1
|
Zhang Y, Bai M, Xiong Z, Zhang Q, Wang L, Zeng X. Iron Deposition and Functional Connectivity Differences in Females With Migraine Without Aura: A Comparative Study of Headache Sides. Brain Behav 2024; 14:e70096. [PMID: 39435668 PMCID: PMC11494401 DOI: 10.1002/brb3.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND The pathophysiological mechanisms underlying migraine without aura (MwoA) in females remain incompletely elucidated. Currently, the association between headache laterality and iron deposition (ID), and functional connectivity (FC) in female MwoA patients has not been fully studied. METHODS We prospectively recruited 63 female patients with MwoA and 31 matched healthy controls (HC) from the hospital. ID and FC among the four groups were analyzed using two-sample t-tests (with cluster-wise family-wise error [FWE] correction). Pearson correlation analysis was used to evaluate the relationships between clinical variables and both ID and FC values. Significance level: p < 0.05. RESULTS Compared to HC, left-sided MwoA exhibited differences in ID in various brain regions, including the cerebellum, left orbital inferior frontal gyrus, left calcarine gyrus, right putamen, and left caudate nucleus, as well as exhibited enhanced FC between the left lobule III of the cerebellum and the right superior temporal gyrus. Compared to bilateral MwoA, left-sided MwoA showed significantly enhanced in FC values in the left calcarine gyrus, the right precentral gyrus, the right postcentral gyrus, and the right lingual gyrus. Additionally, significant differences were observed in the Pearson correlations between clinical variables and both ID and FC in the female MwoA subgroups. CONCLUSION Our study provided preliminary evidence indicating significant differences in ID, FC, and correlations among subgroups of female MwoA. This provides neuroimaging references for further subclassifying MwoA patients. This offers valuable insights into potential pathophysiological mechanisms linked to the brain functional impairment in female MwoA.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou ProvinceState Key Laboratory of Public Big Data, College of Computer Science and TechnologyGuizhou UniversityGuiyangGuizhouChina
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and TreatmentGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Mingxian Bai
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and TreatmentGuizhou Provincial People's HospitalGuiyangGuizhouChina
- Guizhou University Medical CollegeGuiyangGuizhouChina
| | - Zhenliang Xiong
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou ProvinceState Key Laboratory of Public Big Data, College of Computer Science and TechnologyGuizhou UniversityGuiyangGuizhouChina
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and TreatmentGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Qin Zhang
- First School of Clinical MedicineZunyi Medical UniversityZunyiGuizhouChina
| | - Lihui Wang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou ProvinceState Key Laboratory of Public Big Data, College of Computer Science and TechnologyGuizhou UniversityGuiyangGuizhouChina
| | - Xianchun Zeng
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and TreatmentGuizhou Provincial People's HospitalGuiyangGuizhouChina
| |
Collapse
|
2
|
Petok JR, Merenstein JL, Bennett IJ. Iron content affects age group differences in associative learning-related fMRI activity. Neuroimage 2024; 285:120478. [PMID: 38036152 DOI: 10.1016/j.neuroimage.2023.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Brain regions accumulate different amounts of iron with age, with older adults having higher iron in the basal ganglia (globus pallidus, putamen, caudate) relative to the hippocampus. This has important implications for functional magnetic resonance imaging (fMRI) studies in aging as the presence of iron may influence both neuronal functioning as well as the measured fMRI (BOLD) signal, and these effects will vary across age groups and brain regions. To test this hypothesis, the current study examined the effect of iron on age group differences in task-related activity within each basal nuclei and the hippocampus. Twenty-eight younger and 22 older adults completed an associative learning task during fMRI acquisition. Iron content (QSM, R2*) was estimated from a multi-echo gradient echo sequence. As previously reported, older adults learned significantly less than younger adults and age group differences in iron content were largest in the basal ganglia (putamen, caudate). In the hippocampus (early task stage) and globus pallidus (late task stage), older adults had significantly higher learning-related activity than younger adults both before and after controlling for iron. In the putamen (late task stage), however, younger adults had significantly higher learning-related activity than older adults that was only seen after controlling for iron. These findings support the notion that age-related differences in iron influence both neuronal functioning and the measured fMRI signal in select basal nuclei. Moreover, previous fMRI studies in aging populations may have under-reported age group differences in task-related activity by not accounting for iron within these regions.
Collapse
Affiliation(s)
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside CA, 92521-0426, United States.
| |
Collapse
|
3
|
Ji L, Yoon YB, Hendrix CL, Kennelly EC, Majbri A, Bhatia T, Taylor A, Thomason ME. Developmental coupling of brain iron and intrinsic activity in infants during the first 150 days. Dev Cogn Neurosci 2023; 64:101326. [PMID: 37979299 PMCID: PMC10692666 DOI: 10.1016/j.dcn.2023.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
Brain iron is vital for core neurodevelopmental processes including myelination and neurotransmitter synthesis and, accordingly, iron accumulates in the brain with age. However, little is known about the association between brain iron and neural functioning and how they evolve with age in early infancy. This study investigated brain iron in 48 healthy infants (22 females) aged 64.00 ± 33.28 days by estimating R2 * relaxometry from multi-echo functional MRI (fMRI). Linked independent component analysis was performed to examine the association between iron deposition and spontaneous neural activity, as measured by the amplitude of low frequency fluctuations (ALFF) by interrogating shared component loadings across modalities. Further, findings were validated in an independent dataset (n = 45, 24 females, 77.93 ± 26.18 days). The analysis revealed developmental coupling between the global R2 * and ALFF within the default mode network (DMN). Furthermore, we observed that this coupling effect significantly increased with age (r = 0.78, p = 9.2e-11). Our results highlight the importance of iron-neural coupling during early development and suggest that the neural maturation of the DMN may correspond to growth in distributed brain iron.
Collapse
Affiliation(s)
- Lanxin Ji
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Youngwoo Bryan Yoon
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Cassandra L Hendrix
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | - Amyn Majbri
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Tanya Bhatia
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Alexis Taylor
- Department of Psychology, Wayne State University, USA
| | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA; Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Madden DJ, Merenstein JL. Quantitative susceptibility mapping of brain iron in healthy aging and cognition. Neuroimage 2023; 282:120401. [PMID: 37802405 PMCID: PMC10797559 DOI: 10.1016/j.neuroimage.2023.120401] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that can assess the magnetic properties of cerebral iron in vivo. Although brain iron is necessary for basic neurobiological functions, excess iron content disrupts homeostasis, leads to oxidative stress, and ultimately contributes to neurodegenerative disease. However, some degree of elevated brain iron is present even among healthy older adults. To better understand the topographical pattern of iron accumulation and its relation to cognitive aging, we conducted an integrative review of 47 QSM studies of healthy aging, with a focus on five distinct themes. The first two themes focused on age-related increases in iron accumulation in deep gray matter nuclei versus the cortex. The overall level of iron is higher in deep gray matter nuclei than in cortical regions. Deep gray matter nuclei vary with regard to age-related effects, which are most prominent in the putamen, and age-related deposition of iron is also observed in frontal, temporal, and parietal cortical regions during healthy aging. The third theme focused on the behavioral relevance of iron content and indicated that higher iron in both deep gray matter and cortical regions was related to decline in fluid (speed-dependent) cognition. A handful of multimodal studies, reviewed in the fourth theme, suggest that iron interacts with imaging measures of brain function, white matter degradation, and the accumulation of neuropathologies. The final theme concerning modifiers of brain iron pointed to potential roles of cardiovascular, dietary, and genetic factors. Although QSM is a relatively recent tool for assessing cerebral iron accumulation, it has significant promise for contributing new insights into healthy neurocognitive aging.
