1
|
Dingwell DA, Cunningham CH. Particle-based MR modeling with diffusion, microstructure, and enzymatic reactions. Magn Reson Med 2025; 93:369-383. [PMID: 39250417 DOI: 10.1002/mrm.30279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE To develop a novel particle-based in silico MR model and demonstrate applications of this model to signal mechanisms which are affected by the spatial organization of particles, including metabolic reaction kinetics, microstructural effects on diffusion, and radiofrequency (RF) refocusing effects in gradient-echo sequences. METHODS The model was developed by integrating a forward solution of the Bloch equations with a Brownian dynamics simulator. Simulation configurations were then designed to model MR signal dynamics of interest, with a primary focus on hyperpolarized 13C MRI methods. Phantom scans and spectrophotometric assays were conducted to validate model results in vitro. RESULTS The model accurately reproduced the reaction kinetics of enzyme-mediated conversion of pyruvate to lactate. When varying proportions of restrictive structure were added to the reaction volume, nonlinear changes in the reaction rate measured in vitro were replicated in silico. Modeling of RF refocusing effects characterized the degree of diffusion-weighted contribution from preserved residual magnetization in nonspoiled gradient-echo sequences. CONCLUSIONS These results show accurate reproduction of a range of MR signal mechanisms, establishing the model's capability to investigate the multifactorial signal dynamics such as those underlying hyperpolarized 13C MRI data.
Collapse
Affiliation(s)
- Dylan Archer Dingwell
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Khan AS, McLean MA, Kaggie JD, Horvat-Menih I, Matys T, Schulte RF, Locke MJ, Grimmer A, Wodtke P, Latimer E, Frary A, Graves MJ, Gallagher FA. Measuring cerebral enzymatic activity, brain pH and extracranial muscle metabolism with hyperpolarized 13C-pyruvate. NMR IN BIOMEDICINE 2024:e5271. [PMID: 39367692 DOI: 10.1002/nbm.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Hyperpolarized carbon-13 (13C) magnetic resonance imaging (MRI) has shown promise for non-invasive assessment of the cerebral metabolism of [1-13C]pyruvate in both healthy volunteers and patients. The exchange of pyruvate to lactate catalysed by lactate dehydrogenase (LDH) and that of pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH) are the most widely studied reactions in vivo. Here we show the potential of the technique to probe additional enzymatic activity within the brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high-flip-angle pulses were used to detect cerebral 13C-labelled carbon dioxide (13CO2), in addition to the 13C-bicarbonate (H13CO3 -) subsequently formed by carbonic anhydrase (CA). Brain pH measurements, which were weighted towards the extracellular compartment, were calculated from the ratio of H13CO3 - to 13CO2 in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± SD of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-13C]aspartate was also detected, demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC) and subsequent transamination by aspartate aminotransferase (AST), with the average flux being on average 11% ± 3% of that through PDH. A hyperpolarized [1-13C]alanine signal was also detected, but this was localized to extracranial muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized 13C-MRI to assess cerebral and extracerebral [1-13C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.
Collapse
Affiliation(s)
- Alixander S Khan
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Ines Horvat-Menih
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | - Matthew J Locke
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Ashley Grimmer
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Pascal Wodtke
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Elizabeth Latimer
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Amy Frary
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Kara F, Kantarci K. Understanding Proton Magnetic Resonance Spectroscopy Neurochemical Changes Using Alzheimer's Disease Biofluid, PET, Postmortem Pathology Biomarkers, and APOE Genotype. Int J Mol Sci 2024; 25:10064. [PMID: 39337551 PMCID: PMC11432594 DOI: 10.3390/ijms251810064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
In vivo proton (1H) magnetic resonance spectroscopy (MRS) is a powerful non-invasive method that can measure Alzheimer's disease (AD)-related neuropathological alterations at the molecular level. AD biomarkers include amyloid-beta (Aβ) plaques and hyperphosphorylated tau neurofibrillary tangles. These biomarkers can be detected via postmortem analysis but also in living individuals through positron emission tomography (PET) or biofluid biomarkers of Aβ and tau. This review offers an overview of biochemical abnormalities detected by 1H MRS within the biologically defined AD spectrum. It includes a summary of earlier studies that explored the association of 1H MRS metabolites with biofluid, PET, and postmortem AD biomarkers and examined how apolipoprotein e4 allele carrier status influences brain biochemistry. Studying these associations is crucial for understanding how AD pathology affects brain homeostasis throughout the AD continuum and may eventually facilitate the development of potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Firat Kara
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Joergensen SH, Hansen ESS, Bøgh N, Bertelsen LB, Tougaard RS, Staehr PB, Laustsen C, Wiggers H. Hyperpolarized [1- 13C]pyruvate Magnetic Resonance Imaging Identifies Metabolic Phenotypes in Patients with Heart Failure. J Cardiovasc Magn Reson 2024:101095. [PMID: 39270801 DOI: 10.1016/j.jocmr.2024.101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Hyperpolarized [1-13C]pyruvate magnetic resonance imaging (HP MRI) visualizes key steps in myocardial metabolism. The present study aimed to examine patients with heart (HF) using HP MRI. METHODS A cross-sectional study of patients with HF and healthy controls using HP MRI. Metabolic imaging was obtained using a cardiac-gated spectral-spatial excitation with spiral read-out acquisition. The metabolite signal was analyzed for lactate, bicarbonate, and the alanine signal. Metabolite signal was normalized to the total carbon signal (TC). At the one-year follow-up, echocardiography was performed in all patients and HP MRI in two patients. RESULTS We included six patients with ischemic heart disease (IHD), six with dilated cardiomyopathy and six healthy controls. In patients, left ventricular ejection fraction (LVEF) correlated with lactate/bicarbonate (r = -0.6, p = 0.03) and lactate/TC (r = -0.7, p = 0.01). In patients with LVEF < 30%, lactate/TC was increased (p = 0.01) and bicarbonate/TC reduced (p = 0.03). Circumferential strain correlated with metabolite ratios: lactate/bicarbonate, r = 0.87 (p = 0.0002); lactate/TC, r = 0.85 (p = 0.0005); bicarbonate/TC, r = -0.82 (p = 0.001). In patients with IHD, a strong correlation was found between baseline metabolite ratios and the change in LVEF at follow-up: lactate/bicarbonate (p = 0.001); lactate/TC (p = 0.011); and bicarbonate/TC (p = 0.012). CONCLUSIONS This study highlighted the ability of HP MRI to detect changes in metabolism in HF. HP MRI has potential for metabolic phenotyping of patients with HF and for predicting treatment response. TRIAL REGISTRATION EUDRACT, 2018-003533-15. Registered 4 December 2018, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-003533-15.
Collapse
Affiliation(s)
- Steen Hylgaard Joergensen
- Department of Clinical Medicine, the MR Research Centre, Aarhus University, Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Cardiology, Aalborg University Hospital, Denmark
| | - Esben Soevsoe S Hansen
- Department of Clinical Medicine, the MR Research Centre, Aarhus University, Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Nikolaj Bøgh
- Department of Clinical Medicine, the MR Research Centre, Aarhus University, Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Lotte Bonde Bertelsen
- Department of Clinical Medicine, the MR Research Centre, Aarhus University, Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Rasmus Stilling Tougaard
- Department of Clinical Medicine, Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | | | - Christoffer Laustsen
- Department of Clinical Medicine, the MR Research Centre, Aarhus University, Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Henrik Wiggers
- Department of Clinical Medicine, Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
5
|
Clairis N, Barakat A, Brochard J, Xin L, Sandi C. A neurometabolic mechanism involving dmPFC/dACC lactate in physical effort-based decision-making. Mol Psychiatry 2024:10.1038/s41380-024-02726-y. [PMID: 39215184 DOI: 10.1038/s41380-024-02726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Motivation levels vary across individuals, yet the underlying mechanisms driving these differences remain elusive. The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) and the anterior insula (aIns) play crucial roles in effort-based decision-making. Here, we investigate the influence of lactate, a key metabolite involved in energy metabolism and signaling, on decisions involving both physical and mental effort, as well as its effects on neural activation. Using proton magnetic resonance spectroscopy and functional MRI in 63 participants, we find that higher lactate levels in the dmPFC/dACC are associated with reduced motivation for physical effort, a relationship mediated by neural activity within this region. Additionally, plasma and dmPFC/dACC lactate levels correlate, suggesting a systemic influence on brain metabolism. Supported by path analysis, our results highlight lactate's role as a modulator of dmPFC/dACC activity, hinting at a neurometabolic mechanism that integrates both peripheral and central metabolic states with brain function in effort-based decision-making.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Arthur Barakat
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jules Brochard
- Transdisciplinary Research Areas, Life and Health, University of Bonn, Bonn, Germany
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
6
|
Svedung Wettervik T, Hånell A, Ahlgren KM, Hillered L, Lewén A. Preliminary Observations of the Loke Microdialysis in an Experimental Pig Model: Are We Ready for Continuous Monitoring of Brain Energy Metabolism? Neurocrit Care 2024:10.1007/s12028-024-02080-5. [PMID: 39085507 DOI: 10.1007/s12028-024-02080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Brain energy metabolism is often disturbed after acute brain injuries. Current neuromonitoring methods with cerebral microdialysis (CMD) are based on intermittent measurements (1-4 times/h), but such a low frequency could miss transient but important events. The solution may be the recently developed Loke microdialysis (MD), which provides high-frequency data of glucose and lactate. Before clinical implementation, the reliability and stability of Loke remain to be determined in vivo. The purpose of this study was to validate Loke MD in relation to the standard intermittent CMD method. METHODS Four pigs aged 2-3 months were included. They received two adjacent CMD catheters, one for standard intermittent assessments and one for continuous (Loke MD) assessments of glucose and lactate. The standard CMD was measured every 15 min. Continuous Loke MD was sampled every 2-3 s and was averaged over corresponding 15-min intervals for the statistical comparisons with standard CMD. Intravenous glucose injections and intracranial hypertension by inflation of an intracranial epidural balloon were performed to induce variations in intracranial pressure, cerebral perfusion pressure, and systemic and cerebral glucose and lactate levels. RESULTS In a linear mixed-effect model of standard CMD glucose (mM), there was a fixed effect value (± standard error [SE]) at 0.94 ± 0.07 (p < 0.001) for Loke MD glucose (mM), with an intercept at - 0.19 ± 0.15 (p = 0.20). The model showed a conditional R2 at 0.81 and a marginal R2 at 0.72. In a linear mixed-effect model of standard CMD lactate (mM), there was a fixed effect value (± SE) at 0.41 ± 0.16 (p = 0.01) for Loke MD lactate (mM), with an intercept at 0.33 ± 0.21 (p = 0.25). The model showed a conditional R2 at 0.47 and marginal R2 at 0.17. CONCLUSIONS The established standard CMD glucose thresholds may be used as for Loke MD with some caution, but this should be avoided for lactate.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden.
