1
|
Dexter TD, Roberts BZ, Ayoub SM, Noback M, Barnes SA, Young JW. Cross-species translational paradigms for assessing positive valence system as defined by the RDoC matrix. J Neurochem 2024. [PMID: 39463161 DOI: 10.1111/jnc.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Functions associated with processing reward-related information are fundamental drivers of motivation, learning, and goal-directed behavior. Such functions have been classified as the positive valence system under the Research Domain and Criteria (RDoC) criteria and are negatively impacted across a range of psychiatric disorders and mental illnesses. The positive valence system is composed of three comprehensive categories containing related but dissociable functions that are organized into either Reward Responsiveness, Reward Learning, or Reward Valuation. The presence of overlapping behavioral dysfunction across diagnostic mental disorders is in-part what motivated the RDoC initiative, which emphasized that the study of mental illness focus on investigating relevant behavior and cognitive functions and their underlying mechanisms, rather than separating efforts on diagnostic categories (i.e., transdiagnostic). Moreover, the RDoC approach is well-suited for preclinical neuroscience research, as the rise in genetic toolboxes and associated neurotechnologies enables researchers to probe specific cellular targets with high specificity. Thus, there is an opportunity to dissect whether behaviors and cognitive functions are supported by shared or distinct neural mechanisms. For preclinical research to effectively inform our understandings of human behavior however, the cognitive and behavioral paradigms should have predictive, neurobiological, and pharmacological predictive validity to the human test. Touchscreen-based testing systems provide a further advantage for this endeavor enabling tasks to be presented to animals using the same media and task design as in humans. Here, we outline the primary categories of the positive valence system and review the work that has been done cross-species to investigate the neurobiology and neurochemistry underlying reward-related functioning. Additionally, we provide clinical tasks outlined by RDoC, along with validity and/or need for further validation for analogous rodent paradigms with a focus on implementing the touchscreen-based cognitive testing systems.
Collapse
Affiliation(s)
- Tyler D Dexter
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Michael Noback
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
2
|
Erani F, Stoll H, Patel D, Schultheis MT, Medaglia JD. Money versus performance feedback: money associated with lower feelings of cognitive fatigue. J Clin Exp Neuropsychol 2024; 46:794-809. [PMID: 39611366 DOI: 10.1080/13803395.2024.2424533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE Prior research suggests that effort and reward are central to cognitive fatigue. To better understand the influence of reward on cognitive fatigue, this study examined the effect of reward type and frequency on cognitive fatigue. PARTICIPANTS AND METHODS In an online between-subjects study, 400 participants completed a computerized switching task and were randomly sorted into one of the five possible groups based on reward condition: [1] infrequent money, [2] frequent money, [3] infrequent performance-feedback, [4] frequent performance feedback, and [5] no-reward. Cognitive fatigue was assessed using the Visual Analog Scale for Fatigue (VAS-F) during the task. Mixed effects models were used to estimate the influence of reward type and frequency on task performance and cognitive fatigue. RESULTS We found that participants in the monetary groups were significantly faster (p < .001) compared to participants in the feedback and no-reward groups. We also found that participants in the frequent-money group were significantly faster than those in the infrequent-money group (p < .001). We found that the group receiving infrequent-money was associated with a decrease in VAS-F scores compared to no-reward (p = .04). CONCLUSIONS The current study supports the role of reward in cognitive fatigue. Our results confirm well-established findings that money positively influences on-task behavior, especially when money is provided frequently. In a cognitively healthy sample, there is some evidence to suggest that money provided infrequently could decrease feelings of fatigue. Continued work is needed to understand how, and which, specific behavioral reward manipulations reduce fatigue, especially in clinical populations most affected by fatigue.
Collapse
Affiliation(s)
- Fareshte Erani
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Harrison Stoll
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Darshan Patel
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Maria T Schultheis
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Li G, Dong Y, Chen Y, Li B, Chaudhary S, Bi J, Sun H, Yang C, Liu Y, Li CSR. Drinking severity mediates the relationship between hypothalamic connectivity and rule-breaking/intrusive behavior differently in young women and men: an exploratory study. Quant Imaging Med Surg 2024; 14:6669-6683. [PMID: 39281112 PMCID: PMC11400642 DOI: 10.21037/qims-24-815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Background The hypothalamus is a key hub of the neural circuits of motivated behavior. Alcohol misuse may lead to hypothalamic dysfunction. Here, we investigated how resting-state hypothalamic functional connectivities are altered in association with the severity of drinking and clinical comorbidities and how men and women differ in this association. Methods We employed the data of the Human Connectome Project. A total of 870 subjects were included in data analyses. The severity of alcohol use was quantified for individual subjects with the first principal component (PC1) identified from principal component analyses of all drinking measures. Rule-breaking and intrusive scores were evaluated with the Achenbach Adult Self-Report Scale. We performed a whole-brain regression of hypothalamic connectivities on drinking PC1 in all subjects and men/women separately and evaluated the results at a corrected threshold. Results Higher drinking PC1 was associated with greater hypothalamic connectivity with the paracentral lobule (PCL). Hypothalamic PCL connectivity was positively correlated with rule-breaking score in men (r=0.152, P=0.002) but not in women. In women but not men, hypothalamic connectivity with the left temporo-parietal junction (LTPJ) was negatively correlated with drinking PC1 (r=-0.246, P<0.001) and with intrusiveness score (r=-0.127, P=0.006). Mediation analyses showed that drinking PC1 mediated the relationship between hypothalamic PCL connectivity and rule-breaking score in men and between hypothalamic LTPJ connectivity and intrusiveness score bidirectionally in women. Conclusions We characterized sex-specific hypothalamic connectivities in link with the severity of alcohol misuse and its comorbidities. These findings extend the literature by elucidating the potential impact of problem drinking on the motivation circuits.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Yun Dong
- University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Bao Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Jinbo Bi
- Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA
| | - Hao Sun
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chunlan Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Youjun Liu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Ruge J, Ehlers MR, Kastrinogiannis A, Klingelhöfer-Jens M, Koppold A, Abend R, Lonsdorf TB. How adverse childhood experiences get under the skin: A systematic review, integration and methodological discussion on threat and reward learning mechanisms. eLife 2024; 13:e92700. [PMID: 39012794 PMCID: PMC11251725 DOI: 10.7554/elife.92700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Adverse childhood experiences (ACEs) are a major risk factor for the development of multiple psychopathological conditions, but the mechanisms underlying this link are poorly understood. Associative learning encompasses key mechanisms through which individuals learn to link important environmental inputs to emotional and behavioral responses. ACEs may impact the normative maturation of associative learning processes, resulting in their enduring maladaptive expression manifesting in psychopathology. In this review, we lay out a systematic and methodological overview and integration of the available evidence of the proposed association between ACEs and threat and reward learning processes. We summarize results from a systematic literature search (following PRISMA guidelines) which yielded a total of 81 articles (threat: n=38, reward: n=43). Across the threat and reward learning fields, behaviorally, we observed a converging pattern of aberrant learning in individuals with a history of ACEs, independent of other sample characteristics, specific ACE types, and outcome measures. Specifically, blunted threat learning was reflected in reduced discrimination between threat and safety cues, primarily driven by diminished responding to conditioned threat cues. Furthermore, attenuated reward learning manifested in reduced accuracy and learning rate in tasks involving acquisition of reward contingencies. Importantly, this pattern emerged despite substantial heterogeneity in ACE assessment and operationalization across both fields. We conclude that blunted threat and reward learning may represent a mechanistic route by which ACEs may become physiologically and neurobiologically embedded and ultimately confer greater risk for psychopathology. In closing, we discuss potentially fruitful future directions for the research field, including methodological and ACE assessment considerations.