Collapse
Affiliation(s)
- David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC 27710, USA
| |
Collapse
|
5
|
Gustavsson J, Johansson J, Falahati F, Andersson M, Papenberg G, Avelar-Pereira B, Bäckman L, Kalpouzos G, Salami A. The iron-dopamine D1 coupling modulates neural signatures of working memory across adult lifespan. Neuroimage 2023; 279:120323. [PMID: 37582419 DOI: 10.1016/j.neuroimage.2023.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Brain iron overload and decreased integrity of the dopaminergic system have been independently reported as brain substrates of cognitive decline in aging. Dopamine (DA), and iron are co-localized in high concentrations in the striatum and prefrontal cortex (PFC), but follow opposing age-related trajectories across the lifespan. DA contributes to cellular iron homeostasis and the activation of D1-like DA receptors (D1DR) alleviates oxidative stress-induced inflammatory responses, suggesting a mutual interaction between these two fundamental components. Still, a direct in-vivo study testing the iron-D1DR relationship and their interactions on brain function and cognition across the lifespan is rare. Using PET and MRI data from the DyNAMiC study (n=180, age=20-79, %50 female), we showed that elevated iron content was related to lower D1DRs in DLPFC, but not in striatum, suggesting that dopamine-rich regions are less susceptible to elevated iron. Critically, older individuals with elevated iron and lower D1DR exhibited less frontoparietal activations during the most demanding task, which in turn was related to poorer working-memory performance. Together, our findings suggest that the combination of elevated iron load and reduced D1DR contribute to disturbed PFC-related circuits in older age, and thus may be targeted as two modifiable factors for future intervention.
Collapse
Affiliation(s)
- Jonatan Gustavsson
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
| | - Jarkko Johansson
- Faculty of Medicine, Department of Radiation Sciences, Umeå University, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Farshad Falahati
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Department of Psychiatry and Behavioural Sciences, School of Medicine, Stanford University, Stanford, California 94304, USA
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Sweden
| |
Collapse
|
6
|
Long H, Zhu W, Wei L, Zhao J. Iron homeostasis imbalance and ferroptosis in brain diseases. MedComm (Beijing) 2023; 4:e298. [PMID: 37377861 PMCID: PMC10292684 DOI: 10.1002/mco2.298] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
Brain iron homeostasis is maintained through the normal function of blood-brain barrier and iron regulation at the systemic and cellular levels, which is fundamental to normal brain function. Excess iron can catalyze the generation of free radicals through Fenton reactions due to its dual redox state, thus causing oxidative stress. Numerous evidence has indicated brain diseases, especially stroke and neurodegenerative diseases, are closely related to the mechanism of iron homeostasis imbalance in the brain. For one thing, brain diseases promote brain iron accumulation. For another, iron accumulation amplifies damage to the nervous system and exacerbates patients' outcomes. In addition, iron accumulation triggers ferroptosis, a newly discovered iron-dependent type of programmed cell death, which is closely related to neurodegeneration and has received wide attention in recent years. In this context, we outline the mechanism of a normal brain iron metabolism and focus on the current mechanism of the iron homeostasis imbalance in stroke, Alzheimer's disease, and Parkinson's disease. Meanwhile, we also discuss the mechanism of ferroptosis and simultaneously enumerate the newly discovered drugs for iron chelators and ferroptosis inhibitors.
Collapse
Affiliation(s)
- Haining Long
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| | - Wangshu Zhu
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| | - Liming Wei
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| | - Jungong Zhao
- Department of Diagnostic and Interventional RadiologyShanghai Sixth People’s Hospital Afliated to Shanghai Jiao Tong University School
of MedicineShanghaiChina
| |
Collapse
|
7
|
Gage M, Vasanthi SS, Meyer CM, Rao NS, Thedens DR, Kannurpatti SS, Thippeswamy T. Sex-based structural and functional MRI outcomes in the rat brain after soman (GD) exposure-induced status epilepticus. Epilepsia Open 2023; 8:399-410. [PMID: 36718979 PMCID: PMC10235578 DOI: 10.1002/epi4.12701] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Exposure to the nerve agent, soman (GD), induces status epilepticus (SE), epileptogenesis, and even death. Although rodent models studying the pathophysiological mechanisms show females to be more reactive to soman, no tangible sex differences in brains postexposure have been reported. In this study, we used multimodal imaging using MRI in adult rats to determine potential sex-based biomarkers of soman effects. METHODS Male and female Sprague Dawley rats were challenged with 1.2 × LD50 soman followed by medical countermeasures. Ten weeks later, the brains were analyzed via structural and functional MRI. RESULTS Despite no significant sex differences in the initial SE severity after soman exposure, long-term MRI-based structural and functional differences were evident in the brains of both sexes. While T2 MRI showed lesser soman-induced neurodegeneration, large areas of T1 enhancements occurred in females than in males, indicating a distinct pathophysiology unrelated to neurodegeneration. fMRI-based resting-state functional connectivity (RSFC), indicated greater reductions in soman-exposed females than in males, associating with the T1 enhancements (unrelated to neurodegeneration) rather than T2-hyperintensity or T1-hypointensity (representing neurodegeneration). The wider T1 enhancements associating with the decreased spontaneous neuronal activity in multiple resting-state networks in soman-exposed females than males suggest that neural changes unrelated to cellular atrophy impinge on brain function postexposure. Taken together with lower spontaneous neural activity in soman-exposed females, the results indicate some form of neuroprotective state that was not present in males. SIGNIFICANCE The results indicate that endpoints other than neurodegeneration may need to be considered to translate sex-based nerve agent effects in humans.
Collapse
Affiliation(s)
- Meghan Gage
- Department of Biomedical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Suraj S Vasanthi
- Department of Biomedical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Christina M Meyer
- Department of Biomedical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Nikhil S Rao
- Department of Biomedical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Daniel R Thedens
- Department of RadiologyCarver College of Medicine, The University of IowaIowa CityIowaUSA
| | - Sridhar S. Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health SciencesNew Jersey Medical SchoolNewarkNew JerseyUSA
| | | |
Collapse
|
8
|
Jakary A, Lupo JM, Mackin S, Yin A, Murray D, Yang T, Mukherjee P, Larson P, Xu D, Eisendrath S, Luks T, Li Y. Evaluation of major depressive disorder using 7 Tesla phase sensitive neuroimaging before and after mindfulness-based cognitive therapy. J Affect Disord 2023; 335:383-391. [PMID: 37192691 DOI: 10.1016/j.jad.2023.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE We applied 7 Tesla phase sensitive imaging to evaluate the impact of brain iron levels on depression severity and cognitive function in individuals with major depressive disorder (MDD) treated with mindfulness-based cognitive therapy (MBCT). METHODS Seventeen unmedicated MDD participants underwent MRI, evaluation of depression severity, and cognitive testing before and after receiving MBCT, compared to fourteen healthy controls (HC). Local field shift (LFS) values, measures of brain iron levels, were derived from phase images in the putamen, caudate, globus pallidus (GP), anterior cingulate cortex (ACC) and thalamus. RESULTS Compared to the HC group, the MDD group had significantly lower baseline LFS (indicative of higher iron) in the left GP and left putamen and had a higher number of subjects with impairment in a test of information processing speed. In the MDD group, lower LFS values in the left and right ACC, right putamen, right GP, and right thalamus were significantly associated with depression severity; and lower LFS in the right GP was correlated with worse performance on measures of attention. All MBCT participants experienced depression relief. MBCT treatment also significantly improved executive function and attention. MBCT participants with lower baseline LFS values in the right caudate experienced significantly greater improvement in depression severity with treatment; and those with lower LFS values in the right ACC, right caudate, and right GB at baseline performed better on measures of verbal learning and memory after MBCT. CONCLUSIONS Our study highlights the potential contribution of subtle differences in brain iron to MDD symptoms and their successful treatment.