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Kerstin M Ahlgren
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Lars Hillered
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| |
Collapse
|
7
|
Larson PEZ, Bernard JML, Bankson JA, Bøgh N, Bok RA, Chen AP, Cunningham CH, Gordon J, Hövener JB, Laustsen C, Mayer D, McLean MA, Schilling F, Slater J, Vanderheyden JL, von Morze C, Vigneron DB, Xu D. Current methods for hyperpolarized [1- 13C]pyruvate MRI human studies. Magn Reson Med 2024; 91:2204-2228. [PMID: 38441968 PMCID: PMC10997462 DOI: 10.1002/mrm.29875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 03/07/2024]
Abstract
MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.
Collapse
Affiliation(s)
- Peder EZ Larson
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | - Jenna ML Bernard
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center,
Houston, TX, USA
| | - Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine,
Aarhus University, Aarhus, Denmark
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | | | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto,
Ontario, Canada
- Department of Medical Biophysics, University of Toronto,
Toronto, Ontario, Canada
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North
Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University
Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14,
24118, Kiel, Germany
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine,
Aarhus University, Aarhus, Denmark
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore, MD, USA
- Greenebaum Cancer Center, University of Maryland School
of Medicine, Baltimore, MD, USA
| | - Mary A McLean
- Department of Radiology, University of Cambridge,
Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of
Cambridge, Li Ka Shing Center, Cambridge, United Kingdom
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine,
Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich,
Germany
| | - James Slater
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | | | | | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | | |
Collapse
|
8
|
Zhang Y, Tong L, Ma L, Ye H, Zeng S, Zhang S, Ding Y, Wang W, Bao T. Progress in The Research of Lactate Metabolism Disruption And Astrocyte-Neuron Lactate Shuttle Impairment in Schizophrenia: A Comprehensive Review. Adv Biol (Weinh) 2024; 8:e2300409. [PMID: 38596839 DOI: 10.1002/adbi.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder widely recognized for its impaired bioenergy utilization. The astrocyte-neuron lactate shuttle (ANLS) plays a critical role in brain energy supply. Recent studies have revealed abnormal lactate metabolism in SCZ, which is associated with mitochondrial dysfunction, tissue hypoxia, gastric acid retention, oxidative stress, neuroinflammation, abnormal brain iron metabolism, cerebral white matter hypermetabolic activity, and genetic susceptibility. Furthermore, astrocytes, neurons, and glutamate abnormalities are prevalent in SCZ with abnormal lactate metabolism, which are essential components for maintaining ANLS in the brain. Therefore, an in-depth study of the pathophysiological mechanisms of ANLS in SCZ with abnormal lactate metabolism will contribute to a better understanding of the pathogenesis of SCZ and provide new ideas and approaches for the diagnosis and treatment of SCZ.
Collapse
Affiliation(s)
- Yingying Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Liang Tong
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Li Ma
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Hong Ye
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shue Zeng
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shaochuan Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Yu Ding
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Weiwei Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Tianhao Bao
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| |
Collapse
|
9
|
Uthayakumar B, Soliman H, Chen AP, Bragagnolo N, Cappelletto NI, Endre R, Perks WJ, Ma N, Heyn C, Keshari KR, Cunningham CH. Evidence of 13 C-lactate oxidation in the human brain from hyperpolarized 13 C-MRI. Magn Reson Med 2024; 91:2162-2171. [PMID: 38230992 PMCID: PMC11225103 DOI: 10.1002/mrm.29919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE To test the hypothesis that lactate oxidation contributes to the 13 $$ {}^{13} $$ C-bicarbonate signal observed in the awake human brain using hyperpolarized 13 $$ {}^{13} $$ C MRI. METHODS Healthy human volunteers (N = 6) were scanned twice using hyperpolarized 13 $$ {}^{13} $$ C-MRI, with increased radiofrequency saturation of 13 $$ {}^{13} $$ C-lactate on one set of scans. 13 $$ {}^{13} $$ C-lactate, 13 $$ {}^{13} $$ C-bicarbonate, and 13 $$ {}^{13} $$ C-pyruvate signals for 132 brain regions across each set of scans were compared using a clustered Wilcoxon signed-rank test. RESULTS Increased 13 $$ {}^{13} $$ C-lactate radiofrequency saturation resulted in a significantly lower 13 $$ {}^{13} $$ C-bicarbonate signal (p = 0.04). These changes were observed across the majority of brain regions. CONCLUSION Radiofrequency saturation of 13 $$ {}^{13} $$ C-lactate leads to a decrease in 13 $$ {}^{13} $$ C-bicarbonate signal, demonstrating that the 13 $$ {}^{13} $$ C-lactate generated from the injected 13 $$ {}^{13} $$ C-pyruvate is being converted back to 13 $$ {}^{13} $$ C-pyruvate and oxidized throughout the human brain.
Collapse
Affiliation(s)
- Biranavan Uthayakumar
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | - Nadia Bragagnolo
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nicole I.C. Cappelletto
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ruby Endre
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - William J. Perks
- Pharmacy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nathan Ma
- Pharmacy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Chris Heyn
- Radiology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kayvan R. Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Charles H. Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Lai YC, Hsieh CY, Juan YH, Lu KY, Lee HJ, Ng SH, Wan YL, Lin G. Hyperpolarized Carbon-13 Magnetic Resonance Imaging: Technical Considerations and Clinical Applications. Korean J Radiol 2024; 25:459-472. [PMID: 38685736 PMCID: PMC11058429 DOI: 10.3348/kjr.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 05/02/2024] Open
Abstract
Hyperpolarized (HP) carbon-13 (13C) MRI represents an innovative approach for noninvasive, real-time assessment of dynamic metabolic flux, with potential integration into routine clinical MRI. The use of [1-13C]pyruvate as a probe and its conversion to [1-13C]lactate constitute an extensively explored metabolic pathway. This review comprehensively outlines the establishment of HP 13C-MRI, covering multidisciplinary team collaboration, hardware prerequisites, probe preparation, hyperpolarization techniques, imaging acquisition, and data analysis. This article discusses the clinical applications of HP 13C-MRI across various anatomical domains, including the brain, heart, skeletal muscle, breast, liver, kidney, pancreas, and prostate. Each section highlights the specific applications and findings pertinent to these regions, emphasizing the potential versatility of HP 13C-MRI in diverse clinical contexts. This review serves as a comprehensive update, bridging technical aspects with clinical applications and offering insights into the ongoing advancements in HP 13C-MRI.
Collapse
Affiliation(s)
- Ying-Chieh Lai
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Yi Hsieh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Juan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Ying Lu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsien-Ju Lee
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Liang Wan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Uthayakumar B, Cappelletto NIC, Bragagnolo ND, Chen AP, Ma N, Perks WJ, Endre R, Tam F, Graham SJ, Heyn C, Keshari KR, Soliman H, Cunningham CH. Task Activation Results in Regional 13 C-Lactate Signal Increase in the Human Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577808. [PMID: 38352450 PMCID: PMC10862828 DOI: 10.1101/2024.02.01.577808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Hyperpolarized- 13 C magnetic resonance imaging (HP- 13 C MRI) was used to image changes in 13 C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain 13 C-pyruvate, 13 C-lactate and 13 C-bicarbonate production was imaged in healthy volunteers (N=6, ages 24-33) for the two conditions using two separate hyperpolarized 13 C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation. 13 C-metabolite signal was normalized by 13 C-metabolite signal from the brainstem and the percentage change in 13 C-metabolite signal conditions was calculated. A one-way Wilcoxon signed-rank test showed a significant increase in 13 C-lactate in regions of activation when compared to the remainder of the brain ( p = 0.02, V = 21). No significant increase was observed in 13 C-pyruvate ( p = 0.11, V = 17) or 13 C-bicarbonate ( p = 0.95, V = 3) signal. The results show an increase in 13 C-lactate production in the activated region that is measurable with HP- 13 C MRI.
Collapse
|
13
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2023:S0939-3889(23)00120-4. [PMID: 38160135 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
14
|
Hu JY, Vaziri S, Bøgh N, Kim Y, Autry AW, Bok RA, Li Y, Laustsen C, Xu D, Larson PEZ, Chang S, Vigneron DB, Gordon JW. Investigating cerebral perfusion with high resolution hyperpolarized [1- 13 C]pyruvate MRI. Magn Reson Med 2023; 90:2233-2241. [PMID: 37665726 PMCID: PMC10543485 DOI: 10.1002/mrm.29844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE To investigate high-resolution hyperpolarized (HP) 13 C pyruvate MRI for measuring cerebral perfusion in the human brain. METHODS HP [1-13 C]pyruvate MRI was acquired in five healthy volunteers with a multi-resolution EPI sequence with 7.5 × 7.5 mm2 resolution for pyruvate. Perfusion parameters were calculated from pyruvate MRI using block-circulant singular value decomposition and compared to relative cerebral blood flow calculated from arterial spin labeling (ASL). To examine regional perfusion patterns, correlations between pyruvate and ASL perfusion were performed for whole brain, gray matter, and white matter voxels. RESULTS High resolution 7.5 × 7.5 mm2 pyruvate images were used to obtain relative cerebral blood flow (rCBF) values that were significantly positively correlated with ASL rCBF values (r = 0.48, 0.20, 0.28 for whole brain, gray matter, and white matter voxels respectively). Whole brain voxels exhibited the highest correlation between pyruvate and ASL perfusion, and there were distinct regional patterns of relatively high ASL and low pyruvate normalized rCBF found across subjects. CONCLUSION Acquiring HP 13 C pyruvate metabolic images at higher resolution allows for finer spatial delineation of brain structures and can be used to obtain cerebral perfusion parameters. Pyruvate perfusion parameters were positively correlated to proton ASL perfusion values, indicating a relationship between the two perfusion measures. This HP 13 C study demonstrated that hyperpolarized pyruvate MRI can assess cerebral metabolism and perfusion within the same study.