Collapse
Affiliation(s)
- Julia Ruge
- University Medical Center Hamburg-Eppendorf, Institute for Systems NeuroscienceHamburgGermany
| | | | - Alexandros Kastrinogiannis
- University Medical Center Hamburg-Eppendorf, Institute for Systems NeuroscienceHamburgGermany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Maren Klingelhöfer-Jens
- University Medical Center Hamburg-Eppendorf, Institute for Systems NeuroscienceHamburgGermany
- University of BielefeldBielefeldGermany
| | - Alina Koppold
- University Medical Center Hamburg-Eppendorf, Institute for Systems NeuroscienceHamburgGermany
| | | | - Tina B Lonsdorf
- University Medical Center Hamburg-Eppendorf, Institute for Systems NeuroscienceHamburgGermany
- University of BielefeldBielefeldGermany
| |
Collapse
|
5
|
Halpin A, Tallman M, Boeve A, MacAulay RK. Now or Later? Examining Social and Financial Decision Making in Middle-to-Older Aged Adults. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae070. [PMID: 38685760 DOI: 10.1093/geronb/gbae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVES Contextually driven decision making is multidimensional, as individuals need to contend with prioritizing both competing and complementary demands. However, data is limited as to whether temporal discounting rates vary as a function of framing (gains vs loss) and domain (monetary vs social) in middle-to-older aged adults. It is also unclear whether socioaffective characteristics like social isolation and loneliness are associated with temporal discounting. METHODS Temporal discounting rates were examined across monetary gain, monetary loss, social gain, and social loss conditions in 140 adults aged 50-90 during the Omicron stage of the pandemic. Self-report measures assessed loneliness and social isolation levels. RESULTS Results found evidence of steeper temporal discounting rates for gains as compared to losses in both domains. Social outcomes were also more steeply discounted than monetary outcomes, without evidence of an interaction with the framing condition. Socioeconomic and socioaffective factors were unexpectedly not associated with temporal discounting rates. DISCUSSION Community-dwelling middle-to-older aged adults showed a preference for immediate rewards and devalued social outcomes more than monetary outcomes. These findings have implications for tailoring social and financial incentive programs for middle to later adulthood.
Collapse
Affiliation(s)
- Amy Halpin
- Department of Psychology, University of Maine, Orono, Maine, USA
| | - Morgan Tallman
- Department of Psychology, University of Maine, Orono, Maine, USA
| | - Angelica Boeve
- Department of Psychology, University of Maine, Orono, Maine, USA
| | | |
Collapse
|
6
|
Liu C, Filbey FM. Unlocking the age-old secrets of reward and substance use. Pharmacol Biochem Behav 2024; 239:173766. [PMID: 38604456 DOI: 10.1016/j.pbb.2024.173766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Although substance use is widespread across the lifespan from early adolescence to older adulthood, the prevalence of substance use disorder (SUD) differs between age groups. These age differences in SUD rates necessitate an investigation into how age moderates reward sensitivity, and consequently influences the risks and consequences related to substance use. This theoretical review integrates evidence from the literature to address the dynamic interplay between age and reward in the context of substance use. Overall, increasing evidence demonstrates that age moderates reward sensitivity and underlying reward system neurobiology. Reward sensitivity undergoes a non-linear trajectory across the lifespan. Low levels of reward sensitivity are associated with childhood and late adulthood. In contrast, high levels are associated with early to late adolescence, followed by a decline in the twenties. These fluctuations in reward sensitivity across the lifespan contribute to complex associations with substance use. This lends support to adolescence and young adulthood as vulnerable periods for the risk of subsequent SUD. More empirical research is needed to investigate reward sensitivity during SUD maintenance and recovery. Future research should also involve larger sample sizes and encompass a broader range of age groups, including older adults.
Collapse
Affiliation(s)
- Che Liu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, United States of America.
| | - Francesca M Filbey
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, United States of America
| |
Collapse
|
7
|
Li G, Zhong D, Li B, Chen Y, Yang L, Li CSR. Sleep Deficits Inter-Link Lower Basal Forebrain-Posterior Cingulate Connectivity and Perceived Stress and Anxiety Bidirectionally in Young Men. Int J Neuropsychopharmacol 2023; 26:879-889. [PMID: 37924270 PMCID: PMC10726414 DOI: 10.1093/ijnp/pyad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The basal nucleus of Meynert (BNM), a primary source of cholinergic projections to the cortex, plays key roles in regulating the sleep-wake cycle and attention. Sleep deficit is associated with impairment in cognitive and emotional functions. However, whether or how cholinergic circuit, sleep, and cognitive/emotional dysfunction are inter-related remains unclear. METHODS We curated the Human Connectome Project data and explored BNM resting state functional connectivities (rsFC) in relation to sleep deficit, based on the Pittsburgh Sleep Quality Index (PSQI), cognitive performance, and subjective reports of emotional states in 687 young adults (342 women). Imaging data were processed with published routines and evaluated at a corrected threshold. We assessed the correlation between BNM rsFC, PSQI, and clinical measurements with Pearson regressions and their inter-relationships with mediation analyses. RESULTS In whole-brain regressions with age and alcohol use severity as covariates, men showed lower BNM rsFC with the posterior cingulate cortex (PCC) in correlation with PSQI score. No clusters were identified in women at the same threshold. Both BNM-PCC rsFC and PSQI score were significantly correlated with anxiety, perceived stress, and neuroticism scores in men. Moreover, mediation analyses showed that PSQI score mediated the relationship between BNM-PCC rsFC and these measures of negative emotions bidirectionally in men. CONCLUSIONS Sleep deficit is associated with negative emotions and lower BNM rsFC with the PCC. Negative emotional states and BNM-PCC rsFC are bidirectionally related through poor sleep quality. These findings are specific to men, suggesting potential sex differences in the neural circuits regulating sleep and emotional states.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dandan Zhong
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Bao Li
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lin Yang
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Menéndez-Granda M, Schmidt N, Orth M, Klink K, Horn S, Kliegel M, Peter J. The effect of loss incentives on prospective memory in healthy older adults: study protocol of a randomized controlled trial using ultra-high field fMRI. BMC Psychiatry 2023; 23:722. [PMID: 37803337 PMCID: PMC10557285 DOI: 10.1186/s12888-023-05229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Prospective memory is important for our health and independence but declines with age. Hence, interventions to enhance prospective memory, for example by providing an incentive, may promote healthy ageing. The neuroanatomical correlates of prospective memory and the processing of incentive-related prospective memory changes in older adults are not fully understood. In an fMRI study, we will therefore test whether incentives improve prospective memory in older adults and how prospective memory is processed in the brain in general, and when incentives are provided. Since goals and interests change across adulthood, avoiding losses is becoming more important for older adults than achieving gains. We therefore posit that loss-related incentives will enhance prospective memory, which will be subserved by increased prefrontal and midbrain activity. METHODS We will include n = 60 healthy older adults (60-75 years of age) in a randomized, single-blind, and parallel-group study. We will acquire 7T fMRI data in an incentive group and a control group (n = 30 each, stratified by education, age, and sex). Before and after fMRI, all participants will complete questionnaires and cognitive tests to assess possible confounders (e.g., income, personality traits, sensitivity to reward or punishment). DISCUSSION The results of this study will clarify whether loss-related incentives can enhance prospective memory and how any enhancement is processed in the brain. In addition, we will determine how prospective memory is processed in the brain in general. The results of our study will be an important step towards a better understanding of how prospective memory changes when we get older and for developing interventions to counteract cognitive decline.
