynn
- Department of Psychiatry, Vanderbilt University Medical CenterNashvilleUnited States
| | - Nathalie Rieser
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Terry Camarro
- Magnetic Resonance Research Center, Yale University School of MedicineNew HavenUnited States
| | - Junqian Xu
- Department of Radiology and Psychiatry, Baylor College of MedicineHoustonUnited States
| | - Youngsun Cho
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Child Study Center, Yale University School of MedicineNew HavenUnited States
| | - Grega Repovs
- Department of Psychology, University of LjubljanaLjubljanaSlovenia
| | - Sarah K Fineberg
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Peter T Morgan
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Department of Psychiatry, Bridgeport HospitalBridgeportUnited States
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - John H Krystal
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - John D Murray
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Department of Physics, Yale UniversityBostonUnited States
- Department of Psychology, Yale UniversityNew HavenUnited States
| | - Katrin H Preller
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| |
Collapse
|
2
|
Gärtner M, Weigand A, Meiering MS, Weigner D, Carstens L, Keicher C, Hertrampf R, Beckmann C, Mennes M, Wunder A, Grimm S. Region- and time- specific effects of ketamine on cerebral blood flow: a randomized controlled trial. Neuropsychopharmacology 2023; 48:1735-1741. [PMID: 37231079 PMCID: PMC10579356 DOI: 10.1038/s41386-023-01605-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
There is intriguing evidence suggesting that ketamine might have distinct acute and delayed neurofunctional effects, as its acute administration transiently induces schizophrenia-like symptoms, while antidepressant effects slowly emerge and are most pronounced 24 h after administration. Studies attempting to characterize ketamine's mechanism of action by using blood oxygen level dependent (BOLD) imaging have yielded inconsistent results regarding implicated brain regions and direction of effects. This may be due to intrinsic properties of the BOLD contrast, while cerebral blood flow (CBF), as measured with arterial spin labeling, is a single physiological marker more directly related to neural activity. As effects of acute ketamine challenge are sensitive to modulation by pretreatment with lamotrigine, which inhibits glutamate release, a combination of these approaches should be particularly suited to offer novel insights. In total, 75 healthy participants were investigated in a double blind, placebo-controlled, randomized, parallel-group study and underwent two scanning sessions (acute/post 24 h.). Acute ketamine administration was associated with higher perfusion in interior frontal gyrus (IFG) and dorsolateral prefrontal cortex (DLPFC), but no other investigated brain region. Inhibition of glutamate release by pretreatment with lamotrigine abolished ketamine's effect on perfusion. At the delayed time point, pretreatment with lamotrigine was associated with lower perfusion in IFG. These findings underscore the idea that regionally selective patterns of CBF changes reflect proximate effects of modulated glutamate release on neuronal activity. Furthermore, region- specific sustained effects indicate both a swift restoration of disturbed homeostasis in DLPFC as well changes occurring beyond the immediate effects on glutamate signaling in IFG.
Collapse
Affiliation(s)
- Matti Gärtner
- Medical School Berlin, Berlin, Germany.
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Wasserthal S, Lehmann M, Neumann C, Delis A, Philipsen A, Hurlemann R, Ettinger U, Schultz J. Effects of NMDA-receptor blockade by ketamine on mentalizing and its neural correlates in humans: a randomized control trial. Sci Rep 2023; 13:17184. [PMID: 37821513 PMCID: PMC10567921 DOI: 10.1038/s41598-023-44443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Schizophrenia is associated with various deficits in social cognition that remain relatively unaltered by antipsychotic treatment. While faulty glutamate signaling has been associated with general cognitive deficits as well as negative symptoms of schizophrenia, no direct link between manipulation of glutamate signaling and deficits in mentalizing has been demonstrated thus far. Here, we experimentally investigated whether ketamine, an uncompetitive N-methyl-D-aspartate receptor antagonist known to induce psychotomimetic effects, influences mentalizing and its neural correlates. In a randomized, placebo-controlled between-subjects experiment, we intravenously administered ketamine or placebo to healthy participants performing a video-based social cognition task during functional magnetic resonance imaging. Psychotomimetic effects of ketamine were assessed using the Positive and Negative Syndrome Scale. Compared to placebo, ketamine led to significantly more psychotic symptoms and reduced mentalizing performance (more "no mentalizing" errors). Ketamine also influenced blood oxygen level dependent (BOLD) response during mentalizing compared to placebo. Specifically, ketamine increased BOLD in right posterior superior temporal sulcus (pSTS) and increased connectivity between pSTS and anterior precuneus. These increases may reflect a dysfunctional shift of attention induced by ketamine that leads to mentalizing deficits. Our findings show that a psychotomimetic dose of ketamine impairs mentalizing and influences its neural correlates, a result compatible with the notion that deficient glutamate signaling may contribute to deficits in mentalizing in schizophrenia. The results also support efforts to seek novel psychopharmacological treatments for psychosis and schizophrenia targeting glutamatergic transmission.
Collapse
Affiliation(s)
- Sven Wasserthal
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Mirko Lehmann
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Claudia Neumann
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Achilles Delis
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | | | - Johannes Schultz
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute for Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Ionescu TM, Grohs-Metz G, Hengerer B. Functional ultrasound detects frequency-specific acute and delayed S-ketamine effects in the healthy mouse brain. Front Neurosci 2023; 17:1177428. [PMID: 37266546 PMCID: PMC10229773 DOI: 10.3389/fnins.2023.1177428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction S-ketamine has received great interest due to both its antidepressant effects and its potential to induce psychosis when administered subchronically. However, no studies have investigated both its acute and delayed effects using in vivo small-animal imaging. Recently, functional ultrasound (fUS) has emerged as a powerful alternative to functional magnetic resonance imaging (fMRI), outperforming it in sensitivity and in spatiotemporal resolution. In this study, we employed fUS to thoroughly characterize acute and delayed S-ketamine effects on functional connectivity (FC) within the same cohort at slow frequency bands ranging from 0.01 to 1.25 Hz, previously reported to exhibit FC. Methods We acquired fUS in a total of 16 healthy C57/Bl6 mice split in two cohorts (n = 8 received saline, n = 8 S-ketamine). One day after the first scans, performed at rest, the mice received the first dose of S-ketamine during the second measurement, followed by four further doses administered every 2 days. First, we assessed FC reproducibility and reliability at baseline in six frequency bands. Then, we investigated the acute and delayed effects at day 1 after the first dose and at day 9, 1 day after the last dose, for all bands, resulting in a total of four fUS measurements for every mouse. Results We found reproducible (r > 0.9) and reliable (r > 0.9) group-average readouts in all frequency bands, only the 0.01-0.27 Hz band performing slightly worse. Acutely, S-ketamine induced strong FC increases in five of the six bands, peaking in the 0.073-0.2 Hz band. These increases comprised both cortical and subcortical brain areas, yet were of a transient nature, FC almost returning to baseline levels towards the end of the scan. Intriguingly, we observed robust corticostriatal FC decreases in the fastest band acquired (0.75 Hz-1.25 Hz). These changes persisted to a weaker extent after 1 day and at this timepoint they were accompanied by decreases in the other five bands as well. After 9 days, the decreases in the 0.75-1.25 Hz band were maintained, however no changes between cohorts could be detected in any other bands. Discussion In summary, the study reports that acute and delayed ketamine effects in mice are not only dissimilar but have different directionalities in most frequency bands. The complementary readouts of the employed frequency bands recommend the use of fUS for frequency-specific investigation of pharmacological effects on FC.
Collapse
|
5
|
Milano BA, Moutoussis M, Convertino L. The neurobiology of functional neurological disorders characterised by impaired awareness. Front Psychiatry 2023; 14:1122865. [PMID: 37009094 PMCID: PMC10060839 DOI: 10.3389/fpsyt.2023.1122865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
We review the neurobiology of Functional Neurological Disorders (FND), i.e., neurological disorders not explained by currently identifiable histopathological processes, in order to focus on those characterised by impaired awareness (functionally impaired awareness disorders, FIAD), and especially, on the paradigmatic case of Resignation Syndrome (RS). We thus provide an improved more integrated theory of FIAD, able to guide both research priorities and the diagnostic formulation of FIAD. We systematically address the diverse spectrum of clinical presentations of FND with impaired awareness, and offer a new framework for understanding FIAD. We find that unraveling the historical development of neurobiological theory of FIAD is of paramount importance for its current understanding. Then, we integrate contemporary clinical material in order to contextualise the neurobiology of FIAD within social, cultural, and psychological perspectives. We thus review neuro-computational insights in FND in general, to arrive at a more coherent account of FIAD. FIAD may be based on maladaptive predictive coding, shaped by stress, attention, uncertainty, and, ultimately, neurally encoded beliefs and their updates. We also critically appraise arguments in support of and against such Bayesian models. Finally, we discuss implications of our theoretical account and provide pointers towards an improved clinical diagnostic formulation of FIAD. We suggest directions for future research towards a more unified theory on which future interventions and management strategies could be based, as effective treatments and clinical trial evidence remain limited.