Collapse
Affiliation(s)
- Jasmine Y. Hu
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley,
California, USA
| | - Sana Vaziri
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
| | - Nikolaj Bøgh
- MR Research Center, Department of Clinical Medicine, Aarhus
University, Aarhus, Denmark
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
| | - Adam W. Autry
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley,
California, USA
| | - Christoffer Laustsen
- MR Research Center, Department of Clinical Medicine, Aarhus
University, Aarhus, Denmark
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley,
California, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley,
California, USA
| | - Susan Chang
- Department of Neurological Surgery, University of
California San Francisco, San Francisco, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley,
California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
| |
Collapse
|
15
|
Jha PK, Walker C, Mitchell D, Oden JT, Schellingerhout D, Bankson JA, Fuentes DT. Mutual-information based optimal experimental design for hyperpolarized [Formula: see text]C-pyruvate MRI. Sci Rep 2023; 13:18047. [PMID: 37872226 PMCID: PMC10593962 DOI: 10.1038/s41598-023-44958-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
A key parameter of interest recovered from hyperpolarized (HP) MRI measurements is the apparent pyruvate-to-lactate exchange rate, [Formula: see text], for measuring tumor metabolism. This manuscript presents an information-theory-based optimal experimental design approach that minimizes the uncertainty in the rate parameter, [Formula: see text], recovered from HP-MRI measurements. Mutual information is employed to measure the information content of the HP measurements with respect to the first-order exchange kinetics of the pyruvate conversion to lactate. Flip angles of the pulse sequence acquisition are optimized with respect to the mutual information. A time-varying flip angle scheme leads to a higher parameter optimization that can further improve the quantitative value of mutual information over a constant flip angle scheme. However, the constant flip angle scheme, 35 and 28 degrees for pyruvate and lactate measurements, leads to an accuracy and precision comparable to the variable flip angle schemes obtained from our method. Combining the comparable performance and practical implementation, optimized pyruvate and lactate flip angles of 35 and 28 degrees, respectively, are recommended.
Collapse
Affiliation(s)
- Prashant K. Jha
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Christopher Walker
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77320 USA
| | - Drew Mitchell
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77320 USA
| | - J. Tinsley Oden
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712 USA
| | | | - James A. Bankson
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77320 USA
| | - David T. Fuentes
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77320 USA
| |
Collapse
|
16
|
Chung BT, Kim Y, Gordon JW, Chen HY, Autry AW, Lee PM, Hu JY, Tan CT, Suszczynski C, Chang SM, Villanueva-Meyer JE, Bok RA, Larson PEZ, Xu D, Li Y, Vigneron DB. Hyperpolarized [2- 13C]pyruvate MR molecular imaging with whole brain coverage. Neuroimage 2023; 280:120350. [PMID: 37634883 PMCID: PMC10530049 DOI: 10.1016/j.neuroimage.2023.120350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hyperpolarized (HP) 13C Magnetic Resonance Imaging (MRI) was applied for the first time to image and quantify the uptake and metabolism of [2-13C]pyruvate in the human brain to provide new metabolic information on cerebral energy metabolism. HP [2-13C]pyruvate was injected intravenously and imaged in 5 healthy human volunteer exams with whole brain coverage in a 1-minute acquisition using a specialized spectral-spatial multi-slice echoplanar imaging (EPI) pulse sequence to acquire 13C-labeled volumetric and dynamic images of [2-13C]pyruvate and downstream metabolites [5-13C]glutamate and [2-13C]lactate. Metabolic ratios and apparent conversion rates of pyruvate-to-lactate (kPL) and pyruvate-to-glutamate (kPG) were quantified to investigate simultaneously glycolytic and oxidative metabolism in a single injection.
Collapse
Affiliation(s)
- Brian T Chung
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA.
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Philip M Lee
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Jasmine Y Hu
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Chou T Tan
- ISOTEC Stable Isotope Division, MilliporeSigma, Merck KGaA, Miamisburg, OH 45342, USA
| | - Chris Suszczynski
- ISOTEC Stable Isotope Division, MilliporeSigma, Merck KGaA, Miamisburg, OH 45342, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
18
|
Hirata K, Matsuoka K, Tagai K, Endo H, Tatebe H, Ono M, Kokubo N, Oyama A, Shinotoh H, Takahata K, Obata T, Dehghani M, Near J, Kawamura K, Zhang MR, Shimada H, Yokota T, Tokuda T, Higuchi M, Takado Y. Altered Brain Energy Metabolism Related to Astrocytes in Alzheimer's Disease. Ann Neurol 2023. [PMID: 37703428 DOI: 10.1002/ana.26797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE Increasing evidence suggests that reactive astrocytes are associated with Alzheimer's disease (AD). However, its underlying pathogenesis remains unknown. Given the role of astrocytes in energy metabolism, reactive astrocytes may contribute to altered brain energy metabolism. Astrocytes are primarily considered glycolytic cells, suggesting a preference for lactate production. This study aimed to examine alterations in astrocytic activities and their association with brain lactate levels in AD. METHODS The study included 30 AD and 30 cognitively unimpaired participants. For AD participants, amyloid and tau depositions were confirmed by positron emission tomography using [11 C]PiB and [18 F]florzolotau, respectively. Myo-inositol, an astroglial marker, and lactate in the posterior cingulate cortex were quantified by magnetic resonance spectroscopy. These magnetic resonance spectroscopy metabolites were compared with plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker, and amyloid and tau positron emission tomography. RESULTS Myo-inositol and lactate levels were higher in AD patients than in cognitively unimpaired participants (p < 0.05). Myo-inositol levels correlated with lactate levels (r = 0.272, p = 0.047). Myo-inositol and lactate levels were positively associated with the Clinical Dementia Rating sum-of-boxes scores (p < 0.05). Significant correlations were noted between myo-inositol levels and plasma glial fibrillary acidic protein, tau phosphorylated at threonine 181 levels, and amyloid and tau positron emission tomography accumulation in the posterior cingulate cortex (p < 0.05). INTERPRETATION We found high myo-inositol levels accompanied by increased lactate levels in the posterior cingulate cortex in AD patients, indicating a link between reactive astrocytes and altered brain energy metabolism. Myo-inositol and plasma glial fibrillary acidic protein may reflect similar astrocytic changes as biomarkers of AD. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Kosei Hirata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironobu Endo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naomi Kokubo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Asaka Oyama
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Neurology Clinic Chiba, Chiba, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Jamie Near
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
19
|
Autry AW, Vaziri S, LaFontaine M, Gordon JW, Chen HY, Kim Y, Villanueva-Meyer JE, Molinaro A, Clarke JL, Oberheim Bush NA, Xu D, Lupo JM, Larson PEZ, Vigneron DB, Chang SM, Li Y. Multi-parametric hyperpolarized 13C/ 1H imaging reveals Warburg-related metabolic dysfunction and associated regional heterogeneity in high-grade human gliomas. Neuroimage Clin 2023; 39:103501. [PMID: 37611371 PMCID: PMC10470324 DOI: 10.1016/j.nicl.2023.103501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Dynamic hyperpolarized (HP)-13C MRI has enabled real-time, non-invasive assessment of Warburg-related metabolic dysregulation in glioma using a [1-13C]pyruvate tracer that undergoes conversion to [1-13C]lactate and [13C]bicarbonate. Using a multi-parametric 1H/HP-13C imaging approach, we investigated dynamic and steady-state metabolism, together with physiological parameters, in high-grade gliomas to characterize active tumor. METHODS Multi-parametric 1H/HP-13C MRI data were acquired from fifteen patients with progressive/treatment-naïve glioblastoma [prog/TN GBM, IDH-wildtype (n = 11)], progressive astrocytoma, IDH-mutant, grade 4 (G4AIDH+, n = 2) and GBM manifesting treatment effects (n = 2). Voxel-wise regional analysis of the cohort with prog/TN GBM assessed imaging heterogeneity across contrast-enhancing/non-enhancing lesions (CEL/NEL) and normal-appearing white matter (NAWM) using a mixed effects model. To enable cross-nucleus parameter association, normalized perfusion, diffusion, and dynamic/steady-state (HP-13C/spectroscopic) metabolic data were collectively examined at the 13C resolution. Prog/TN GBM were similarly compared against progressive G4AIDH+ and treatment effects. RESULTS Regional analysis of Prog/TN GBM metabolism revealed statistically significant heterogeneity in 1H choline-to-N-acetylaspartate index (CNI)max, [1-13C]lactate, modified [1-13C]lactate-to-[1-13C]pyruvate ratio (CELval > NELval > NAWMval); [1-13C]lactate-to-[13C]bicarbonate ratio (CELval > NELval/NAWMval); and 1H-lactate (CELval/NELval > NAWMundetected). Significant associations were found between normalized perfusion (cerebral blood volume, nCBV; peak height, nPH) and levels of [1-13C]pyruvate and [1-13C]lactate, as well as between CNImax and levels of [1-13C]pyruvate, [1-13C]lactate and modified ratio. GBM, by comparison to G4AIDH+, displayed lower perfusion %-recovery and modeled rate constants for [1-13C]pyruvate-to-[1-13C]lactate conversion (kPL), and higher 1H-lactate and [1-13C]pyruvate levels, while having higher nCBV, %-recovery, kPL, [1-13C]pyruvate-to-[1-13C]lactate and modified ratios relative to treatment effects. CONCLUSIONS GBM consistently displayed aberrant, Warburg-related metabolism and regional heterogeneity detectable by novel HP-13C/1H imaging techniques.