Collapse
Affiliation(s)
- Marta Menéndez-Granda
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nadine Schmidt
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katharina Klink
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Horn
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Centre for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
- Swiss Centre of Expertise in Life Course Research, LIVES Centre, Lausanne and Geneva, Switzerland
| | - Jessica Peter
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
- Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| |
Collapse
|
9
|
Li G, Chen Y, Chaudhary S, Li CS, Hao D, Yang L, Li CSR. Sleep dysfunction mediates the relationship between hypothalamic-insula connectivity and anxiety-depression symptom severity bidirectionally in young adults. Neuroimage 2023; 279:120340. [PMID: 37611815 DOI: 10.1016/j.neuroimage.2023.120340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The hypothalamus plays a crucial role in regulating sleep-wake cycle and motivated behavior. Sleep disturbance is associated with impairment in cognitive and affective functions. However, how hypothalamic dysfunction may contribute to inter-related sleep, cognitive, and emotional deficits remain unclear. METHODS We curated the Human Connectome Project dataset and investigated how hypothalamic resting state functional connectivities (rsFC) were associated with sleep dysfunction, as evaluated by the Pittsburgh Sleep Quality Index (PSQI), cognitive performance, and subjective mood states in 687 young adults (342 women). Imaging data were processed with published routines and evaluated with a corrected threshold. We examined the inter-relationship amongst hypothalamic rsFC, PSQI score, and clinical measures with mediation analyses. RESULTS In whole-brain regressions with age and drinking severity as covariates, men showed higher hypothalamic rsFC with the right insula in correlation with PSQI score. No clusters were identified in women at the same threshold. Both hypothalamic-insula rsFC and PSQI score were significantly correlated with anxiety and depression scores in men. Further, mediation analyses showed that PSQI score mediated the relationship between hypothalamic-insula rsFC and anxiety/depression symptom severity bidirectionally in men. CONCLUSIONS Sleep dysfunction is associated with negative emotions and hypothalamic rsFC with the right insula, a core structure of the interoceptive circuits. Notably, anxiety-depression symptom severity and altered hypothalamic-insula rsFC are related bidirectionally by poor sleep quality. These findings are specific to men, suggesting potential sex differences in the neural circuits regulating sleep and emotional states that need to be further investigated.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| | - Clara S Li
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA; Smith College, Northampton MA, USA
| | - Dongmei Hao
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Lin Yang
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven CT, USA; Wu Tsai Institute, Yale University, New Haven CT, USA
| |
Collapse
|
10
|
Ogura Y, Wakatsuki Y, Hashimoto N, Miyamoto T, Nakai Y, Toyomaki A, Tsuchida Y, Nakagawa S, Inoue T, Kusumi I. Hyperthymic temperament predicts neural responsiveness for nonmonetary reward. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e140. [PMID: 38867834 PMCID: PMC11114308 DOI: 10.1002/pcn5.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 06/14/2024]
Abstract
Aim Hyperthymic temperament is a cheerful action orientation that is suggested to have a protective effect on depressive symptoms. We recently reported that hyperthymic temperament can positively predict activation of reward-related brain areas in anticipation of monetary rewards, which could serve as a biomarker of hyperthymic temperament. However, the relationship between hyperthymic temperament and neural responsiveness to nonmonetary rewards (i.e., feedback indicating success in a task) remains unclear. Methods Healthy participants performed a modified monetary incentive delay task inside a functional magnetic resonance imaging scanner. To examine the effect of nonmonetary positive feedback, the participants performed feedback and no-feedback trials. We explored brain regions whose neural responsiveness to nonmonetary rewards was predicted by hyperthymic temperament. Results There was premotor area activation in anticipation of a nonmonetary reward, which was negatively predicted by hyperthymic temperament. Moreover, brain areas located mainly in the primary somatosensory area and somatosensory association area were activated by performance feedback, which was positively predicted by hyperthymic temperament. Conclusion We found that hyperthymic temperament is related to neural responsiveness to both monetary and nonmonetary rewards. This may be related to the process of affective regulation in the somatosensory area.
Collapse
Affiliation(s)
- Yukiko Ogura
- Center for Experimental Research in Social SciencesHokkaido UniversitySapporoJapan
| | - Yumi Wakatsuki
- Department of PsychiatryThe Hokkaido Medical CenterSapporoJapan
| | - Naoki Hashimoto
- Department of PsychiatryHokkaido University Graduate School of MedicineSapporoJapan
| | - Tamaki Miyamoto
- Department of PsychiatryHokkaido University Graduate School of MedicineSapporoJapan
| | | | - Atsuhito Toyomaki
- Department of PsychiatryHokkaido University Graduate School of MedicineSapporoJapan
| | - Yukio Tsuchida
- School of EducationOsaka University of Health and Sport SciencesOsakaJapan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of NeuroscienceYamaguchi University Graduate School of MedicineYamaguchiJapan
| | - Takeshi Inoue
- Department of PsychiatryTokyo Medical UniversityTokyoJapan
| | - Ichiro Kusumi
- Department of PsychiatryHokkaido University Graduate School of MedicineSapporoJapan
| |
Collapse
|
11
|
Chen Y, Li CSR. Appetitive and aversive cue reactivities differentiate neural subtypes of alcohol drinkers. ADDICTION NEUROSCIENCE 2023; 7:100089. [PMID: 37483686 PMCID: PMC10358306 DOI: 10.1016/j.addicn.2023.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Craving reflects the subjective urge to use drugs and can be triggered by both positive and negative emotional states. No studies have systematically investigated the relative roles of these mechanisms in the pathophysiology of substance misuse. Here, we performed meta-analyses of drug cue-elicited reactivity and win and loss processing in the monetary incentive delay task to identify distinct neural correlates of appetitive and aversive responses to drug cues. We then characterized the appetitive and aversive cue responses in seventy-six alcohol drinkers performing a cue craving task during fMRI. Imaging data were processed according to published routines. The appetitive circuit involved medial cortical regions and the ventral striatum, and the aversive circuit involved the insula, caudate and mid-cingulate cortex. We observed a significant correlation of cue-elicited activity (β estimates) of the appetitive and aversive circuit. However, individuals varied in appetitive and aversive cue responses. From the regression of appetitive (y) vs. aversive (x) β, we identified participants in the top 1/3 each of those with positive and negative residuals as "approach" (n = 15) and "avoidance" (n = 11) and the others as the "mixed" (n = 50) subtype. In clinical characteristics, the avoidance subtype showed higher sensitivity to punishment and, in contrast, the approach subtype showed higher levels of sensation seeking and alcohol expectancy for social and physical pressure. The findings highlighted distinct neural underpinnings of appetitive and aversive components of cue-elicited reactivity and provided evidence for potential subtypes of alcohol drinkers.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Inter-department Neuroscience Program, Yale University, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Li G, Li Y, Zhang Z, Chen Y, Li B, Hao D, Yang L, Yang Y, Li X, Li CSR. Sex differences in externalizing and internalizing traits and ventral striatal responses to monetary loss. J Psychiatr Res 2023; 162:11-20. [PMID: 37062201 PMCID: PMC10225357 DOI: 10.1016/j.jpsychires.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Ventral striatum (VS) processes rewarding and punishing stimuli. Women and men vary in externalizing and internalizing traits, which may influence neural responses to reward and punishment. To investigate sex differences in how individual traits influence VS responses to reward and punishment, we curated the data of the Human Connectome Project and identified 981 (473 men) subjects evaluated by the Achenbach Adult Self-Report Syndrome Scales. We processed the imaging data with published routines and extracted VS response (β) to win and to loss vs. baseline in a gambling task for correlation with externalizing and internalizing symptom severity. Men vs. women showed more severe externalizing symptoms and higher VS response to monetary losses (VS-loss β) but not to wins. Men but not women showed a significant, positive correlation between VS-loss β and externalizing traits, and the sex difference was confirmed by a slope test. The correlations of VS-loss vs. externalizing and of VS-win vs. externalizing and those of VS-loss vs. externalizing and of VS-loss vs. internalizing traits both differed significantly in slope, confirming its specificity, in men. Further, the sex-specific relationship between VS-loss β and externalizing trait did not extend to activities during exposure to negative emotion in the face matching task. To conclude, VS responses to loss but not to win and their correlation with externalizing rather than internalizing symptom severity showed sex differences in young adults. The findings highlight the relationship of externalizing traits and VS response to monetary loss and may have implications for psychological models of externalizing behaviors in men.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.
| | - Yashuang Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhao Zhang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Bao Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Dongmei Hao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Lin Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Yimin Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Xuwen Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Wagner F, Rogenz J, Opitz L, Maas J, Schmidt A, Brodoehl S, Ullsperger M, Klingner CM. Reward network dysfunction is associated with cognitive impairment after stroke. Neuroimage Clin 2023; 39:103446. [PMID: 37307650 PMCID: PMC10276182 DOI: 10.1016/j.nicl.2023.103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023]
Abstract
Stroke survivors not only suffer from severe motor, speech and neurocognitive deficits, but in many cases also from a "lack of pleasure" and a reduced motivational level. Especially apathy and anhedonic symptoms can be linked to a dysfunction of the reward system. Rewards are considered as important co-factor for learning, so the question arises as to why and how this affects the rehabilitation of stroke patients. We investigated reward behaviour, learning ability and brain network connectivity in acute (3-7d) mild to moderate stroke patients (n = 28) and age-matched healthy controls (n = 26). Reward system activity was assessed using the Monetary Incentive Delay task (MID) during magnetoencephalography (MEG). Coherence analyses were used to demonstrate reward effects on brain functional network connectivity. The MID-task showed that stroke survivors had lower reward sensitivity and required greater monetary incentives to improve performance and showed deficits in learning improvement. MEG-analyses showed a reduced network connectivity in frontal and temporoparietal regions. All three effects (reduced reward sensitivity, reduced learning ability and altered cerebral connectivity) were found to be closely related and differed strongly from the healthy group. Our results reinforce the notion that acute stroke induces reward network dysfunction, leading to functional impairment of behavioural systems. These findings are representative of a general pattern in mild strokes and are independent of the specific lesion localisation. For stroke rehabilitation, these results represent an important point to identify the reduced learning capacity after stroke and to implement individualised recovery exercises accordingly.