Collapse
Affiliation(s)
- Beatrice Annunziata Milano
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
- Faculty of Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Michael Moutoussis
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
- National Hospital of Neurology and Neurosurgery (UCLH), London, United Kingdom
| | - Laura Convertino
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
- National Hospital of Neurology and Neurosurgery (UCLH), London, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- *Correspondence: Laura Convertino,
| |
Collapse
|
6
|
Kim WSH, Dimick MK, Omrin D, Mitchell RHB, Riegert D, Levitt A, Schaffer A, Belo S, Iazzetta J, Detzler G, Choi M, Choi S, Herrmann N, McIntyre RS, MacIntosh BJ, Orser BA, Goldstein BI. Proof-of-concept randomized controlled trial of single-session nitrous oxide treatment for refractory bipolar depression: Focus on cerebrovascular target engagement. Bipolar Disord 2022; 25:221-232. [PMID: 36579458 DOI: 10.1111/bdi.13288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND There remain few efficacious treatments for bipolar depression, which dominates the course of bipolar disorder (BD). Despite multiple studies reporting associations between depression and cerebral blood flow (CBF), little is known regarding CBF as a treatment target, or predictor and/or indicator of treatment response, in BD. Nitrous oxide, an anesthetic gas with vasoactive and putative antidepressant properties, has a long history as a neuroimaging probe. We undertook an experimental medicine paradigm, coupling in-scanner single-session nitrous oxide treatment of bipolar depression with repeated measures of CBF. METHODS In this double-blind randomized controlled trial, 25 adults with BD I/II and current treatment-refractory depression received either: (1) nitrous oxide (20 min at 25% concentration) plus intravenous saline (n = 12), or (2) medical air plus intravenous midazolam (2 mg total; n = 13). Study outcomes included changes in depression severity (Montgomery-Asberg Depression Rating Scale scores, primary) and changes in CBF (via arterial spin labeling magnetic resonance imaging). RESULTS There were no significant between-group differences in 24-h post-treatment MADRS change or treatment response. However, the nitrous oxide group had significantly greater same-day reductions in depression severity. Lower baseline regional CBF predicted greater 24-h post-treatment MADRS reductions with nitrous oxide but not midazolam. In region-of-interest and voxel-wise analyses, there was a pattern of regional CBF reductions following treatment with midazolam versus nitrous oxide. CONCLUSIONS Present findings, while tentative and based on secondary endpoints, suggest differential associations of nitrous oxide versus midazolam with bipolar depression severity and cerebral hemodynamics. Larger studies integrating neuroimaging targets and repeated nitrous oxide treatment sessions are warranted.
Collapse
Affiliation(s)
- William S H Kim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle Omrin
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rachel H B Mitchell
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Riegert
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Levitt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ayal Schaffer
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Susan Belo
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John Iazzetta
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | - Mabel Choi
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Choi
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Beverley A Orser
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Gärtner M, de Rover M, Václavů L, Scheidegger M, van Osch MJP, Grimm S. Increase in thalamic cerebral blood flow is associated with antidepressant effects of ketamine in major depressive disorder. World J Biol Psychiatry 2022; 23:643-652. [PMID: 34985394 DOI: 10.1080/15622975.2021.2020900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ketamine is a promising treatment option for patients with Major Depressive Disorder (MDD) and has become an important research tool to investigate antidepressant mechanisms of action. However, imaging studies attempting to characterise ketamine's mechanism of action using blood oxygen level-dependent signal (BOLD) imaging have yielded inconsistent results- at least partly due to intrinsic properties of the BOLD contrast, which measures a complex signal related to neural activity. To circumvent the limitations associated with the BOLD signal, we used arterial spin labelling (ASL) as an unambiguous marker of neuronal activity-related changes in cerebral blood flow (CBF). We measured CBF in 21 MDD patients at baseline and 24 h after receiving a single intravenous infusion of subanesthetic ketamine and examined relationships with clinical outcomes. Our findings demonstrate that increase in thalamus perfusion 24 h after ketamine administration is associated with greater improvement of depressive symptoms. Furthermore, lower thalamus perfusion at baseline is associated both with larger increases in perfusion 24 h after ketamine administration and with stronger reduction of depressive symptoms. These findings indicate that ASL is not only a useful tool to broaden our understanding of ketamine's mechanism of action but might also have the potential to inform treatment decisions based on CBF-defined regional disruptions.
Collapse
Affiliation(s)
- Matti Gärtner
- MSB-Medical School Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mischa de Rover
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, Netherlands
| | - Lena Václavů
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias J P van Osch
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Simone Grimm
- MSB-Medical School Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Radford KD, Berman RY, Jaiswal S, Kim SY, Zhang M, Spencer HF, Choi KH. Enhanced Fear Memories and Altered Brain Glucose Metabolism ( 18F-FDG-PET) following Subanesthetic Intravenous Ketamine Infusion in Female Sprague-Dawley Rats. Int J Mol Sci 2022; 23:ijms23031922. [PMID: 35163844 PMCID: PMC8836808 DOI: 10.3390/ijms23031922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Although women and men are equally likely to receive ketamine following traumatic injury, little is known regarding sex-related differences in the impact of ketamine on traumatic memory. We previously reported that subanesthetic doses of an intravenous (IV) ketamine infusion following fear conditioning impaired fear extinction and altered regional brain glucose metabolism (BGluM) in male rats. Here, we investigated the effects of IV ketamine infusion on fear memory, stress hormone levels, and BGluM in female rats. Adult female Sprague–Dawley rats received a single IV ketamine infusion (0, 2, 10, or 20 mg/kg, over a 2-h period) following auditory fear conditioning (three pairings of tone and footshock). Levels of plasma stress hormones, corticosterone (CORT) and progesterone, were measured after the ketamine infusion. Two days after ketamine infusion, fear memory retrieval, extinction, and renewal were tested over a three-day period. The effects of IV ketamine infusion on BGluM were determined using 18F-fluoro-deoxyglucose positron emission tomography (18F-FDG-PET) and computed tomography (CT). The 2 and 10 mg/kg ketamine infusions reduced locomotor activity, while 20 mg/kg infusion produced reduction (first hour) followed by stimulation (second hour) of activity. The 10 and 20 mg/kg ketamine infusions significantly elevated plasma CORT and progesterone levels. All three doses enhanced fear memory retrieval, impaired fear extinction, and enhanced cued fear renewal in female rats. Ketamine infusion produced dose-dependent effects on BGluM in fear- and stress-sensitive brain regions of female rats. The current findings indicate that subanesthetic doses of IV ketamine produce robust effects on the hypothalamic–pituitary–adrenal (HPA) axis and brain energy utilization that may contribute to enhanced fear memory observed in female rats.
Collapse
Affiliation(s)
- Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Rina Y. Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
| | - Shalini Jaiswal
- Biomedical Research Imaging Core (BRIC), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Sharon Y. Kim
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
| | - Michael Zhang
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
| | - Haley F. Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
| | - Kwang H. Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA;
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
- Department of Psychiatry, F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-2682
| |
Collapse
|
9
|
Kotoula V, Webster T, Stone J, Mehta MA. Resting-state connectivity studies as a marker of the acute and delayed effects of subanaesthetic ketamine administration in healthy and depressed individuals: A systematic review. Brain Neurosci Adv 2021; 5:23982128211055426. [PMID: 34805548 PMCID: PMC8597064 DOI: 10.1177/23982128211055426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/24/2021] [Indexed: 11/15/2022] Open
Abstract
Acute ketamine administration has been widely used in neuroimaging research to mimic psychosis-like symptoms. Within the last two decades, ketamine has also emerged as a potent, fast-acting antidepressant. The delayed effects of the drug, observed 2–48 h after a single infusion, are associated with marked improvements in depressive symptoms. At the systems’ level, several studies have investigated the acute ketamine effects on brain activity and connectivity; however, several questions remain unanswered around the brain changes that accompany the drug’s antidepressant effects and how these changes relate to the brain areas that appear with altered function and connectivity in depression. This review aims to address some of these questions by focusing on resting-state brain connectivity. We summarise the studies that have examined connectivity changes in treatment-naïve, depressed individuals and those studies that have looked at the acute and delayed effects of ketamine in healthy and depressed volunteers. We conclude that brain areas that are important for emotional regulation and reward processing appear with altered connectivity in depression whereas the default mode network presents with increased connectivity in depressed individuals compared to healthy controls. This finding, however, is not as prominent as the literature often assumes. Acute ketamine administration causes an increase in brain connectivity in healthy volunteers. The delayed effects of ketamine on brain connectivity vary in direction and appear to be consistent with the drug normalising the changes observed in depression. The limited number of studies however, as well as the different approaches for resting-state connectivity analysis make it very difficult to draw firm conclusions and highlight the importance of data sharing and larger future studies.
Collapse
Affiliation(s)
- Vasileia Kotoula
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | | | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
10
|
Loureiro JRA, Sahib AK, Vasavada M, Leaver A, Kubicki A, Wade B, Joshi S, Hellemann G, Congdon E, Woods RP, Espinoza R, Narr KL. Ketamine's modulation of cerebro-cerebellar circuitry during response inhibition in major depression. Neuroimage Clin 2021; 32:102792. [PMID: 34571429 PMCID: PMC8476854 DOI: 10.1016/j.nicl.2021.102792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/01/2022]
Abstract
Ketamine modulates cerebellar connectivity during response inhibition in depression. Cerebellar–frontoparietal/sensory connectivity decreases in ketamine remitters. Cerebellar-frontoparietal/salience connectivity predicts treatment outcome. Cerebro-cerebellar loops serve as treatment biomarkers in major depression.