Collapse
Affiliation(s)
- Angela Jakary
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Scott Mackin
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Audrey Yin
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Donna Murray
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Tony Yang
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Peder Larson
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Stuart Eisendrath
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Tracy Luks
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Yan Li
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America.
| |
Collapse
|
9
|
Canessa N, Basso G, Manera M, Poggi P, Gianelli C. Functional Coherence in Intrinsic Frontal Executive Networks Predicts Cognitive Impairments in Alcohol Use Disorder. Brain Sci 2022; 13:45. [PMID: 36672027 PMCID: PMC9856140 DOI: 10.3390/brainsci13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Growing evidence highlights the potential of innovative rehabilitative interventions such as cognitive remediation and neuromodulation, aimed at reducing relapses in Alcohol Use Disorder (AUD). Enhancing their effectiveness requires a thorough description of the neural correlates of cognitive alterations in AUD. Past related attempts, however, were limited by the focus on selected neuro-cognitive variables. We aimed to fill this gap by combining, in 22 AUD patients and 18 controls, an extensive neuro-cognitive evaluation and metrics of intrinsic connectivity as highlighted by resting-state brain activity. We addressed an inherent property of intrinsic activity such as intra-network coherence, the temporal correlation of the slow synchronous fluctuations within resting-state networks, representing an early biomarker of alterations in the functional brain architecture underlying cognitive functioning. AUD patients displayed executive impairments involving working-memory, attention and visuomotor speed, reflecting abnormal coherence of activity and grey matter atrophy within default mode, in addition to the attentional and the executive networks. The stronger relationship between fronto-lateral coherent activity and executive performance in patients than controls highlighted possible compensatory mechanisms counterbalancing the decreased functionality of networks driving the switch from automatic to controlled behavior. These results provide novel insights into AUD patients' cognitive impairments, their neural bases, and possible targets of rehabilitative interventions.
Collapse
Affiliation(s)
- Nicola Canessa
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, 27100 Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, 27100 Pavia, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Marina Manera
- Istituti Clinici Scientifici Maugeri IRCCS, Clinical Psychology Unit of Pavia Institute, 27100 Pavia, Italy
| | - Paolo Poggi
- Istituti Clinici Scientifici Maugeri IRCCS, Radiology Unit of Pavia Institute, 27100 Pavia, Italy
| | - Claudia Gianelli
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, 27100 Pavia, Italy
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
10
|
Zachariou V, Bauer CE, Pappas C, Gold BT. High cortical iron is associated with the disruption of white matter tracts supporting cognitive function in healthy older adults. Cereb Cortex 2022; 33:4815-4828. [PMID: 36182267 PMCID: PMC10110441 DOI: 10.1093/cercor/bhac382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
Aging is associated with brain iron accumulation, which has been linked to cognitive decline. However, how brain iron affects the structure and function of cognitive brain networks remains unclear. Here, we explored the possibility that iron load in gray matter is associated with disruption of white matter (WM) microstructure within a network supporting cognitive function, in a cohort of 95 cognitively normal older adults (age range: 60-86). Functional magnetic resonance imaging was used to localize a set of brain regions involved in working memory and diffusion tensor imaging based probabilistic tractography was used to identify a network of WM tracts connecting the functionally defined regions. Brain iron concentration within these regions was evaluated using quantitative susceptibility mapping and microstructural properties were assessed within the identified tracts using neurite orientation dispersion and density imaging. Results indicated that high brain iron concentration was associated with low neurite density (ND) within the task-relevant WM network. Further, regional associations were observed such that brain iron in cortical regions was linked with lower ND in neighboring but not distant WM tracts. Our results provide novel evidence suggesting that age-related increases in brain iron concentration are associated with the disruption of WM tracts supporting cognitive function in normal aging.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0298, United States.,College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Christopher E Bauer
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0298, United States.,College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Colleen Pappas
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0298, United States.,College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Brian T Gold
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0298, United States.,College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0298, United States.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY 40536-0298, United States
| |
Collapse
|
11
|
Zang Z, Song T, Li J, Yan S, Nie B, Mei S, Ma J, Yang Y, Shan B, Zhang Y, Lu J. Modulation effect of substantia nigra iron deposition and functional connectivity on putamen glucose metabolism in Parkinson's disease. Hum Brain Mapp 2022; 43:3735-3744. [PMID: 35471638 PMCID: PMC9294292 DOI: 10.1002/hbm.25880] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/04/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegeneration of the substantia nigra affects putamen activity in Parkinson's disease (PD), yet in vivo evidence of how the substantia nigra modulates putamen glucose metabolism in humans is missing. We aimed to investigate how substantia nigra modulates the putamen glucose metabolism using a cross-sectional design. Resting-state fMRI, susceptibility-weighted imaging, and [18 F]-fluorodeoxyglucose-PET (FDG-PET) data were acquired. Forty-two PD patients and 25 healthy controls (HCs) were recruited for simultaneous PET/MRI scanning. The main measurements of the current study were R 2 * images representing iron deposition (28 PD and 25 HCs), standardized uptake value ratio (SUVr) images representing FDG-uptake (33 PD and 25 HCs), and resting state functional connectivity maps from resting state fMRI (34 PD and 25 HCs). An interaction term based on the general linear model was used to investigate the joint modulation effect of nigral iron deposition and nigral-putamen functional connectivity on putamen FDG-uptake. Compared with HCs, we found increased iron deposition in the substantia nigra (p = .007), increased FDG-uptake in the putamen (left: PFWE < 0.001; right: PFWE < 0.001), and decreased functional connectivity between the substantia nigra and the anterior putamen (left PFWE < 0.001, right: PFWE = 0.007). We then identified significant interaction effect of nigral iron deposition and nigral-putamen connectivity on FDG-uptake in the putamen (p = .004). The current study demonstrated joint modulation effect of the substantia nigra iron deposition and nigral-putamen functional connectivity on putamen glucose metabolic distribution, thereby revealing in vivo pathological mechanism of nigrostriatal neurodegeneration of PD.