Collapse
Affiliation(s)
- Franziska Wagner
- Department of Neurology, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany; Biomagnetic Centre, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany.
| | - Jenny Rogenz
- Department of Neurology, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany; Biomagnetic Centre, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Laura Opitz
- Department of Neurology, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany; Biomagnetic Centre, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Johanna Maas
- Department of Neurology, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany; Biomagnetic Centre, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Alexander Schmidt
- Department of Neurology, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany; Biomagnetic Centre, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Stefan Brodoehl
- Department of Neurology, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany; Biomagnetic Centre, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Markus Ullsperger
- Faculty of Natural Sciences, Institute of Psychology, 39106 Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Carsten M Klingner
- Department of Neurology, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany; Biomagnetic Centre, 07747 Jena University Hospital, Friedrich Schiller University Jena, Germany
| |
Collapse
|
14
|
Schlögl H, Janssen L, Fasshauer M, Miehle K, Villringer A, Stumvoll M, Mueller K. Reward Processing During Monetary Incentive Delay Task After Leptin Substitution in Lipodystrophy-an fMRI Case Series. J Endocr Soc 2023; 7:bvad052. [PMID: 37180211 PMCID: PMC10174197 DOI: 10.1210/jendso/bvad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 05/16/2023] Open
Abstract
Context Behaviorally, the most pronounced effects of leptin substitution in leptin deficiency are the hunger-decreasing and postprandial satiety-prolonging effects of the adipokine. Previously, with functional magnetic resonance imaging (MRI), we and others showed that eating behavior-controlling effects are at least in part conveyed by the reward system. However, to date, it is unclear if leptin only modulates eating behavior specific brain reward action or if it also alters the reward function of the brain unrelated to eating behavior. Objective We investigated with functional MRI the effects of metreleptin on the reward system in a reward task unrelated to eating behavior, the monetary incentive delay task. Design Measurements in 4 patients with the very rare disease of lipodystrophy (LD), resulting in leptin deficiency, and 3 untreated healthy control persons were performed at 4 different time points: before start and over 12 weeks of metreleptin treatment. Inside the MRI scanner, participants performed the monetary incentive delay task and brain activity during the reward receipt phase of the trial was analyzed. Results We found a reward-related brain activity decrease in our 4 patients with LD over the 12 weeks of metreleptin treatment in the subgenual region, a brain area associated with the reward network, which was not observed in our 3 untreated healthy control persons. Conclusions These results suggest that leptin replacement in LD induces changes of brain activity during reward reception processing completely unrelated to eating behavior or food stimuli. This could suggest eating behavior-unrelated functions of leptin in the human reward system. Trial registration The trial is registered as trial No. 147/10-ek at the ethics committee of the University of Leipzig and at the State Directorate of Saxony (Landesdirektion Sachsen).
Collapse
Affiliation(s)
- Haiko Schlögl
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Lieneke Janssen
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Mathias Fasshauer
- Institute of Nutritional Sciences, Justus-Liebig-University, 35390 Giessen, Germany
| | - Konstanze Miehle
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Arno Villringer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Day Clinic of Cognitive Neurology, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Karsten Mueller
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, 12000 Prague, Czech Republic
| |
Collapse
|
15
|
Ren P, Hou G, Ma M, Zhuang Y, Huang J, Tan M, Wu D, Luo G, Zhang Z, Rong H. Enhanced putamen functional connectivity underlies altered risky decision-making in age-related cognitive decline. Sci Rep 2023; 13:6619. [PMID: 37095127 PMCID: PMC10126002 DOI: 10.1038/s41598-023-33634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
Risky decision-making is critical to survival and development, which has been compromised in elderly populations. However, the neural substrates of altered financial risk-taking behavior in aging are still under-investigated. Here we examined the intrinsic putamen network in modulating risk-taking behaviors of Balloon Analogue Risk Task in healthy young and older adults using resting-state fMRI. Compared with the young group, the elderly group showed significantly different task performance. Based on the task performance, older adults were further subdivided into two subgroups, showing young-like and over-conservative risk behaviors, regardless of cognitive decline. Compared with young adults, the intrinsic pattern of putamen connectivity was significantly different in over-conservative older adults, but not in young-like older adults. Notably, age-effects on risk behaviors were mediated via the putamen functional connectivity. In addition, the putamen gray matter volume showed significantly different relationships with risk behaviors and functional connectivity in over-conservative older adults. Our findings suggest that reward-based risky behaviors might be a sensitive indicator of brain aging, highlighting the critical role of the putamen network in maintaining optimal risky decision-making in age-related cognitive decline.
Collapse
Affiliation(s)
- Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Manxiu Ma
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Jiayin Huang
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Meiling Tan
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Donghui Wu
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Guozhi Luo
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Han Rong
- Department of Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
Kruithof ES, Klaus J, Schutter DJLG. The human cerebellum in reward anticipation and reward outcome processing: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2023; 149:105171. [PMID: 37060968 DOI: 10.1016/j.neubiorev.2023.105171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The cerebellum generates internal prediction models and actively compares anticipated and actual outcomes in order to reach a desired end state. In this process, reward can serve as a reinforcer that shapes internal prediction models, enabling context-appropriate behavior. While the involvement of the cerebellum in reward processing has been established in animals, there is no detailed account of which cerebellar regions are involved in reward anticipation and reward outcome processing in humans. To this end, an activation likelihood estimation meta-analysis of functional neuroimaging studies was performed to investigate cerebellar functional activity patterns associated with reward anticipation and reward outcome processing in healthy adults. Results showed that reward anticipation (k=31) was associated with regional activity in the bilateral anterior lobe, bilateral lobule VI, left Crus I and the posterior vermis, while reward outcome (k=16) was associated with regional activity in the declive and left lobule VI. The findings of this meta-analysis show distinct involvement of the cerebellum in reward anticipation and reward outcome processing as part of a predictive coding routine.
Collapse
Affiliation(s)
- Eline S Kruithof
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands.
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
17
|
Musial MPM, Beck A, Rosenthal A, Charlet K, Bach P, Kiefer F, Vollstädt-Klein S, Walter H, Heinz A, Rothkirch M. Reward Processing in Alcohol-Dependent Patients and First-Degree Relatives: Functional Brain Activity During Anticipation of Monetary Gains and Losses. Biol Psychiatry 2023; 93:546-557. [PMID: 35863919 DOI: 10.1016/j.biopsych.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND According to the reward deficiency syndrome and allostatic hypotheses, hyposensitivity of mesocorticolimbic regions to non-alcohol-related stimuli predisposes to dependence or is long-lastingly enhanced by chronic substance use. To date, no study has directly compared mesocorticolimbic brain activity during non-drug reward anticipation between alcohol-dependent, at risk, and healthy subjects. METHODS Seventy-five abstinent alcohol-dependent human subjects (mean abstinence duration 957.66 days), 62 healthy first-degree relatives of alcohol-dependent individuals, and 76 healthy control subjects without family history of alcohol dependence performed a monetary incentive delay task. Functional magnetic resonance imaging data of the anticipation phase were analyzed, during which visual cues predicted that fast response to a target would result in monetary gain, avoidance of monetary loss, or a neutral outcome. RESULTS During gain anticipation, there were no significant group differences. During loss anticipation, abstinent alcohol-dependent subjects showed lower activity in the left anterior insula compared with healthy control subjects without family history of alcohol dependence only (Montreal Neurological Institute [MNI] -25 19 -5; t206 = 4.17, familywise error corrected p = .009). However, this effect was no longer significant when age was included as a covariate. There were no group differences between abstinent alcohol-dependent subjects and healthy first-degree relatives or between healthy first-degree relatives and healthy control subjects during loss anticipation, respectively. CONCLUSIONS Neither the neural reward deficiency syndrome nor the allostatic hypotheses are supported by the results. Future studies should investigate whether the incentive salience hypothesis allows for more accurate predictions regarding mesocorticolimbic brain activity of subjects with alcohol dependence and healthy individuals during reward and loss anticipation and further examine the neural substrates underlying a predisposition to dependence.