Patients with major depressive disorder (MDD) exhibit impaired control of cognitive and emotional systems, including deficient response selection and inhibition. Though these deficits are typically attributed to abnormal communication between macro-scale cortical networks, altered communication with the cerebellum also plays an important role. Yet, how the circuitry between the cerebellum and large-scale functional networks impact treatment outcome in MDD is not understood. We thus examined how ketamine, which elicits rapid therapeutic effects in MDD, modulates cerebro-cerebellar circuitry during response-inhibition using a functional imaging NoGo/Go task in MDD patients (N = 46, mean age: 39.2, 38.1% female) receiving four ketamine infusions, and healthy controls (N = 32, mean age:35.2, 71.4% female). We fitted psychophysiological-interaction (PPI) models for a functionally-derived cerebellar-seed and extracted average PPI in three target functional networks, frontoparietal (FPN), sensory-motor (SMN) and salience (SN) networks. Time and remission status were then evaluated for each of the networks and their network-nodes. Follow-up tests examined whether PPI-connectivity differed between patient remitter/non-remitters and controls. Results showed significant decreases in PPI-connectivity after ketamine between the cerebellum and FPN (p < 0.001) and SMN networks (p = 0.008) in remitters only (N = 20). However, ketamine-related changes in PPI-connectivity between the cerebellum and the SN (p = 0.003) did not vary with remitter status. Cerebellar-FPN, -SN PPI values at baseline were also associated with treatment outcome. Using novel methodology to quantify the functional coupling of cerebro-cerebellar circuitry during response-inhibition, our findings highlight that these loops play distinct roles in treatment response and could potentially serve as novel biomarkers for fast-acting antidepressant therapies in MDD.
Collapse
Affiliation(s)
- Joana R A Loureiro
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Ashish K Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Megha Vasavada
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Antoni Kubicki
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin Wade
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Shantanu Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Gerhard Hellemann
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Eliza Congdon
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Alexander L, Jelen LA, Mehta MA, Young AH. The anterior cingulate cortex as a key locus of ketamine's antidepressant action. Neurosci Biobehav Rev 2021; 127:531-554. [PMID: 33984391 DOI: 10.1016/j.neubiorev.2021.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/30/2022]
Abstract
The subdivisions of the anterior cingulate cortex (ACC) - including subgenual, perigenual and dorsal zones - are implicated in the etiology, pathogenesis and treatment of major depression. We review an emerging body of evidence which suggests that changes in ACC activity are critically important in mediating the antidepressant effects of ketamine, the prototypical member of an emerging class of rapidly acting antidepressants. Infusions of ketamine induce acute (over minutes) and post-acute (over hours to days) modulations in subgenual and perigenual activity, and importantly, these changes can correlate with antidepressant efficacy. The subgenual and dorsal zones of the ACC have been specifically implicated in ketamine's anti-anhedonic effects. We emphasize the synergistic relationship between neuroimaging studies in humans and brain manipulations in animals to understand the causal relationship between changes in brain activity and therapeutic efficacy. We conclude with circuit-based perspectives on ketamine's action: first, related to ACC function in a central network mediating affective pain, and second, related to its role as the anterior node of the default mode network.
Collapse
Affiliation(s)
- Laith Alexander
- Department of Psychological Medicine, School of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; St Thomas' Hospital, London, United Kingdom.
| | - Luke A Jelen
- Department of Psychological Medicine, School of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Mitul A Mehta
- Department of Psychological Medicine, School of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, School of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
The M1/M4 preferring muscarinic agonist xanomeline modulates functional connectivity and NMDAR antagonist-induced changes in the mouse brain. Neuropsychopharmacology 2021; 46:1194-1206. [PMID: 33342996 PMCID: PMC8115158 DOI: 10.1038/s41386-020-00916-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Cholinergic drugs acting at M1/M4 muscarinic receptors hold promise for the treatment of symptoms associated with brain disorders characterized by cognitive impairment, mood disturbances, or psychosis, such as Alzheimer's disease or schizophrenia. However, the brain-wide functional substrates engaged by muscarinic agonists remain poorly understood. Here we used a combination of pharmacological fMRI (phMRI), resting-state fMRI (rsfMRI), and resting-state quantitative EEG (qEEG) to investigate the effects of a behaviorally active dose of the M1/M4-preferring muscarinic agonist xanomeline on brain functional activity in the rodent brain. We investigated both the effects of xanomeline per se and its modulatory effects on signals elicited by the NMDA-receptor antagonists phencyclidine (PCP) and ketamine. We found that xanomeline induces robust and widespread BOLD signal phMRI amplitude increases and decreased high-frequency qEEG spectral activity. rsfMRI mapping in the mouse revealed that xanomeline robustly decreased neocortical and striatal connectivity but induces focal increases in functional connectivity within the nucleus accumbens and basal forebrain. Notably, xanomeline pre-administration robustly attenuated both the cortico-limbic phMRI response and the fronto-hippocampal hyper-connectivity induced by PCP, enhanced PCP-modulated functional connectivity locally within the nucleus accumbens and basal forebrain, and reversed the gamma and high-frequency qEEG power increases induced by ketamine. Collectively, these results show that xanomeline robustly induces both cholinergic-like neocortical activation and desynchronization of functional networks in the mammalian brain. These effects could serve as a translatable biomarker for future clinical investigations of muscarinic agents, and bear mechanistic relevance for the putative therapeutic effect of these class of compounds in brain disorders.
Collapse
|
13
|
Wang P, Yang Z, Shan S, Cao Z, Wang Z. Analgesic effect of perioperative ketamine for total hip arthroplasties and total knee arthroplasties: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2020; 99:e22809. [PMID: 33080757 PMCID: PMC7571980 DOI: 10.1097/md.0000000000022809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Total hip arthroplasties (THA) and total knee arthroplasties (TKA) are always associated with a frequent incidence of postoperative pain. Effective pain management after surgery is quite essential for surgeons and patients. The purpose of the present meta-analysis is to evaluate the analgesic effect of perioperative ketamine after THA and TKA. METHODS Seven online databases, Embase, Cochrane Library, Pubmed, Web of Science, China National Knowledge Infrastructure (CNKI), China Biomedical Literature Database (CBM), and Wanfang Data were searched for the related randomized controlled trials (RCT) by August 15, 2019. The qualities of the included studies were assessed based on the Cochrane Handbook for Systematic Reviews of Interventions 5.0. The visual analog scale (VAS), morphine equivalent consumption, and the side effects were used to evaluate the postoperative analgesic effect of ketamine by meta-analysis, which was performed by Review Manager version 5.3 software. RESULTS The VAS scores at 6 hours, 12 hours, 24 hours, and 48 hours after surgery were statistically lower in the ketamine group. The morphine equivalent consumptions in 24 hours and 48 hours after surgery were also significantly lower in the ketamine group. For the side effects, no statistical differences in odds ratio (OR) of sedation, dizziness, hallucination, sweating, pruritus, urinary retention, constipation, version trouble, nightmares, and delirium were observed between the ketamine group and the control group. But postoperative nausea and vomiting (PONV) showed lower OR in the ketamine group. CONCLUSION The present meta-analysis demonstrated perioperative ketamine could be used as a safe and effective analgesic agent for THA and TKA.
Collapse
Affiliation(s)
| | - Zhong Yang
- Department of Orthopedics, The Fifth Central Hospital of Tianjian, Tianjin
| | | | - Zhipeng Cao
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province
| | - Zhilin Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| |
Collapse
|
14
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
15
|
Nowacki J, Wingenfeld K, Kaczmarczyk M, Chae WR, Salchow P, Abu-Tir I, Piber D, Hellmann-Regen J, Otte C. Steroid hormone secretion after stimulation of mineralocorticoid and NMDA receptors and cardiovascular risk in patients with depression. Transl Psychiatry 2020; 10:109. [PMID: 32313032 PMCID: PMC7171120 DOI: 10.1038/s41398-020-0789-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is associated with altered mineralocorticoid receptor (MR) and glucocorticoid receptor function, and disturbed glutamatergic signaling. Both systems are closely intertwined and likely contribute not only to the pathophysiology of MDD, but also to the increased cardiovascular risk in MDD patients. Less is known about other steroid hormones, such as aldosterone and DHEA-S, and how they affect the glutamatergic system and cardiovascular disease risk in MDD. We examined salivary cortisol, aldosterone, and DHEA-S secretion after stimulation of MR and glutamatergic NMDA receptors in 116 unmedicated depressed patients, and 116 age- and sex-matched healthy controls. Patients (mean age = 34.7 years, SD = ±13.3; 78% women) and controls were randomized to four conditions: (a) control condition (placebo), (b) MR stimulation (0.4 mg fludrocortisone), (c) NMDA stimulation (250 mg D-cycloserine (DCS)), and (d) combined MR/NMDA stimulation (fludrocortisone + DCS). We additionally determined the cardiovascular risk profile in both groups. DCS had no effect on steroid hormone secretion, while cortisol secretion decreased in both fludrocortisone conditions across groups. Independent of condition, MDD patients showed (1) increased cortisol, increased aldosterone, and decreased DHEA-S concentrations, and (2) increased glucose levels and decreased high-density lipoprotein cholesterol levels compared with controls. Depressed patients show profound alterations in several steroid hormone systems that are associated both with MDD pathophysiology and increased cardiovascular risk. Prospective studies should examine whether modulating steroid hormone levels might reduce psychopathology and cardiovascular risk in depressed patients.