Collapse
Affiliation(s)
- Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Tianbin Song
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and EquipmentInstitute of High Energy Physics, Chinese Academy of SciencesChina
| | - Shanshan Mei
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Ma
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Yu Yang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and EquipmentInstitute of High Energy Physics, Chinese Academy of SciencesChina
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
12
|
Wang F, Zhang M, Li Y, Li Y, Gong H, Li J, Zhang Y, Zhang C, Yan F, Sun B, He N, Wei H. Alterations in brain iron deposition with progression of late-life depression measured by magnetic resonance imaging (MRI)-based quantitative susceptibility mapping. Quant Imaging Med Surg 2022; 12:3873-3888. [PMID: 35782236 PMCID: PMC9246724 DOI: 10.21037/qims-21-1137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/19/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND Previous studies have revealed abnormality of iron deposition in the brain of patients with depression. The progression of iron deposition associated with depression remains to be elucidated. METHODS This is a longitudinal study. We explored brain iron deposition with disease progression in 20 patients older than 55 years with depression and on antidepressants, using magnetic resonance imaging (MRI)-based quantitative susceptibility mapping (QSM). Magnetic susceptibility values of the whole brain were compared between baseline and approximately one-year follow-up scans using permutation testing. Furthermore, we examined the relationship of changes between the susceptibility values and disease improvement using Spearman's partial correlation analysis, controlling for age, gender, and the visit interval. RESULTS Compared to the initial scan, increased magnetic susceptibility values were found in the medial prefrontal cortex (mPFC), dorsal anterior cingulate cortex (dACC), occipital areas, habenula, brainstem, and cerebellum (P<0.05, corrected). The susceptibility values decreased in the dorsal part of the mPFC, middle and posterior cingulate cortex (MCC and PCC), right postcentral gyrus, right inferior parietal lobule, right precuneus, right supramarginal gyrus, left lingual gyrus, left dorsal striatum, and right thalamus (P<0.05, corrected). Notably, the increase in susceptibility values at the mPFC and dACC negatively correlated with the changes in depression scores, as calculated using the Hamilton Depression Scale (HAMD) (r=-0.613, P=0.009), and the increase in susceptibility values at the cerebellum and habenula negatively correlated with the changes in cognitive scores, which were calculated using the Mini-Mental State Examination (MMSE) (cerebellum: r=-0.500, P=0.041; habenula: r=-0.588, P=0.013). Additionally, the decreased susceptibility values at the white matter near the mPFC (anterior corona radiata) also correlated with the changes in depression scores (r=-0.541, P=0.025), and the decreased susceptibility values at the left lingual gyrus correlated with the changes in cognitive scores (r=-0.613, P=0.009). CONCLUSIONS Our study identified brain areas where iron deposition changed with the progression of depression while on antidepressants. The linear relationship of changes in the magnetic susceptibility values in the mPFC, dACC, and some subcortical areas with changes in depression symptoms and cognitive functions of patients is highlighted. Our results strengthen the understanding of the alterations of brain iron levels associated with disease progression in patients with late-life depression.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hengfen Gong
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Chai C, Wu M, Wang H, Cheng Y, Zhang S, Zhang K, Shen W, Liu Z, Xia S. CAU-Net: A Deep Learning Method for Deep Gray Matter Nuclei Segmentation. Front Neurosci 2022; 16:918623. [PMID: 35720705 PMCID: PMC9204516 DOI: 10.3389/fnins.2022.918623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022] Open
Abstract
The abnormal iron deposition of the deep gray matter nuclei is related to many neurological diseases. With the quantitative susceptibility mapping (QSM) technique, it is possible to quantitatively measure the brain iron content in vivo. To assess the magnetic susceptibility of the deep gray matter nuclei in the QSM, it is mandatory to segment the nuclei of interest first, and many automatic methods have been proposed in the literature. This study proposed a contrast attention U-Net for nuclei segmentation and evaluated its performance on two datasets acquired using different sequences with different parameters from different MRI devices. Experimental results revealed that our proposed method was superior on both datasets over other commonly adopted network structures. The impacts of training and inference strategies were also discussed, which showed that adopting test time augmentation during the inference stage can impose an obvious improvement. At the training stage, our results indicated that sufficient data augmentation, deep supervision, and nonuniform patch sampling contributed significantly to improving the segmentation accuracy, which indicated that appropriate choices of training and inference strategies were at least as important as designing more advanced network structures.
Collapse
Affiliation(s)
- Chao Chai
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Mengran Wu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Huiying Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yue Cheng
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | | | - Kun Zhang
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Wen Shen
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhiyang Liu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, China
- *Correspondence: Zhiyang Liu,
| | - Shuang Xia
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Shuang Xia,
| |
Collapse
|
14
|
Gustavsson J, Papenberg G, Falahati F, Laukka EJ, Kalpouzos G. Contributions of the Catechol-O-Methyltransferase Val158Met Polymorphism to Changes in Brain Iron Across Adulthood and Their Relationships to Working Memory. Front Hum Neurosci 2022; 16:838228. [PMID: 35571998 PMCID: PMC9091601 DOI: 10.3389/fnhum.2022.838228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ageing is associated with excessive free brain iron, which may induce oxidative stress and neuroinflammation, likely causing cognitive deficits. Lack of dopamine may be a factor behind the increase of iron with advancing age, as it has an important role in cellular iron homoeostasis. We investigated the effect of COMT Val 158 Met (rs4680), a polymorphism crucial for dopamine degradation and proxy for endogenous dopamine, on iron accumulation and working memory in a longitudinal lifespan sample (n = 208, age 20–79 at baseline, mean follow-up time = 2.75 years) using structural equation modelling. Approximation of iron content was assessed using quantitative susceptibility mapping in striatum and dorsolateral prefrontal cortex (DLPFC). Iron accumulated in both striatum and DLPFC during the follow-up period. Greater iron accumulation in DLPFC was associated with more deleterious change in working memory. Older (age 50–79) Val homozygotes (with presumably lower endogenous dopamine) accumulated more iron than older Met carriers in both striatum and DLPFC, no such differences were observed among younger adults (age 20–49). In conclusion, individual differences in genetic predisposition related to low dopamine levels increase iron accumulation, which in turn may trigger deleterious change in working memory. Future studies are needed to better understand how dopamine may modulate iron accumulation across the human lifespan.
Collapse
Affiliation(s)
- Jonatan Gustavsson
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- *Correspondence: Jonatan Gustavsson,
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Farshad Falahati
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Erika J. Laukka
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Grégoria Kalpouzos,
| |
Collapse
|
15
|
Howard CM, Jain S, Cook AD, Packard LE, Mullin HA, Chen N, Liu C, Song AW, Madden DJ. Cortical iron mediates age-related decline in fluid cognition. Hum Brain Mapp 2022; 43:1047-1060. [PMID: 34854172 PMCID: PMC8764476 DOI: 10.1002/hbm.25706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/19/2023] Open
Abstract
Brain iron dyshomeostasis disrupts various critical cellular functions, and age-related iron accumulation may contribute to deficient neurotransmission and cell death. While recent studies have linked excessive brain iron to cognitive function in the context of neurodegenerative disease, little is known regarding the role of brain iron accumulation in cognitive aging in healthy adults. Further, previous studies have focused primarily on deep gray matter regions, where the level of iron deposition is highest. However, recent evidence suggests that cortical iron may also contribute to cognitive deficit and neurodegenerative disease. Here, we used quantitative susceptibility mapping (QSM) to measure brain iron in 67 healthy participants 18-78 years of age. Speed-dependent (fluid) cognition was assessed from a battery of 12 psychometric and computer-based tests. From voxelwise QSM analyses, we found that QSM susceptibility values were negatively associated with fluid cognition in the right inferior temporal gyrus, bilateral putamen, posterior cingulate gyrus, motor, and premotor cortices. Mediation analysis indicated that susceptibility in the right inferior temporal gyrus was a significant mediator of the relation between age and fluid cognition, and similar effects were evident for the left inferior temporal gyrus at a lower statistical threshold. Additionally, age and right inferior temporal gyrus susceptibility interacted to predict fluid cognition, such that brain iron was negatively associated with a cognitive decline for adults over 45 years of age. These findings suggest that iron may have a mediating role in cognitive decline and may be an early biomarker of neurodegenerative disease.