Collapse
Affiliation(s)
- Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Sana Vaziri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Marisa LaFontaine
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA; Department of Neurological Surgery, University of California, San Francisco, USA
| | - Annette Molinaro
- Department of Neurological Surgery, University of California, San Francisco, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California, San Francisco, USA; Department of Neurology, University of California, San Francisco, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, USA; Department of Neurology, University of California, San Francisco, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA; Department of Bioengineering and Therapeutic Science, University of California, San Francisco, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| |
Collapse
|
20
|
Liu X, Tang S, Cui D, Bok RA, Chen HY, Gordon JW, Wang ZJ, Larson PEZ. A metabolite specific 3D stack-of-spirals bSSFP sequence for improved bicarbonate imaging in hyperpolarized [1- 13C]Pyruvate MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107518. [PMID: 37402333 PMCID: PMC10498937 DOI: 10.1016/j.jmr.2023.107518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
13C-bicarbonate is a crucial measure of pyruvate oxidation and TCA cycle flux, but is challenging to measure due to its relatively low concentration and thus will greatly benefit from improved signal-to-noise ratio (SNR). To address this, we developed and investigated the feasibility of a 3D stack-of-spirals metabolite-specific balanced steady-state free precession (MS-bSSFP) sequence for improving the SNR and spatial resolution of dynamic 13C-bicarbonate imaging in hyperpolarized [1-13C]pyruvate studies. The bicarbonate MS-bSSFP sequence was evaluated by simulations, phantoms studies, preclinical studies on five rats, brain studies on two healthy volunteers and renal study on one renal cell carcinoma patient. The simulations and phantom results showed that the bicarbonate-specific pulse had minimal perturbation of other metabolites (<1%). In the animal studies, the MS-bSSFP sequence provided an approximately 2.6-3 × improvement in 13C-bicarbonate SNR compared to a metabolite-specific gradient echo (MS-GRE) sequence without altering the bicarbonate or pyruvate kinetics, and the shorter spiral readout in the MS-bSSFP approach reduced blurring. Using the SNR ratio between MS-bSSFP and MS-GRE, the T2 values of bicarbonate and lactate in the rat kidneys were estimated as 0.5 s and 1.1 s, respectively. The in-vivo feasibility of bicarbonate MS-bSSFP sequence was demonstrated in two human brain studies and one renal study. These studies demonstrate the potential of the sequence for in-vivo applications, laying the foundation for future studies to observe this relatively low concentration metabolite with high-quality images and improve measurements of pyruvate oxidation.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | - Di Cui
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Guglielmetti C, Cordano C, Najac C, Green AJ, Chaumeil MM. Imaging immunomodulatory treatment responses in a multiple sclerosis mouse model using hyperpolarized 13C metabolic MRI. COMMUNICATIONS MEDICINE 2023; 3:71. [PMID: 37217574 DOI: 10.1038/s43856-023-00300-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND In recent years, the ability of conventional magnetic resonance imaging (MRI), including T1 contrast-enhanced (CE) MRI, to monitor high-efficacy therapies and predict long-term disability in multiple sclerosis (MS) has been challenged. Therefore, non-invasive methods to improve MS lesions detection and monitor therapy response are needed. METHODS We studied the combined cuprizone and experimental autoimmune encephalomyelitis (CPZ-EAE) mouse model of MS, which presents inflammatory-mediated demyelinated lesions in the central nervous system as commonly seen in MS patients. Using hyperpolarized 13C MR spectroscopy (MRS) metabolic imaging, we measured cerebral metabolic fluxes in control, CPZ-EAE and CPZ-EAE mice treated with two clinically-relevant therapies, namely fingolimod and dimethyl fumarate. We also acquired conventional T1 CE MRI to detect active lesions, and performed ex vivo measurements of enzyme activities and immunofluorescence analyses of brain tissue. Last, we evaluated associations between imaging and ex vivo parameters. RESULTS We show that hyperpolarized [1-13C]pyruvate conversion to lactate is increased in the brain of untreated CPZ-EAE mice when compared to the control, reflecting immune cell activation. We further demonstrate that this metabolic conversion is significantly decreased in response to the two treatments. This reduction can be explained by increased pyruvate dehydrogenase activity and a decrease in immune cells. Importantly, we show that hyperpolarized 13C MRS detects dimethyl fumarate therapy, whereas conventional T1 CE MRI cannot. CONCLUSIONS In conclusion, hyperpolarized MRS metabolic imaging of [1-13C]pyruvate detects immunological responses to disease-modifying therapies in MS. This technique is complementary to conventional MRI and provides unique information on neuroinflammation and its modulation.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Christian Cordano
- Department of Neurology, Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA
| | - Chloé Najac
- Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Ari J Green
- Department of Neurology, Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA
- Department of Ophthalmology, University of California at San Francisco, CA, San Francisco, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Chen Ming Low J, Wright AJ, Hesse F, Cao J, Brindle KM. Metabolic imaging with deuterium labeled substrates. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:39-51. [PMID: 37321757 DOI: 10.1016/j.pnmrs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 06/17/2023]
Abstract
Deuterium metabolic imaging (DMI) is an emerging clinically-applicable technique for the non-invasive investigation of tissue metabolism. The generally short T1 values of 2H-labeled metabolites in vivo can compensate for the relatively low sensitivity of detection by allowing rapid signal acquisition in the absence of significant signal saturation. Studies with deuterated substrates, including [6,6'-2H2]glucose, [2H3]acetate, [2H9]choline and [2,3-2H2]fumarate have demonstrated the considerable potential of DMI for imaging tissue metabolism and cell death in vivo. The technique is evaluated here in comparison with established metabolic imaging techniques, including PET measurements of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) uptake and 13C MR imaging of the metabolism of hyperpolarized 13C-labeled substrates.
Collapse
Affiliation(s)
- Jacob Chen Ming Low
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Jianbo Cao
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
23
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|
24
|
Liu Z, Zhu Y, Zhang L, Jiang W, Liu Y, Tang Q, Cai X, Li J, Wang L, Tao C, Yin X, Li X, Hou S, Jiang D, Liu K, Zhou X, Zhang H, Liu M, Fan C, Tian Y. Structural and functional imaging of brains. Sci China Chem 2022; 66:324-366. [PMID: 36536633 PMCID: PMC9753096 DOI: 10.1007/s11426-022-1408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022]
Abstract
Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Ying Zhu
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Liming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Qiaowei Tang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiaoqing Cai
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiang Li
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Lihua Wang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Changlu Tao
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | | | - Xiaowei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055 China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
25
|
Hu JY, Kim Y, Autry AW, Frost MM, Bok RA, Villanueva-Meyer JE, Xu D, Li Y, Larson PEZ, Vigneron DB, Gordon JW. Kinetic analysis of multi-resolution hyperpolarized 13 C human brain MRI to study cerebral metabolism. Magn Reson Med 2022; 88:2190-2197. [PMID: 35754148 PMCID: PMC9420752 DOI: 10.1002/mrm.29354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE To investigate multi-resolution hyperpolarized (HP) 13 C pyruvate MRI for measuring kinetic conversion rates in the human brain. METHODS HP [1-13 C]pyruvate MRI was acquired in 6 subjects with a multi-resolution EPI sequence at 7.5 × 7.5 mm2 resolution for pyruvate and 15 × 15 mm2 resolution for lactate and bicarbonate. With the same lactate data, 2 quantitative maps of pyruvate-to-lactate conversion (kPL ) maps were generated: 1 using 7.5 × 7.5 mm2 resolution pyruvate data and the other using synthetic 15 × 15 mm2 resolution pyruvate data to simulate a standard constant resolution acquisition. To examine local kPL values, 4 voxels were manually selected in each study representing brain tissue near arteries, brain tissue near veins, white matter, and gray matter. RESULTS High resolution 7.5 × 7.5 mm2 pyruvate images increased the spatial delineation of brain structures and decreased partial volume effects compared to coarser resolution 15 × 15 mm2 pyruvate images. Voxels near arteries, veins and in white matter exhibited higher calculated kPL for multi-resolution images. CONCLUSION Acquiring HP 13 C pyruvate metabolic data with a multi-resolution approach minimized partial volume effects from vascular pyruvate signals while maintaining the SNR of downstream metabolites. Higher resolution pyruvate images for kinetic fitting resulted in increased kinetic rate values, particularly around the superior sagittal sinus and cerebral arteries, by reducing extracellular pyruvate signal contributions from adjacent blood vessels. This HP 13 C study showed that acquiring pyruvate with finer resolution improved the quantification of kinetic rates throughout the human brain.
Collapse
Affiliation(s)
- Jasmine Y Hu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Mary M Frost
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Healicon R, Rooney CHE, Ball V, Shinozaki A, Miller JJ, Smart S, Radford‐Smith D, Anthony D, Tyler DJ, Grist JT. Assessing the effect of anesthetic gas mixtures on hyperpolarized 13 C pyruvate metabolism in the rat brain. Magn Reson Med 2022; 88:1324-1332. [PMID: 35468245 PMCID: PMC9325476 DOI: 10.1002/mrm.29274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To determine the effect of altering anesthetic oxygen protocols on measurements of cerebral perfusion and metabolism in the rodent brain. METHODS Seven rats were anesthetized and underwent serial MRI scans with hyperpolarized [1-13 C]pyruvate and perfusion weighted imaging. The anesthetic carrier gas protocol used varied from 100:0% to 90:10% to 60:40% O2 :N2 O. Spectra were quantified with AMARES and perfusion imaging was processed using model-free deconvolution. A 1-way ANOVA was used to compare results across groups, with pairwise t tests performed with correction for multiple comparisons. Spearman's correlation analysis was performed between O2 % and MR measurements. RESULTS There was a significant increase in bicarbonate:total 13 C carbon and bicarbonate:13 C pyruvate when moving between 100:0 to 90:10 and 100:0 to 60:40 O2 :N2 O % (0.02 ± 0.01 vs. 0.019 ± 0.005 and 0.02 ± 0.01 vs. 0.05 ± 0.02, respectively) and (0.04 ± 0.01 vs. 0.03 ± 0.01 and 0.04 ± 0.01 vs. 0.08 ± 0.02, respectively). There was a significant difference in 13 C pyruvate time to peak when moving between 100:0 to 90:10 and 100:0 to 60:40 O2 :N2 O % (13 ± 2 vs. 10 ± 1 and 13 ± 2 vs. 7.5 ± 0.5 s, respectively) as well as significant differences in cerebral blood flow (CBF) between gas protocols. Significant correlations between bicarbonate:13 C pyruvate and gas protocol (ρ = -0.47), mean transit time and gas protocol (ρ = 0.41) and 13 C pyruvate time-to-peak and cerebral blood flow (ρ = -0.54) were also observed. CONCLUSIONS These results demonstrate that the detection and quantification of cerebral metabolism and perfusion is dependent on the oxygen protocol used in the anesthetized rodent brain.
