1
|
Qi Z, Noetscher GM, Miles A, Weise K, Knösche TR, Cadman CR, Potashinsky AR, Liu K, Wartman WA, Nunez Ponasso G, Bikson M, Lu H, Deng ZD, Nummenmaa AR, Makaroff SN. Enabling Electric Field Model of Microscopically Realistic Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588004. [PMID: 38645100 PMCID: PMC11030228 DOI: 10.1101/2024.04.04.588004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities. We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm 3 . The map was obtained by applying a uniform brain stimulation electric field at three different polarizations and accurately computing microscopic field perturbations using the boundary element fast multipole method. We used the map to identify the effect of microscopic field perturbations on the activation thresholds of individual neurons. Previous relevant studies modeled a macroscopically homogeneous cortical volume. Our result shows that the microscopic field perturbations - an 'electric field spatial noise' with a mean value of zero - only modestly influence the macroscopically predicted stimulation field strengths necessary for neuronal activation. The thresholds do not change by more than 10% on average. Under the stated limitations and assumptions of our method, this result justifies the conventional theory of "invisible" neurons embedded in a macroscopic brain model for transcranial magnetic and transcranial electrical stimulation. However, our result is solely sample-specific and largely neglects the effect of the microcapillary network. Furthermore, we only considered the uniform impressed field and a single- pulse stimulation time course. Significance statement This study is arguably the first attempt to model brain stimulation at the microscopic scale, enabled by automated analysis of modern scanning electron microscopy images of the brain. It concentrates on modeling microscopic perturbations of the extracellular electric field caused by the physical cell structure and is applicable to any type of brain stimulation. Data availability statement Post-processed cell CAD models (383, stl format), microcapillary CAD models (34, stl format), post-processed neuron morphologies (267, swc format), extracellular electric field and potential distributions at different polarizations (267x3, MATLAB format), *.ses projects files for biophysical modeling with Neuron software (267x2, Neuron format), and computed neuron activating thresholds at different conditions (267x8, Excel tables, without the sample polarization correction from Section 2.8) are made available online through BossDB , a volumetric open-source database for 3D and 4D neuroscience data.
Collapse
|
2
|
Mata P, Calovi S, Benli KP, Iglesias L, Hernández MI, Martín A, Pérez-Samartín A, Ramos-Murguialday A, Domercq M, Ortego-Isasa I. Magnetic field in the extreme low frequency band protects neuronal and microglia cells from oxygen-glucose deprivation. Front Cell Neurosci 2024; 18:1455158. [PMID: 39553829 PMCID: PMC11563784 DOI: 10.3389/fncel.2024.1455158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Ischemic stroke consists of rapid neural death as a consequence of brain vessel obstruction, followed by damage to the neighboring tissue known as ischemic penumbra. The cerebral tissue in the core of the lesions becomes irreversibly damaged, however, the ischemic penumbra is potentially recoverable during the initial phases after the stroke. Therefore, there is real need for emerging therapeutic strategies to reduce ischemic damage and its spread to the penumbral region. For this reason, we tested the effect of Extreme Low Frequency Electromagnetic Stimulation (ELF-EMS) on in vitro primary neuronal and microglial cultures under oxygen-glucose deprivation (OGD) conditions. ELF-EMS under basal non-OGD conditions did not induce any effect in cell survival. However, ELF-EMS significantly reduced neuronal cell death in OGD conditions and reduced ischemic induced Ca2+ overload. Likewise, ELF-EMS modulated microglia activation and OGD-induced microglia cell death. Hence, this study suggests potential benefits in the application of ELF-EMS to limit ischemic irreversible damages under in vitro stroke conditions, encouraging in vivo preclinical validations of ELF-EMS as a potential therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Paloma Mata
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | | | | | | | | | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology and Stroke, University of Tubingen, Tubingen, Germany
- Athenea Neuroclinics, Donostia-San Sebastian, Spain
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Lee S, Zhao Z, Alekseichuk I, Shirinpour S, Linn G, Schroeder CE, Falchier AY, Opitz A. Layer-specific dynamics of local field potentials in monkey V1 during electrical stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619242. [PMID: 39484447 PMCID: PMC11526877 DOI: 10.1101/2024.10.19.619242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The mammalian neocortex, organized into six cellular layers or laminae, forms a cortical network within layers. Layer specific computations are crucial for sensory processing of visual stimuli within primary visual cortex. Laminar recordings of local field potentials (LFPs) are a powerful tool to study neural activity within cortical layers. Electric brain stimulation is widely used in basic neuroscience and in a large range of clinical applications. However, the layer-specific effects of electric stimulation on LFPs remain unclear. To address this gap, we conducted laminar LFP recordings of the primary visual cortex in monkeys while presenting a flash visual stimulus. Simultaneously, we applied a low frequency sinusoidal current to the occipital lobe with offset frequency to the flash stimulus repetition rate. We analyzed the modulation of visual-evoked potentials with respect to the applied phase of the electric stimulation. Our results reveal that only the deeper layers, but not the superficial layers, show phase-dependent changes in LFP components with respect to the applied current. Employing a cortical column model, we demonstrate that these in vivo observations can be explained by phase-dependent changes in the driving force within neurons of deeper layers. Our findings offer crucial insight into the selective modulation of cortical layers through electric stimulation, thus advancing approaches for more targeted neuromodulation.
Collapse
|
4
|
Nguyen H, Li CQ, Hoffman S, Deng ZD, Yang Y, Lu H. Ultra-high frequency repetitive TMS at subthreshold intensity induces suprathreshold motor response via temporal summation. J Neural Eng 2024; 21:046044. [PMID: 39079555 PMCID: PMC11307324 DOI: 10.1088/1741-2552/ad692f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Objective.The transcranial magnetic stimulation (TMS) coil induces an electric field that diminishes rapidly upon entering the brain. This presents a challenge in achieving focal stimulation of a deep brain structure. Neuronal elements, including axons, dendrites, and cell bodies, exhibit specific time constants. When exposed to repetitive TMS pulses at a high frequency, there is a cumulative effect on neuronal membrane potentials, resulting in temporal summation. This study aims to determine whether TMS pulse train at high-frequency and subthreshold intensity could induce a suprathreshold response.Approach.As a proof of concept, we developed a TMS machine in-house that could consistently output pulses up to 250 Hz, and performed experiments on 22 awake rats to test whether temporal summation was detectable under pulse trains at 100, 166, or 250 Hz.Main results.Results revealed that TMS pulses at 55% maximum stimulator output (MSO, peak dI/dt= 68.5 A/μs at 100% MSO, pulse width = 48μs) did not induce motor responses with either single pulses or pulse trains. Similarly, a single TMS pulse at 65% MSO failed to evoke a motor response in rats; however, a train of TMS pulses at frequencies of 166 and 250 Hz, but not at 100 Hz, successfully triggered motor responses and MEP signals, suggesting a temporal summation effect dependent on both pulse intensities and pulse train frequencies.Significance.We propose that the temporal summation effect can be leveraged to design the next-generation focal TMS system: by sequentially driving multiple coils at high-frequency and subthreshold intensity, areas with the most significant overlapping E-fields undergo maximal temporal summation effects, resulting in a suprathreshold response.
Collapse
Affiliation(s)
- Hieu Nguyen
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Charlotte Qiong Li
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Samantha Hoffman
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States of America
| | - Yihong Yang
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Hanbing Lu
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| |
Collapse
|
5
|
Goswami N, Shen M, Gomez LJ, Dannhauer M, Sommer MA, Peterchev AV. A semi-automated pipeline for finite element modeling of electric field induced in nonhuman primates by transcranial magnetic stimulation. J Neurosci Methods 2024; 408:110176. [PMID: 38795980 PMCID: PMC11227653 DOI: 10.1016/j.jneumeth.2024.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is used to treat a range of brain disorders by inducing an electric field (E-field) in the brain. However, the precise neural effects of TMS are not well understood. Nonhuman primates (NHPs) are used to model the impact of TMS on neural activity, but a systematic method of quantifying the induced E-field in the cortex of NHPs has not been developed. NEW METHOD The pipeline uses statistical parametric mapping (SPM) to automatically segment a structural MRI image of a rhesus macaque into five tissue compartments. Manual corrections are necessary around implants. The segmented tissues are tessellated into 3D meshes used in finite element method (FEM) software to compute the TMS induced E-field in the brain. The gray matter can be further segmented into cortical laminae using a volume preserving method for defining layers. RESULTS Models of three NHPs were generated with TMS coils placed over the precentral gyrus. Two coil configurations, active and sham, were simulated and compared. The results demonstrated a large difference in E-fields at the target. Additionally, the simulations were calculated using two different E-field solvers and were found to not significantly differ. COMPARISON WITH EXISTING METHODS Current methods segment NHP tissues manually or use automated methods for only the brain tissue. Existing methods also do not stratify the gray matter into layers. CONCLUSION The pipeline calculates the induced E-field in NHP models by TMS and can be used to plan implant surgeries and determine approximate E-field values around neuron recording sites.
Collapse
Affiliation(s)
- Neerav Goswami
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Michael Shen
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Luis J Gomez
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Moritz Dannhauer
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Tamaki A, Uenishi S, Yamada S, Yasuda K, Ikeda N, Tabata M, Kita A, Mizutani-Tiebel Y, Keeser D, Padberg F, Tsuji T, Kimoto S, Takahashi S. Female sex and age-based advantage of simulated electric field in TMS to the prefrontal cortex in schizophrenia and mood disorders. Psychiatry Res Neuroimaging 2024; 342:111844. [PMID: 38901089 DOI: 10.1016/j.pscychresns.2024.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
This study investigates computational models of electric field strength for transcranial magnetic stimulation (TMS) of the left dorsolateral prefrontal cortex (DLPFC) based on individual MRI data of patients with schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder (BP), and healthy controls (HC). In addition, it explores the association of electric field intensities with age, gender and intracranial volume. The subjects were 23 SZ (12 male, mean age = 45.30), 24 MDD (16 male, mean age = 43.57), 23 BP (16 male, mean age = 39.29), 23 HC (13 male, mean age = 40.91). Based on individual MRI sequences, electric fields were computationally modeled by two independent investigators using SimNIBS ver. 2.1.1. There was no significant difference in electric field strength between the groups (HC vs SZ, HC vs MDD, HC vs BP, SZ vs MDD, SZ vs BP, MDD vs BP). Female subjects showed higher electric field intensities in widespread areas than males, and age was positively significantly associated with electric field strength in the left parahippocampal area as observed. Our results suggest differences in electric field strength of left DLPFC TMS for gender and age. It may open future avenues for individually modeling TMS based on structural MRI data.