Collapse
Affiliation(s)
- Cortney M. Howard
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Shivangi Jain
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Psychological and Brain SciencesUniversity of IowaIowa CityIowaUSA
| | - Angela D. Cook
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Lauren E. Packard
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Hollie A. Mullin
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Nan‐kuei Chen
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Biomedical EngineeringUniversity of ArizonaTucsonArizonaUSA
| | - Chunlei Liu
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Allen W. Song
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - David J. Madden
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
16
|
Li Q, Zhu W, Wen X, Zang Z, Da Y, Lu J. Different sensorimotor mechanism in fast and slow progression amyotrophic lateral sclerosis. Hum Brain Mapp 2021; 43:1710-1719. [PMID: 34931392 PMCID: PMC8886636 DOI: 10.1002/hbm.25752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022] Open
Abstract
The huge heterogeneity of the disease progression rate may cause inconsistent findings between local activity and functional connectivity of the primary sensorimotor area (PSMA) in amyotrophic lateral sclerosis (ALS). For illustration of this hypothesis, resting-state fMRI (RS-fMRI) data were collected and analyzed on 38 "definite" or "probable" ALS patients (19 fast and 19 slow, cut off median = 0.41) and 37 matched healthy controls. Amplitude of low frequency fluctuations (ALFFs) and functional connectivity strength (FCS) were analyzed within the PSMA. There was a decreased ALFF (pFDR <.05) and FCS (p = .022) in all ALS patients. The two metrics shared about 50% of variance (R = .7) and both showed significant positive correlation with ALS Functional Rating Scale-Revised (ALSFRS-R) in the fast (p values <.034) but not in the slow progression groups. Interestingly, when regressing out the ALFF, the PSMA network FCS, especially the inter-hemisphere FCS, showed negative correlation with the ALSFRS-R score in the slow (R = -.54, p = .026) but not the fast progression group. In summary, the current results suggest that RS-fMRI local activity and network functional connectivity accounts for the severity differently in the slow and fast progression ALS patients.
Collapse
Affiliation(s)
- Qianwen Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
17
|
Xu J, Guan X, Wen J, Wang T, Zhang M, Xu X. Substantia nigra iron affects functional connectivity networks modifying working memory performance in younger adults. Eur J Neurosci 2021; 54:7959-7973. [PMID: 34779047 DOI: 10.1111/ejn.15532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/19/2023]
Abstract
Brain iron affects working memory (WM) but the impact of iron content in deep grey matter nuclei on WM networks is unknown. We aimed to test whether deep grey matter nuclei iron concentration can affect resting-state functional connectivity (rsFC) within brain networks modifying WM performance. An N-back WM paradigm was applied in a hundred healthy younger adults. The participants then underwent a resting-state functional magnetic resonance imaging (fMRI) for brain network analysis and quantitative susceptibility mapping (QSM) imaging for assessment of deep grey matter nuclei iron concentration. Higher substantia nigra (SN) iron concentration was associated with lower rsFC between SN and brain regions of the temporal/frontal lobe but with better WM performance after controlling for age, gender and education. A follow-up mediation analysis also indicated that functional connectivity may mediate the link between SN iron and WM performance. Our results suggest that high SN iron concentration may affect communication between the SN and temporal/frontal lobe and is associated with strengthened WM performance in younger adults.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Dauer Née Joppe K, Tatenhorst L, Caldi Gomes L, Zhang S, Parvaz M, Carboni E, Roser AE, El DeBakey H, Bähr M, Vogel-Mikuš K, Wang Ip C, Becker S, Zweckstetter M, Lingor P. Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils. J Neurochem 2021; 159:554-573. [PMID: 34176164 DOI: 10.1111/jnc.15461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
Regional iron accumulation and α-synuclein (α-syn) spreading pathology within the central nervous system are common pathological findings in Parkinson's disease (PD). Whereas iron is known to bind to α-syn, facilitating its aggregation and regulating α-syn expression, it remains unclear if and how iron also modulates α-syn spreading. To elucidate the influence of iron on the propagation of α-syn pathology, we investigated α-syn spreading after stereotactic injection of α-syn preformed fibrils (PFFs) into the striatum of mouse brains after neonatal brain iron enrichment. C57Bl/6J mouse pups received oral gavage with 60, 120, or 240 mg/kg carbonyl iron or vehicle between postnatal days 10 and 17. At 12 weeks of age, intrastriatal injections of 5-µg PFFs were performed to induce seeding of α-syn aggregates. At 90 days post-injection, PFFs-injected mice displayed long-term memory deficits, without affection of motor behavior. Interestingly, quantification of α-syn phosphorylated at S129 showed reduced α-syn pathology and attenuated spreading to connectome-specific brain regions after brain iron enrichment. Furthermore, PFFs injection caused intrastriatal microglia accumulation, which was alleviated by iron in a dose-dependent way. In primary cortical neurons in a microfluidic chamber model in vitro, iron application did not alter trans-synaptic α-syn propagation, possibly indicating an involvement of non-neuronal cells in this process. Our study suggests that α-syn PFFs may induce cognitive deficits in mice independent of iron. However, a redistribution of α-syn aggregate pathology and reduction of striatal microglia accumulation in the mouse brain may be mediated via iron-induced alterations of the brain connectome.
Collapse
Affiliation(s)
- Karina Dauer Née Joppe
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Lucas Caldi Gomes
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Shuyu Zhang
- Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mojan Parvaz
- Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eleonora Carboni
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Hazem El DeBakey
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Katarina Vogel-Mikuš
- Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
- Jozef Stefan Institute, Ljubljana, Slovenia
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Stefan Becker
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Markus Zweckstetter
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Research group Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
19
|
Increased decision latency in alcohol use disorder reflects altered resting-state synchrony in the anterior salience network. Sci Rep 2021; 11:19581. [PMID: 34599268 PMCID: PMC8486863 DOI: 10.1038/s41598-021-99211-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Increased decision latency in alcohol use disorder (AUD) has been generally explained in terms of psychomotor slowing. Recent results suggest that AUD patients' slowed decision-making might rather reflect alterations in the neural circuitry underlying the engagement of controlled processing by salient stimuli. We addressed this hypothesis by testing a relationship between decision latency at the Cambridge Gambling Task (CGT) and intrinsic brain activity in 22 individuals with AUD and 19 matched controls. CGT deliberation time was related to two complementary facets of resting-state fMRI activity, i.e. coherence and intensity, representing early biomarkers of functional changes in the intrinsic brain architecture. For both metrics, we assessed a multiple regression (to test a relationship with deliberation time in the whole sample), and an interaction analysis (to test a significantly different relationship with decision latency across groups). AUD patients' slowed deliberation time (p < 0.025) reflected distinct facets of altered intrinsic activity in the cingulate node of the anterior salience network previously associated with the "output" motor stage of response selection. Its heightened activity in AUD patients compared with controls, tracking choice latency (p < 0.025 corrected), might represent a compensation mechanism counterbalancing the concurrent decrease of its internal coherent activity (p < 0.025 corrected). These findings provide novel insights into the intrinsic neural mechanisms underlying increased decision latency in AUD, involving decreased temporal synchronicity in networks promoting executive control by behaviourally relevant stimuli. These results pave the way to further studies assessing more subtle facets of decision-making in AUD, and their possible changes with rehabilitative treatment.