Collapse
Affiliation(s)
- Milena P M Musial
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany.
| | - Anne Beck
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany; Health and Medical University, Campus Potsdam, Faculty of Health, Potsdam, Germany
| | - Annika Rosenthal
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| | - Katrin Charlet
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Patrick Bach
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany; Mannheim Center for Translational Neurosciences, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany; Mannheim Center for Translational Neurosciences, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| | - Andreas Heinz
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| | - Marcus Rothkirch
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| |
Collapse
|
18
|
Anderson Z, Damme KSF, Carroll AL, Ka-Yi Chat I, Young KS, Craske MG, Bookheimer S, Zinbarg R, Nusslock R. Association between reward-related functional connectivity and tri-level mood and anxiety symptoms. Neuroimage Clin 2023; 37:103335. [PMID: 36736199 PMCID: PMC9926301 DOI: 10.1016/j.nicl.2023.103335] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/29/2023]
Abstract
Depression and anxiety are associated with abnormalities in brain regions that process rewards including the medial orbitofrontal cortex (mOFC), the ventral striatum (VS), and the amygdala. However, there are inconsistencies in these findings. This may be due to past reliance on categorical diagnoses that, while valuable, provide less precision than may be required to understand subtle neural changes associated with symptoms of depression and anxiety. In contrast, the tri-level model defines symptom dimensions that are common (General Distress) or relatively specific (Anhedonia-Apprehension, Fears) to depression and anxiety related disorders, which provide increased precision. In the current study, eligibility was assessed by quasi-orthogonal screening questionnaires measuring reward and threat sensitivity (Behavioral Activation Scale; Eysenck Personality Questionnaire-Neuroticism). These participants were assessed on tri-level symptom severity and completed the Monetary Incentive Delay task during fMRI scanning. VS-mOFC and VS-amygdala connectivity were estimated during reward anticipation and reward outcome. Heightened General Distress was associated with lower VS-mOFC connectivity during reward anticipation (b = -0.064, p = 0.021) and reward outcome (b = -0.102, p = 0.014). Heightened Anhedonia-Apprehension was associated with greater VS-amygdala connectivity during reward anticipation (b = 0.065, p = 0.004). The present work has important implications for understanding the coupling between the mOFC and vS and the amygdala and the vS during reward processing in the pathophysiology of mood and anxiety symptoms and for developing targeted behavioral, pharmacological, and neuromodulatory interventions to help manage these symptoms.
Collapse
Affiliation(s)
- Zachary Anderson
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Innovation in Developmental Sciences, Chicago, IL, USA
| | - Ann L Carroll
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Iris Ka-Yi Chat
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Katherine S Young
- Social, Genetic and Development Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College, London SE5 8AF, UK
| | - Michelle G Craske
- Department of Psychology, University of California Los Angeles, Los Angeles, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - Susan Bookheimer
- Department of Psychology, University of California Los Angeles, Los Angeles, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA; Ahmanson-Lovelace Brain Mapping Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, USA
| | - Richard Zinbarg
- Department of Psychology, Northwestern University, Evanston, IL, USA; The Family Institute at Northwestern University, Evanston, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
19
|
Alfandari D, Richter M, Wendt D, Fiedler L, Naylor G. Previous Mental Load and Incentives Influence Anticipatory Arousal as Indexed by the Baseline Pupil Diameter in a Speech-in-Noise Task. Trends Hear 2023; 27:23312165231196520. [PMID: 37847850 PMCID: PMC10583525 DOI: 10.1177/23312165231196520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 10/19/2023] Open
Abstract
Listening effort and fatigue are common experiences when conversing in noisy environments. Much research has investigated listening effort in relation to listening demand using the speech-in-noise paradigm. Recent conceptualizations of listening effort postulate that mental fatigue should result in decreased arousal and a reluctance to invest further effort, particularly when the effort is not worthwhile. The aim of the study was to investigate the influence of fatigue on listening effort, in interaction with listening demands and motivation. To induce fatigue 30 adults with normal hearing completed a 40-minute long speech-in-noise task ("load sequence"). Pre- and post-load sequence listening effort was probed in easy and hard listening demands (individually adjusted signal-to-noise ratios); with high and low motivation (manipulated with monetary incentives). Subjective effort, estimated performance, and tendency to quit listening were collected using rating scales. Baseline pupil diameter and mean pupil dilation were recorded as indices of anticipatory arousal and objective effort. Self-reported effort and mean pupil dilation were overall larger during hard SNR as compared to easy SNR. Baseline pupil diameter declined from pre- to post-load sequence, suggesting an overall decrease in arousal. Monetary incentives had no influence on the baseline pupil diameter for the easy SNR condition, but for the hard SNR condition larger incentives led to larger baseline pupil diameter. These results suggest that anticipatory arousal may be influenced by fatigue and motivation effects. Models of listening effort should account for the independent influence of motivation and previous load on anticipatory arousal and effort in distinct parameters.
Collapse
Affiliation(s)
- Defne Alfandari
- School of Medicine, Mental Health and Clinical Neurosciences, Hearing Sciences – Scottish Section, University of Nottingham, Glasgow, UK
| | - Michael Richter
- School of Psychology, Liverpool John Moores University, Liverpool, UK
| | - Dorothea Wendt
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Hearing Systems, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lorenz Fiedler
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
| | - Graham Naylor
- School of Medicine, Mental Health and Clinical Neurosciences, Hearing Sciences – Scottish Section, University of Nottingham, Glasgow, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| |
Collapse
|
20
|
Zheng Q, Ba X, Wang Q, Cheng J, Nan J, He T. Functional differentiation of the dorsal striatum: a coordinate-based neuroimaging meta-analysis. Quant Imaging Med Surg 2023; 13:471-488. [PMID: 36620169 PMCID: PMC9816733 DOI: 10.21037/qims-22-133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/17/2022] [Indexed: 01/11/2023]
Abstract
Background The dorsal striatum, a nucleus in the basal ganglia, plays a key role in the execution of cognitive functions in the human brain. Recent studies have focused on how the dorsal striatum participates in a single cognitive function, whereas the specific roles of the caudate and putamen in performing multiple cognitive functions remain unclear. In this paper we conducted a meta-analysis of the relevant neuroimaging literature to understand the roles of subregions of the dorsal striatum in performing different functions. Methods PubMed, Web of Science, and BrainMap Functional Database were searched to find original functional magnetic resonance imaging (fMRI) studies conducted on healthy adults under reward, memory, emotion, and decision-making tasks, and relevant screening criteria were formulated. Single task activation, contrast activation, and conjunction activation analyses were performed using the activation likelihood estimation (ALE) method for the coordinate-based meta-analysis to evaluate the differences and linkages. Results In all, 112 studies were included in this meta-analysis. Analysis revealed that, of the 4 single activation tasks, reward, memory, and emotion tasks all activated the putamen more, whereas decision-making tasks activated the caudate body. Contrast analysis showed that the caudate body played an important role in the 2 cooperative activation tasks, but conjunction activation results found that more peaks appeared in the caudate head. Discussion Different subregions of the caudate and putamen assume different roles in processing complex cognitive behaviors. Functional division of the dorsal striatum identified specific roles of 15 different subregions, reflecting differences and connections between the different subregions in performing different cognitive behaviors.
Collapse
Affiliation(s)
- Qian Zheng
- College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaojuan Ba
- College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qiang Wang
- College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junying Cheng
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaofen Nan
- College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Taigang He
- Biomedical Research Unit, Royal Brompton Hospital and Imperial College London, London, UK;,Cardiovascular Sciences Research Centre, St George’s, University of London, London, UK
| |
Collapse
|
21
|
Ogura Y, Wakatsuki Y, Hashimoto N, Miyamoto T, Nakai Y, Toyomaki A, Tsuchida Y, Nakagawa S, Inoue T, Kusumi I. Hyperthymic temperament predicts neural responsiveness for monetary reward. J Affect Disord 2023; 320:674-681. [PMID: 36206884 DOI: 10.1016/j.jad.2022.09.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Hyperthymic temperament is cheerful action orientation, and is suggested to have a protective effect on depressive symptoms. Responsiveness for reward, which is diminished in depressive patients, is suggested to be related to hyperthymic temperament. Moreover, neural hypoactivation in the reward system in depressive patients is well known. However, only a few previous studies have investigated the neurobiological substrate of hyperthymic temperament. We investigated the relationship between hyperthymic temperament and responsiveness to monetary rewards at the neural level. METHODS Healthy participants performed a modified version of the monetary incentive delay task in a functional magnetic resonance imaging scanner. We explored the brain regions where neural responsiveness for monetary reward was predicted by hyperthymic temperament. RESULTS Brain areas in the reward system were widely activated for reward anticipation. Activation in the left thalamus and left putamen was positively predicted by hyperthymic temperament. Conversely, activation in the ventral striatum and right insula was not modulated by hyperthymic temperament. No region activated for reward outcome was not modulated by hyperthymic temperament. LIMITATIONS Behavioral responsiveness to reward was not predicted by hyperthymic temperament or neural activity. Moreover, we did not correct P values for multiple regression analysis, considering that this was an exploratory study. CONCLUSIONS We found a neurobiological foundation for the protective aspect of hyperthymic temperament against depression in the reward system. Our findings suggest that the hyperthymic temperament may modulate attentional or motor responses or optimal selection of behavior based on reward, rather than value representation.