Collapse
Affiliation(s)
- Atsushi Tamaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 6410012, Wakayama, Japan; Department of Psychiatry, Wakayama Prefectural Mental Health Care Center, Wakayama, 643-0811, Japan.
| | - Shinya Uenishi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 6410012, Wakayama, Japan; Department of Psychiatry, Hidaka Hospital, Gobo 6440002, Wakayama, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 6410012, Wakayama, Japan
| | - Kasumi Yasuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 6410012, Wakayama, Japan
| | - Natsuko Ikeda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 6410012, Wakayama, Japan
| | - Michiyo Tabata
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 6410012, Wakayama, Japan
| | - Akira Kita
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 6410012, Wakayama, Japan
| | - Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, LMU University Hospital Munich, 80336, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital Munich, 80336, Munich, Germany; Department of Radiology, LMU University Hospital Munich, 81377, Munich, Germany; Munich Center for Neurosciences (MCN) Brain & Mind, Planegg-Martinsried 82152, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU University Hospital Munich, 80336, Munich, Germany
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 6410012, Wakayama, Japan
| | - Sohei Kimoto
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 6410012, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 6410012, Wakayama, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 5650871, Osaka, Japan; Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino 5838555, Osaka, Japan; Clinical Research and Education Center, Asakayama General Hospital, Sakai 5900018, Osaka, Japan
| |
Collapse
|
7
|
Sanchez-Romero R, Akyuz S, Krekelberg B. EFMouse: a Matlab toolbox to model electric fields in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605227. [PMID: 39091807 PMCID: PMC11291114 DOI: 10.1101/2024.07.25.605227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Compared to the rapidly growing literature on transcranial electrical stimulation (tES) in humans, research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is growing but still relatively rare. Such research, however, is key to overcoming experimental limitations in humans and essential to build a detailed understanding of the in-vivo consequences of tES that can ultimately lead to development of targeted and effective therapeutic applications of noninvasive brain stimulation. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies. Here we extend previous approaches to model intracranial electric fields to generate predictions that can be tested with in-vivo intracranial recordings. Although the toolbox has general applicability and could be used to predict intracranial fields for any tES study using mice, we illustrate its usage by comparing fields in a high-density multi-electrode montage with a more traditional two electrode montage. Our simulations show that both montages can produce strong focal homogeneous electric fields in targeted areas. However, the high-density montage produces a field that is more perpendicular to the visual cortical surface, which is expected to result in larger changes in neuronal excitability.
Collapse
Affiliation(s)
- Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Sibel Akyuz
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| |
Collapse
|
8
|
Liu R, Zhu G, Wu Z, Gan Y, Zhang J, Liu J, Wang L. Temporal interference stimulation targets deep primate brain. Neuroimage 2024; 291:120581. [PMID: 38508293 DOI: 10.1016/j.neuroimage.2024.120581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024] Open
Abstract
Temporal interference (TI) stimulation, a novel non-invasive stimulation strategy, has recently been shown to modulate neural activity in deep brain regions of living mice. Yet, it is uncertain if this method is applicable to larger brains and whether the electric field produced under traditional safety currents can penetrate deep regions as observed in mice. Despite recent model-based simulation studies offering positive evidence at both macro- and micro-scale levels, the absence of electrophysiological data from actual brains hinders comprehensive understanding and potential application of TI. This study aims to directly measure the spatiotemporal properties of the interfered electric field in the rhesus monkey brain and to validate the effects of TI on the human brain. Two monkeys were involved in the measurement, with implantation of several stereo-electroencephalography (SEEG) depth electrodes. TI stimulation was applied to anesthetized monkeys using two pairs of surface electrodes at differing stimulation parameters. Model-based simulations were also conducted and subsequently compared with actual recordings. Additionally, TI stimulation was administered to patients with motor disorders to validate its effects on motor symptoms. Through the integration of computational electric field simulation with empirical measurements, it was determined that the temporally interfering electric fields in the deep central regions are capable of attaining a magnitude sufficient to induce a subthreshold modulation effect on neural signals. Additionally, an improvement in movement disorders was observed as a result of TI stimulation. This study is the first to systematically measure the TI electric field in living non-human primates, offering empirical evidence that TI holds promise as a more focal and precise method for modulating neural activities in deep regions of a large brain. This advancement paves the way for future applications of TI in treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ruobing Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhengping Wu
- School of Innovations, Sanjiang University, Nanjing, PR China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Jiali Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
9
|
Yatsuda K, Yu W, Gomez-Tames J. Population-level insights into temporal interference for focused deep brain neuromodulation. Front Hum Neurosci 2024; 18:1308549. [PMID: 38708141 PMCID: PMC11066208 DOI: 10.3389/fnhum.2024.1308549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The ability to stimulate deep brain regions in a focal manner brings new opportunities for treating brain disorders. Temporal interference (TI) stimulation has been suggested as a method to achieve focused stimulation in deep brain targets. Individual-level knowledge of the interferential currents has permitted personalizing TI montage via subject-specific digital human head models, facilitating the estimation of interferential electric currents in the brain. While this individual approach offers a high degree of personalization, the significant intra-and inter-individual variability among specific head models poses challenges when comparing electric-field doses. Furthermore, MRI acquisition to develop a personalized head model, followed by precise methods for placing the optimized electrode positions, is complex and not always available in various clinical settings. Instead, the registration of individual electric fields into brain templates has offered insights into population-level effects and enabled montage optimization using common scalp landmarks. However, population-level knowledge of the interferential currents remains scarce. This work aimed to investigate the effectiveness of targeting deep brain areas using TI in different populations. The results showed a trade-off between deep stimulation and unwanted cortical neuromodulation, which is target-dependent at the group level. A consistent modulated electric field appeared in the deep brain target when the same montage was applied in different populations. However, the performance in terms of focality and variability varied when the same montage was used among populations. Also, group-level TI exhibited greater focality than tACS, reducing unwanted neuromodulation volume in the cortical part by at least 1.5 times, albeit with higher variability. These results provide valuable population-level insights when considering TI montage selection.
Collapse
Affiliation(s)
- Kanata Yatsuda
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Wenwei Yu
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Jose Gomez-Tames
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
10
|
Wischnewski M, Berger TA, Opitz A, Alekseichuk I. Causal functional maps of brain rhythms in working memory. Proc Natl Acad Sci U S A 2024; 121:e2318528121. [PMID: 38536752 PMCID: PMC10998564 DOI: 10.1073/pnas.2318528121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Experimental Psychology, University of Groningen, Groningen9712TS, The Netherlands
| | - Taylor A. Berger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
11
|
Yang D, Kang MK, Huang G, Eggebrecht AT, Hong KS. Repetitive Transcranial Alternating Current Stimulation to Improve Working Memory: An EEG-fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1257-1266. [PMID: 38498739 DOI: 10.1109/tnsre.2024.3377138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Transcranial electrical stimulation has demonstrated the potential to enhance cognitive functions such as working memory, learning capacity, and attentional allocation. Recently, it was shown that periodic stimulation within a specific duration could augment the human brain's neuroplasticity. This study investigates the effects of repetitive transcranial alternating current stimulation (tACS; 1 mA, 5 Hz, 2 min duration) on cognitive function, functional connectivity, and topographic changes using both electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Fifteen healthy subjects were recruited to measure brain activity in the pre-, during-, and post-stimulation sessions under tACS and sham stimulation conditions. Fourteen trials of working memory tasks and eight repetitions of tACS/sham stimulation with a 1-minute intersession interval were applied to the frontal cortex of the participants. The working memory score, EEG band-wise powers, EEG topography, concentration changes of oxygenated hemoglobin, and functional connectivity (FC) were individually analyzed to quantify the behavioral and neurophysiological effects of tACS. Our results indicate that tACS increases: i) behavioral scores (i.e., 15.08, ) and EEG band-wise powers (i.e., theta and beta bands) compared to the sham stimulation condition, ii) FC of both EEG-fNIRS signals, especially in the large-scale brain network communication and interhemispheric connections, and iii) the hemodynamic response in comparison to the pre-stimulation session and the sham condition. Conclusively, the repetitive theta-band tACS stimulation improves the working memory capacity regarding behavioral and neuroplasticity perspectives. Additionally, the proposed fNIRS biomarkers (mean, slope), EEG band-wise powers, and FC can be used as neuro-feedback indices for closed-loop brain stimulation.
Collapse
|
12
|
Berger T, Xu T, Opitz A. Systematic cross-species comparison of prefrontal cortex functional networks targeted via Transcranial Magnetic Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572653. [PMID: 38187657 PMCID: PMC10769354 DOI: 10.1101/2023.12.20.572653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation method that safely modulates neural activity in vivo. Its precision in targeting specific brain networks makes TMS invaluable in diverse clinical applications. For example, TMS is used to treat depression by targeting prefrontal brain networks and their connection to other brain regions. However, despite its widespread use, the underlying neural mechanisms of TMS are not completely understood. Non-human primates (NHPs) offer an ideal model to study TMS mechanisms through invasive electrophysiological recordings. As such, bridging the gap between NHP experiments and human applications is imperative to ensure translational relevance. Here, we systematically compare the TMS-targeted functional networks in the prefrontal cortex in humans and NHPs. To conduct this comparison, we combine TMS electric field modeling in humans and macaques with resting-state functional magnetic resonance imaging (fMRI) data to compare the functional networks targeted via TMS across species. We identified distinct stimulation zones in macaque and human models, each exhibiting variations in the impacted networks (macaque: Frontoparietal Network, Somatomotor Network; human: Frontoparietal Network, Default Network). We identified differences in brain gyrification and functional organization across species as the underlying cause of found network differences. The TMS-network profiles we identified will allow researchers to establish consistency in network activation across species, aiding in the translational efforts to develop improved TMS functional network targeting approaches.