Collapse
|
20
|
Kalpouzos G, Mangialasche F, Falahati F, Laukka EJ, Papenberg G. Contributions of HFE polymorphisms to brain and blood iron load, and their links to cognitive and motor function in healthy adults. Neuropsychopharmacol Rep 2021; 41:393-404. [PMID: 34291615 PMCID: PMC8411306 DOI: 10.1002/npr2.12197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Brain iron overload is linked to brain deterioration, and cognitive and motor impairment in neurodegenerative disorders and normal aging. Mutations in the HFE gene are associated with iron dyshomeostasis and are risk factors for peripheral iron overload. However, links to brain iron load and cognition are less consistent and data are scarce. Aims and methods Using quantitative susceptibility mapping with magnetic resonance imaging, we investigated whether C282Y and H63D contributed to aging‐related increases in brain iron load and lower cognitive and motor performance in 208 healthy individuals aged 20‐79 years. We also assessed the modulatory effects of HFE mutations on associations between performance and brain iron load, as well as peripheral iron metabolism. Results Independent of age, carriers of either C282Y and/or H63D (HFE‐pos group, n = 66) showed a higher load of iron in putamen than non‐carriers (HFE‐neg group, n = 142), as well as higher transferrin saturation and lower transferrin and transferrin receptors in blood. In the HFE‐neg group, higher putaminal iron was associated with lower working memory. In the HFE‐pos group, higher putaminal iron was instead linked to higher executive function, and lower plasma transferrin was related to higher episodic memory. Iron‐performance associations were modest albeit reliable. Conclusion Our findings suggest that HFE status is characterized by higher regional brain iron load across adulthood, and support the presence of a modulatory effect of HFE status on the relationships between iron load and cognition. Future studies in healthy individuals are needed to confirm the reported patterns. This study investigated the contribution of genetic polymorphisms in the HFE gene (C282Y and H63D) on blood and brain iron load, and their relationships with cognition, in a healthy sample of adults. The findings indicated that carriers of C282Y and/or H63D displayed higher iron load in putamen and higher transferrin saturation in blood. Results further suggested that in carriers, higher iron load may be beneficial for cognitive performance, independent of age.![]()
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Francesca Mangialasche
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Farshad Falahati
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Erika J Laukka
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Goran Papenberg
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Wenger MJ, DellaValle DM, Todd LE, Barnett AL, Haas JD. Limited Shared Variance among Measures of Cognitive Performance Used in Nutrition Research: The Need to Prioritize Construct Validity and Biological Mechanisms in Choice of Measures. Curr Dev Nutr 2021; 5:nzab070. [PMID: 34056512 PMCID: PMC8141094 DOI: 10.1093/cdn/nzab070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The literature on correlates of nutrition has seen an increase in studies focused on functional consequences at the levels of neural, perceptual, and cognitive functioning. A range of measurement methodologies have been used in these studies, and investigators and funding agencies have raised the questions of how and if these various methodologies are at all comparable. OBJECTIVE The aim was to determine the extent to which 3 different sets of cognitive measures provide comparable information across 2 subsamples that shared culture and language but differed in terms of socioeconomic status (SES) and academic preparation. METHODS A total of 216 participants were recruited at 2 US universities. Each participant completed 3 sets of cognitive measures: 1 custom-designed set based on well-understood laboratory measures of cognition [cognitive task battery (COGTASKS)] and 2 normed batteries [Cambridge Neuropsychological Test Automated Battery (CANTAB), Weschler Adult Intelligence Scale, fourth edition (WAIS-IV)] designed for assessing general cognitive function. RESULTS The 3 sets differed with respect to the extent to which SES and educational preparation affected the results, with COGTASKS showing no differences due to testing location and WAIS-IV showing substantial differences. There were, at best, weak correlations among tasks sharing the same name or claiming to measure the same construct. CONCLUSIONS Comparability of measures of cognition cannot be assumed, even if measures have the same name or claim to assess the same construct. In selecting and evaluating different measures, construct validity and underlying biological mechanisms need to be at least as important as population norms and the ability to connect with existing literatures.
Collapse
Affiliation(s)
- Michael J Wenger
- Department of Psychology, Cellular, and Behavioral Neurobiology, The University of Oklahoma, Norman, OK, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Diane M DellaValle
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Nutrition Science, King's College, Wilkes-Barre, PA, USA
| | - Lauren E Todd
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Amy L Barnett
- Department of Psychology, Cellular, and Behavioral Neurobiology, The University of Oklahoma, Norman, OK, USA
| | - Jere D Haas
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Daugherty AM. Hypertension-related risk for dementia: A summary review with future directions. Semin Cell Dev Biol 2021; 116:82-89. [PMID: 33722505 DOI: 10.1016/j.semcdb.2021.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic hypertension, or high blood pressure, is the most prevalent vascular risk factor that accelerates cognitive aging and increases risk for Alzheimer's disease and related dementia. Decades of observational and clinical trials have demonstrated that midlife hypertension is associated with greater gray matter atrophy, white matter damage commiserate with demyelination, and functional deficits as compared to normotension over the adult lifespan. Critically, hypertension is a modifiable dementia risk factor: successful blood pressure control with antihypertensive treatment improves outcomes as compared to uncontrolled hypertension, but does not completely negate the risk for dementia. This suggests that hypertension-related risk for neural and cognitive decline in aging cannot be due to elevations in blood pressure alone. This summary review describes three putative pathways for hypertension-related dementia risk: oxidative damage and metabolic dysfunction; systemic inflammation; and autonomic control of heart rate variability. The same processes contribute to pre-clinical hypertension, and therefore hypertension may be an early symptom of an aging nervous system that then exacerbates cumulative and progressive neurodegeneration. Current evidence is reviewed and future directions for research are outlined, including blood biomarkers and novel neuroimaging methods that may be sensitive to test the specific hypotheses.
Collapse
Affiliation(s)
- Ana M Daugherty
- Department of Psychology, Department of Psychiatry and Behavioral Neurosciences, Institute of Gerontology, Wayne State University, 5057 Woodward Ave., Detroit, MI, USA.
| |
Collapse
|
23
|
Zitser J, Casaletto KB, Staffaroni AM, Sexton C, Weiner-Light S, Wolf A, Brown JA, Miller BL, Kramer JH. Mild Motor Signs Matter in Typical Brain Aging: The Value of the UPDRS Score Within a Functionally Intact Cohort of Older Adults. Front Aging Neurosci 2021; 13:594637. [PMID: 33643020 PMCID: PMC7904682 DOI: 10.3389/fnagi.2021.594637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
Objectives: To characterize the clinical correlates of subclinical Parkinsonian signs, including longitudinal cognitive and neural (via functional connectivity) outcomes, among functionally normal older adults. Methods: Participants included 737 functionally intact community-dwelling older adults who performed prospective comprehensive evaluations at ~15-months intervals for an average of 4.8 years (standard deviation 3.2 years). As part of these evaluations, participants completed the Unified Parkinson's Disease Rating Scale (UPDRS) longitudinally and measures of processing speed, executive functioning and verbal episodic memory. T1-weighted structural scans and task-free functional MRI scans were acquired on 330 participants. We conducted linear mixed-effects models to determine the relationship between changes in UPDRS with cognitive and neural changes, using age, sex, and education as covariates. Results: Cognitive outcomes were processing speed, executive functioning, and episodic memory. Greater within-person increases in UPDRS were associated with more cognitive slowing over time. Although higher average UPDRS scores were significantly associated with overall poorer executive functions, there was no association between UPDRS and executive functioning longitudinally. UPDRS scores did not significantly relate to longitudinal memory performances. Regarding neural correlates, greater increases in UPDRS scores were associated with reduced intra-subcortical network connectivity over time. There were no relationships with intra-frontoparietal or inter-subcortical-frontoparietal connectivity. Conclusions: Our findings add to the aging literature by indicating that mild motor changes are negatively associated with cognition and network connectivity in functionally intact adults.