Collapse
Affiliation(s)
- Yukiko Ogura
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yumi Wakatsuki
- Department of Psychiatry, The Hokkaido Medical Center, 1-1, 5-7 Yamanote, Nishi-ku, Sapporo 063-0005, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan.
| | - Tamaki Miyamoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Yukiei Nakai
- New Drug Research Center Inc., 452-1 Toiso, Eniwa-shi, Hokkaido 061-1405, Japan
| | - Atsuhito Toyomaki
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Yukio Tsuchida
- School of Education, Osaka University of Health and Sport Sciences, 1-1 Asashirodai, Kumatori-cho, Sennan-gun, Osaka 590-0496, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
22
|
Chen Y, Dhingra I, Le TM, Zhornitsky S, Zhang S, Li CSR. Win and Loss Responses in the Monetary Incentive Delay Task Mediate the Link between Depression and Problem Drinking. Brain Sci 2022; 12:brainsci12121689. [PMID: 36552149 PMCID: PMC9775947 DOI: 10.3390/brainsci12121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Depression and alcohol misuse, frequently comorbid, are associated with altered reward processing. However, no study has examined whether and how the neural markers of reward processing are shared between depression and alcohol misuse. We studied 43 otherwise-healthy drinking adults in a monetary incentive delay task (MIDT) during fMRI. All participants were evaluated with the Alcohol Use Disorders Identification Test (AUDIT) and Beck's Depression Inventory (BDI-II) to assess the severity of drinking and depression. We performed whole brain regressions against each AUDIT and BDI-II score to investigate the neural correlates and evaluated the findings at a corrected threshold. We performed mediation analyses to examine the inter-relationships between win/loss responses, alcohol misuse, and depression. AUDIT and BDI-II scores were positively correlated across subjects. Alcohol misuse and depression shared win-related activations in frontoparietal regions and parahippocampal gyri (PHG), and right superior temporal gyri (STG), as well as loss-related activations in the right PHG and STG, and midline cerebellum. These regional activities (β's) completely mediated the correlations between BDI-II and AUDIT scores. The findings suggest shared neural correlates interlinking depression and problem drinking both during win and loss processing and provide evidence for co-morbid etiological processes of depressive and alcohol use disorders.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Thang M. Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
- Correspondence: ; Tel.: +1-203-974-7354
| |
Collapse
|
23
|
Chen Y, Chaudhary S, Li CSR. Shared and distinct neural activity during anticipation and outcome of win and loss: A meta-analysis of the monetary incentive delay task. Neuroimage 2022; 264:119764. [PMID: 36427755 PMCID: PMC9837714 DOI: 10.1016/j.neuroimage.2022.119764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Reward and punishment motivate decision making and behavioral changes. Numerous studies have examined regional activities during anticipation and outcome of win and loss in the monetary incentive delay task (MIDT). However, the great majority of studies reported findings of anticipation or outcome and of win or loss alone. It remains unclear how the neural correlates share and differentiate amongst these processes. We conducted an Activation Likelihood Estimation meta-analysis of 81 studies of the MIDT (5,864 subjects), including 24 published since the most recent meta-analysis, to identify and, with conjunction and subtraction, contrast regional responses to win anticipation, loss anticipation, win outcome, and loss outcome. Win and loss anticipation engaged a shared network of bilateral anterior insula (AI), striatum, thalamus, supplementary motor area (SMA), and precentral gyrus. Win and loss outcomes did not share regional activities. Win and loss outcome each engaged higher activity in medial orbitofrontal cortex (mOFC) and dorsal anterior cingulate cortex. Bilateral striatum and right occipital cortex responded to both anticipation and outcome of win, and right AI to both phases of loss. Win anticipation vs. outcome engaged higher activity in bilateral AI, striatum, SMA and precentral gyrus and right thalamus, and lower activity in bilateral mOFC and posterior cingulate cortex as well as right inferior frontal and angular gyri. Loss anticipation relative to outcome involved higher activity in bilateral striatum and left AI. These findings collectively suggest shared and distinct regional responses during monetary wins and losses. Delineating the neural correlates of these component processes may facilitate empirical research of motivated behaviors and dysfunctional approach and avoidance in psychopathology.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Inter-department Neuroscience Program, Yale University, New Haven, CT 06520, USA; Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Kaiser A, Holz NE, Banaschewski T, Baumeister S, Bokde ALW, Desrivières S, Flor H, Fröhner JH, Grigis A, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Paillère Martinot ML, Artiges E, Millenet S, Orfanos DP, Poustka L, Schwarz E, Smolka MN, Walter H, Whelan R, Schumann G, Brandeis D, Nees F. A Developmental Perspective on Facets of Impulsivity and Brain Activity Correlates From Adolescence to Adulthood. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1103-1115. [PMID: 35182817 PMCID: PMC9636026 DOI: 10.1016/j.bpsc.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND On a theoretical level, impulsivity represents a multidimensional construct associated with acting without foresight, inefficient inhibitory response control, and alterations in reward processing. On an empirical level, relationships and changes in associations between different measures of impulsivity from adolescence into young adulthood and their relation to neural activity during inhibitory control and reward anticipation have not been fully understood. METHODS We used data from IMAGEN, a longitudinal multicenter, population-based cohort study in which 2034 healthy adolescents were investigated at age 14, and 1383 were reassessed as young adults at age 19. We measured the construct of trait impulsivity using self-report questionnaires and neurocognitive indices of decisional impulsivity. With functional magnetic resonance imaging, we assessed brain activity during inhibition error processing using the stop signal task and during reward anticipation in the monetary incentive delay task. Correlations were analyzed, and mixed-effect models were fitted to explore developmental and predictive effects. RESULTS All self-report and neurocognitive measures of impulsivity proved to be correlated during adolescence and young adulthood. Further, pre-supplementary motor area and inferior frontal gyrus activity during inhibition error processing was associated with trait impulsivity in adolescence, whereas in young adulthood, a trend-level association with reward anticipation activity in the ventral striatum was found. For adult delay discounting, a trend-level predictive effect of adolescent neural activity during inhibition error processing emerged. CONCLUSIONS Our findings help to inform theories of impulsivity about the development of its multidimensional nature and associated brain activity patterns and highlight the need for taking functional brain development into account when evaluating neuromarker candidates.