Collapse
|
13
|
Perera ND, Alekseichuk I, Shirinpour S, Wischnewski M, Linn G, Masiello K, Butler B, Russ BE, Schroeder CE, Falchier A, Opitz A. Dissociation of Centrally and Peripherally Induced Transcranial Magnetic Stimulation Effects in Nonhuman Primates. J Neurosci 2023; 43:8649-8662. [PMID: 37852789 PMCID: PMC10727178 DOI: 10.1523/jneurosci.1016-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent centrally induced neural mechanisms and peripherally induced sensory costimulation effects remain debated. Understanding how TMS stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging because of the limited spatiotemporal resolution of available noninvasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in a male and a female nonhuman primate (rhesus macaque) to study TMS mesoscale responses. We demonstrate that early TMS-evoked potentials show a sigmoidal dose-response curve with stimulation intensity. We further show that stimulation responses are spatially specific. We use several control conditions to dissociate centrally induced neural responses from auditory and somatosensory coactivation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.SIGNIFICANCE STATEMENT Transcranial magnetic stimulation (TMS) is a widely used noninvasive brain stimulation method to stimulate the human brain. To advance its utility for clinical applications, a clear understanding of its underlying physiological mechanisms is crucial. Here, we perform invasive electrophysiological recordings in the nonhuman primate brain during TMS, achieving a spatiotemporal precision not available in human EEG experiments. We find that evoked potentials are dose dependent and spatially specific, and can be separated from peripheral stimulation effects. This means that TMS-evoked responses can indicate a direct physiological stimulation response. Our work has important implications for the interpretation of human TMS-EEG recordings and biomarker development.
Collapse
Affiliation(s)
- Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gary Linn
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York 10016
| | - Kurt Masiello
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Brent Butler
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Brian E Russ
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Charles E Schroeder
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
- Department of Neurosurgery, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, New York 10032
| | - Arnaud Falchier
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York 10016
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
14
|
Serano P, Makaroff S, Ackerman JL, Nummenmaa A, Noetscher GM. Detailed high quality surface-based mouse CAD model suitable for electromagnetic simulations. Biomed Phys Eng Express 2023; 10:10.1088/2057-1976/ad0e14. [PMID: 37983756 PMCID: PMC10785004 DOI: 10.1088/2057-1976/ad0e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Transcranial magnetic stimulation (TMS) studies with small animals can provide useful knowledge of activating regions and mechanisms. Along with this, functional magnetic resonance imaging (fMRI) in mice and rats is increasingly often used to draw important conclusions about brain connectivity and functionality. For cases of both low- and high-frequency TMS studies, a high-quality computational surface-based rodent model may be useful as a tool for performing supporting modeling and optimization tasks. This work presents the development and usage of an accurate CAD model of a mouse that has been optimized for use in computational electromagnetic modeling in any frequency range. It is based on the labeled atlas data of the Digimouse archive. The model includes a relatively accurate four-compartment brain representation (the 'whole brain' according to the original terminology, external cerebrum, cerebellum, and striatum [9]) and contains 21 distinct compartments in total. Four examples of low- and high frequency modeling have been considered to demonstrate the utility and applicability of the model.
Collapse
Affiliation(s)
- Peter Serano
- ECE, Worcester Polytech. Inst., 100 Institute Rd. Worcester MA 01609-2280, United States of America
- Ansys, Inc., Boston Campus, 400 5th Ave Suite 500, Waltham MA 02451, United States of America
| | - Sergey Makaroff
- ECE, Worcester Polytech. Inst., 100 Institute Rd. Worcester MA 01609-2280, United States of America
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital 149 13th St. Charlestown MA 02129; Harvard Medical School, Boston MA 02115, United States of America
| | - Jerome L Ackerman
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital 149 13th St. Charlestown MA 02129; Harvard Medical School, Boston MA 02115, United States of America
| | - Aapo Nummenmaa
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital 149 13th St. Charlestown MA 02129; Harvard Medical School, Boston MA 02115, United States of America
| | - Gregory M Noetscher
- ECE, Worcester Polytech. Inst., 100 Institute Rd. Worcester MA 01609-2280, United States of America
| |
Collapse
|
15
|
Lee S, Shirinpour S, Alekseichuk I, Perera N, Linn G, Schroeder CE, Falchier AY, Opitz A. Predicting the phase distribution during multi-channel transcranial alternating current stimulation in silico and in vivo. Comput Biol Med 2023; 166:107516. [PMID: 37769460 PMCID: PMC10955626 DOI: 10.1016/j.compbiomed.2023.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. TACS experiments have been coupled with computational simulations to predict the electromagnetic fields within the brain. However, existing simulations are focused on the magnitude of the field. As the possibility of inducing the phase gradient in the brain using multiple tACS electrodes arises, a simulation framework is necessary to investigate and predict the phase gradient of electric fields during multi-channel tACS. OBJECTIVE Here, we develop such a framework for phasor simulation using phasor algebra and evaluate its accuracy using in vivo recordings in monkeys. METHODS We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. RESULTS Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues' conductivity. CONCLUSIONS Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Biomedical Engineering, University of Minnesota, MN, USA.
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Nipun Perera
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Gary Linn
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry NYU Grossman School of Medicine, New York City, NY, USA
| | - Charles E Schroeder
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, NY, USA
| | - Arnaud Y Falchier
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, MN, USA.
| |
Collapse
|
16
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
17
|
Mantell KE, Perera ND, Shirinpour S, Puonti O, Xu T, Zimmermann J, Falchier A, Heilbronner SR, Thielscher A, Opitz A. Anatomical details affect electric field predictions for non-invasive brain stimulation in non-human primates. Neuroimage 2023; 279:120343. [PMID: 37619797 PMCID: PMC10961993 DOI: 10.1016/j.neuroimage.2023.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Non-human primates (NHPs) have become key for translational research in noninvasive brain stimulation (NIBS). However, in order to create comparable stimulation conditions for humans it is vital to study the accuracy of current modeling practices across species. Numerical models to simulate electric fields are an important tool for experimental planning in NHPs and translation to human studies. It is thus essential whether and to what extent the anatomical details of NHP models agree with current modeling practices when calculating NIBS electric fields. Here, we create highly accurate head models of two non-human primates (NHP) MR data. We evaluate how muscle tissue and head field of view (depending on MRI parameters) affect simulation results in transcranial electric and magnetic stimulation (TES and TMS). Our findings indicate that the inclusion of anisotropic muscle can affect TES electric field strength up to 22% while TMS is largely unaffected. Additionally, comparing a full head model to a cropped head model illustrates the impact of head field of view on electric fields for both TES and TMS. We find opposing effects between TES and TMS with an increase up to 24.8% for TES and a decrease up to 24.6% for TMS for the cropped head model compared to the full head model. Our results provide important insights into the level of anatomical detail needed for NHP head models and can inform future translational efforts for NIBS studies.
Collapse
Affiliation(s)
- Kathleen E Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, USA
| | - Arnaud Falchier
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, 9 The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
18
|
de Lima-Pardini AC, Mikhail Y, Dominguez-Vargas AU, Dancause N, Scott SH. Transcranial magnetic stimulation in non-human primates: A systematic review. Neurosci Biobehav Rev 2023; 152:105273. [PMID: 37315659 DOI: 10.1016/j.neubiorev.2023.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Transcranial magnetic stimulation (TMS) is widely employed as a tool to investigate and treat brain diseases. However, little is known about the direct effects of TMS on the brain. Non-human primates (NHPs) are a valuable translational model to investigate how TMS affects brain circuits given their neurophysiological similarity with humans and their capacity to perform complex tasks that approach human behavior. This systematic review aimed to identify studies using TMS in NHPs as well as to assess their methodological quality through a modified reference checklist. The results show high heterogeneity and superficiality in the studies regarding the report of the TMS parameters, which have not improved over the years. This checklist can be used for future TMS studies with NHPs to ensure transparency and critical appraisal. The use of the checklist would improve methodological soundness and interpretation of the studies, facilitating the translation of the findings to humans. The review also discusses how advancements in the field can elucidate the effects of TMS in the brain.
Collapse
Affiliation(s)
- Andrea C de Lima-Pardini
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada.
| | - Youstina Mikhail
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada; Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
| |
Collapse
|
19
|
Degan S, Feng Y, Hoffmann U, Turner DA. Placement of Extracranial Stimulating Electrodes and Measurement of Cerebral Blood Flow and Intracranial Electrical Fields in Anesthetized Mice. J Vis Exp 2023:10.3791/65195. [PMID: 37335103 PMCID: PMC10476879 DOI: 10.3791/65195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The detection of cerebral blood flow (CBF) responses to various forms of neuronal activation is critical for understanding dynamic brain function and variations in the substrate supply to the brain. This paper describes a protocol for measuring CBF responses to transcranial alternating current stimulation (tACS). Dose-response curves are estimated both from the CBF change occurring with tACS (mA) and from the intracranial electric field (mV/mm). We estimate the intracranial electrical field based on the different amplitudes measured by glass microelectrodes within each side of the brain. In this paper, we describe the experimental setup, which involves using either bilateral laser Doppler (LD) probes or laser speckle imaging (LSI) to measure the CBF; as a result, this setup requires anesthesia for the electrode placement and stability. We present a correlation between the CBF response and the current as a function of age, showing a significantly larger response at higher currents (1.5 mA and 2.0 mA) in young control animals (12-14 weeks) compared to older animals (28-32 weeks) (p < 0.005 difference). We also demonstrate a significant CBF response at electrical field strengths <5 mV/mm, which is an important consideration for eventual human studies. These CBF responses are also strongly influenced by the use of anesthesia compared to awake animals, the respiration control (i.e., intubated vs. spontaneous breathing), systemic factors (i.e., CO2), and local conduction within the blood vessels, which is mediated by pericytes and endothelial cells. Likewise, more detailed imaging/recording techniques may limit the field size from the entire brain to only a small region. We describe the use of extracranial electrodes for applying tACS stimulation, including both homemade and commercial electrode designs for rodents, the concurrent measurement of the CBF and intracranial electrical field using bilateral glass DC recording electrodes, and the imaging approaches. We are currently applying these techniques to implement a closed-loop format for augmenting the CBF in animal models of Alzheimer's disease and stroke.