Collapse
Affiliation(s)
- Jennifer Zitser
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States.,Movement Disorders Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Kaitlin B Casaletto
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Adam M Staffaroni
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Claire Sexton
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Sophia Weiner-Light
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Amy Wolf
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jesse A Brown
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Joel H Kramer
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
24
|
Salami A, Papenberg G, Sitnikov R, Laukka EJ, Persson J, Kalpouzos G. Elevated neuroinflammation contributes to the deleterious impact of iron overload on brain function in aging. Neuroimage 2021; 230:117792. [PMID: 33497770 DOI: 10.1016/j.neuroimage.2021.117792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 01/16/2021] [Indexed: 01/24/2023] Open
Abstract
Intracellular iron is essential for many neurobiological mechanisms. However, at high concentrations, iron may induce oxidative stress and inflammation. Brain iron overload has been shown in various neurodegenerative disorders and in normal aging. Elevated brain iron in old age may trigger brain dysfunction and concomitant cognitive decline. However, the exact mechanism underlying the deleterious impact of iron on brain function in aging is unknown. Here, we investigated the role of iron on brain function across the adult lifespan from 187 healthy participants (20-79 years old, 99 women) who underwent fMRI scanning while performing a working-memory n-back task. Iron content was quantified using R2* relaxometry, whereas neuroinflammation was estimated using myo-inositol measured by magnetic resonance spectroscopy. Striatal iron increased non-linearly with age, with linear increases at both ends of adulthood. Whereas higher frontostriatal activity was related to better memory performance independent of age, the link between brain activity and iron differed across age groups. Higher striatal iron was linked to greater frontostriatal activity in younger, but reduced activity in older adults. Further mediation analysis revealed that, after age 40, iron provided unique and shared contributions with neuroinflammation to brain activations, such that neuroinflammation partly mediated brain-iron associations. These findings promote a novel mechanistic understanding of how iron may exert deleterious effects on brain function and cognition with advancing age.
Collapse
Affiliation(s)
- Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden.
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Rouslan Sitnikov
- MRI Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Erika J Laukka
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
Foster CM, Kennedy KM, Daugherty AM, Rodrigue KM. Contribution of iron and Aβ to age differences in entorhinal and hippocampal subfield volume. Neurology 2020; 95:e2586-e2594. [PMID: 32938781 PMCID: PMC7682827 DOI: 10.1212/wnl.0000000000010868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To test the hypothesis that the combination of elevated global β-AMYLOID (Aβ) burden and greater striatal iron content would be associated with smaller entorhinal cortex (ERC) volume, but not hippocampal subfield volumes, we measured volume and iron content using high-resolution MRI and Aβ using PET imaging in a cross-sectional sample of 70 cognitively normal older adults. METHODS Participants were scanned with florbetapir 18F PET to obtain Aβ standardized uptake value ratios. Susceptibility-weighted MRI was collected and processed to yield R2* images, and striatal regions of interest (ROIs) were manually placed to obtain a measure of striatal iron burden. Ultra-high resolution T2/PD-weighted MRIs were segmented to measure medial temporal lobe (MTL) volumes. Analyses were conducted using mixed-effects models with MTL ROI as a within-participant factor; age, iron content, and Aβ as between-participant factors; and MTL volumes (ERC and 3 hippocampal subfield regions) as the dependent variable. RESULTS The model indicated a significant 4-way interaction among age, iron, Aβ, and MTL region. Post hoc analyses indicated that the 3-way interaction among age, Aβ, and iron content was selective to the ERC (β = -3.34, standard error = 1.33, 95% confidence interval -5.95 to -0.72), whereas a significant negative association between age and ERC volume was present only in individuals with both elevated iron content and Aβ. CONCLUSIONS These findings highlight the importance of studying Aβ in the context of other, potentially synergistic age-related brain factors such as iron accumulation and the potential role for iron as an important contributor to the earliest, preclinical stages of pathologic aging.
Collapse
Affiliation(s)
- Chris M Foster
- From the School of Behavioral and Brain Sciences (C.M.F., K.M.K., K.M.R.), Center for Vital Longevity, University of Texas at Dallas; and Department of Psychology (A.M.D.) and Department of Psychiatry and Behavioral Neurosciences, Institute of Gerontology, Wayne State University, Detroit, MI
| | - Kristen M Kennedy
- From the School of Behavioral and Brain Sciences (C.M.F., K.M.K., K.M.R.), Center for Vital Longevity, University of Texas at Dallas; and Department of Psychology (A.M.D.) and Department of Psychiatry and Behavioral Neurosciences, Institute of Gerontology, Wayne State University, Detroit, MI
| | - Ana M Daugherty
- From the School of Behavioral and Brain Sciences (C.M.F., K.M.K., K.M.R.), Center for Vital Longevity, University of Texas at Dallas; and Department of Psychology (A.M.D.) and Department of Psychiatry and Behavioral Neurosciences, Institute of Gerontology, Wayne State University, Detroit, MI
| | - Karen M Rodrigue
- From the School of Behavioral and Brain Sciences (C.M.F., K.M.K., K.M.R.), Center for Vital Longevity, University of Texas at Dallas; and Department of Psychology (A.M.D.) and Department of Psychiatry and Behavioral Neurosciences, Institute of Gerontology, Wayne State University, Detroit, MI.
| |
Collapse
|
26
|
Spence H, McNeil CJ, Waiter GD. The impact of brain iron accumulation on cognition: A systematic review. PLoS One 2020; 15:e0240697. [PMID: 33057378 PMCID: PMC7561208 DOI: 10.1371/journal.pone.0240697] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
Iron is involved in many processes in the brain including, myelin generation, mitochondrial function, synthesis of ATP and DNA and the cycling of neurotransmitters. Disruption of normal iron homeostasis can result in iron accumulation in the brain, which in turn can partake in interactions which amplify oxidative damage. The development of MRI techniques for quantifying brain iron has allowed for the characterisation of the impact that brain iron has on cognition and neurodegeneration. This review uses a systematic approach to collate and evaluate the current literature which explores the relationship between brain iron and cognition. The following databases were searched in keeping with a predetermined inclusion criterion: Embase Ovid, PubMed and PsychInfo (from inception to 31st March 2020). The included studies were assessed for study characteristics and quality and their results were extracted and summarised. This review identified 41 human studies of varying design, which statistically assessed the relationship between brain iron and cognition. The most consistently reported interactions were in the Caudate nuclei, where increasing iron correlated poorer memory and general cognitive performance in adulthood. There were also consistent reports of a correlation between increased Hippocampal and Thalamic iron and poorer memory performance, as well as, between iron in the Putamen and Globus Pallidus and general cognition. We conclude that there is consistent evidence that brain iron is detrimental to cognitive health, however, more longitudinal studies will be required to fully understand this relationship and to determine whether iron occurs as a primary cause or secondary effect of cognitive decline.