Collapse
Affiliation(s)
- Richard Healicon
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Catriona H. E. Rooney
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Vicky Ball
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Ayaka Shinozaki
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Jack J. Miller
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
- Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUnited Kingdom
- The PET Centre and The MR Centre, Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - Sean Smart
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | | | - Daniel Anthony
- Department of PharmacologyUniversity of OxfordOxfordUnited Kingdom
| | - Damian J. Tyler
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
- The PET Centre and The MR Centre, Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - James T. Grist
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUnited Kingdom
- The PET Centre and The MR Centre, Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
- Department of RadiologyOxford University HospitalsOxfordUnited Kingdom
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
27
|
Vaziri S, Autry AW, Lafontaine M, Kim Y, Gordon JW, Chen HY, Hu JY, Lupo JM, Chang SM, Clarke JL, Villanueva-Meyer JE, Bush NAO, Xu D, Larson PEZ, Vigneron DB, Li Y. Assessment of higher-order singular value decomposition denoising methods on dynamic hyperpolarized [1- 13C]pyruvate MRI data from patients with glioma. Neuroimage Clin 2022; 36:103155. [PMID: 36007439 PMCID: PMC9421383 DOI: 10.1016/j.nicl.2022.103155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Real-time metabolic conversion of intravenously-injected hyperpolarized [1-13C]pyruvate to [1-13C]lactate and [13C]bicarbonate in the brain can be measured using dynamic hyperpolarized carbon-13 (HP-13C) MRI. However, voxel-wise evaluation of metabolism in patients with glioma is challenged by the limited signal-to-noise ratio (SNR) of downstream 13C metabolites, especially within lesions. The purpose of this study was to evaluate the ability of higher-order singular value decomposition (HOSVD) denoising methods to enhance dynamic HP [1-13C]pyruvate MRI data acquired from patients with glioma. METHODS Dynamic HP-13C MRI were acquired from 14 patients with glioma. The effects of two HOSVD denoising techniques, tensor rank truncation-image enhancement (TRI) and global-local HOSVD (GL-HOSVD), on the SNR and kinetic modeling were analyzed in [1-13C]lactate data with simulated noise that matched the levels of [13C]bicarbonate signals. Both methods were then evaluated in patient data based on their ability to improve [1-13C]pyruvate, [1-13C]lactate and [13C]bicarbonate SNR. The effects of denoising on voxel-wise kinetic modeling of kPL and kPB was also evaluated. The number of voxels with reliable kinetic modeling of pyruvate-to-lactate (kPL) and pyruvate-to-bicarbonate (kPB) conversion rates within regions of interest (ROIs) before and after denoising was then compared. RESULTS Both denoising methods improved metabolite SNR and regional signal coverage. In patient data, the average increase in peak dynamic metabolite SNR was 2-fold using TRI and 4-5 folds using GL-HOSVD denoising compared to acquired data. Denoising reduced kPL modeling errors from a native average of 23% to 16% (TRI) and 15% (GL-HOSVD); and kPB error from 42% to 34% (TRI) and 37% (GL-HOSVD) (values were averaged voxelwise over all datasets). In contrast-enhancing lesions, the average number of voxels demonstrating within-tolerance kPL modeling error relative to the total voxels increased from 48% in the original data to 84% (TRI) and 90% (GL-HOSVD), while the number of voxels showing within-tolerance kPB modeling error increased from 0% to 15% (TRI) and 8% (GL-HOSVD). CONCLUSION Post-processing denoising methods significantly improved the SNR of dynamic HP-13C imaging data, resulting in a greater number of voxels satisfying minimum SNR criteria and maximum kinetic modeling errors in tumor lesions. This enhancement can aid in the voxel-wise analysis of HP-13C data and thereby improve monitoring of metabolic changes in patients with glioma following treatment.
Collapse
Affiliation(s)
- Sana Vaziri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Marisa Lafontaine
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jasmine Y Hu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
28
|
Whole-brain neuronal MCT2 lactate transporter expression links metabolism to human brain structure and function. Proc Natl Acad Sci U S A 2022; 119:e2204619119. [PMID: 35939682 PMCID: PMC9388117 DOI: 10.1073/pnas.2204619119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain activity is constrained by local availability of chemical energy, which is generated through compartmentalized metabolic processes. By analyzing data of whole human brain gene expression, we characterize the spatial distribution of seven glucose and monocarboxylate membrane transporters that mediate astrocyte–neuron lactate shuttle transfer of energy. We found that the gene coding for neuronal MCT2 is the only gene enriched in cerebral cortex where its abundance is inversely correlated with cortical thickness. Coexpression network analysis revealed that MCT2 was the only gene participating in an organized gene cluster enriched in K+ dynamics. Indeed, the expression of KATP subunits, which mediate lactate increases with spiking activity, is spatially coupled to MCT2 distribution. Notably, MCT2 expression correlated with fluorodeoxyglucose positron emission tomography task-dependent glucose utilization. Finally, the MCT2 messenger RNA gradient closely overlaps with functional MRI brain regions associated with attention, arousal, and stress. Our results highlight neuronal MCT2 lactate transporter as a key component of the cross-talk between astrocytes and neurons and a link between metabolism, cortical structure, and state-dependent brain function.
Collapse
|
29
|
Kaggie JD, Khan AS, Matys T, Schulte RF, Locke MJ, Grimmer A, Frary A, Menih IH, Latimer E, Graves MJ, McLean MA, Gallagher FA. Deuterium metabolic imaging and hyperpolarized 13C-MRI of the normal human brain at clinical field strength reveals differential cerebral metabolism. Neuroimage 2022; 257:119284. [PMID: 35533826 DOI: 10.1016/j.neuroimage.2022.119284] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022] Open
Abstract
Deuterium metabolic imaging (DMI) and hyperpolarized 13C-pyruvate MRI (13C-HPMRI) are two emerging methods for non-invasive and non-ionizing imaging of tissue metabolism. Imaging cerebral metabolism has potential applications in cancer, neurodegeneration, multiple sclerosis, traumatic brain injury, stroke, and inborn errors of metabolism. Here we directly compare these two non-invasive methods at 3 T for the first time in humans and show how they simultaneously probe both oxidative and non-oxidative metabolism. DMI was undertaken 1-2 h after oral administration of [6,6'-2H2]glucose, and 13C-MRI was performed immediately following intravenous injection of hyperpolarized [1-13C]pyruvate in ten and nine normal volunteers within each arm respectively. DMI was used to generate maps of deuterium-labelled water, glucose, lactate, and glutamate/glutamine (Glx) and the spectral separation demonstrated that DMI is feasible at 3 T. 13C-HPMRI generated maps of hyperpolarized carbon-13 labelled pyruvate, lactate, and bicarbonate. The ratio of 13C-lactate/13C-bicarbonate (mean 3.7 ± 1.2) acquired with 13C-HPMRI was higher than the equivalent 2H-lactate/2H-Glx ratio (mean 0.18 ± 0.09) acquired using DMI. These differences can be explained by the route of administering each probe, the timing of imaging after ingestion or injection, as well as the biological differences in cerebral uptake and cellular physiology between the two molecules. The results demonstrate these two metabolic imaging methods provide different yet complementary readouts of oxidative and reductive metabolism within a clinically feasible timescale. Furthermore, as DMI was undertaken at a clinical field strength within a ten-minute scan time, it demonstrates its potential as a routine clinical tool in the future.
Collapse
Affiliation(s)
- Joshua D Kaggie
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
| | - Alixander S Khan
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK
| | | | - Matthew J Locke
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Ashley Grimmer
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Amy Frary
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Ines Horvat Menih
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Elizabeth Latimer
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Zaccagna F, McLean MA, Grist JT, Kaggie J, Mair R, Riemer F, Woitek R, Gill AB, Deen S, Daniels CJ, Ursprung S, Schulte RF, Allinson K, Chhabra A, Laurent MC, Locke M, Frary A, Hilborne S, Patterson I, Carmo BD, Slough R, Wilkinson I, Basu B, Wason J, Gillard JH, Matys T, Watts C, Price SJ, Santarius T, Graves MJ, Jefferies S, Brindle KM, Gallagher FA. Imaging Glioblastoma Metabolism by Using Hyperpolarized [1- 13C]Pyruvate Demonstrates Heterogeneity in Lactate Labeling: A Proof of Principle Study. Radiol Imaging Cancer 2022; 4:e210076. [PMID: 35838532 PMCID: PMC9360994 DOI: 10.1148/rycan.210076] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
Purpose To evaluate glioblastoma (GBM) metabolism by using hyperpolarized carbon 13 (13C) MRI to monitor the exchange of the hyperpolarized 13C label between injected [1-13C]pyruvate and tumor lactate and bicarbonate. Materials and Methods In this prospective study, seven treatment-naive patients (age [mean ± SD], 60 years ± 11; five men) with GBM were imaged at 3 T by using a dual-tuned 13C-hydrogen 1 head coil. Hyperpolarized [1-13C]pyruvate was injected, and signal was acquired by using a dynamic MRI spiral sequence. Metabolism was assessed within the tumor, in the normal-appearing brain parenchyma (NABP), and in healthy volunteers by using paired or unpaired t tests and a Wilcoxon signed rank test. The Spearman ρ correlation coefficient was used to correlate metabolite labeling with lactate dehydrogenase A (LDH-A) expression and some immunohistochemical markers. The Benjamini-Hochberg procedure was used to correct for multiple comparisons. Results The bicarbonate-to-pyruvate (BP) ratio was lower in the tumor than in the contralateral NABP (P < .01). The tumor lactate-to-pyruvate (LP) ratio was not different from that in the NABP (P = .38). The LP and BP ratios in the NABP were higher than those observed previously in healthy volunteers (P < .05). Tumor lactate and bicarbonate signal intensities were strongly correlated with the pyruvate signal intensity (ρ = 0.92, P < .001, and ρ = 0.66, P < .001, respectively), and the LP ratio was weakly correlated with LDH-A expression in biopsy samples (ρ = 0.43, P = .04). Conclusion Hyperpolarized 13C MRI demonstrated variation in lactate labeling in GBM, both within and between tumors. In contrast, bicarbonate labeling was consistently lower in tumors than in the surrounding NABP. Keywords: Hyperpolarized 13C MRI, Glioblastoma, Metabolism, Cancer, MRI, Neuro-oncology Supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Mary A. McLean
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - James T. Grist
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Joshua Kaggie
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Richard Mair
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Frank Riemer
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ramona Woitek
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Andrew B. Gill
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Surrin Deen
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Charlie J. Daniels
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Stephan Ursprung
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Rolf F. Schulte
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Kieren Allinson
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Anita Chhabra
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Marie-Christine Laurent
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Matthew Locke
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Amy Frary
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Sarah Hilborne
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ilse Patterson
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Bruno D. Carmo
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Rhys Slough
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ian Wilkinson
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Bristi Basu
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - James Wason
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Jonathan H. Gillard
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Tomasz Matys
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Colin Watts
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Stephen J. Price
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Thomas Santarius
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Martin J. Graves
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Sarah Jefferies
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Kevin M. Brindle
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ferdia A. Gallagher
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| |
Collapse
|
31
|
Ehrhardt MJ, Gallagher FA, McLean MA, Schönlieb CB. Enhancing the spatial resolution of hyperpolarized carbon-13 MRI of human brain metabolism using structure guidance. Magn Reson Med 2022; 87:1301-1312. [PMID: 34687088 DOI: 10.1002/mrm.29045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Dynamic nuclear polarization is an emerging imaging method that allows noninvasive investigation of tissue metabolism. However, the relatively low metabolic spatial resolution that can be achieved limits some applications, and improving this resolution could have important implications for the technique. METHODS We propose to enhance the 3D resolution of carbon-13 magnetic resonance imaging (13 C-MRI) using the structural information provided by hydrogen-1 MRI (1 H-MRI). The proposed approach relies on variational regularization in 3D with a directional total variation regularizer, resulting in a convex optimization problem which is robust with respect to the parameters and can efficiently be solved by many standard optimization algorithms. Validation was carried out using an in silico phantom, an in vitro phantom and in vivo data from four human volunteers. RESULTS The clinical data used in this study were upsampled by a factor of 4 in-plane and by a factor of 15 out-of-plane, thereby revealing occult information. A key finding is that 3D super-resolution shows superior performance compared to several 2D super-resolution approaches: for example, for the in silico data, the mean-squared-error was reduced by around 40% and for all data produced increased anatomical definition of the metabolic imaging. CONCLUSION The proposed approach generates images with enhanced anatomical resolution while largely preserving the quantitative measurements of metabolism. Although the work requires clinical validation against tissue measures of metabolism, it offers great potential in the field of 13 C-MRI and could significantly improve image quality in the future.