Collapse
Affiliation(s)
- Simone Degan
- Department of Neurosurgery, Duke University Medical Center
| | - Yu Feng
- Department of Neurosurgery, Duke University Medical Center
| | - Ulrike Hoffmann
- Department of Anesthesiology and Pain Management, University Texas Southwestern Medical School
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical Center; Department of Neurobiology, Duke University Medical Center; Department of Biomedical Engineering, Duke University; Research and Surgery Services, Durham VA Medical Center;
| |
Collapse
|
20
|
Zeljkovic Jovanovic M, Stanojevic J, Stevanovic I, Stekic A, Bolland SJ, Jasnic N, Ninkovic M, Zaric Kontic M, Ilic TV, Rodger J, Nedeljkovic N, Dragic M. Intermittent Theta Burst Stimulation Improves Motor and Behavioral Dysfunction through Modulation of NMDA Receptor Subunit Composition in Experimental Model of Parkinson's Disease. Cells 2023; 12:1525. [PMID: 37296646 PMCID: PMC10252812 DOI: 10.3390/cells12111525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the progressive degeneration of the dopaminergic system, leading to a variety of motor and nonmotor symptoms. The currently available symptomatic therapy loses efficacy over time, indicating the need for new therapeutic approaches. Repetitive transcranial magnetic stimulation (rTMS) has emerged as one of the potential candidates for PD therapy. Intermittent theta burst stimulation (iTBS), an excitatory protocol of rTMS, has been shown to be beneficial in several animal models of neurodegeneration, including PD. The aim of this study was to investigate the effects of prolonged iTBS on motor performance and behavior and the possible association with changes in the NMDAR subunit composition in the 6-hydroxydopamine (6-OHDA)-induced experimental model of PD. Two-month-old male Wistar rats were divided into four groups: controls, 6-OHDA rats, 6-OHDA + iTBS protocol (two times/day/three weeks) and the sham group. The therapeutic effect of iTBS was evaluated by examining motor coordination, balance, spontaneous forelimb use, exploratory behavior, anxiety-like, depressive/anhedonic-like behavior and short-term memory, histopathological changes and changes at the molecular level. We demonstrated the positive effects of iTBS at both motor and behavioral levels. In addition, the beneficial effects were reflected in reduced degeneration of dopaminergic neurons and a subsequent increase in the level of DA in the caudoputamen. Finally, iTBS altered protein expression and NMDAR subunit composition, suggesting a sustained effect. Applied early in the disease course, the iTBS protocol may be a promising candidate for early-stage PD therapy, affecting motor and nonmotor deficits.
Collapse
Affiliation(s)
- Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Stanojevic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
| | - Ivana Stevanovic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Andjela Stekic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Samuel J. Bolland
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Nebojsa Jasnic
- Department for Comparative Physiology and Ecophysiology, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Ninkovic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
21
|
Lee S, Shirinpour S, Alekseichuk I, Perera N, Linn G, Schroeder CE, Falchier AY, Opitz A. Experimental validation of computational models for the prediction of phase distribution during multi-channel transcranial alternating current stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536090. [PMID: 37066288 PMCID: PMC10104155 DOI: 10.1101/2023.04.07.536090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. Neural oscillations exhibit phase-dependent associations with cognitive functions, and tools to manipulate local oscillatory phases can affect communication across remote brain regions. A recent study demonstrated that multi-channel tACS can generate electric fields with a phase gradient or traveling waves in the brain. Computational simulations using phasor algebra can predict the phase distribution inside the brain and aid in informing parameters in tACS experiments. However, experimental validation of computational models for multi-phase tACS is still lacking. Here, we develop such a framework for phasor simulation and evaluate its accuracy using in vivo recordings in nonhuman primates. We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues’ conductivity. Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.
Collapse
|
22
|
He Y, Liu S, Chen L, Ke Y, Ming D. Neurophysiological mechanisms of transcranial alternating current stimulation. Front Neurosci 2023; 17:1091925. [PMID: 37090788 PMCID: PMC10117687 DOI: 10.3389/fnins.2023.1091925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Neuronal oscillations are the primary basis for precise temporal coordination of neuronal processing and are linked to different brain functions. Transcranial alternating current stimulation (tACS) has demonstrated promising potential in improving cognition by entraining neural oscillations. Despite positive findings in recent decades, the results obtained are sometimes rife with variance and replicability problems, and the findings translation to humans is quite challenging. A thorough understanding of the mechanisms underlying tACS is necessitated for accurate interpretation of experimental results. Animal models are useful for understanding tACS mechanisms, optimizing parameter administration, and improving rational design for broad horizons of tACS. Here, we review recent electrophysiological advances in tACS from animal models, as well as discuss some critical issues for results coordination and translation. We hope to provide an overview of neurophysiological mechanisms and recommendations for future consideration to improve its validity, specificity, and reproducibility.
Collapse
Affiliation(s)
- Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Tianjin, China
| |
Collapse
|
23
|
Jiang W, Isenhart R, Liu CY, Song D. A C-shaped miniaturized coil for transcranial magnetic stimulation in rodents. J Neural Eng 2023; 20:026022. [PMID: 36863013 PMCID: PMC10037933 DOI: 10.1088/1741-2552/acc097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/04/2023]
Abstract
Objective.Transcranial magnetic stimulation (TMS) is a non-invasive technique widely used for neuromodulation. Animal models are essential for investigating the underlying mechanisms of TMS. However, the lack of miniaturized coils hinders the TMS studies in small animals, since most commercial coils are designed for humans and thus incapable of focal stimulation in small animals. Furthermore, it is difficult to perform electrophysiological recordings at the TMS focal point using conventional coils.Approach.We designed, fabricated, and tested a novel miniaturized TMS coil (4-by-7 mm) that consisted of a C-shaped iron powder core and insulated copper wires (30 turns). The resulting magnetic and electric fields were characterized with experimental measurements and finite element modeling. The efficacy of this coil in neuromodulation was validated with electrophysiological recordings of single-unit activities (SUAs), somatosensory evoked potentials (SSEPs), and motor evoked potentials (MEPs) in rats (n= 32) following repetitive TMS (rTMS; 3 min, 10 Hz).Main results.This coil could generate a maximum magnetic field of 460 mT and an electric field of 7.2 V m-1in the rat brain according to our simulations. With subthreshold rTMS focally delivered over the sensorimotor cortex, mean firing rates of primary somatosensory and motor cortical neurons significantly increased (154±5% and 160±9% from the baseline level, respectively); MEP and SSEP amplitude significantly increased (136±9%) and decreased (74±4%), respectively.Significance.This miniaturized C-shaped coil enabled focal TMS and concurrent electrophysiological recording/stimulation at the TMS focal point. It provided a useful tool to investigate the neural responses and underlying mechanisms of TMS in small animal models. Using this paradigm, we for the first time observed distinct modulatory effects on SUAs, SSEPs, and MEPs with the same rTMS protocol in anesthetized rats. These results suggested that multiple neurobiological mechanisms in the sensorimotor pathways were differentially modulated by rTMS.
Collapse
Affiliation(s)
- Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Robert Isenhart
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States of America
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
24
|
Hamajima H, Gomez-Tames J, Uehara S, Otaka Y, Tanaka S, Hirata A. Computation of group-level electric field in lower limb motor area for different tDCS montages. Clin Neurophysiol 2023; 150:69-78. [PMID: 37023635 DOI: 10.1016/j.clinph.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) injects a weak electric current into the brain via electrodes attached to the scalp to modulate cortical excitability. tDCS is used to rebalance brain activity between affected and unaffected hemispheres in rehabilitation. However, a systematic quantitative evaluation of tDCS montage is not reported for the lower limbs. In this study, we computationally investigated the generated electric field intensity, polarity, and co-stimulation of cortical areas for lower limb targeting using high-resolution head models. METHODS Volume conductor models have thus been employed to estimate the electric field in the brain. A total of 18 head models of healthy subjects were used to calculate the group-level electric fields generated from four montages of tDCS for modulation of lower limbs. RESULTS C1-C2 montage delivered higher electric field intensities while reaching deeper regions of the lower-limb motor area. It produced a uniform polarization on the same hemisphere target with comparable intensities between hemispheres but with higher variability. CONCLUSIONS Proper montage selection allows reaching deeper regions of the lower-limb motor area with uniform polarization. SIGNIFICANCE First systematic computational study providing support to tDCS experimental studies using montages for the lower limb while considering polarity factor for balancing brain activity.