Collapse
Affiliation(s)
- Anna Kaiser
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technical University Dresden, Dresden, Germany
| | - Antoine Grigis
- NeuroSpin, Commissariat à l'énergie atomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Department of Psychology, University of Vermont, Burlington, Vermont
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Gif-sur-Yvette, France; Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, L'Assistance Publique-Hôpitaux de Paris Sorbonne Université, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Gif-sur-Yvette, France; Psychiatry Department 91G16, Orsay Hospital, Orsay, France
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technical University Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Psychiatry, University of Vermont, Burlington, Vermont
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Population Neuroscience Research Group, Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom; Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, Swiss Federal Institute of Technology and University of Zürich, Zürich, Switzerland
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
25
|
Zareba MR, Furman W, Binder M. Influence of age and cognitive performance on resting-state functional connectivity of dopaminergic and noradrenergic centers. Brain Res 2022; 1796:148082. [PMID: 36115586 DOI: 10.1016/j.brainres.2022.148082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Aging is associated with structural and functional changes in the brain, with a decline in cognitive functions observed as its inevitable concomitant. The body of literature suggests dopamine and noradrenaline as prominent candidate neuromodulators to mediate these effects; however, knowledge regarding the underlying mechanisms is scarce. To fill this gap, we compared resting-state functional connectivity (FC) patterns of ventral tegmental area (VTA), substantia nigra pars compacta (SNc) and locus coeruleus (LC) in healthy young (20-35 years; N = 37) and older adults (55-80 years; N = 27). Additionally, we sought FC patterns of these structures associated with performance in tasks probing executive, attentional and reward functioning, and we compared the functional coupling of the bilateral SNc. The results showed that individual SNc had stronger coupling with ipsilateral cortical and subcortical areas along with the contralateral cerebellum in the whole sample, and that the strength of connections of this structure with angular gyrus and lateral orbitofrontal cortex predicted visuomotor search abilities. In turn, older age was associated with greater local synchronization within VTA, its lower FC with caudate, mediodorsal thalamus, and SNc, as well as higher FC of both midbrain dopaminergic seeds with red nuclei. LC functional coupling showed no differences between the groups and was not associated with any of the behavioral functions. To the best of our knowledge, this work is the first to report the age-related effects on VTA local synchronization and its connectivity with key recipients of dopaminergic innervation, such as striatum and mediodorsal thalamus.
Collapse
Affiliation(s)
- Michal Rafal Zareba
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Krakow, Poland
| | - Wiktoria Furman
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Krakow, Poland.
| | - Marek Binder
- Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Krakow, Poland
| |
Collapse
|
26
|
Li CS, Chen Y, Ide JS. Gray matter volumetric correlates of attention deficit and hyperactivity traits in emerging adolescents. Sci Rep 2022; 12:11367. [PMID: 35790754 PMCID: PMC9256746 DOI: 10.1038/s41598-022-15124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Previous research has demonstrated reduction in cortical and subcortical, including basal ganglia (BG), gray matter volumes (GMV) in individuals with attention deficit hyperactivity disorder (ADHD), a neurodevelopmental condition that is more prevalent in males than in females. However, the volumetric deficits vary across studies. Whether volumetric reductions are more significant in males than females; to what extent these neural markers are heritable and relate to cognitive dysfunction in ADHD remain unclear. To address these questions, we followed published routines and performed voxel-based morphometry analysis of a data set (n = 11,502; 5,464 girls, 9-10 years) curated from the Adolescent Brain Cognition Development project, a population-based study of typically developing children. Of the sample, 634 and 2,826 were identified as monozygotic twins and dizygotic twins/siblings, respectively. In linear regressions, a cluster in the hypothalamus showed larger GMV, and bilateral caudate and putamen, lateral orbitofrontal and occipital cortex showed smaller GMVs, in correlation with higher ADHD scores in girls and boys combined. When examined separately, boys relative to girls showed more widespread (including BG) and stronger associations between GMV deficits and ADHD scores. ADHD traits and the volumetric correlates demonstrated heritability estimates (a2) between 0.59 and 0.79, replicating prior findings of the genetic basis of ADHD. Further, ADHD traits and the volumetric correlates (except for the hypothalamus) were each negatively and positively correlated with N-back performance. Together, these findings confirm volumetric deficits in children with more prominent ADHD traits. Highly heritable in both girls and boys and potentially more significant in boys than in girls, the structural deficits underlie diminished capacity in working memory and potentially other cognitive deficits in ADHD.
Collapse
Affiliation(s)
- Clara S Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- Smith College, Northampton, MA, 06492, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
27
|
Chen Y, Ide JS, Li CS, Chaudhary S, Le TM, Wang W, Zhornitsky S, Zhang S, Li CR. Gray matter volumetric correlates of dimensional impulsivity traits in children: Sex differences and heritability. Hum Brain Mapp 2022; 43:2634-2652. [PMID: 35212098 PMCID: PMC9057091 DOI: 10.1002/hbm.25810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 01/22/2023] Open
Abstract
Previous research investigated the cerebral volumetric correlates of impulsivity largely in moderate-sized samples and few have examined the distinct correlates of dimensions of impulsivity, sex differences, or heritability of the correlates. Here, we performed voxel-based morphometry analysis of data (n = 11,474; 5,452 girls, 9-10 years) curated from the Adolescent Brain Cognition Development project. In a linear regression with all five UPPS-P subscores as regressors and age in months, total intracranial volume, study site, and scanner model as covariates, higher levels of lack of premeditation, and sensation seeking were correlated with larger cortical and subcortical gray matter volumes (GMVs). In contrast, higher positive urgency was correlated with smaller GMVs in many of the same regions. The dimensional impulsivity traits also involved distinct volumetric correlates, with, for instance, sensation seeking and positive urgency specifically implicating bilateral caudate head/mid-cingulate cortex and bilateral lateral orbitofrontal cortex/left precentral gyrus, respectively. Boys relative to girls scored higher in all impulsivity dimensions. Girls relative to boys showed significantly stronger positive and negative correlations between sensation seeking and insula, putamen, and inferior frontal gyrus (IFG) GMVs and between positive urgency and cingulate cortex, insula, and IFG GMVs, respectively. With a subsample of twins, the dimensional impulsivity traits were weakly to moderately heritable in both girls and boys, and the GMV correlates were highly heritable in girls and boys combined. These findings collectively suggest shared and nonshared as well as sex differences in the cerebral volumetric bases of dimensional impulsivity traits and may facilitate research of externalizing psychopathology in children.
Collapse
Affiliation(s)
- Yu Chen
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Jaime S. Ide
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Clara S. Li
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
- Department of Statistical and Data SciencesSmith CollegeNorthamptonMassachusettsUSA
| | - Shefali Chaudhary
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Thang M. Le
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Wuyi Wang
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Simon Zhornitsky
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Sheng Zhang
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Chiang‐Shan R. Li
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
- Department of NeuroscienceYale University School of MedicineNew HavenConnecticutUSA
- Inter‐department Neuroscience ProgramYale UniversityNew HavenConnecticutUSA
- Wu Tsai InstituteYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
28
|
Opitz L, Wagner F, Rogenz J, Maas J, Schmidt A, Brodoehl S, Klingner CM. Still Wanting to Win: Reward System Stability in Healthy Aging. Front Aging Neurosci 2022; 14:863580. [PMID: 35707701 PMCID: PMC9190761 DOI: 10.3389/fnagi.2022.863580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Healthy aging is accompanied by multi-faceted changes. Especially within the brain, healthy aging exerts substantial impetus on core parts of cognitive and motivational networks. Rewards comprise basic needs, such as food, sleep, and social contact. Thus, a functionally intact reward system remains indispensable for elderly people to cope with everyday life and adapt to their changing environment. Research shows that reward system function is better preserved in the elderly than most cognitive functions. To investigate the compensatory mechanisms providing reward system stability in aging, we employed a well-established reward paradigm (Monetary Incentive Delay Task) in groups of young and old participants while undergoing EEG measurement. As a new approach, we applied EEG connectivity analyses to assess cortical reward-related network connectivity. At the behavioral level, our results confirm that the function of the reward system is preserved in old age. The mechanisms identified for maintaining reward system function in old age do not fit into previously described models of cognitive aging. Overall, older adults exhibit lower reward-related connectivity modulation, higher reliance on posterior and right-lateralized brain areas than younger adults, and connectivity modulation in the opposite direction than younger adults, with usually greater connectivity during non-reward compared to reward conditions. We believe that the reward system has unique compensatory mechanisms distinct from other cognitive functions, probably due to its etymologically very early origin. In summary, this study provides important new insights into cortical reward network connectivity in healthy aging.