Collapse
Affiliation(s)
- Matthias J Ehrhardt
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Institute for Mathematical Innovation, University of Bath, Bath, UK
| | | | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Carola-Bibiane Schönlieb
- Department for Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Initial Experience on Hyperpolarized [1-13C]Pyruvate MRI Multicenter Reproducibility—Are Multicenter Trials Feasible? Tomography 2022; 8:585-595. [PMID: 35314625 PMCID: PMC8938827 DOI: 10.3390/tomography8020048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Magnetic resonance imaging (MRI) with hyperpolarized [1-13C]pyruvate allows real-time and pathway specific clinical detection of otherwise unimageable in vivo metabolism. However, the comparability between sites and protocols is unknown. Here, we provide initial experiences on the agreement of hyperpolarized MRI between sites and protocols by repeated imaging of same healthy volunteers in Europe and the US. Methods: Three healthy volunteers traveled for repeated multicenter brain MRI exams with hyperpolarized [1-13C]pyruvate within one year. First, multisite agreement was assessed with the same echo-planar imaging protocol at both sites. Then, this was compared to a variable resolution echo-planar imaging protocol. In total, 12 examinations were performed. Common metrics of 13C-pyruvate to 13C-lactate conversion were calculated, including the kPL, a model-based kinetic rate constant, and its model-free equivalents. Repeatability was evaluated with intraclass correlation coefficients (ICC) for absolute agreement computed using two-way random effects models. Results: The mean kPL across all examinations in the multisite comparison was 0.024 ± 0.0016 s−1. The ICC of the kPL was 0.83 (p = 0.14) between sites and 0.7 (p = 0.09) between examinations of the same volunteer at any of the two sites. For the model-free metrics, the lactate Z-score had similar site-to-site ICC, while it was considerably lower for the lactate-to-pyruvate ratio. Conclusions: Estimation of metabolic conversion from hyperpolarized [1-13C]pyruvate to lactate using model-based metrics such as kPL suggests close agreement between sites and examinations in volunteers. Our initial results support harmonization of protocols, support multicenter studies, and inform their design.
Collapse
|
33
|
Ma J, Pinho MC, Harrison CE, Chen J, Sun C, Hackett EP, Liticker J, Ratnakar J, Reed GD, Chen AP, Sherry AD, Malloy CR, Wright SM, Madden CJ, Park JM. Dynamic 13 C MR spectroscopy as an alternative to imaging for assessing cerebral metabolism using hyperpolarized pyruvate in humans. Magn Reson Med 2022; 87:1136-1149. [PMID: 34687086 PMCID: PMC8776582 DOI: 10.1002/mrm.29049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE This study is to investigate time-resolved 13 C MR spectroscopy (MRS) as an alternative to imaging for assessing pyruvate metabolism using hyperpolarized (HP) [1-13 C]pyruvate in the human brain. METHODS Time-resolved 13 C spectra were acquired from four axial brain slices of healthy human participants (n = 4) after a bolus injection of HP [1-13 C]pyruvate. 13 C MRS with low flip-angle excitations and a multichannel 13 C/1 H dual-frequency radiofrequency (RF) coil were exploited for reliable and unperturbed assessment of HP pyruvate metabolism. Slice-wise areas under the curve (AUCs) of 13 C-metabolites were measured and kinetic analysis was performed to estimate the production rates of lactate and HCO3- . Linear regression analysis between brain volumes and HP signals was performed. Region-focused pyruvate metabolism was estimated using coil-wise 13 C reconstruction. Reproducibility of HP pyruvate exams was presented by performing two consecutive injections with a 45-minutes interval. RESULTS [1-13 C]Lactate relative to the total 13 C signal (tC) was 0.21-0.24 in all slices. [13 C] HCO3- /tC was 0.065-0.091. Apparent conversion rate constants from pyruvate to lactate and HCO3- were calculated as 0.014-0.018 s-1 and 0.0043-0.0056 s-1 , respectively. Pyruvate/tC and lactate/tC were in moderate linear relationships with fractional gray matter volume within each slice. White matter presented poor linear regression fit with HP signals, and moderate correlations of the fractional cerebrospinal fluid volume with pyruvate/tC and lactate/tC were measured. Measured HP signals were comparable between two consecutive exams with HP [1-13 C]pyruvate. CONCLUSIONS Dynamic MRS in combination with multichannel RF coils is an affordable and reliable alternative to imaging methods in investigating cerebral metabolism using HP [1-13 C]pyruvate.
Collapse
Affiliation(s)
- Junjie Ma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marco C. Pinho
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Crystal E. Harrison
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chenhao Sun
- Department of Electrical and Computer Engineering, Texas A & M, College Station, TX, USA
| | - Edward P. Hackett
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeff Liticker
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Ratnakar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Biochemistry and Chemical Biology, University of Texas Dallas, Richardson, TX, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven M. Wright
- Department of Electrical and Computer Engineering, Texas A & M, College Station, TX, USA
| | - Christopher J. Madden
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Electrical and Computer Engineering, University of Texas Dallas, Richardson, TX, USA,Correspondence to: Jae Mo Park, Ph.D., 5323 Harry Hines Blvd. Dallas, Texas 75390-8568, , Tel: +1-214-645-7206, Fax: +1-214-645-2744
| |
Collapse
|
34
|
Li Y, Vigneron DB, Xu D. Current human brain applications and challenges of dynamic hyperpolarized carbon-13 labeled pyruvate MR metabolic imaging. Eur J Nucl Med Mol Imaging 2021; 48:4225-4235. [PMID: 34432118 PMCID: PMC8566394 DOI: 10.1007/s00259-021-05508-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The ability of hyperpolarized carbon-13 MR metabolic imaging to acquire dynamic metabolic information in real time is crucial to gain mechanistic insights into metabolic pathways, which are complementary to anatomic and other functional imaging methods. This review presents the advantages of this emerging functional imaging technology, describes considerations in clinical translations, and summarizes current human brain applications. Despite rapid development in methodologies, significant technological and physiological related challenges continue to impede broader clinical translation.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| |
Collapse
|
35
|
Jørgensen SH, Bøgh N, Hansen E, Væggemose M, Wiggers H, Laustsen C. Hyperpolarized MRI - An update and future perspectives. Semin Nucl Med 2021; 52:374-381. [PMID: 34785033 DOI: 10.1053/j.semnuclmed.2021.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/11/2022]
Abstract
In recent years, hyperpolarized 13C magnetic resonance spectroscopic (MRS) imaging has emerged as a complementary metabolic imaging approach. Hyperpolarization via dissolution dynamic nuclear polarization is a technique that enhances the MR signal of 13C-enriched molecules by a factor of > 104, enabling detection downstream metabolites in a variety of intracellular metabolic pathways. The aim of the present review is to provide the reader with an update on hyperpolarized 13C MRS imaging and to assess the future clinical potential of the technology. Several carbon-based probes have been used in hyperpolarized studies. However, the first and most widely used 13C-probe in clinical studies is [1-13C]pyruvate. In this probe, the enrichment of 13C is performed at the first carbon position as the only modification. Hyperpolarized [1-13C]pyruvate MRS imaging can detect intracellular production of [1-13C]lactate and 13C-bicarbonate non-invasively and in real time without the use of ionizing radiation. Thus, by probing the balance between oxidative and glycolytic metabolism, hyperpolarized [1-13C]pyruvate MRS imaging can image the Warburg effect in malignant tumors and detect the hallmarks of ischemia or viability in the myocardium. An increasing number of clinical studies have demonstrated that clinical hyperpolarized 13C MRS imaging is not only possible, but also it provides metabolic information that was previously inaccessible by non-invasive techniques. Although the technology is still in its infancy and several technical improvements are warranted, it is of paramount importance that nuclear medicine physicians gain knowledge of the possibilities and pitfalls of the technique. Hyperpolarized 13C MRS imaging may become an integrated feature in combined metabolic imaging of the future.
Collapse
Affiliation(s)
- S H Jørgensen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; The Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark; The Department of Cardiology, North Denmark Regional Hospital, Hjørring, Denmark
| | - N Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ess Hansen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - M Væggemose
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; GE Healthcare, Brøndby, Denmark
| | - H Wiggers
- The Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - C Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
36
|
Lee PM, Chen HY, Gordon JW, Zhu Z, Larson PE, Dwork N, Van Criekinge M, Carvajal L, Ohliger MA, Wang ZJ, Xu D, Kurhanewicz J, Bok RA, Aggarwal R, Munster PN, Vigneron DB. Specialized computational methods for denoising, B 1 correction, and kinetic modeling in hyperpolarized 13 C MR EPSI studies of liver tumors. Magn Reson Med 2021; 86:2402-2411. [PMID: 34216051 PMCID: PMC8565779 DOI: 10.1002/mrm.28901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE To develop a novel post-processing pipeline for hyperpolarized (HP) 13 C MRSI that integrates tensor denoising and B 1 + correction to measure pyruvate-to-lactate conversion rates (kPL ) in patients with liver tumors. METHODS Seven HP 13 C MR scans of progressing liver tumors were acquired using a custom 13 C surface transmit/receive coil and the echo-planar spectroscopic imaging (EPSI) data analysis included B0 correction, tensor rank truncation, and zero- and first-order phase corrections to recover metabolite signals that would otherwise be obscured by spectral noise as well as a correction for inhomogeneous transmit ( B 1 + ) using a B 1 + map aligned to the coil position for each patient scan. Processed HP data and corrected flip angles were analyzed with an inputless two-site exchange model to calculate kPL . RESULTS Denoising averages SNR increases of pyruvate, lactate, and alanine were 37.4-, 34.0-, and 20.1-fold, respectively, with lactate and alanine dynamics most noticeably recovered and better defined. In agreement with Monte Carlo simulations, over-flipped regions underestimated kPL and under-flipped regions overestimated kPL . B 1 + correction addressed this issue. CONCLUSION The new HP 13 C EPSI post-processing pipeline integrated tensor denoising and B 1 + correction to measure kPL in patients with liver tumors. These technical developments not only recovered metabolite signals in voxels that did not receive the prescribed flip angle, but also increased the extent and accuracy of kPL estimations throughout the tumor and adjacent regions including normal-appearing tissue and additional lesions.