Collapse
Affiliation(s)
- Jan Nowacki
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Michael Kaczmarczyk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Woo Ri Chae
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Paula Salchow
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ikram Abu-Tir
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Dominique Piber
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
16
|
Sahib AK, Loureiro JRA, Vasavada MM, Kubicki A, Joshi SH, Wang K, Woods RP, Congdon E, Wang DJJ, Boucher ML, Espinoza R, Narr KL. Single and repeated ketamine treatment induces perfusion changes in sensory and limbic networks in major depressive disorder. Eur Neuropsychopharmacol 2020; 33:89-100. [PMID: 32061453 PMCID: PMC8869841 DOI: 10.1016/j.euroneuro.2020.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/26/2020] [Indexed: 12/15/2022]
Abstract
Ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depressive disorder (MDD). Yet, how single and repeated ketamine treatment induces brain systems-level neuroplasticity underlying symptom improvement is unknown. Advanced multiband imaging (MB) pseudo-continuous arterial spin labeling (pCASL) perfusion MRI data was acquired from patients with treatment resistant depression (TRD) (N = 22, mean age=35.2 ± 9.95 SD, 27% female) at baseline, and 24 h after receiving single, and four subanesthetic (0.5 mg/kg) intravenous ketamine infusions. Changes in global and regional CBF were compared across time points, and relationships with overall mood, anhedonia and apathy were examined. Comparisons between patients at baseline and controls (N = 18, mean age=36.11 ± 14.5 SD, 57% female) established normalization of treatment effects. Results showed increased regional CBF in the cingulate and primary and higher-order visual association regions after first ketamine treatment. Baseline CBF in the fusiform, and acute changes in CBF in visual areas were related to symptom improvement after single and repeated ketamine treatment, respectively. In contrast, after serial infusion therapy, decreases in regional CBF were observed in the bilateral hippocampus and right insula with ketamine treatment. Findings demonstrate that neurophysiological changes occurring with single and repeated ketamine treatment follow both a regional and temporal pattern including sensory and limbic regions. Initial changes are observed in the posterior cingulate and precuneus and primary and higher-order visual areas, which relate to clinical responses. However, repeated exposure to ketamine, though not relating to clinical outcome, appears to engage deeper limbic structures and insula. ClinicalTrials.gov: Biomarkers of Fast Acting Therapies in Major Depression, https://clinicaltrials.gov/ct2/show/NCT02165449, NCT02165449.
Collapse
Affiliation(s)
- Ashish K Sahib
- Department of Neurology, Ahamason-Lovelace Brain Mapping Center, United States
| | - Joana R A Loureiro
- Department of Neurology, Ahamason-Lovelace Brain Mapping Center, United States
| | - Megha M Vasavada
- Department of Neurology, Ahamason-Lovelace Brain Mapping Center, United States
| | - Antoni Kubicki
- Department of Neurology, Ahamason-Lovelace Brain Mapping Center, United States
| | - Shantanu H Joshi
- Department of Neurology, Ahamason-Lovelace Brain Mapping Center, United States
| | - Kai Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Roger P Woods
- Department of Neurology, Ahamason-Lovelace Brain Mapping Center, United States
| | - Eliza Congdon
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, 635 Charles E Young Drive South Suite, Los Angeles, CA 90095-7334, United States
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Michael L Boucher
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, 635 Charles E Young Drive South Suite, Los Angeles, CA 90095-7334, United States
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, 635 Charles E Young Drive South Suite, Los Angeles, CA 90095-7334, United States
| | - Katherine L Narr
- Department of Neurology, Ahamason-Lovelace Brain Mapping Center, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, 635 Charles E Young Drive South Suite, Los Angeles, CA 90095-7334, United States.
| |
Collapse
|
17
|
Khalili-Mahani N, Assadi A, Li K, Mirgholami M, Rivard ME, Benali H, Sawchuk K, De Schutter B. Reflective and Reflexive Stress Responses of Older Adults to Three Gaming Experiences In Relation to Their Cognitive Abilities: Mixed Methods Crossover Study. JMIR Ment Health 2020; 7:e12388. [PMID: 32213474 PMCID: PMC7146255 DOI: 10.2196/12388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/20/2019] [Accepted: 12/19/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The gamification of digital health provisions for older adults (eg, for rehabilitation) is a growing trend; however, many older adults are not familiar with digital games. This lack of experience could cause stress and thus impede participants' motivations to adopt these technologies. OBJECTIVE This crossover longitudinal multifactorial study aimed to examine the interactions between game difficulty, appraisal, cognitive ability, and physiological and cognitive responses that indicate game stress using the Affective Game Planning for Health Applications framework. METHODS A total of 18 volunteers (mean age 71 years, SD 4.5; 12 women) completed a three-session study to evaluate different genres of games in increasing order of difficulty (S1-BrainGame, S2-CarRace, and S3-Exergame). Each session included an identical sequence of activities (t1-Baseline, t2-Picture encode, t3-Play, t4-Stroop test, t5-Play, and t6-Picture recall), a repeated sampling of salivary cortisol, and time-tagged ambulatory data from a wrist-worn device. Generalized estimating equations were used to investigate the effect of session×activity or session×activity×cognitive ability on physiology and cognitive performance. Scores derived from the Montreal Cognitive Assessment (MoCA) test were used to define cognitive ability (MoCA-high: MoCA>27, n=11/18). Kruskal-Wallis tests were used to test session or session×group effects on the scores of the postgame appraisal questionnaire. RESULTS Session×activity effects were significant on all ambulatory measures (χ210>20; P<.001) other than cortisol (P=.37). Compared with S1 and S2, S3 was associated with approximately 10 bpm higher heart rate (P<.001) and approximately 5 muS higher electrodermal activity (P<.001), which were both independent of the movement caused by the exergame. Compared with S1, we measured a moderate but statistically significant drop in the rate of hits in immediate recall and rate of delayed recall in S3. The low-MoCA group did not differ from the high-MoCA group in general characteristics (age, general self-efficacy, and perceived stress) but was more likely to agree with statements such as digital games are too hard to learn. In addition, the low-MoCA group was more likely to dislike the gaming experience and find it useless, uninteresting, and visually more intense (χ21>4; P<.04). Group differences in ambulatory signals did not reach statistical significance; however, the rate of cortisol decline with respect to the baseline was significantly larger in the low-MoCA group. CONCLUSIONS Our results show that the experience of playing digital games was not stressful for our participants. Comparatively, the neurophysiological effects of exergame were more pronounced in the low-MoCA group, suggesting greater potential of this genre of games for cognitive and physical stimulation by gamified interventions; however, the need for enjoyment of this type of challenging game must be addressed.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- PERFORM Centre, Concordia University, Montreal, QC, Canada.,McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Atousa Assadi
- PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Kate Li
- PERFORM Centre, Concordia University, Montreal, QC, Canada
| | | | | | - Habib Benali
- PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Kim Sawchuk
- Department of Communications, Concordia University, Montreal, QC, Canada
| | - Bob De Schutter
- Armstrong Institute for Interactive Media Studies, Miami University, Oxford, OH, United States
| |
Collapse
|
18
|
Forsyth A, McMillan R, Campbell D, Malpas G, Maxwell E, Sleigh J, Dukart J, Hipp J, Muthukumaraswamy SD. Modulation of simultaneously collected hemodynamic and electrophysiological functional connectivity by ketamine and midazolam. Hum Brain Mapp 2019; 41:1472-1494. [PMID: 31808268 PMCID: PMC7267972 DOI: 10.1002/hbm.24889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
The pharmacological modulation of functional connectivity in the brain may underlie therapeutic efficacy for several neurological and psychiatric disorders. Functional magnetic resonance imaging (fMRI) provides a noninvasive method of assessing this modulation, however, the indirect nature of the blood‐oxygen level dependent signal restricts the discrimination of neural from physiological contributions. Here we followed two approaches to assess the validity of fMRI functional connectivity in developing drug biomarkers, using simultaneous electroencephalography (EEG)/fMRI in a placebo‐controlled, three‐way crossover design with ketamine and midazolam. First, we compared seven different preprocessing pipelines to determine their impact on the connectivity of common resting‐state networks. Independent components analysis (ICA)‐denoising resulted in stronger reductions in connectivity after ketamine, and weaker increases after midazolam, than pipelines employing physiological noise modelling or averaged signals from cerebrospinal fluid or white matter. This suggests that pipeline decisions should reflect a drug's unique noise structure, and if this is unknown then accepting possible signal loss when choosing extensive ICA denoising pipelines could engender more confidence in the remaining results. We then compared the temporal correlation structure of fMRI to that derived from two connectivity metrics of EEG, which provides a direct measure of neural activity. While electrophysiological estimates based on the power envelope were more closely aligned to BOLD signal connectivity than those based on phase consistency, no significant relationship between the change in electrophysiological and hemodynamic correlation structures was found, implying caution should be used when making cross‐modal comparisons of pharmacologically‐modulated functional connectivity.
Collapse
Affiliation(s)
- Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Doug Campbell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Gemma Malpas
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Elizabeth Maxwell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Jamie Sleigh
- Department of Anaesthesiology Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jörg Hipp
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Radford KD, Spencer HF, Zhang M, Berman RY, Girasek QL, Choi KH. Association between intravenous ketamine-induced stress hormone levels and long-term fear memory renewal in Sprague-Dawley rats. Behav Brain Res 2019; 378:112259. [PMID: 31560919 DOI: 10.1016/j.bbr.2019.112259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Ketamine is a multimodal dissociative anesthetic and analgesic that is widely used after traumatic injury. We previously reported that an analgesic dose of intravenous (IV) ketamine infusion (10 mg/kg, 2-h) after fear conditioning enhanced short-term fear memory in rats. Here, we investigated the effects of the same dose of an IV ketamine infusion on plasma stress hormone levels and long-term fear memory in rats. Adult male Sprague-Dawley rats (9-week-old with an average weight of 308 g upon arrival) received a ketamine infusion (0 or 10 mg/kg, 2-h) immediately after auditory fear conditioning (three auditory tone and footshock [0.6 mA, 1-s] pairings) on Day 0. After the infusion, a blood sample was collected from a jugular vein catheter for corticosterone and progesterone assays, and each animal was tested on tail flick to measure thermal antinociception. One week later, animals were tested on fear extinction acquisition (Day 7), fear extinction retrieval (Day 8), and fear renewal (Day 9). The IV ketamine infusion, compared to the saline infusion, reduced locomotor activity (sedation), increased tail flick latency (antinociception), and elevated plasma corticosterone and progesterone levels. The ketamine infusion did not alter long-term fear memory extinction or fear renewal. However, elevated corticosterone and progesterone levels resulting from the ketamine infusion were correlated with sedation, antinociception, and long-term fear memory renewal. These results suggest that individual differences in sensitivity to acute ketamine may predict vulnerability to develop fear-related disorders.