Collapse
|
25
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. A Systematic Review and Large-Scale tES and TMS Electric Field Modeling Study Reveals How Outcome Measure Selection Alters Results in a Person- and Montage-Specific Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529540. [PMID: 36865243 PMCID: PMC9980068 DOI: 10.1101/2023.02.22.529540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Background Electric field (E-field) modeling is a potent tool to examine the cortical effects of transcranial magnetic and electrical stimulation (TMS and tES, respectively) and to address the high variability in efficacy observed in the literature. However, outcome measures used to report E-field magnitude vary considerably and have not yet been compared in detail. Objectives The goal of this two-part study, encompassing a systematic review and modeling experiment, was to provide an overview of the different outcome measures used to report the magnitude of tES and TMS E-fields, and to conduct a direct comparison of these measures across different stimulation montages. Methods Three electronic databases were searched for tES and/or TMS studies reporting E-field magnitude. We extracted and discussed outcome measures in studies meeting the inclusion criteria. Additionally, outcome measures were compared via models of four common tES and two TMS modalities in 100 healthy younger adults. Results In the systematic review, we included 118 studies using 151 outcome measures related to E-field magnitude. Structural and spherical regions of interest (ROI) analyses and percentile-based whole-brain analyses were used most often. In the modeling analyses, we found that there was an average of only 6% overlap between ROI and percentile-based whole-brain analyses in the investigated volumes within the same person. The overlap between ROI and whole-brain percentiles was montage- and person-specific, with more focal montages such as 4Ã-1 and APPS-tES, and figure-of-eight TMS showing up to 73%, 60%, and 52% overlap between ROI and percentile approaches respectively. However, even in these cases, 27% or more of the analyzed volume still differed between outcome measures in every analyses. Conclusions The choice of outcome measures meaningfully alters the interpretation of tES and TMS E-field models. Well-considered outcome measure selection is imperative for accurate interpretation of results, valid between-study comparisons, and depends on stimulation focality and study goals. We formulated four recommendations to increase the quality and rigor of E-field modeling outcome measures. With these data and recommendations, we hope to guide future studies towards informed outcome measure selection, and improve the comparability of studies.
Collapse
|
26
|
Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci 2023; 27:189-205. [PMID: 36543610 PMCID: PMC9852081 DOI: 10.1016/j.tics.2022.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Transcranial alternating current stimulation (tACS) can modulate human neural activity and behavior. Accordingly, tACS has vast potential for cognitive research and brain disorder therapies. The stimulation generates oscillating electric fields in the brain that can bias neural spike timing, causing changes in local neural oscillatory power and cross-frequency and cross-area coherence. tACS affects cognitive performance by modulating underlying single or nested brain rhythms, local or distal synchronization, and metabolic activity. Clinically, stimulation tailored to abnormal neural oscillations shows promising results in alleviating psychiatric and neurological symptoms. We summarize the findings of tACS mechanisms, its use for cognitive applications, and novel developments for personalized stimulation.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
27
|
Zrenner C, Kozák G, Schaworonkow N, Metsomaa J, Baur D, Vetter D, Blumberger DM, Ziemann U, Belardinelli P. Corticospinal excitability is highest at the early rising phase of sensorimotor µ-rhythm. Neuroimage 2023; 266:119805. [PMID: 36513289 DOI: 10.1016/j.neuroimage.2022.119805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha oscillations are thought to reflect alternating cortical states of excitation and inhibition. Studies of perceptual thresholds and evoked potentials have shown the scalp EEG negative phase of the oscillation to correspond to a short-lasting low-threshold and high-excitability state of underlying visual, somatosensory, and primary motor cortex. The negative peak of the oscillation is assumed to correspond to the state of highest excitability based on biophysical considerations and considerable effort has been made to improve the extraction of a predictive signal by individually optimizing EEG montages. Here, we investigate whether it is the negative peak of sensorimotor µ-rhythm that corresponds to the highest corticospinal excitability, and whether this is consistent between individuals. In 52 adult participants, a standard 5-channel surface Laplacian EEG montage was used to extract sensorimotor µ-rhythm during transcranial magnetic stimulation (TMS) of primary motor cortex. Post-hoc trials were sorted from 800 TMS-evoked motor potentials (MEPs) according to the pre-stimulus EEG (estimated instantaneous phase) and MEP amplitude (as an index of corticospinal excitability). Different preprocessing transformations designed to improve the accuracy by which µ-alpha phase predicts excitability were also tested. By fitting a sinusoid to the MEP amplitudes, sorted according to pre-stimulus EEG-phase, we found that excitability was highest during the early rising phase, at a significant delay with respect to the negative peak by on average 45° or 10 ms. The individual phase of highest excitability was consistent across study participants and unaffected by two different EEG-cleaning methods that utilize 64 channels to improve signal quality by compensating for individual noise level and channel covariance. Personalized transformations of the montage did not yield better prediction of excitability from µ-alpha phase. The relationship between instantaneous phase of a brain oscillation and fluctuating cortical excitability appears to be more complex than previously hypothesized. In TMS of motor cortex, a standard surface Laplacian 5-channel EEG montage is effective in extracting a predictive signal and the phase corresponding to the highest excitability appears to be consistent between individuals. This is an encouraging result with respect to the clinical potential of therapeutic personalized brain interventions in the motor system. However, it remains to be investigated, whether similar results can be obtained for other brain areas and brain oscillations targeted with EEG and TMS.
Collapse
Affiliation(s)
- Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Neurology & Stroke, University of Tübingen, Germany.
| | - Gábor Kozák
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Natalie Schaworonkow
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Johanna Metsomaa
- Department of Neurology & Stroke, University of Tübingen, Germany; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - David Baur
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - David Vetter
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
28
|
Wang B, Aberra AS, Grill WM, Peterchev AV. Responses of model cortical neurons to temporal interference stimulation and related transcranial alternating current stimulation modalities. J Neural Eng 2023; 19:10.1088/1741-2552/acab30. [PMID: 36594634 PMCID: PMC9942661 DOI: 10.1088/1741-2552/acab30] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective.Temporal interference stimulation (TIS) was proposed as a non-invasive, focal, and steerable deep brain stimulation method. However, the mechanisms underlying experimentally-observed suprathreshold TIS effects are unknown, and prior simulation studies had limitations in the representations of the TIS electric field (E-field) and cerebral neurons. We examined the E-field and neural response characteristics for TIS and related transcranial alternating current stimulation modalities.Approach.Using the uniform-field approximation, we simulated a range of stimulation parameters in biophysically realistic model cortical neurons, including different orientations, frequencies, amplitude ratios, amplitude modulation, and phase difference of the E-fields, and obtained thresholds for both activation and conduction block.Main results. For two E-fields with similar amplitudes (representative of E-field distributions at the target region), TIS generated an amplitude-modulated (AM) total E-field. Due to the phase difference of the individual E-fields, the total TIS E-field vector also exhibited rotation where the orientations of the two E-fields were not aligned (generally also at the target region). TIS activation thresholds (75-230 V m-1) were similar to those of high-frequency stimulation with or without modulation and/or rotation. For E-field dominated by the high-frequency carrier and with minimal amplitude modulation and/or rotation (typically outside the target region), TIS was less effective at activation and more effective at block. Unlike AM high-frequency stimulation, TIS generated conduction block with some orientations and amplitude ratios of individual E-fields at very high amplitudes of the total E-field (>1700 V m-1).Significance. The complex 3D properties of the TIS E-fields should be accounted for in computational and experimental studies. The mechanisms of suprathreshold cortical TIS appear to involve neural activity block and periodic activation or onset response, consistent with computational studies of peripheral axons. These phenomena occur at E-field strengths too high to be delivered tolerably through scalp electrodes and may inhibit endogenous activity in off-target regions, suggesting limited significance of suprathreshold TIS.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aman S. Aberra
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
| | - Warren M. Grill
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
29
|
Nieminen JO, Pospelov AS, Koponen LM, Yrjölä P, Shulga A, Khirug S, Rivera C. Transcranial magnetic stimulation set-up for small animals. Front Neurosci 2022; 16:935268. [PMID: 36440290 PMCID: PMC9685557 DOI: 10.3389/fnins.2022.935268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is widely applied on humans for research and clinical purposes. TMS studies on small animals, e.g., rodents, can provide valuable knowledge of the underlying neurophysiological mechanisms. Administering TMS on small animals is, however, prone to technical difficulties, mainly due to their small head size. In this study, we aimed to develop an energy-efficient coil and a compatible experimental set-up for administering TMS on rodents. We applied a convex optimization process to develop a minimum-energy coil for TMS on rats. As the coil windings of the optimized coil extend to a wide region, we designed and manufactured a holder on which the rat lies upside down, with its head supported by the coil. We used the set-up to record TMS-electromyography, with electromyography recorded from limb muscles with intramuscular electrodes. The upside-down placement of the rat allowed the operator to easily navigate the TMS without the coil blocking their field of view. With this paradigm, we obtained consistent motor evoked potentials from all tested animals.