Collapse
Affiliation(s)
- Philip M. Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Zihan Zhu
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Peder E.Z. Larson
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Dwork
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Zhen J. Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Duan Xu
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Pamela N. Munster
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Daniel B. Vigneron
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
37
|
Mahan VL. Effects of lactate and carbon monoxide interactions on neuroprotection and neuropreservation. Med Gas Res 2021; 11:158-173. [PMID: 34213499 PMCID: PMC8374456 DOI: 10.4103/2045-9912.318862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 11/04/2022] Open
Abstract
Lactate, historically considered a waste product of anerobic metabolism, is a metabolite in whole-body metabolism needed for normal central nervous system (CNS) functions and a potent signaling molecule and hormone in the CNS. Neuronal activity signals normally induce its formation primarily in astrocytes and production is dependent on anerobic and aerobic metabolisms. Functions are dependent on normal dynamic, expansive, and evolving CNS functions. Levels can change under normal physiologic conditions and with CNS pathology. A readily combusted fuel that is sshuttled throughout the body, lactate is used as an energy source and is needed for CNS hemostasis, plasticity, memory, and excitability. Diffusion beyond the neuron active zone impacts activity of neurons and astrocytes in other areas of the brain. Barriergenesis, function of the blood-brain barrier, and buffering between oxidative metabolism and glycolysis and brain metabolism are affected by lactate. Important to neuroprotection, presence or absence is associated with L-lactate and heme oxygenase/carbon monoxide (a gasotransmitter) neuroprotective systems. Effects of carbon monoxide on L-lactate affect neuroprotection - interactions of the gasotransmitter with L-lactate are important to CNS stability, which will be reviewed in this article.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
38
|
Salzillo TC, Mawoneke V, Weygand J, Shetty A, Gumin J, Zacharias NM, Gammon ST, Piwnica-Worms D, Fuller GN, Logothetis CJ, Lang FF, Bhattacharya PK. Measuring the Metabolic Evolution of Glioblastoma throughout Tumor Development, Regression, and Recurrence with Hyperpolarized Magnetic Resonance. Cells 2021; 10:cells10102621. [PMID: 34685601 PMCID: PMC8534002 DOI: 10.3390/cells10102621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid diagnosis and therapeutic monitoring of aggressive diseases such as glioblastoma can improve patient survival by providing physicians the time to optimally deliver treatment. This research tested whether metabolic imaging with hyperpolarized MRI could detect changes in tumor progression faster than conventional anatomic MRI in patient-derived glioblastoma murine models. To capture the dynamic nature of cancer metabolism, hyperpolarized MRI, NMR spectroscopy, and immunohistochemistry were performed at several time-points during tumor development, regression, and recurrence. Hyperpolarized MRI detected significant changes of metabolism throughout tumor progression whereas conventional MRI was less sensitive. This was accompanied by aberrations in amino acid and phospholipid lipid metabolism and MCT1 expression. Hyperpolarized MRI can help address clinical challenges such as identifying malignant disease prior to aggressive growth, differentiating pseudoprogression from true progression, and predicting relapse. The individual evolution of these metabolic assays as well as their correlations with one another provides context for further academic research.
Collapse
Affiliation(s)
- Travis C. Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Vimbai Mawoneke
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Joseph Weygand
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Akaanksh Shetty
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.G.); (F.F.L.)
| | - Niki M. Zacharias
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Gregory N. Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.G.); (F.F.L.)
| | - Pratip K. Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
- Correspondence: ; Tel.: +1-713-454-9887
| |
Collapse
|
39
|
Blazey T, Reed GD, Garbow JR, von Morze C. Metabolite-Specific Echo-Planar Imaging of Hyperpolarized [1- 13C]Pyruvate at 4.7 T. Tomography 2021; 7:466-476. [PMID: 34564302 PMCID: PMC8482109 DOI: 10.3390/tomography7030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Although hyperpolarization (HP) greatly increases the sensitivity of 13C MR, the usefulness of HP in vivo is limited by the short lifetime of HP agents. To address this limitation, we developed an echo-planar (EPI) sequence with spectral-spatial radiofrequency (SSRF) pulses for fast and efficient metabolite-specific imaging of HP [1-13C]pyruvate and [1-13C]lactate at 4.7 T. The spatial and spectral selectivity of each SSRF pulse was verified using simulations and phantom testing. EPI and CSI imaging of the rat abdomen were compared in the same rat after injecting HP [1-13C]pyruvate. A procedure was also developed to automatically set the SSRF excitation pulse frequencies based on real-time scanner feedback. The most significant results of this study are the demonstration that a greater spatial and temporal resolution is attainable by metabolite-specific EPI as compared with CSI, and the enhanced lifetime of the HP signal in EPI, which is attributable to the independent flip angle control between metabolites. Real-time center frequency adjustment was also highly effective for minimizing off-resonance effects. To the best of our knowledge, this is the first demonstration of metabolite-specific HP 13C EPI at 4.7 T. In conclusion, metabolite-specific EPI using SSRF pulses is an effective way to image HP [1-13C]pyruvate and [1-13C]lactate at 4.7 T.
Collapse
Affiliation(s)
- Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA; (T.B.); (J.R.G.)
| | | | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA; (T.B.); (J.R.G.)
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA; (T.B.); (J.R.G.)
- Correspondence:
| |
Collapse
|
40
|
Editorial commentary for the special issue: technological developments in hyperpolarized 13C imaging-toward a deeper understanding of tumor metabolism in vivo. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:1-3. [PMID: 33580833 PMCID: PMC7910238 DOI: 10.1007/s10334-021-00908-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Kaggie JD, Lanz T, McLean MA, Riemer F, Schulte RF, Benjamin AJV, Kessler DA, Sun C, Gilbert FJ, Graves MJ, Gallagher FA. Combined 23 Na and 13 C imaging at 3.0 Tesla using a single-tuned large FOV birdcage coil. Magn Reson Med 2021; 86:1734-1745. [PMID: 33934383 DOI: 10.1002/mrm.28772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/07/2021] [Accepted: 02/24/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE An unmet need in carbon-13 (13 C)-MRI is a transmit system that provides uniform excitation across a large FOV and can accommodate patients of wide-ranging body habitus. Due to the small difference between the resonant frequencies, sodium-23 (23 Na) coil developments can inform 13 C coil design while being simpler to assess due to the higher naturally abundant 23 Na signal. Here we present a removable 23 Na birdcage, which also allows operation as a 13 C abdominal coil. METHODS We demonstrate a quadrature-driven 4-rung 23 Na birdcage coil of 50 cm in length for both 23 Na and 13 C abdominal imaging. The coil transmit efficiencies and B 1 + maps were compared to a linearly driven 13 C Helmholtz-based (clamshell) coil. SNR was investigated with 23 Na and 13 C data using an 8-channel 13 C receive array within the 23 Na birdcage. RESULTS The 23 Na birdcage longitudinal FOV was > 40 cm, whereas the 13 C clamshell was < 32 cm. The transmit efficiency of the birdcage at the 23 Na frequency was 0.65 µT/sqrt(W), similar to the clamshell for 13 C. However, the coefficient of variation of 23 Na- B 1 + was 16%, nearly half that with the 13 C clamshell. The 8-channel 13 C receive array combined with the 23 Na birdcage coil generated a greater than twofold increase in 23 Na-SNR from the central abdomen compared with the birdcage alone. DISCUSSION This 23 Na birdcage coil has a larger FOV and improved B 1 + uniformity when compared to the widely used clamshell coil design while also providing similar transmit efficiency. The coil has the potential to be used for both 23 Na and 13 C imaging.
Collapse
Affiliation(s)
- Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Frank Riemer
- Mohn Medical Imaging and Visualisation Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | | | - Arnold J V Benjamin
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Dimitri A Kessler
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Chang Sun
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Zaccagna F, Grist JT, Quartuccio N, Riemer F, Fraioli F, Caracò C, Halsey R, Aldalilah Y, Cunningham CH, Massoud TF, Aloj L, Gallagher FA. Imaging and treatment of brain tumors through molecular targeting: Recent clinical advances. Eur J Radiol 2021; 142:109842. [PMID: 34274843 DOI: 10.1016/j.ejrad.2021.109842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Molecular imaging techniques have rapidly progressed over recent decades providing unprecedented in vivo characterization of metabolic pathways and molecular biomarkers. Many of these new techniques have been successfully applied in the field of neuro-oncological imaging to probe tumor biology. Targeting specific signaling or metabolic pathways could help to address several unmet clinical needs that hamper the management of patients with brain tumors. This review aims to provide an overview of the recent advances in brain tumor imaging using molecular targeting with positron emission tomography and magnetic resonance imaging, as well as the role in patient management and possible therapeutic implications.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- Division of Neuroimaging, Department of Medical Imaging, University of Toronto, Toronto, Canada.
| | - James T Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom; Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, United Kingdom; Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Italy
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre, University of Bergen, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Corradina Caracò
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Richard Halsey
- Institute of Nuclear Medicine, University College London, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Yazeed Aldalilah
- Institute of Nuclear Medicine, University College London, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom; Department of Radiology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Tarik F Massoud
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, USA
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Hackett EP, Shah BR, Cheng B, LaGue E, Vemireddy V, Mendoza M, Bing C, Bachoo RM, Billingsley KL, Chopra R, Park JM. Probing Cerebral Metabolism with Hyperpolarized 13C Imaging after Opening the Blood-Brain Barrier with Focused Ultrasound. ACS Chem Neurosci 2021; 12:2820-2828. [PMID: 34291630 DOI: 10.1021/acschemneuro.1c00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transient disruption of the blood-brain barrier (BBB) with focused ultrasound (FUS) is an emerging clinical method to facilitate targeted drug delivery to the brain. The focal noninvasive disruption of the BBB can be applied to promote the local delivery of hyperpolarized substrates. In this study, we investigated the effects of FUS on imaging brain metabolism using two hyperpolarized 13C-labeled substrates in rodents: [1-13C]pyruvate and [1-13C]glycerate. The BBB is a rate-limiting factor for pyruvate delivery to the brain, and glycerate minimally passes through the BBB. First, cerebral imaging with hyperpolarized [1-13C]pyruvate resulted in an increase in total 13C signals (p = 0.05) after disrupting the BBB with FUS. Significantly higher levels of both [1-13C]lactate (lactate/total 13C signals, p = 0.01) and [13C]bicarbonate (p = 0.008) were detected in the FUS-applied brain region as compared to the contralateral FUS-unaffected normal-appearing brain region. The application of FUS without opening the BBB in a separate group of rodents resulted in comparable lactate and bicarbonate productions between the FUS-applied and the contralateral brain regions. Second, 13C imaging with hyperpolarized [1-13C]glycerate after opening the BBB showed increased [1-13C]glycerate delivery to the FUS-applied region (p = 0.04) relative to the contralateral side, and [1-13C]lactate production was consistently detected from the FUS-applied region. Our findings suggest that FUS accelerates the delivery of hyperpolarized molecules across the BBB and provides enhanced sensitivity to detect metabolic products in the brain; therefore, hyperpolarized 13C imaging with FUS may provide new opportunities to study cerebral metabolic pathways as well as various neurological pathologies.