Collapse
Affiliation(s)
- Kennett D Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Haley F Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael Zhang
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA; Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Rina Y Berman
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD, 20814, USA; Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Quinn L Girasek
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Kwang H Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD, 20814, USA; Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA; Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
20
|
Association between dynamic resting-state functional connectivity and ketamine plasma levels in visual processing networks. Sci Rep 2019; 9:11484. [PMID: 31391479 PMCID: PMC6685940 DOI: 10.1038/s41598-019-46702-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/26/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous studies demonstrate ketamine’s influence on resting-state functional connectivity (rsFC). Seed-based and static rsFC estimation methods may oversimplify FC. These limitations can be addressed with whole-brain, dynamic rsFC estimation methods. We assessed data from 27 healthy subjects who underwent two 3 T resting-state fMRI scans, once under subanesthetic, intravenous esketamine and once under placebo, in a randomized, cross-over manner. We aimed to isolate only highly robust effects of esketamine on dynamic rsFC by using eight complementary methodologies derived from two dynamic rsFC estimation methods, two functionally defined atlases and two statistical measures. All combinations revealed a negative influence of esketamine on dynamic rsFC within the left visual network and inter-hemispherically between visual networks (p < 0.05, corrected), hereby suggesting that esketamine’s influence on dynamic rsFC is highly stable in visual processing networks. Our findings may be reflective of ketamine’s role as a model for psychosis, a disorder associated with alterations to visual processing and impaired inter-hemispheric connectivity. Ketamine is a highly effective antidepressant and studies have shown changes to sensory processing in depression. Dynamic rsFC in sensory processing networks might be a promising target for future investigations of ketamine’s antidepressant properties. Mechanistically, sensitivity of visual networks for esketamine’s effects may result from their high expression of NMDA-receptors.
Collapse
|
21
|
Krajcovic B, Fajnerova I, Horacek J, Kelemen E, Kubik S, Svoboda J, Stuchlik A. Neural and neuronal discoordination in schizophrenia: From ensembles through networks to symptoms. Acta Physiol (Oxf) 2019; 226:e13282. [PMID: 31002202 DOI: 10.1111/apha.13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Despite the substantial knowledge accumulated by past research, the exact mechanisms of the pathogenesis of schizophrenia and causal treatments still remain unclear. Deficits of cognition and information processing in schizophrenia are today often viewed as the primary and core symptoms of this devastating disorder. These deficits likely result from disruptions in the coordination of neuronal and neural activity. The aim of this review is to bring together convergent evidence of discoordinated brain circuits in schizophrenia at multiple levels of resolution, ranging from principal cells and interneurons, neuronal ensembles and local circuits, to large-scale brain networks. We show how these aberrations could underlie deficits in cognitive control and other higher order cognitive-behavioural functions. Converging evidence from both animal models and patients with schizophrenia is presented in an effort to gain insight into common features of deficits in the brain information processing in this disorder, marked by disruption of several neurotransmitter and signalling systems and severe behavioural outcomes.
Collapse
Affiliation(s)
- Branislav Krajcovic
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Iveta Fajnerova
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
- Research Programme 3 - Applied Neurosciences and Brain Imaging National Institute of Mental Health Klecany Czech Republic
| | - Jiri Horacek
- Third Faculty of Medicine Charles University Prague Czech Republic
- Research Programme 3 - Applied Neurosciences and Brain Imaging National Institute of Mental Health Klecany Czech Republic
| | - Eduard Kelemen
- Research Programme 1 - Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
| | - Stepan Kubik
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Jan Svoboda
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Ales Stuchlik
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
22
|
Ionescu DF, Felicione JM, Gosai A, Cusin C, Shin P, Shapero BG, Deckersbach T. Ketamine-Associated Brain Changes: A Review of the Neuroimaging Literature. Harv Rev Psychiatry 2019; 26:320-339. [PMID: 29465479 PMCID: PMC6102096 DOI: 10.1097/hrp.0000000000000179] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Major depressive disorder (MDD) is one of the most prevalent conditions in psychiatry. Patients who do not respond to traditional monoaminergic antidepressant treatments have an especially difficult-to-treat type of MDD termed treatment-resistant depression. Subanesthetic doses of ketamine-a glutamatergic modulator-have shown great promise for rapidly treating patients with the most severe forms of depression. As such, ketamine represents a promising probe for understanding the pathophysiology of depression and treatment response. Through neuroimaging, ketamine's mechanism may be elucidated in humans. Here, we review 47 articles of ketamine's effects as revealed by neuroimaging studies. Some important brain areas emerge, especially the subgenual anterior cingulate cortex. Furthermore, ketamine may decrease the ability to self-monitor, may increase emotional blunting, and may increase activity in reward processing. Further studies are needed, however, to elucidate ketamine's mechanism of antidepressant action.
Collapse
Affiliation(s)
- Dawn F. Ionescu
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Aishwarya Gosai
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | - Cristina Cusin
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Philip Shin
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | - Benjamin G. Shapero
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA
| |
Collapse
|
23
|
Klaassens BL, van Gerven JMA, Klaassen ES, van der Grond J, Rombouts SARB. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer's disease. Neuroimage 2019; 199:143-152. [PMID: 31112788 DOI: 10.1016/j.neuroimage.2019.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/19/2022] Open
Abstract
Disruption of cholinergic and serotonergic neurotransmitter systems is associated with cognitive, emotional and behavioural symptoms of Alzheimer's disease (AD). To investigate the responsiveness of these systems in AD we measured the effects of a single-dose of the selective serotonin reuptake inhibitor citalopram and acetylcholinesterase inhibitor galantamine in 12 patients with AD and 12 age-matched controls on functional brain connectivity with resting state functional magnetic resonance imaging. In this randomized, double blind, placebo-controlled crossover study, functional magnetic resonance images were repeatedly obtained before and after dosing, resulting in a dataset of 432 scans. Connectivity maps of ten functional networks were extracted using a dual regression method and drug vs. placebo effects were compared between groups with a multivariate analysis with signals coming from cerebrospinal fluid and white matter as covariates at the subject level, and baseline and heart rate measurements as confound regressors in the higher-level analysis (at p < 0.05, corrected). A galantamine induced difference between groups was observed for the cerebellar network. Connectivity within the cerebellar network and between this network and the thalamus decreased after galantamine vs. placebo in AD patients, but not in controls. For citalopram, voxelwise network connectivity did not show significant group × treatment interaction effects. However, we found default mode network connectivity with the precuneus and posterior cingulate cortex to be increased in AD patients, which could not be detected within the control group. Further, in contrast to the AD patients, control subjects showed a consistent reduction in mean connectivity with all networks after administration of citalopram. Since AD has previously been characterized by reduced connectivity between the default mode network and the precuneus and posterior cingulate cortex, the effects of citalopram on the default mode network suggest a restoring potential of selective serotonin reuptake inhibitors in AD. The results of this study also confirm a change in cerebellar connections in AD, which is possibly related to cholinergic decline.
Collapse
Affiliation(s)
- Bernadet L Klaassens
- Leiden University, Institute of Psychology, Leiden, the Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Centre for Human Drug Research, Leiden, the Netherlands.
| | | | | | - Jeroen van der Grond
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
| | - Serge A R B Rombouts
- Leiden University, Institute of Psychology, Leiden, the Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
24
|
Haaf M, Leicht G, Curic S, Mulert C. Glutamatergic Deficits in Schizophrenia - Biomarkers and Pharmacological Interventions within the Ketamine Model. Curr Pharm Biotechnol 2018; 19:293-307. [PMID: 29929462 PMCID: PMC6142413 DOI: 10.2174/1389201019666180620112528] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/12/2018] [Accepted: 05/26/2018] [Indexed: 11/30/2022]
Abstract
Background: The observation that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists such as ketamine transiently induce schizophrenia-like positive, negative and cognitive symptoms has led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. NMDAR hypofunction can explain many schizophrenia symptoms directly due to excitatory-to-inhibitory (E/I) imbalance, but also dopaminergic dysfunction itself. However, so far no new drug targeting the NMDAR has been successfully approved. In the search for possible biomarkers it is interesting that ketamine-induced psychopathological changes in healthy participants were accompanied by altered electro-(EEG), magnetoencephalographic (MEG) and functional magnetic resonance imaging (fMRI) signals. Methods: We systematically searched PubMed/Medline and Web of Knowledge databases (January 2006 to July 2017) to identify EEG/MEG and fMRI studies of the ketamine model of schizophrenia with human subjects. The search strategy identified 209 citations of which 46 articles met specified eligibility criteria. Results: In EEG/MEG studies, ketamine induced changes of event-related potentials, such as the P300 potential and the mismatch negativity, similar to alterations observed in schizophrenia patients. In fMRI studies, alterations of activation were observed in different brain regions, most prominently within the anterior cingulate cortex and limbic structures as well as task-relevant brain regions. These alterations were accompanied by changes in functional connectivity, indicating a balance shift of the underlying brain networks. Pharmacological treatments did alter ketamine-induced changes in EEG/MEG and fMRI studies to different extents. Conclusion: This review highlights the potential applicability of the ketamine model for schizophrenia drug development by offering the possibility to assess the effect of pharmacological agents on schizophrenia-like symptoms and to find relevant neurophysiological and neuroimaging biomarkers.