Collapse
Affiliation(s)
- Jaakko O. Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Biomedical Imaging Unit, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Alexey S. Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
- Department of Clinical Neurophysiology, BABA Center, Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lari M. Koponen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Pauliina Yrjölä
- BioMag Laboratory, HUS Medical Imaging Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurophysiology, BABA Center, Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anastasia Shulga
- BioMag Laboratory, HUS Medical Imaging Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Stanislav Khirug
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France
| |
Collapse
|
30
|
Guidetti M, Arlotti M, Bocci T, Bianchi AM, Parazzini M, Ferrucci R, Priori A. Electric Fields Induced in the Brain by Transcranial Electric Stimulation: A Review of In Vivo Recordings. Biomedicines 2022; 10:biomedicines10102333. [PMID: 36289595 PMCID: PMC9598743 DOI: 10.3390/biomedicines10102333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023] Open
Abstract
Transcranial electrical stimulation (tES) techniques, such as direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), cause neurophysiological and behavioral modifications as responses to the electric field are induced in the brain. Estimations of such electric fields are based mainly on computational studies, and in vivo measurements have been used to expand the current knowledge. Here, we review the current tDCS- and tACS-induced electric fields estimations as they are recorded in humans and non-human primates using intracerebral electrodes. Direct currents and alternating currents were applied with heterogeneous protocols, and the recording procedures were characterized by a tentative methodology. However, for the clinical stimulation protocols, an injected current seems to reach the brain, even at deep structures. The stimulation parameters (e.g., intensity, frequency and phase), the electrodes’ positions and personal anatomy determine whether the intensities might be high enough to affect both neuronal and non-neuronal cell activity, also deep brain structures.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | | | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
- Correspondence:
| |
Collapse
|
31
|
Walter HL, Pikhovych A, Endepols H, Rotthues S, Bärmann J, Backes H, Hoehn M, Wiedermann D, Neumaier B, Fink GR, Rüger MA, Schroeter M. Transcranial-Direct-Current-Stimulation Accelerates Motor Recovery After Cortical Infarction in Mice: The Interplay of Structural Cellular Responses and Functional Recovery. Neurorehabil Neural Repair 2022; 36:701-714. [PMID: 36124996 DOI: 10.1177/15459683221124116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) promotes recovery after stroke in humans. The underlying mechanisms, however, remain to be elucidated. Animal models suggest tDCS effects on neuroinflammation, stem cell proliferation, neurogenesis, and neural plasticity. OBJECTIVE In a longitudinal study, we employed tDCS in the subacute and chronic phase after experimental focal cerebral ischemia in mice to explore the relationship between functional recovery and cellular processes. METHODS Mice received photothrombosis in the right motor cortex, verified by Magnetic Resonance Imaging. A composite neuroscore quantified subsequent functional deficits. Mice received tDCS daily: either 5 sessions from day 5 to 9, or 10 sessions with days 12 to 16 in addition. TDCS with anodal or cathodal polarity was compared to sham stimulation. Further imaging to assess proliferation and neuroinflammation was performed by immunohistochemistry at different time points and Positron Emission Tomography at the end of the observation time of 3 weeks. RESULTS Cathodal tDCS at 198 kC/m2 (220 A/m2) between days 5 and 9 accelerated functional recovery, increased neurogenesis, decreased microglial activation, and mitigated CD16/32-expression associated with M1-phenotype. Anodal tDCS exerted similar effects on neurogenesis and microglial polarization but not on recovery of function or microglial activation. TDCS on days 12 to 16 after stroke did not induce any further effects, suggesting that the therapeutic time window was closed by then. CONCLUSION Overall, data suggest that non-invasive neuromodulation by tDCS impacts neurogenesis and microglial activation as critical cellular processes influencing functional recovery during the early phase of regeneration from focal cerebral ischemia.
Collapse
Affiliation(s)
- Helene Luise Walter
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anton Pikhovych
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heike Endepols
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Steffen Rotthues
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Johannes Bärmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heiko Backes
- Multimodal Imaging Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Mathias Hoehn
- Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dirk Wiedermann
- Multimodal Imaging Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Maria Adele Rüger
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
32
|
Yoshikawa T, Higuchi H, Furukawa R, Tateno T. Temporal and spatial profiles of evoked activity induced by magnetic stimulation using millimeter-sized coils in the mouse auditory cortex in vivo. Brain Res 2022; 1796:148092. [PMID: 36115587 DOI: 10.1016/j.brainres.2022.148092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
Transcranial magnetic stimulation (TMS), a minimally/non-invasive method of electromagnetic stimulation of brain tissue, has been shown to be beneficial in clinical therapy for specific neurological diseases and disorders. Magnetic stimulation is also used to modulate human and animal brain activity in basic neuroscience studies. Among experimental animal models, mouse models are particularly popular and uniquely representative of brain disorders in basic neuroscience research. TMS in mouse models may play a substantial role in understanding TMS-induced changes in neural networks and plasticity. Although TMS techniques are widely used to examine rodent disease models, techniques specific for mice using small magnetic stimulators have not been intensively developed. Here, we provide a numerical simulation and a practical method of applying TMS to mice by constructing millimeter-sized TMS coils to deliver a low stimulation intensity while maintaining focality. Our results indicate the TMS coils can produce an electrical field with sufficient magnitude to activate the anesthetized mouse cortex in the presence and absence of the skull in vivo. Our results also show that, immediately after magnetic stimulation, local field and action potentials were reliably observed in a manner that depended on the distance between the coil and the brain, implying even a small coil could reliably evoke cortical activity. Therefore, our results show our millimeter-sized coils could produce electric fields sufficient to alter cortical excitability in mice. These coils could be useful in future preclinical studies to examine detailed mechanisms underlying TMS-induced changes in neural activity of the auditory cortex and other cortical regions.
Collapse
Affiliation(s)
- Takahiro Yoshikawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Hisaya Higuchi
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Ryo Furukawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Takashi Tateno
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan.
| |
Collapse
|
33
|
Khatoun A, Asamoah B, Boogers A, Mc Laughlin M. Epicranial Direct Current Stimulation Suppresses Harmaline Tremor in Rats. Neuromodulation 2022:S1094-7159(22)01223-5. [DOI: 10.1016/j.neurom.2022.08.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
|
34
|
Cai Y, Jin Z, Zhai C, Wang H, Wang J, Tang Y, Kwok SC. Time-sensitive prefrontal involvement in associating confidence with task performance illustrates metacognitive introspection in monkeys. Commun Biol 2022; 5:799. [PMID: 35945257 PMCID: PMC9363445 DOI: 10.1038/s42003-022-03762-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Metacognition refers to the ability to be aware of one's own cognition. Ample evidence indicates that metacognition in the human primate is highly dissociable from cognition, specialized across domains, and subserved by distinct neural substrates. However, these aspects remain relatively understudied in macaque monkeys. In the present study, we investigated the functionality of macaque metacognition by combining a confidence proxy, hierarchical Bayesian meta-d' computational modelling, and a single-pulse transcranial magnetic stimulation technique. We found that Brodmann area 46d (BA46d) played a critical role in supporting metacognition independent of task performance; we also found that the critical role of this region in meta-calculation was time-sensitive. Additionally, we report that macaque metacognition is highly domain-specific with respect to memory and perception decisions. These findings carry implications for our understanding of metacognitive introspection within the primate lineage.
Collapse
Affiliation(s)
- Yudian Cai
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.,Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Zhiyong Jin
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.,Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Chenxi Zhai
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Huimin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.,NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, 200062, China.,Shanghai Changning Mental Health Center, Shanghai, 200335, China
| | - Jijun Wang
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200030, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, 200031, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China. .,Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China. .,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China. .,Shanghai Changning Mental Health Center, Shanghai, 200335, China.
| |
Collapse
|
35
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
36
|
Vejdani Afkham B, Shankayi Z, Bahrami F, Firoozabadi SM, Heydarheydari S, Mohammadi MT. Investigation of how stimulation intensity of rTMS affects magneto permeabilization of the Blood–Brain Barrier (BBB). Electromagn Biol Med 2022; 41:335-342. [DOI: 10.1080/15368378.2022.2095644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Behrouz Vejdani Afkham
- Department of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zeinab Shankayi
- Department of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farideh Bahrami
- Department of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Sahel Heydarheydari
- Department of Medical Physics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Department of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Meng Q, Nguyen H, Vrana A, Baldwin S, Li CQ, Giles A, Wang J, Yang Y, Lu H. A high-density theta burst paradigm enhances the aftereffects of transcranial magnetic stimulation: Evidence from focal stimulation of rat motor cortex. Brain Stimul 2022; 15:833-842. [DOI: 10.1016/j.brs.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
|
38
|
Gomez A, Escobar-Huertas J, Linero D, Cardenas F, Garzón-Alvarado D. Simulation of the Electrical Stimulation of the Rat Brain Using Sleep Frequencies: A Finite Element Modeling Approach. J Theor Biol 2022; 542:111093. [DOI: 10.1016/j.jtbi.2022.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
39
|
Ma R, Xia X, Zhang W, Lu Z, Wu Q, Cui J, Song H, Fan C, Chen X, Zha R, Wei J, Ji GJ, Wang X, Qiu B, Zhang X. High Gamma and Beta Temporal Interference Stimulation in the Human Motor Cortex Improves Motor Functions. Front Neurosci 2022; 15:800436. [PMID: 35046771 PMCID: PMC8761631 DOI: 10.3389/fnins.2021.800436] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Temporal interference (TI) stimulation is a new technique of non-invasive brain stimulation. Envelope-modulated waveforms with two high-frequency carriers can activate neurons in target brain regions without stimulating the overlying cortex, which has been validated in mouse brains. However, whether TI stimulation can work on the human brain has not been elucidated. Objective: To assess the effectiveness of the envelope-modulated waveform of TI stimulation on the human primary motor cortex (M1). Methods: Participants attended three sessions of 30-min TI stimulation during a random reaction time task (RRTT) or a serial reaction time task (SRTT). Motor cortex excitability was measured before and after TI stimulation. Results: In the RRTT experiment, only 70 Hz TI stimulation had a promoting effect on the reaction time (RT) performance and excitability of the motor cortex compared to sham stimulation. Meanwhile, compared with the sham condition, only 20 Hz TI stimulation significantly facilitated motor learning in the SRTT experiment, which was significantly positively correlated with the increase in motor evoked potential. Conclusion: These results indicate that the envelope-modulated waveform of TI stimulation has a significant promoting effect on human motor functions, experimentally suggesting the effectiveness of TI stimulation in humans for the first time and paving the way for further explorations.
Collapse
Affiliation(s)
- Ru Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Xinzhao Xia
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Zhuo Lu
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Qianying Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China.,Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Jiangtian Cui
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Hongwen Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Chuan Fan
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xueli Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Rujing Zha
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Junjie Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoxiao Wang
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaochu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China.,Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China.,Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Hefei, China.,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
40
|
Khatoun A, Asamoah B, Mc Laughlin M. A Computational Modeling Study to Investigate the Use of Epicranial Electrodes to Deliver Interferential Stimulation to Subcortical Regions. Front Neurosci 2022; 15:779271. [PMID: 34975383 PMCID: PMC8716464 DOI: 10.3389/fnins.2021.779271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Epicranial cortical stimulation (ECS) is a minimally invasive neuromodulation technique that works by passing electric current between subcutaneous electrodes positioned on the skull. ECS causes a stronger and more focused electric field in the cortex compared to transcranial electric stimulation (TES) where the electrodes are placed on the scalp. However, it is unknown if ECS can target deeper regions where the electric fields become relatively weak and broad. Recently, interferential stimulation (IF) using scalp electrodes has been proposed as a novel technique to target subcortical regions. During IF, two high, but slightly different, frequencies are applied which sum to generate a low frequency field (i.e., 10 Hz) at a target subcortical region. We hypothesized that IF using ECS electrodes would cause stronger and more focused subcortical stimulation than that using TES electrodes. Objective: Use computational modeling to determine if interferential stimulation-epicranial cortical stimulation (IF-ECS) can target subcortical regions. Then, compare the focality and field strength of IF-ECS to that of interferential Stimulation-transcranial electric stimulation (IF-TES) in the same subcortical region. Methods: A human head computational model was developed with 19 TES and 19 ECS disk electrodes positioned on a 10–20 system. After tetrahedral mesh generation the model was imported to COMSOL where the electric field distribution was calculated for each electrode separately. Then in MATLAB, subcortical targets were defined and the optimal configurations were calculated for both the TES and ECS electrodes. Results: Interferential stimulation using ECS electrodes can deliver stronger and more focused electric fields to subcortical regions than IF using TES electrodes. Conclusion: Interferential stimulation combined with ECS is a promising approach for delivering subcortical stimulation without the need for a craniotomy.