Collapse
Affiliation(s)
- Edward P. Hackett
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bhavya R. Shah
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bingbing Cheng
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Radiology, The University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Evan LaGue
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, California 92834, United States
| | - Vamsidihara Vemireddy
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Manuel Mendoza
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, California 92834, United States
| | - Chenchen Bing
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Radiology, The University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Robert M. Bachoo
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Kelvin L. Billingsley
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, California 92834, United States
| | - Rajiv Chopra
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
44
|
van Zijl PCM, Brindle K, Lu H, Barker PB, Edden R, Yadav N, Knutsson L. Hyperpolarized MRI, functional MRI, MR spectroscopy and CEST to provide metabolic information in vivo. Curr Opin Chem Biol 2021; 63:209-218. [PMID: 34298353 PMCID: PMC8384704 DOI: 10.1016/j.cbpa.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Access to metabolic information in vivo using magnetic resonance (MR) technologies has generally been the niche of MR spectroscopy (MRS) and spectroscopic imaging (MRSI). Metabolic fluxes can be studied using the infusion of substrates labeled with magnetic isotopes, with the use of hyperpolarization especially powerful. Unfortunately, these promising methods are not yet accepted clinically, where fast, simple, and reliable measurement and diagnosis are key. Recent advances in functional MRI and chemical exchange saturation transfer (CEST) MRI allow the use of water imaging to study oxygen metabolism and tissue metabolite levels. These, together with the use of novel data analysis approaches such as machine learning for all of these metabolic MR approaches, are increasing the likelihood of their clinical translation.
Collapse
Affiliation(s)
- Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA.
| | - Kevin Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Nirbhay Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Kim Y, Chen HY, Autry AW, Villanueva-Meyer J, Chang SM, Li Y, Larson PEZ, Brender JR, Krishna MC, Xu D, Vigneron DB, Gordon JW. Denoising of hyperpolarized 13 C MR images of the human brain using patch-based higher-order singular value decomposition. Magn Reson Med 2021; 86:2497-2511. [PMID: 34173268 DOI: 10.1002/mrm.28887] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To improve hyperpolarized 13 C (HP-13 C) MRI by image denoising with a new approach, patch-based higher-order singular value decomposition (HOSVD). METHODS The benefit of using a patch-based HOSVD method to denoise dynamic HP-13 C MR imaging data was investigated. Image quality and the accuracy of quantitative analyses following denoising were evaluated first using simulated data of [1-13 C]pyruvate and its metabolic product, [1-13 C]lactate, and compared the results to a global HOSVD method. The patch-based HOSVD method was then applied to healthy volunteer HP [1-13 C]pyruvate EPI studies. Voxel-wise kinetic modeling was performed on both non-denoised and denoised data to compare the number of voxels quantifiable based on SNR criteria and fitting error. RESULTS Simulation results demonstrated an 8-fold increase in the calculated SNR of [1-13 C]pyruvate and [1-13 C]lactate with the patch-based HOSVD denoising. The voxel-wise quantification of kPL (pyruvate-to-lactate conversion rate) showed a 9-fold decrease in standard errors for the fitted kPL after denoising. The patch-based denoising performed superior to the global denoising in recovering kPL information. In volunteer data sets, [1-13 C]lactate and [13 C]bicarbonate signals became distinguishable from noise across captured time points with over a 5-fold apparent SNR gain. This resulted in >3-fold increase in the number of voxels quantifiable for mapping kPB (pyruvate-to-bicarbonate conversion rate) and whole brain coverage for mapping kPL . CONCLUSIONS Sensitivity enhancement provided by this denoising significantly improved quantification of metabolite dynamics and could benefit future studies by improving image quality, enabling higher spatial resolution, and facilitating the extraction of metabolic information for clinical research.
Collapse
Affiliation(s)
- Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Javier Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jeffrey R Brender
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Murali C Krishna
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
46
|
Qiao K, Le Page LM, Chaumeil MM. Non-Invasive Differentiation of M1 and M2 Activation in Macrophages Using Hyperpolarized 13C MRS of Pyruvate and DHA at 1.47 Tesla. Metabolites 2021; 11:410. [PMID: 34206326 PMCID: PMC8305442 DOI: 10.3390/metabo11070410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023] Open
Abstract
Macrophage activation, first generalized to the M1/M2 dichotomy, is a complex and central process of the innate immune response. Simply, M1 describes the classical proinflammatory activation, leading to tissue damage, and M2 the alternative activation promoting tissue repair. Given the central role of macrophages in multiple diseases, the ability to noninvasively differentiate between M1 and M2 activation states would be highly valuable for monitoring disease progression and therapeutic responses. Since M1/M2 activation patterns are associated with differential metabolic reprogramming, we hypothesized that hyperpolarized 13C magnetic resonance spectroscopy (HP 13C MRS), an innovative metabolic imaging approach, could distinguish between macrophage activation states noninvasively. The metabolic conversions of HP [1-13C]pyruvate to HP [1-13C]lactate, and HP [1-13C]dehydroascorbic acid to HP [1-13C]ascorbic acid were monitored in live M1 and M2 activated J774a.1 macrophages noninvasively by HP 13C MRS on a 1.47 Tesla NMR system. Our results show that both metabolic conversions were significantly increased in M1 macrophages compared to M2 and nonactivated cells. Biochemical assays and high resolution 1H MRS were also performed to investigate the underlying changes in enzymatic activities and metabolite levels linked to M1/M2 activation. Altogether, our results demonstrate the potential of HP 13C MRS for monitoring macrophage activation states noninvasively.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94143, USA; (K.Q.); (L.M.L.P.)
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Lydia M. Le Page
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94143, USA; (K.Q.); (L.M.L.P.)
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Myriam M. Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94143, USA; (K.Q.); (L.M.L.P.)
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
47
|
Crane JC, Gordon JW, Chen HY, Autry AW, Li Y, Olson MP, Kurhanewicz J, Vigneron DB, Larson PEZ, Xu D. Hyperpolarized 13 C MRI data acquisition and analysis in prostate and brain at University of California, San Francisco. NMR IN BIOMEDICINE 2021; 34:e4280. [PMID: 32189442 PMCID: PMC7501204 DOI: 10.1002/nbm.4280] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Based on the expanding set of applications for hyperpolarized carbon-13 (HP-13 C) MRI, this work aims to communicate standardized methodology implemented at the University of California, San Francisco, as a primer for conducting reproducible metabolic imaging studies of the prostate and brain. Current state-of-the-art HP-13 C acquisition, data processing/reconstruction and kinetic modeling approaches utilized in patient studies are presented together with the rationale underpinning their usage. Organized around spectroscopic and imaging-based methods, this guide provides an extensible framework for handling a variety of HP-13 C applications, which derives from two examples with dynamic acquisitions: 3D echo-planar spectroscopic imaging of the human prostate and frequency-specific 2D multislice echo-planar imaging of the human brain. Details of sequence-specific parameters and processing techniques contained in these examples should enable investigators to effectively tailor studies around individual-use cases. Given the importance of clinical integration in improving the utility of HP exams, practical aspects of standardizing data formats for reconstruction, analysis and visualization are also addressed alongside open-source software packages that enhance institutional interoperability and validation of methodology. To facilitate the adoption and further development of this methodology, example datasets and analysis pipelines have been made available in the supporting information.
Collapse
Affiliation(s)
- Jason C Crane
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Marram P Olson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| |
Collapse
|
48
|
Vaeggemose M, F. Schulte R, Laustsen C. Comprehensive Literature Review of Hyperpolarized Carbon-13 MRI: The Road to Clinical Application. Metabolites 2021; 11:metabo11040219. [PMID: 33916803 PMCID: PMC8067176 DOI: 10.3390/metabo11040219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
This review provides a comprehensive assessment of the development of hyperpolarized (HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications. The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed, along with the complexity, technical advancements, and future directions. The road to clinical application is discussed regarding clinical needs and technological advancements, highlighting the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for hyperpolarized carbon-13 MRI is the limiting factor.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE Healthcare, 2605 Brondby, Denmark;
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
49
|
Predicting response to radiotherapy of intracranial metastases with hyperpolarized [Formula: see text]C MRI. J Neurooncol 2021; 152:551-557. [PMID: 33740165 PMCID: PMC8084843 DOI: 10.1007/s11060-021-03725-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is used to manage intracranial metastases in a significant fraction of patients. Local progression after SRS can often only be detected with increased volume of enhancement on serial MRI scans which may lag true progression by weeks or months. METHODS Patients with intracranial metastases (N = 11) were scanned using hyperpolarized [Formula: see text]C MRI prior to treatment with stereotactic radiosurgery (SRS). The status of each lesion was then recorded at six months post-treatment follow-up (or at the time of death). RESULTS The positive predictive value of [Formula: see text]C-lactate signal, measured pre-treatment, for prediction of progression of intracranial metastases at six months post-treatment with SRS was 0.8 [Formula: see text], and the AUC from an ROC analysis was 0.77 [Formula: see text]. The distribution of [Formula: see text]C-lactate z-scores was different for intracranial metastases from different primary cancer types (F = 2.46, [Formula: see text]). CONCLUSIONS Hyperpolarized [Formula: see text]C imaging has potential as a method for improving outcomes for patients with intracranial metastases, by identifying patients at high risk of treatment failure with SRS and considering other therapeutic options such as surgery.
Collapse
|
50
|
Anderson S, Grist JT, Lewis A, Tyler DJ. Hyperpolarized 13 C magnetic resonance imaging for noninvasive assessment of tissue inflammation. NMR IN BIOMEDICINE 2021; 34:e4460. [PMID: 33291188 PMCID: PMC7900961 DOI: 10.1002/nbm.4460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Inflammation is a central mechanism underlying numerous diseases and incorporates multiple known and potential future therapeutic targets. However, progress in developing novel immunomodulatory therapies has been slowed by a need for improvement in noninvasive biomarkers to accurately monitor the initiation, development and resolution of immune responses as well as their response to therapies. Hyperpolarized magnetic resonance imaging (MRI) is an emerging molecular imaging technique with the potential to assess immune cell responses by exploiting characteristic metabolic reprogramming in activated immune cells to support their function. Using specific metabolic tracers, hyperpolarized MRI can be used to produce detailed images of tissues producing lactate, a key metabolic signature in activated immune cells. This method has the potential to further our understanding of inflammatory processes across different diseases in human subjects as well as in preclinical models. This review discusses the application of hyperpolarized MRI to the imaging of inflammation, as well as the progress made towards the clinical translation of this emerging technique.
Collapse
Affiliation(s)
- Stephanie Anderson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - James T. Grist
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of Radiology, The Churchill HospitalOxford University Hospitals TrustHeadingtonUK
| | - Andrew Lewis
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Damian J. Tyler
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|