Collapse
Affiliation(s)
- Holly Spence
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Chris J. McNeil
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
27
|
Zachariou V, Bauer CE, Seago ER, Raslau FD, Powell DK, Gold BT. Cortical iron disrupts functional connectivity networks supporting working memory performance in older adults. Neuroimage 2020; 223:117309. [PMID: 32861788 PMCID: PMC7821351 DOI: 10.1016/j.neuroimage.2020.117309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive brain iron negatively affects working memory and related processes but the impact of cortical iron on task-relevant, cortical brain networks is unknown. We hypothesized that high cortical iron concentration may disrupt functional circuitry within cortical networks supporting working memory performance. Fifty-five healthy older adults completed an N-Back working memory paradigm while functional magnetic resonance imaging (fMRI) was performed. Participants also underwent quantitative susceptibility mapping (QSM) imaging for assessment of non-heme brain iron concentration. Additionally, pseudo continuous arterial spin labeling scans were obtained to control for potential contributions of cerebral blood volume and structural brain images were used to control for contributions of brain volume. Task performance was positively correlated with strength of task-based functional connectivity (tFC) between brain regions of the frontoparietal working memory network. However, higher cortical iron concentration was associated with lower tFC within this frontoparietal network and with poorer working memory performance after controlling for both cerebral blood flow and brain volume. Our results suggest that high cortical iron concentration disrupts communication within frontoparietal networks supporting working memory and is associated with reduced working memory performance in older adults.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA.
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Elayna R Seago
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Flavius D Raslau
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - David K Powell
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA.
| |
Collapse
|
28
|
A positive influence of basal ganglia iron concentration on implicit sequence learning. Brain Struct Funct 2020; 225:735-749. [PMID: 32055981 PMCID: PMC7046582 DOI: 10.1007/s00429-020-02032-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Iron homeostasis is important for maintaining normal physiological brain functioning. In two independent samples, we investigate the link between iron concentration in the basal ganglia (BG) and implicit sequence learning (ISL). In Study 1, we used quantitative susceptibility mapping and task-related fMRI to examine associations among regional iron concentration measurements, brain activation, and ISL in younger and older adults. In Study 2, we examined the link between brain iron and ISL using a metric derived from fMRI in an age-homogenous sample of older adults. Three main findings were obtained. First, BG iron concentration was positively related to ISL in both studies. Second, ISL was robust for both younger and older adults, and performance-related activation was found in fronto-striatal regions across both age groups. Third, BG iron was positively linked to task-related BOLD signal in fronto-striatal regions. This is the first study investigating the relationship among brain iron accumulation, functional brain activation, and ISL, and the results suggest that higher brain iron concentration may be linked to better neurocognitive functioning in this particular task.
Collapse
|
29
|
Rodrigue KM, Daugherty AM, Foster CM, Kennedy KM. Striatal iron content is linked to reduced fronto-striatal brain function under working memory load. Neuroimage 2020; 210:116544. [PMID: 31972284 DOI: 10.1016/j.neuroimage.2020.116544] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/26/2022] Open
Abstract
Non-heme iron accumulation contributes to age-related decline in brain structure and cognition via a cascade of oxidative stress and inflammation, although its effect on brain function is largely unexplored. Thus, we examine the impact of striatal iron on dynamic range of BOLD modulation to working memory load. N = 166 healthy adults (age 20-94) underwent cognitive testing and an imaging session including n-back (0-, 2-, 3-, and 4-back fMRI), R2*-weighted imaging, and pcASL to measure cerebral blood flow. A statistical model was constructed to predict voxelwise BOLD modulation by age, striatal iron content and an age × iron interaction, controlling for cerebral blood flow, sex, and task response time. A significant interaction between age and striatal iron content on BOLD modulation was found selectively in the putamen, caudate, and inferior frontal gyrus. Greater iron was associated with reduced modulation to difficulty, particularly in middle-aged and younger adults with greater iron content. Further, iron-related decreases in modulation were associated with poorer executive function in an age-dependent manner. These results suggest that iron may contribute to differences in functional brain activation prior to older adulthood, highlighting the potential role of iron as an early factor contributing to trajectories of functional brain aging.
Collapse
Affiliation(s)
- Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, TX, USA.
| | - Ana M Daugherty
- Department of Psychology, Department of Psychiatry and Behavioral Neurosciences, Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Chris M Foster
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
30
|
Salat DH, Kennedy KM. Current themes and issues in neuroimaging of aging processes: Editorial overview to the special issue on imaging the nonpathological aging brain. Neuroimage 2019; 201:116046. [PMID: 31376520 DOI: 10.1016/j.neuroimage.2019.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- David H Salat
- Martinous Center for Biomedical Imaging, Massachusets General Hospital, Department of Radiology, Harvard University, USA
| | - Kristen M Kennedy
- School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, USA.
| |
Collapse
|
31
|
Zhang W, Zhou Y, Li Q, Xu J, Yan S, Cai J, Jiaerken Y, Lou M. Brain Iron Deposits in Thalamus Is an Independent Factor for Depressive Symptoms Based on Quantitative Susceptibility Mapping in an Older Adults Community Population. Front Psychiatry 2019; 10:734. [PMID: 31681043 PMCID: PMC6803490 DOI: 10.3389/fpsyt.2019.00734] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 09/12/2019] [Indexed: 12/02/2022] Open
Abstract
Objectives: With the trend of an aging population, an increasing prevalence of late-life depression has been identified. Several studies demonstrated that iron deposition was significantly related to the severity of symptoms in patients with depression. However, whether brain iron deposits influence depressive symptoms is so far unclear in the community of older adults. We measured iron deposition in deep intracranial nucleus by quantitative susceptibility mapping (QSM) and aimed to explore the relationship between iron deposition and depressive symptoms. Methods: We reviewed the data of a community population from CIRCLE study, which is a single-center prospective observational study that enrolled individuals above 40 years old with cerebral small vessel disease (SVD), while free of known dementia or stroke. We evaluated regional iron deposits on QSM, measured the volume of white matter hyperintensities (WMHs) on T2 fluid-attenuated inversion recovery, and assessed depressive symptoms by Hamilton depression scale (HDRS). We defined depressive symptom as HDRS > 7. Results: A total of 185 participants were enrolled. Participants in depressive symptom group had higher QSM value in thalamus than control group (18.79 ± 14.94 vs 13.29 ± 7.64, p = 0.003). The QSM value in the thalamus was an independent factor for the presence of depressive symptoms (OR = 1.055; 95% CI: 1.011-1.100; p = 0.013). The regional QSM values in other areas were not associated with HDRS score (all p > 0.05). No significant correlations were observed between WMHs volume and HDRS score (p > 0.05), or regional QSM values and WMHs volume (all p > 0.05). Conclusions: Our study demonstrated that iron deposits in the thalamus were related to the depressive symptoms in older adults.
Collapse
Affiliation(s)
- Wenhua Zhang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Qingqing Li
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jinjin Xu
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shenqiang Yan
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jinsong Cai
- Department of Radiology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|