Collapse
Affiliation(s)
- Ahmad Khatoun
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium.,The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boateng Asamoah
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium.,The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium.,The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Direct Current Stimulation in Cell Culture Systems and Brain Slices-New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells 2021; 10:cells10123583. [PMID: 34944091 PMCID: PMC8700319 DOI: 10.3390/cells10123583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Non-invasive direct current stimulation (DCS) of the human brain induces neuronal plasticity and alters plasticity-related cognition and behavior. Numerous basic animal research studies focusing on molecular and cellular targets of DCS have been published. In vivo, ex vivo, and in vitro models enhanced knowledge about mechanistic foundations of DCS effects. Our review identified 451 papers using a PRISMA-based search strategy. Only a minority of these papers used cell culture or brain slice experiments with DCS paradigms comparable to those applied in humans. Most of the studies were performed in brain slices (9 papers), whereas cell culture experiments (2 papers) were only rarely conducted. These ex vivo and in vitro approaches underline the importance of cell and electric field orientation, cell morphology, cell location within populations, stimulation duration (acute, prolonged, chronic), and molecular changes, such as Ca2+-dependent intracellular signaling pathways, for the effects of DC stimulation. The reviewed studies help to clarify and confirm basic mechanisms of this intervention. However, the potential of in vitro studies has not been fully exploited and a more systematic combination of rodent models, ex vivo, and cellular approaches might provide a better insight into the neurophysiological changes caused by tDCS.
Collapse
|
42
|
Sharma M, Farahani F, Bikson M, Parra LC. Weak DCS causes a relatively strong cumulative boost of synaptic plasticity with spaced learning. Brain Stimul 2021; 15:57-62. [PMID: 34749007 PMCID: PMC8816825 DOI: 10.1016/j.brs.2021.10.552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Electric fields generated during direct current stimulation (DCS) are known to modulate activity-dependent synaptic plasticity in-vitro. This provides a mechanistic explanation for the lasting behavioral effects observed with transcranial direct current stimulation (tDCS) in human learning experiments. However, previous in-vitro synaptic plasticity experiments show relatively small effects despite using strong fields compared to what is expected with conventional tDCS in humans (20 V/m vs. 1 V/m). There is therefore a need to improve the effectiveness of tDCS at realistic field intensities. Here we leverage the observation that effects of learning are known to accumulate over multiple bouts of learning, known as spaced learning. Hypothesis: We propose that effects of DCS on synaptic long-term potentiation (LTP) accumulate over time in a spaced learning paradigm, thus revealing effects at more realistic field intensities. Methods: We leverage a standard model for spaced learning by inducing LTP with repeated bouts of theta burst stimulation (TBS) in hippocampal slice preparations. We studied the cumulative effects of DCS paired with TBS at various intensities applied during the induction of LTP in the CA1 region of rat hippocampal slices. Results: As predicted, DCS applied during repeated bouts of theta burst stimulation (TBS) resulted in an increase of LTP. This spaced learning effect is saturated quickly with strong TBS protocols and stronger fields. In contrast, weaker TBS and the weakest electric fields of 2.5 V/m resulted in the strongest relative efficacies (12% boost in LTP per 1 V/m applied). Conclusions: Weak DCS causes a relatively strong cumulative effect of spaced learning on synaptic plasticity. Staturarion may have masked stronger effects sizes in previous in-vitro studies. Relative effect sizes of DCS are now closer in line with human tDCS experiments.
Collapse
Affiliation(s)
- Mahima Sharma
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| |
Collapse
|
43
|
Shirinpour S, Hananeia N, Rosado J, Tran H, Galanis C, Vlachos A, Jedlicka P, Queisser G, Opitz A. Multi-scale modeling toolbox for single neuron and subcellular activity under Transcranial Magnetic Stimulation. Brain Stimul 2021; 14:1470-1482. [PMID: 34562659 PMCID: PMC8608742 DOI: 10.1016/j.brs.2021.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Transcranial Magnetic Stimulation (TMS) is a widely used non-invasive brain stimulation method. However, its mechanism of action and the neural response to TMS are still poorly understood. Multi-scale modeling can complement experimental research to study the subcellular neural effects of TMS. At the macroscopic level, sophisticated numerical models exist to estimate the induced electric fields. However, multi-scale computational modeling approaches to predict TMS cellular and subcellular responses, crucial to understanding TMS plasticity inducing protocols, are not available so far. OBJECTIVE We develop an open-source multi-scale toolbox Neuron Modeling for TMS (NeMo-TMS) to address this problem. METHODS NeMo-TMS generates accurate neuron models from morphological reconstructions, couples them to the external electric fields induced by TMS, and simulates the cellular and subcellular responses of single-pulse and repetitive TMS. RESULTS We provide examples showing some of the capabilities of the toolbox. CONCLUSION NeMo-TMS toolbox allows researchers a previously not available level of detail and precision in realistically modeling the physical and physiological effects of TMS.
Collapse
Affiliation(s)
- Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA.
| | - Nicholas Hananeia
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | - James Rosado
- Department of Mathematics, Temple University, Philadelphia, USA
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany; Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | | | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
44
|
Tang AD, Bennett W, Bindoff AD, Bolland S, Collins J, Langley RC, Garry MI, Summers JJ, Hinder MR, Rodger J, Canty AJ. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Brain Stimul 2021; 14:1498-1507. [PMID: 34653682 DOI: 10.1016/j.brs.2021.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool commonly used to drive neural plasticity in the young adult and aged brain. Recent data from mouse models have shown that even at subthreshold intensities (0.12 T), rTMS can drive neuronal and glial plasticity in the motor cortex. However, the physiological mechanisms underlying subthreshold rTMS induced plasticity and whether these are altered with normal ageing are unclear. OBJECTIVE To assess the effect of subthreshold rTMS, using the intermittent theta burst stimulation (iTBS) protocol on structural synaptic plasticity in the mouse motor cortex of young and aged mice. METHODS Longitudinal in vivo 2-photon microscopy was used to measure changes to the structural plasticity of pyramidal neuron dendritic spines in the motor cortex following a single train of subthreshold rTMS (in young adult and aged animals) or the same rTMS train administered on 4 consecutive days (in young adult animals only). Data were analysed with Bayesian hierarchical generalized linear regression models and interpreted with the aid of Bayes Factors (BF). RESULTS We found strong evidence (BF > 10) that subthreshold rTMS altered the rate of dendritic spine losses and gains, dependent on the number of stimulation sessions and that a single session of subthreshold rTMS was effective in driving structural synaptic plasticity in both young adult and aged mice. CONCLUSION These findings provide further evidence that rTMS drives synaptic plasticity in the brain and uncovers structural synaptic plasticity as a key mechanism of subthreshold rTMS induced plasticity.
Collapse
Affiliation(s)
- Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia.
| | - William Bennett
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Samuel Bolland
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Jessica Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Ross C Langley
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Michael I Garry
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jeffery J Summers
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, L3 3AF, Liverpool, United Kingdom
| | - Mark R Hinder
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Alison J Canty
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| |
Collapse
|
45
|
von Conta J, Kasten FH, Ćurčić-Blake B, Aleman A, Thielscher A, Herrmann CS. Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS). Sci Rep 2021; 11:20357. [PMID: 34645895 PMCID: PMC8514596 DOI: 10.1038/s41598-021-99749-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Transcranial temporal interference stimulation (tTIS) is a novel non-invasive brain stimulation technique for electrical stimulation of neurons at depth. Deep brain regions are generally small in size, making precise targeting a necessity. The variability of electric fields across individual subjects resulting from the same tTIS montages is unknown so far and may be of major concern for precise tTIS targeting. Therefore, the aim of the current study is to investigate the variability of the electric fields due to tTIS across 25 subjects. To this end, the electric fields of different electrode montages consisting of two electrode pairs with different center frequencies were simulated in order to target selected regions-of-interest (ROIs) with tTIS. Moreover, we set out to compare the electric fields of tTIS with the electric fields of conventional tACS. The latter were also based on two electrode pairs, which, however, were driven in phase at a common frequency. Our results showed that the electric field strengths inside the ROIs (left hippocampus, left motor area and thalamus) during tTIS are variable on single subject level. In addition, tTIS stimulates more focally as compared to tACS with much weaker co-stimulation of cortical areas close to the stimulation electrodes. Electric fields inside the ROI were, however, comparable for both methods. Overall, our results emphasize the potential benefits of tTIS for the stimulation of deep targets, over conventional tACS. However, they also indicate a need for individualized stimulation montages to leverage the method to its fullest potential.