Collapse
Affiliation(s)
- Moritz Haaf
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stjepan Curic
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry and Psychotherapy, UKGM, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
25
|
Mueller F, Musso F, London M, de Boer P, Zacharias N, Winterer G. Pharmacological fMRI: Effects of subanesthetic ketamine on resting-state functional connectivity in the default mode network, salience network, dorsal attention network and executive control network. NEUROIMAGE-CLINICAL 2018; 19:745-757. [PMID: 30003027 PMCID: PMC6040604 DOI: 10.1016/j.nicl.2018.05.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/13/2018] [Accepted: 05/30/2018] [Indexed: 11/26/2022]
Abstract
Background Subanesthetic dosages of the NMDAR antagonist, S-Ketamine, can cause changes in behavior in healthy subjects, which are similar to the state acute psychosis and are relevant in translational schizophrenia research. Functional magnetic resonance imaging (fMRI) can be used for non-hypothesis-driven analysis of brain connectivity. The correlation between clinical behavioral scores and neuroimaging can help to characterize ketamine effects on healthy brains in resting state. Method seventeen healthy, male subjects (mean: 27.42 years, SD: 4.42) were administered an infusion with S-Ketamine (initial bolus 1 mg/kg and continuous infusion of 0.015625 mg/kg/min with dosage reduction −10%/10 min) or saline in a randomized, double-blind, cross-over study. During infusion, resting state connectivity was measured and analyzed with a seed-to-voxel fMRI analysis approach. The seed regions were located in the posterior cingulate cortex, intraparietal sulcus, dorsolateral prefrontal cortex and fronto-insular cortex. Receiver operating characteristics (ROC) were calculated to assess the accuracy of the ketamine-induced functional connectivity changes. Bivariate Pearson correlation was used for correlation testing of functional connectivity changes with changes of clinical scores (PANSS, 5D-ASC). Results In the executive network (ECN), ketamine significantly increases the functional connectivity with parts of the anterior cingulum and superior frontal gyrus, but no significant correlations with clinical symptoms were found. Decreased connectivity between the salience network (SN) and the calcarine fissure was found, which is significantly correlated with negative symptoms (PANSS) (R2 > 0.4). Conclusion Decreased ketamine-induced functional connectivity in the salience network may qualify as accurate and highly predictive biomarkers for ketamine induced negative symptoms. All seed regions showed ketamine induced changes of functional connectivity Signficant changes of functional connectivity were found in the salience and executive control network PANSS and 5D-ASC scores are highly sensitive and specific to differentiate between placebo and ketamine condition A significant correlation between salience network- visual cortex connectivity and negative symptom scores was found
Collapse
Affiliation(s)
- Felix Mueller
- Experimental and Clinical Research Center (ECRC), Dept. of Anesthesiology and Intensive Care Medicine, Charité - University Medicine Berlin, Germany.
| | - Francesco Musso
- Department of Psychiatry, Heinrich-Heine University, Düsseldorf, Germany
| | - Markus London
- Janssen-Cilag GmbH, Early Development and Clinical Pharmacology, Neuss, Germany
| | - Peter de Boer
- Janssen Pharmaceutica, Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - Norman Zacharias
- Experimental and Clinical Research Center (ECRC), Dept. of Anesthesiology and Intensive Care Medicine, Charité - University Medicine Berlin, Germany
| | - Georg Winterer
- Experimental and Clinical Research Center (ECRC), Dept. of Anesthesiology and Intensive Care Medicine, Charité - University Medicine Berlin, Germany; Pharmaimage Biomarker Solutions GmbH, Berlin, Germany; Pharmaimage Biomarker Solutions Inc., Boston, USA
| |
Collapse
|
26
|
Effects of systemic glutamatergic manipulations on conditioned eyeblink responses and hyperarousal in a rabbit model of post-traumatic stress disorder. Behav Pharmacol 2018; 28:565-577. [PMID: 28799954 DOI: 10.1097/fbp.0000000000000333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Glutamatergic dysfunction is implicated in many neuropsychiatric conditions, including post-traumatic stress disorder (PTSD). Glutamate antagonists have shown some utility in treating PTSD symptoms, whereas glutamate agonists may facilitate cognitive behavioral therapy outcomes. We have developed an animal model of PTSD, based on conditioning of the rabbit's eyeblink response, that addresses two key features: conditioned responses (CRs) to cues associated with an aversive event and a form of conditioned hyperarousal referred to as conditioning-specific reflex modification (CRM). The optimal treatment to reduce both CRs and CRM is unpaired extinction. The goals of the study were to examine whether treatment with the N-methyl-D-aspartate glutamate receptor antagonist ketamine could reduce CRs and CRM, and whether the N-methyl-D-aspartate agonist D-cycloserine combined with unpaired extinction treatment could enhance the extinction of both. Administration of a single dose of subanesthetic ketamine had no significant immediate or delayed effect on CRs or CRM. Combining D-cycloserine with a single day of unpaired extinction facilitated extinction of CRs in the short term while having no impact on CRM. These results caution that treatments may improve one aspect of the PTSD symptomology while having no significant effects on other symptoms, stressing the importance of a multiple-treatment approach to PTSD and of animal models that address multiple symptoms.
Collapse
|
27
|
Carmichael O, Schwarz AJ, Chatham CH, Scott D, Turner JA, Upadhyay J, Coimbra A, Goodman JA, Baumgartner R, English BA, Apolzan JW, Shankapal P, Hawkins KR. The role of fMRI in drug development. Drug Discov Today 2018; 23:333-348. [PMID: 29154758 PMCID: PMC5931333 DOI: 10.1016/j.drudis.2017.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has been known for over a decade to have the potential to greatly enhance the process of developing novel therapeutic drugs for prevalent health conditions. However, the use of fMRI in drug development continues to be relatively limited because of a variety of technical, biological, and strategic barriers that continue to limit progress. Here, we briefly review the roles that fMRI can have in the drug development process and the requirements it must meet to be useful in this setting. We then provide an update on our current understanding of the strengths and limitations of fMRI as a tool for drug developers and recommend activities to enhance its utility.
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | | | - Christopher H Chatham
- Translational Medicine Neuroscience and Biomarkers, Roche Innovation Center, Basel, Switzerland
| | | | - Jessica A Turner
- Psychology Department & Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | | | - Richard Baumgartner
- Biostatistics and Research Decision Sciences (BARDS), Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - John W Apolzan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | |
Collapse
|
28
|
Serotonergic and cholinergic modulation of functional brain connectivity: A comparison between young and older adults. Neuroimage 2017; 169:312-322. [PMID: 29258890 DOI: 10.1016/j.neuroimage.2017.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/08/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022] Open
Abstract
Aging is accompanied by changes in neurotransmission. To advance our understanding of how aging modifies specific neural circuitries, we examined serotonergic and cholinergic stimulation with resting state functional magnetic resonance imaging (RS-fMRI) in young and older adults. The instant response to the selective serotonin reuptake inhibitor citalopram (30 mg) and the acetylcholinesterase inhibitor galantamine (8 mg) was measured in 12 young and 17 older volunteers during a randomized, double blind, placebo-controlled, crossover study. A powerful dataset consisting of 522 RS-fMRI scans was obtained by acquiring multiple scans per subject before and after drug administration. Group × treatment interaction effects on voxelwise connectivity with ten functional networks were investigated (p < .05, FWE-corrected) using a non-parametric multivariate analysis technique with cerebrospinal fluid, white matter, heart rate and baseline measurements as covariates. Both groups showed a decrease in sensorimotor network connectivity after citalopram administration. The comparable findings after citalopram intake are possibly due to relatively similar serotonergic systems in the young and older subjects. Galantamine altered connectivity between the occipital visual network and regions that are implicated in learning and memory in the young subjects. The lack of a cholinergic response in the elderly might relate to the well-known association between cognitive and cholinergic deterioration at older age.
Collapse
|
29
|
Li CSR, Zhang S, Hung CC, Chen CM, Duann JR, Lin CP, Lee TSH. Depression in chronic ketamine users: Sex differences and neural bases. Psychiatry Res 2017; 269:1-8. [PMID: 28892733 PMCID: PMC5634929 DOI: 10.1016/j.pscychresns.2017.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 01/10/2023]
Abstract
Chronic ketamine use leads to cognitive and affective deficits including depression. Here, we examined sex differences and neural bases of depression in chronic ketamine users. Compared to non-drug using healthy controls (HC), ketamine-using females but not males showed increased depression score as assessed by the Center of Epidemiological Studies Depression Scale (CES-D). We evaluated resting state functional connectivity (rsFC) of the subgenual anterior cingulate cortex (sgACC), a prefrontal structure consistently implicated in the pathogenesis of depression. Compared to HC, ketamine users (KU) did not demonstrate significant changes in sgACC connectivities at a corrected threshold. However, in KU, a linear regression against CES-D score showed less sgACC connectivity to the orbitofrontal cortex (OFC) with increasing depression severity. Examined separately, male and female KU showed higher sgACC connectivity to bilateral superior temporal gyrus and dorsomedial prefrontal cortex (dmPFC), respectively, in correlation with depression. The linear correlation of sgACC-OFC and sgACC-dmPFC connectivity with depression was significantly different in slope between KU and HC. These findings highlighted changes in rsFC of the sgACC as associated with depression and sex differences in these changes in chronic ketamine users.
Collapse
Affiliation(s)
- Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA; Beijing Huilongguan Hospital, Beijing, China.
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Chia-Chun Hung
- Bali Psychiatric Center, Ministry of Health and Welfare, Taiwan
| | - Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan; Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan
| | - Tony Szu-Hsien Lee
- Department of Health Promotion and Health Education, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
30
|
Rao JS, Liu Z, Zhao C, Wei RH, Zhao W, Tian PY, Zhou X, Yang ZY, Li XG. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain. Magn Reson Imaging 2017; 43:144-150. [PMID: 28755862 DOI: 10.1016/j.mri.2017.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Ketamine is a well-known anesthetic. 'Recreational' use of ketamine common induces psychosis-like symptoms and cognitive impairments. The acute and chronic effects of ketamine on relevant brain circuits have been studied, but the effects of single-dose ketamine administration on the local resting-state functional properties of the brain remain unknown. In this study, we aimed to assess the effects of single-dose ketamine administration on the brain local intrinsic properties. METHODS We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the ketamine-induced alterations of brain intrinsic properties. Seven adult rhesus monkeys were imaged with rs-fMRI to examine the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) in the brain before and after ketamine injection. Paired comparisons were used to detect the significantly altered regions. RESULTS Results showed that the fALFF of the prefrontal cortex (p=0.046), caudate nucleus (left side, p=0.018; right side, p=0.025), and putamen (p=0.020) in post-injection stage significantly increased compared with those in pre-injection period. The ReHo of nucleus accumbens (p=0.049), caudate nucleus (p=0.037), and hippocampus (p=0.025) increased after ketamine injection, but that of prefrontal cortex decreased (p<0.05). CONCLUSIONS These findings demonstrated that single-dose ketamine administration can change the regional intensity and synchronism of brain activity, thereby providing evidence of ketamine-induced abnormal resting-state functional properties in primates. This evidence may help further elucidate the effects of ketamine on the cerebral resting status.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
31
|
Khalili-Mahani N, Rombouts SARB, van Osch MJP, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP, van Gerven JM. Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry. Hum Brain Mapp 2017; 38:2276-2325. [PMID: 28145075 DOI: 10.1002/hbm.23516] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,PERFORM Centre, Concordia University, Montreal, Canada
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Eugene P Duff
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.,Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | | | - Lisa D Nickerson
- McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School & Boston Children's Hospital, Boston, Massachusetts
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Richard Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Alex P Zijdenbos
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,Biospective Inc, Montreal, Quebec, Canada
| | - Joop M van Gerven
- Centre for Human Drug Research, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
32
|
Gopinath K, Maltbie E, Urushino N, Kempf D, Howell L. Ketamine-induced changes in connectivity of functional brain networks in awake female nonhuman primates: a translational functional imaging model. Psychopharmacology (Berl) 2016; 233:3673-3684. [PMID: 27530989 DOI: 10.1007/s00213-016-4401-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022]
Abstract
RATIONALE There is a significant interest in the NMDA-receptor antagonist ketamine due to its efficacy in treating depressive disorders and its induction of psychotic-like symptoms that make it a useful tool for modeling psychosis. Pharmacological MRI in awake nonhuman primates provides a highly translational model for studying the brain network dynamics involved in producing these drug effects. OBJECTIVE The present study evaluated ketamine-induced changes in functional connectivity (FC) in awake rhesus monkeys. The effects of ketamine after pretreatment with the antipsychotic drug risperidone were also examined. METHODS Functional MRI scans were conducted in four awake adult female rhesus monkeys during sub-anesthetic i.v. infusions of ketamine (0.345 mg/kg bolus followed by 0.256 mg kg-1 h-1 constant infusion) with and without risperidone pretreatment (0.06 mg/kg). A 10-min window of stable BOLD signal was used to compare FC between baseline and drug conditions. FC was assessed in specific regions of interest using seed-based cross-correlation analysis. RESULTS Ketamine infusion induced extensive changes in FC. In particular, FC to the dorsolateral prefrontal cortex (dlPFC) was increased in several cortical and subcortical regions. Pretreatment with risperidone largely attenuated ketamine-induced changes in FC. CONCLUSIONS The results are highly consistent with similar human imaging studies showing ketamine-induced changes in FC, as well as a significant attenuation of these changes when ketamine infusion is preceded by pretreatment with risperidone. The extensive increases shown in FC to the dlPFC are consistent with the idea that disinhibition of the dlPFC may be a key driver of the antidepressant and psychotomimetic effects of ketamine.
Collapse
Affiliation(s)
- Kaundinya Gopinath
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30329, USA.,Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
| | - Eric Maltbie
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
| | - Naoko Urushino
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Dainippon Sumitomo Pharma, Co. Ltd., Osaka, Japan
| | - Doty Kempf
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
| | - Leonard Howell
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA. .,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30329, USA.
| |
Collapse
|
33
|
Klaassens BL, Rombouts SARB, Winkler AM, van Gorsel HC, van der Grond J, van Gerven JMA. Time related effects on functional brain connectivity after serotonergic and cholinergic neuromodulation. Hum Brain Mapp 2016; 38:308-325. [PMID: 27622387 PMCID: PMC5215384 DOI: 10.1002/hbm.23362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/22/2016] [Accepted: 08/22/2016] [Indexed: 01/12/2023] Open
Abstract
Psychopharmacological research, if properly designed, may offer insight into both timing and area of effect, increasing our understanding of the brain's neurotransmitter systems. For that purpose, the acute influence of the selective serotonin reuptake inhibitor citalopram (30 mg) and the acetylcholinesterase inhibitor galantamine (8 mg) was repeatedly measured in 12 healthy young volunteers with resting state functional magnetic resonance imaging (RS‐fMRI). Eighteen RS‐fMRI scans were acquired per subject during this randomized, double blind, placebo‐controlled, crossover study. Within‐group comparisons of voxelwise functional connectivity with 10 functional networks were examined (P < 0.05, FWE‐corrected) using a non‐parametric multivariate approach with cerebrospinal fluid, white matter, heart rate, and baseline measurements as covariates. Although both compounds did not change cognitive performance on several tests, significant effects were found on connectivity with multiple resting state networks. Serotonergic stimulation primarily reduced connectivity with the sensorimotor network and structures that are related to self‐referential mechanisms, whereas galantamine affected networks and regions that are more involved in learning, memory, and visual perception and processing. These results are consistent with the serotonergic and cholinergic trajectories and their functional relevance. In addition, this study demonstrates the power of using repeated measures after drug administration, which offers the chance to explore both combined and time specific effects. Hum Brain Mapp 38:308–325, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bernadet L Klaassens
- Leiden University, Institute of Psychology, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands.,Centre for Human Drug Research, Leiden, the Netherlands
| | - Serge A R B Rombouts
- Leiden University, Institute of Psychology, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Anderson M Winkler
- Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | - Helene C van Gorsel
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands.,Centre for Human Drug Research, Leiden, the Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
34
|
Nugent AC, Robinson SE, Coppola R, Zarate CA. Preliminary differences in resting state MEG functional connectivity pre- and post-ketamine in major depressive disorder. Psychiatry Res 2016; 254:56-66. [PMID: 27362845 PMCID: PMC4992587 DOI: 10.1016/j.pscychresns.2016.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/06/2023]
Abstract
Functional neuroimaging techniques including magnetoencephalography (MEG) have demonstrated that the brain is organized into networks displaying correlated activity. Group connectivity differences between healthy controls and participants with major depressive disorder (MDD) can be detected using temporal independent components analysis (ICA) on beta-bandpass filtered Hilbert envelope MEG data. However, the response of these networks to treatment is unknown. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects. We obtained MEG recordings before and after open-label infusion of 0.5mg/kg ketamine in MDD subjects (N=13) and examined networks previously shown to differ between healthy individuals and those with MDD. Connectivity between the amygdala and an insulo-temporal component decreased post-ketamine in MDD subjects towards that observed in control subjects at baseline. Decreased baseline connectivity of the subgenual anterior cingulate cortex (sgACC) with a bilateral precentral network had previously been observed in MDD compared to healthy controls, and the change in connectivity post-ketamine was proportional to the change in sgACC glucose metabolism in a subset (N=8) of subjects receiving [11F]FDG-PET imaging. Ketamine appeared to reduce connectivity, regardless of whether connectivity was abnormally high or low compared to controls at baseline. These preliminary findings suggest that sgACC connectivity may be directly related to glutamate levels.
Collapse
Affiliation(s)
- Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Stephen E Robinson
- NIMH Magnetoencephalography Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Richard Coppola
- NIMH Magnetoencephalography Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Species-conserved reconfigurations of brain network topology induced by ketamine. Transl Psychiatry 2016; 6:e786. [PMID: 27093068 PMCID: PMC4872411 DOI: 10.1038/tp.2016.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 02/07/2023] Open
Abstract
Species-conserved (intermediate) phenotypes that can be quantified and compared across species offer important advantages for translational research and drug discovery. Here, we investigate the utility of network science methods to assess the pharmacological alterations of the large-scale architecture of brain networks in rats and humans. In a double-blind, placebo-controlled, cross-over study in humans and a placebo-controlled two-group study in rats, we demonstrate that the application of ketamine leads to a topological reconfiguration of large-scale brain networks towards less-integrated and more-segregated information processing in both the species. As these alterations are opposed to those commonly observed in patients suffering from depression, they might indicate systems-level correlates of the antidepressant effect of ketamine.