Collapse
Affiliation(s)
- Jill von Conta
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4All", Carl Von Ossietzky University, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4All", Carl Von Ossietzky University, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl Von Ossietzky University, Oldenburg, Germany
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Center for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4All", Carl Von Ossietzky University, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany. .,Neuroimaging Unit, European Medical School, Carl Von Ossietzky University, Oldenburg, Germany. .,Research Center Neurosensory Science, Carl Von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
46
|
Weiler M, Moreno-Castilla P, Starnes HM, Melendez ELR, Stieger KC, Long JM, Rapp PR. Effects of repetitive Transcranial Magnetic Stimulation in aged rats depend on pre-treatment cognitive status: Toward individualized intervention for successful cognitive aging. Brain Stimul 2021; 14:1219-1225. [PMID: 34400378 DOI: 10.1016/j.brs.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) has shown initial promise in combating age-related cognitive decline and dementia. The nature and severity of cognitive aging, however, varies markedly between individuals. OBJECTIVE/HYPOTHESIS We hypothesized that the distinct constellation of brain changes responsible for individual differences in cognitive aging might influence the response to rTMS. METHODS Cognitive effects of rTMS were evaluated using a rat model of cognitive aging in which aged rats are classified as Aged-Impaired (AI) or -Unimpaired (AU) relative to young (Y) according to their performance in the Morris water maze. Several weeks later, following presentation of a sample odor in an olfactory recognition task, rats received either sham (Y, n = 9; AU, n = 8; AI, n = 9) or intermittent Theta Burst Stimulation (Y, n = 8; AU, n = 8; AI, n = 9). Memory was tested 24 h later. RESULTS Recognition memory in the sham and stimulated conditions depended on pre-treatment cognitive status in the aged rats. Y and AU sham rats displayed robust odor recognition, whereas sham-treated AI rats exhibited no retention. In contrast, rTMS treated AI rats showed robust retention, comparable in magnitude to Y, whereas the AU stimulated scored at chance. CONCLUSION Our results are consistent with a perspective that the unique neurobiology associated with variability in cognitive aging modulates the response to rTMS. Protocols with documented efficacy in young adults may have unexpected outcomes in aging or neurodegenerative conditions, requiring individualized approaches.
Collapse
Affiliation(s)
- Marina Weiler
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Perla Moreno-Castilla
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Hannah M Starnes
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Edward L R Melendez
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Kevin C Stieger
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Jeffrey M Long
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA
| | - Peter R Rapp
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, USA.
| |
Collapse
|
47
|
Madore M, Poh E, Bolland SJ, Rivera J, Taylor J, Cheng J, Booth E, Nable M, Heath A, Yesavage J, Rodger J, McNerney MW. Moving back in the brain to drive the field forward: Targeting neurostimulation to different brain regions in animal models of depression and neurodegeneration. J Neurosci Methods 2021; 360:109261. [PMID: 34146593 PMCID: PMC8349553 DOI: 10.1016/j.jneumeth.2021.109261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/22/2021] [Accepted: 06/13/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation is a promising noninvasive therapeutic tool for a variety of brain-related disorders. However, most therapeutic protocols target the anterior regions, leaving many other areas unexplored. There is a substantial therapeutic potential for stimulating various brain regions, which can be optimized in animal models. NEW METHOD We illustrate a method that can be utilized reliably to stimulate the anterior or posterior brain in freely moving rodents. A coil support device is surgically attached onto the skull, which is used for consistent coil placement over the course of up to several weeks of stimulation sessions. RESULTS Our methods provide reliable stimulation in animals without the need for restraint or sedation. We see little aversive effects of support placement and stimulation. Computational models provide evidence that moving the coil support location can be utilized to target major stimulation sites in humans and mice. SUMMARY OF FINDINGS WITH THIS METHOD Animal models are key to optimizing brain stimulation parameters, but research relies on restraint or sedation for consistency in coil placement. The method described here provides a unique means for reliable targeted stimulation in freely moving animals. Research utilizing this method has uncovered changes in biochemical and animal behavioral measurements as a function of brain stimulation. CONCLUSIONS The majority of research on magnetic stimulation focuses on anterior regions. Given the substantial network connectivity throughout the brain, it is critical to develop a reliable method for stimulating different regions. The method described here can be utilized to better inform clinical trials about optimal treatment localization, stimulation intensity and number of treatment sessions, and provides a motivation for exploring posterior brain regions for both mice and humans.
Collapse
Affiliation(s)
- Michelle Madore
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eugenia Poh
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth WA, Australia
| | - Samuel J Bolland
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth WA, Australia
| | | | - Joy Taylor
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jauhtai Cheng
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Booth
- Department of Electrical and Computer Engineering, Boise State University, Boise ID
| | - Monica Nable
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alesha Heath
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jerry Yesavage
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth WA, Australia
| | - M. Windy McNerney
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
48
|
Wu L, Liu T, Wang J. Improving the Effect of Transcranial Alternating Current Stimulation (tACS): A Systematic Review. Front Hum Neurosci 2021; 15:652393. [PMID: 34163340 PMCID: PMC8215166 DOI: 10.3389/fnhum.2021.652393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
With the development of electrical stimulation technology, traditional transcranial alternating current stimulation (tACS) technology has been found to have the drawback of not targeting a specific area accurately. Studies have shown that optimizing the number and position of electrodes during electrical stimulation has a very good effect on enhancing brain stimulation accuracy. At present, an increasing number of laboratories have begun to optimize tACS. However, there has been no study summarizing the optimization methods of tACS. Determining whether different optimization methods are effective and the optimization approach could provide information that could guide future tACS research. We describe the results of recent research on tACS optimization and integrate the optimization approaches of tACS in recent research. Optimization approaches can be classified into two groups: high-definition electrical stimulation and interference modulation electrical stimulation. The optimization methods can be divided into five categories: high-definition tACS, phase-shifted tACS, amplitude-modulated tACS, the temporally interfering (TI) method, and the intersectional short pulse (ISP) method. Finally, we summarize the latest research on hardware useful for tACS improvement and outline future directions.
Collapse
Affiliation(s)
- Linyan Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China
| |
Collapse
|
49
|
Heydarheydari S, Firoozabadi SM, Mirnajafi-Zadeh J, Shankayi Z. Pulsed high magnetic field-induced reversible blood-brain barrier permeability to enhance brain-targeted drug delivery. Electromagn Biol Med 2021; 40:361-374. [PMID: 34043463 DOI: 10.1080/15368378.2021.1925905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present study aimed to select an effective Pulsed High Magnetic Field (PHMF) stimulation protocol that would induce the Blood-Brain Barrier's (BBB) reversible permeability to enhance brain-targeted drug delivery. PHMF was applied to the skull over the right hemisphere of 60 Wistar rats. The sham group contained other 10 rats that did not receive PHMF stimulation. The investigated parameters were repetition frequencies (0.25, 1, and 4 Hz as well as the effective low frequency combined with 10 Hz) and numbers of pulses in each train. Evans Blue Dye (EBD) uptake within the brain parenchyma was measured to select an effective PHMF stimulation protocol. BBB reversibility was evaluated by measuring EBD uptake and Gadobutrol retention, through MRI signal intensity enhancement, within brain parenchyma after exposure to the effective PHMF stimulation protocol at different time points including 0.5, 1, and 24 hours. The obtained results showed that the PHMF stimulation increased the BBB's reversible permeability; this increase was more significant for 28 pulses with 1 Hz frequency (P < .0001). Changes in EBD uptake and MRI signal intensity in the exposed side (right hemisphere) peaked within 0.5-1 hour and returned to normal levels 24 hours after exposure to the effective protocol of PHMF stimulation (28 pulses with 1 Hz frequency). The Contrast-Enhanced MRI (CE-MRI) signal intensity confirmed the changes in EBD concentration. PHMF stimulation can be used as an effective protocol for enhancing the permeability reversibly of BBB, hence considered a potential clinical approach to brain-targeted drug delivery.
Collapse
Affiliation(s)
- Sahel Heydarheydari
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Firoozabadi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,R&D Center, Pars Bioelectromagnetics Co, Modares Science and Technology Park, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shankayi
- R&D Center, Pars Bioelectromagnetics Co, Modares Science and Technology Park, Tehran, Iran
| |
Collapse
|
50
|
Sheltraw DJ, Inglis B, Labruna L, Ivry R. Comparing the electric fields of transcranial electric and magnetic perturbation. J Neural Eng 2021; 18:10.1088/1741-2552/abebee. [PMID: 33662947 PMCID: PMC8650555 DOI: 10.1088/1741-2552/abebee] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/04/2021] [Indexed: 11/12/2022]
Abstract
Significance.Noninvasive brain stimulation (NIBS) by quasistatic electromagnetic means is presently comprised of two methods: magnetic induction methods (transcranial magnetic perturbation or TMP) and electrical contact methods (transcranial electric perturbation or TEP). Both methods couple to neuronal systems by means of the electric fields they produce. Both methods are necessarily accompanied by a scalp electric field which is of greater magnitude than anywhere within the brain. A scalp electric field of sufficient magnitude may produce deleterious effects including peripheral nerve stimulation and heating which consequently limit the spatial and temporal characteristics of the brain electric field. Presently the electromagnetic NIBS literature has produced an accurate but non-generalized understanding of the differences between the TEP and TMP methods.Objective.The aim of this work is to contribute a generalized understanding of the differences between the two methods which may open doors to novel TEP or TMP methods and translating advances, when possible, between the two methods.Approach.This article employs a three shell spherical conductor head model to calculate general analytical results showing the relationship between the spatial scale of the brain electric fields and: (1) the scalp-to-brain mean-squared electric field ratio for the two methods and (2) TEP-to-TMP scalp mean-squared electric field ratio for similar electric fields at depth.Main results.The most general result given is an asymptotic limit to the TEP-to-TMP ratio of scalp mean-squared electric fields for similar electric fields at depth. Specific example calculations for these ratios are also given for typical TEP electrode and TMP coil configurations. While TMP has favorable mean-squared electric field ratios compared to TEP this advantage comes at an energetic cost which is briefly elucidated in this work.
Collapse
Affiliation(s)
- D J Sheltraw
- Henry H. Wheeler, Jr Brain Imaging Center, University of California, Berkeley, CA, United States of America
| | - B Inglis
- Henry H. Wheeler, Jr Brain Imaging Center, University of California, Berkeley, CA, United States of America
| | - L Labruna
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States of America
| | - R Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States of America
| |
Collapse
|