Collapse
|
36
|
Scheidegger M, Henning A, Walter M, Lehmann M, Kraehenmann R, Boeker H, Seifritz E, Grimm S. Ketamine administration reduces amygdalo-hippocampal reactivity to emotional stimulation. Hum Brain Mapp 2016; 37:1941-52. [PMID: 26915535 DOI: 10.1002/hbm.23148] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/29/2015] [Accepted: 02/09/2016] [Indexed: 01/17/2023] Open
Abstract
Increased amygdala reactivity might lead to negative bias during emotional processing that can be reversed by antidepressant drug treatment. However, little is known on how N-methyl-d-aspartate (NMDA) receptor antagonism with ketamine as a novel antidepressant drug target might modulate amygdala reactivity to emotional stimulation. Using functional magnetic resonance imaging (fMRI) and resting-state fMRI (rsfMRI), we assessed amygdalo-hippocampal reactivity at baseline and during pharmacological stimulation with ketamine (intravenous bolus of 0.12 mg/kg, followed by a continuous infusion of 0.25 mg/kg/h) in 23 healthy subjects that were presented with stimuli from the International Affective Picture System (IAPS). We found that ketamine reduced neural reactivity in the bilateral amygdalo-hippocampal complex during emotional stimulation. Reduced amygdala reactivity to negative pictures was correlated to resting-state connectivity to the pregenual anterior cingulate cortex. Interestingly, subjects experienced intensity of psychedelic alterations of consciousness during ketamine infusion predicted the reduction in neural responsivity to negative but not to positive or neutral stimuli. Our findings suggest that the pharmacological modulation of glutamate-responsive cerebral circuits, which is associated with a shift in emotional bias and a reduction of amygdalo-hippocampal reactivity to emotional stimuli, represents an early biomechanism to restore parts of the disrupted neurobehavioral homeostasis in MDD patients. Hum Brain Mapp 37:1941-1952, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich University Hospital for Psychiatry, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Leibniz Institute for Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Mick Lehmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich University Hospital for Psychiatry, Switzerland
| | - Rainer Kraehenmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich University Hospital for Psychiatry, Switzerland.,Neuropsychopharmacology and Brain Imaging & Heffter Research Center, Department of Psychiatry Psychotherapy and Psychosomatics, Zürich University Hospital for Psychiatry, Switzerland
| | - Heinz Boeker
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich University Hospital for Psychiatry, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich University Hospital for Psychiatry, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Simone Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich University Hospital for Psychiatry, Switzerland.,Department of Psychiatry, Charité, CBF, Berlin, Germany
| |
Collapse
|
37
|
Shcherbinin S, Doyle O, Zelaya FO, de Simoni S, Mehta MA, Schwarz AJ. Modulatory effects of ketamine, risperidone and lamotrigine on resting brain perfusion in healthy human subjects. Psychopharmacology (Berl) 2015. [PMID: 26223493 DOI: 10.1007/s00213-015-4021-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Resting brain perfusion, measured using the MRI-based arterial spin labelling (ASL) technique, is sensitive to detect central effects of single, clinically effective, doses of pharmacological compounds. However, pharmacological interaction experiments, such as the modulation of one drug response in the presence of another, have not been widely investigated using a task-free ASL approach. OBJECTIVES We assessed the effects of three psychoactive compounds (ketamine, risperidone and lamotrigine), and their interaction, on resting brain perfusion in healthy human volunteers. METHODS A multivariate Gaussian process classification (GPC) and more conventional univariate analyses were applied. The four pre-infusion conditions for each subject comprised risperidone, lamotrigine and two placebo sessions. The two placebo conditions enabled us to evaluate the classification performance in a test-retest setting, in addition to its performance in distinguishing the active oral drugs from placebo (direct effect on brain perfusion). The post ketamine- or saline-infusion scans allowed the effect of ketamine, and its interaction with risperidone and lamotrigine, on brain perfusion to be characterised. RESULTS The pseudo-continuous ASL measurements of perfusion were sensitive to the effects of ketamine infusion and risperidone. The GPC captured consistent changes in perfusion across the group and contextualised the univariate changes with a larger pattern of regions contributing to accurate discrimination of ketamine from placebo. CONCLUSIONS The findings argue against perfusion changes confounding in the previously described evoked BOLD response to ketamine and emphasise the blockade of the NMDA receptor over neuronal glutamate release in determining the perfusion changes induced by ketamine.
Collapse
Affiliation(s)
- Sergey Shcherbinin
- Tailored Therapeutics - Neuroscience, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Orla Doyle
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Fernando O Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Sara de Simoni
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Adam J Schwarz
- Tailored Therapeutics - Neuroscience, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| |
Collapse
|
38
|
Grimm O, Gass N, Weber-Fahr W, Sartorius A, Schenker E, Spedding M, Risterucci C, Schweiger JI, Böhringer A, Zang Z, Tost H, Schwarz AJ, Meyer-Lindenberg A. Acute ketamine challenge increases resting state prefrontal-hippocampal connectivity in both humans and rats. Psychopharmacology (Berl) 2015; 232:4231-41. [PMID: 26184011 DOI: 10.1007/s00213-015-4022-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/06/2015] [Indexed: 12/27/2022]
Abstract
RATIONALE Aberrant prefrontal-hippocampal (PFC-HC) connectivity is disrupted in several psychiatric and at-risk conditions. Advances in rodent functional imaging have opened the possibility that this phenotype could serve as a translational imaging marker for psychiatric research. Recent evidence from functional magnetic resonance imaging (fMRI) studies has indicated an increase in PFC-HC coupling during working-memory tasks in both schizophrenic patients and at-risk populations, in contrast to a decrease in resting-state PFC-HC connectivity. Acute ketamine challenge is widely used in both humans and rats as a pharmacological model to study the mechanisms of N-methyl-D-aspartate (NMDA) receptor hypofunction in the context of psychiatric disorders. OBJECTIVES We aimed to establish whether acute ketamine challenge has consistent effects in rats and humans by investigating resting-state fMRI PFC-HC connectivity and thus to corroborate its potential utility as a translational probe. METHODS Twenty-four healthy human subjects (12 females, mean age 25 years) received intravenous doses of either saline (placebo) or ketamine (0.5 mg/kg body weight). Eighteen Sprague-Dawley male rats received either saline or ketamine (25 mg/kg). Resting-state fMRI measurements took place after injections, and the data were analyzed for PFC-HC functional connectivity. RESULTS In both species, ketamine induced a robust increase in PFC-HC coupling, in contrast to findings in chronic schizophrenia. CONCLUSIONS This translational comparison demonstrates a cross-species consistency in pharmacological effect and elucidates ketamine-induced alterations in PFC-HC coupling, a phenotype often disrupted in pathological conditions, which may give clue to understanding of psychiatric disorders and their onset, and help in the development of new treatments.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Natalia Gass
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
| | - Wolfgang Weber-Fahr
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.,Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Esther Schenker
- Neuroscience Drug Discovery Unit, Institut de Recherches Servier, Croissy s/Seine, France
| | | | - Celine Risterucci
- CNS Biomarker, Pharmaceuticals Division, F. Hoffmann-La Roche, Basel, Switzerland
| | - Janina Isabel Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Andreas Böhringer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Adam James Schwarz
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, IN, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| |
Collapse
|
39
|
A neuroradiologist's guide to arterial spin labeling MRI in clinical practice. Neuroradiology 2015; 57:1181-202. [PMID: 26351201 PMCID: PMC4648972 DOI: 10.1007/s00234-015-1571-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
Abstract
Arterial spin labeling (ASL) is a non-invasive MRI technique to measure cerebral blood flow (CBF). This review provides a practical guide and overview of the clinical applications of ASL of the brain, as well its potential pitfalls. The technical and physiological background is also addressed. At present, main areas of interest are cerebrovascular disease, dementia and neuro-oncology. In cerebrovascular disease, ASL is of particular interest owing to its quantitative nature and its capability to determine cerebral arterial territories. In acute stroke, the source of the collateral blood supply in the penumbra may be visualised. In chronic cerebrovascular disease, the extent and severity of compromised cerebral perfusion can be visualised, which may be used to guide therapeutic or preventative intervention. ASL has potential for the detection and follow-up of arteriovenous malformations. In the workup of dementia patients, ASL is proposed as a diagnostic alternative to PET. It can easily be added to the routinely performed structural MRI examination. In patients with established Alzheimer’s disease and frontotemporal dementia, hypoperfusion patterns are seen that are similar to hypometabolism patterns seen with PET. Studies on ASL in brain tumour imaging indicate a high correlation between areas of increased CBF as measured with ASL and increased cerebral blood volume as measured with dynamic susceptibility contrast-enhanced perfusion imaging. Major advantages of ASL for brain tumour imaging are the fact that CBF measurements are not influenced by breakdown of the blood–brain barrier, as well as its quantitative nature, facilitating multicentre and longitudinal studies.
Collapse
|
40
|
Klaassens BL, van Gorsel HC, Khalili-Mahani N, van der Grond J, Wyman BT, Whitcher B, Rombouts SARB, van Gerven JMA. Single-dose serotonergic stimulation shows widespread effects on functional brain connectivity. Neuroimage 2015; 122:440-50. [PMID: 26277774 DOI: 10.1016/j.neuroimage.2015.08.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 12/16/2022] Open
Abstract
The serotonergic system is widely distributed throughout the central nervous system. It is well known as a mood regulating system, although it also contributes to many other functions. With resting state functional magnetic resonance imaging (RS-fMRI) it is possible to investigate whole brain functional connectivity. We used this non-invasive neuroimaging technique to measure acute pharmacological effects of the selective serotonin reuptake inhibitor sertraline (75 mg) in 12 healthy volunteers. In this randomized, double blind, placebo-controlled, crossover study, RS-fMRI scans were repeatedly acquired during both visits (at baseline and 3, 5, 7 and 9h after administering sertraline or placebo). Within-group comparisons of voxelwise functional connectivity with ten functional networks were examined (p<0.005, corrected) using a mixed effects model with cerebrospinal fluid, white matter, motion parameters, heart rate and respiration as covariates. Sertraline induced widespread effects on functional connectivity with multiple networks; the default mode network, the executive control network, visual networks, the sensorimotor network and the auditory network. A common factor among these networks was the involvement of the precuneus and posterior cingulate cortex. Cognitive and subjective measures were taken as well, but yielded no significant treatment effects, emphasizing the sensitivity of RS-fMRI to pharmacological challenges. The results are consistent with the existence of an extensive serotonergic system relating to multiple brain functions with a possible key role for the precuneus and cingulate.
Collapse
Affiliation(s)
- Bernadet L Klaassens
- Leiden University, Institute of Psychology, Leiden, The Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | | | | | - Jeroen van der Grond
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | | | | | - Serge A R B Rombouts
- Leiden University, Institute of Psychology, Leiden, The Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | | |
Collapse
|