Collapse
Affiliation(s)
- Laura Opitz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Franziska Wagner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
- Clinician Scientist Program OrganAge, Jena University Hospital, Jena, Germany
- *Correspondence: Franziska Wagner,
| | - Jenny Rogenz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Johanna Maas
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Alexander Schmidt
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Stefan Brodoehl
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Carsten M. Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
29
|
Effects of the Fyn kinase inhibitor saracatinib on ventral striatal activity during performance of an fMRI monetary incentive delay task in individuals family history positive or negative for alcohol use disorder. A pilot randomised trial. Neuropsychopharmacology 2022; 47:840-846. [PMID: 34475522 PMCID: PMC8882177 DOI: 10.1038/s41386-021-01157-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Altered striatal regulation of the GluN2B subunit of N-methyl-D-aspartate (NMDA) glutamate receptors by the Fyn/Src family of protein tyrosine kinases has been implicated in animal alcohol consumption. Previously, we have described differences between individuals positive (FHP) and negative (FHN) for familial alcohol use disorder (AUD) in the ventral striatal (VS) activation associated with monetary incentive delay task (MIDT) performance during functional magnetic resonance imaging (fMRI). Here, we used AZD0530 (saracatinib), a centrally active Fyn/Src inhibitor to probe the role of Fyn/Src regulation of NMDA receptors (NMDAR) in VS activation differences between FHP and FHN individuals during fMRI MIDT performance. We studied 21 FHN and 22 FHP individuals, all without AUD. In two sessions, spaced 1 week apart, we administered 125 mg of saracatinib or placebo in a double-blind manner, prior to measuring VS signal during fMRI MIDT performance. MIDT comprises reward prospect, anticipation, and outcome phases. During the initial (prospect of reward) task phase, there was a significant group-by-condition interaction such that, relative to placebo, saracatinib reduced VS BOLD signal in FHP and increased it in FHN individuals. This study provides the first human evidence that elevated signaling in striatal protein kinase A-dependent pathways may contribute to familial AUD risk via amplifying the neural response to the prospect of reward. As Fyn kinase is responsible for NMDAR upregulation, these data are consistent with previous evidence for upregulated NMDAR function within reward circuitry in AUD risk. These findings also suggest a possible therapeutic role for Src/Fyn kinase inhibitors in AUD risk.
Collapse
|
30
|
Rohlfing N, Bonnet U, Tendolkar I, Hinney A, Scherbaum N. Subjective reward processing and catechol- O- methyltransferase Val158Met polymorphism as potential research domain criteria in addiction: A pilot study. Front Psychiatry 2022; 13:992657. [PMID: 36311493 PMCID: PMC9613938 DOI: 10.3389/fpsyt.2022.992657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The Research Domain Criteria (RDoC) approach seeks to understand mental functioning in continuous valid dimensions ranging from functional to pathological. Reward processing is a transdiagnostic functioning domain of the RDoC. Due to prototypical abnormalities, addictions are especially applicable for the investigation of reward processing. Subjective reward processing is challenging to determine and differs between genotypes of the catechol-O-methyltransferase gene (COMT) Val158Met polymorphism for incomparable daily life experiences. Thus, we implemented the monetary incentive delay (MID) task with comparable reward cues and visual analog scales (VAS) to assess subjective reward processing in male abstinent cannabis-dependent individuals (N = 13) and a control group of nicotine smokers (N = 13). COMT Val158Met genotypes were nominally associated with differences in cigarettes smoked per day and motivation in the MID Task (p = 0.028; p = 0.017). For feedback gain, activation of the right insula was increased in controls, and activation correlated with gain expectancy and satisfaction about gain. Subjective value is not detached from reward parameters, but is modulated from expectancy and reward by the insula. The underlying neural mechanisms are a fundamental target point for treatments, interventions, and cognitive behavioral therapy.
Collapse
Affiliation(s)
- Nico Rohlfing
- Department of Addictive Behaviour and Addiction Medicine, LVR-Hospital Essen, Hospital of the University of Duisburg-Essen, Essen, Germany.,Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Hospital of the University of Duisburg-Essen, Essen, Germany
| | - Udo Bonnet
- Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Hospital of the University of Duisburg-Essen, Essen, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University of Duisburg-Essen, Essen, Germany
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behaviour, Centre for Medical Neuroscience, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Norbert Scherbaum
- Department of Addictive Behaviour and Addiction Medicine, LVR-Hospital Essen, Hospital of the University of Duisburg-Essen, Essen, Germany.,Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Hospital of the University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
31
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Emotion Processing Dysfunction in Alzheimer's Disease: An Overview of Behavioral Findings, Systems Neural Correlates, and Underlying Neural Biology. Am J Alzheimers Dis Other Demen 2022; 37:15333175221082834. [PMID: 35357236 PMCID: PMC9212074 DOI: 10.1177/15333175221082834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We described behavioral studies to highlight emotional processing deficits in Alzheimer's disease (AD). The findings suggest prominent deficit in recognizing negative emotions, pronounced effect of positive emotion on enhancing memory, and a critical role of cognitive deficits in manifesting emotional processing dysfunction in AD. We reviewed imaging studies to highlight morphometric and functional markers of hippocampal circuit dysfunction in emotional processing deficits. Despite amygdala reactivity to emotional stimuli, hippocampal dysfunction conduces to deficits in emotional memory. Finally, the reviewed studies implicating major neurotransmitter systems in anxiety and depression in AD supported altered cholinergic and noradrenergic signaling in AD emotional disorders. Overall, the studies showed altered emotions early in the course of illness and suggest the need of multimodal imaging for further investigations. Particularly, longitudinal studies with multiple behavioral paradigms translatable between preclinical and clinical models would provide data to elucidate the time course and underlying neurobiology of emotion processing dysfunction in AD.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H. Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Christopher H. van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA,Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Srirangarajan T, Mortazavi L, Bortolini T, Moll J, Knutson B. Multi-band FMRI compromises detection of mesolimbic reward responses. Neuroimage 2021; 244:118617. [PMID: 34600102 PMCID: PMC8626533 DOI: 10.1016/j.neuroimage.2021.118617] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2022] Open
Abstract
Recent innovations in Functional Magnetic Resonance Imaging (FMRI) have sped data collection by enabling simultaneous scans of neural activity in multiple brain locations, but have these innovations come at a cost? In a meta-analysis and preregistered direct comparison of original data, we examined whether acquiring FMRI data with multi-band versus single-band scanning protocols might compromise detection of mesolimbic activity during reward processing. Meta-analytic results (n = 44 studies; cumulative n = 5005 subjects) indicated that relative to single-band scans, multi-band scans showed significantly decreased effect sizes for reward anticipation in the Nucleus Accumbens (NAcc) by more than half. Direct within-subject comparison of single-band versus multi-band scanning data (multi-band factors = 4 and 8; n = 12 subjects) acquired during repeated administration of the Monetary Incentive Delay task indicated that reductions in temporal signal-to-noise ratio could account for compromised detection of task-related responses in mesolimbic regions (i.e., the NAcc). Together, these findings imply that researchers should opt for single-band over multi-band scanning protocols when probing mesolimbic responses with FMRI. The findings also have implications for inferring mesolimbic activity during related tasks and rest, for summarizing historical results, and for using neuroimaging data to track individual differences in reward-related brain activity.
Collapse
Affiliation(s)
- Tara Srirangarajan
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Leili Mortazavi
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Tiago Bortolini
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jorge Moll
- Department of Psychology, Stanford University, Stanford, CA, United States; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
33
|
Secondary rewards acquire enhanced incentive motivation via increasing anticipatory activity of the lateral orbitofrontal cortex. Brain Struct Funct 2021; 226:2339-2355. [PMID: 34254166 DOI: 10.1007/s00429-021-02333-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
The motivation to strive for and consume primary rewards such as palatable food is bound by devaluation mechanisms, yet secondary rewards such as money may not be bound by these regulatory mechanisms. The present study therefore aimed at determining diverging devaluation trajectories for primary (chocolate milk) and secondary (money) reinforcers on the behavioral and neural level. Devaluation procedures with repeated exposure to reward combined with a choice (Experiment 1) and an incentive delay (Experiment 2) paradigm consistently revealed decreasing hedonic value for the primary reward as reflected by decreasing hedonic evaluation and choice preference with repeated receipt, while hedonic value and preferences for the secondary reward increased. Concomitantly acquired functional near-infrared spectroscopy (fNIRS) data during the incentive delay paradigm revealed that increasing value of the secondary reward was accompanied by increasing anticipatory activation in the lateral orbitofrontal cortex, while during the consummatory phase the secondary reinforcer associated with higher medial orbitofrontal activity irrespective of devaluation stage. Overall, the findings suggest that-in contrast to primary reinforcers-secondary reinforcers, i.e. money, can acquire progressively enhanced incentive motivation with repeated receipt, suggesting a mechanism which could promote escalating striving to obtain secondary rewards.
Collapse
|
34
|
Demidenko MI, Weigard AS, Ganesan K, Jang H, Jahn A, Huntley ED, Keating DP. Interactions between methodological and interindividual variability: How Monetary Incentive Delay (MID) task contrast maps vary and impact associations with behavior. Brain Behav 2021; 11:e02093. [PMID: 33750042 PMCID: PMC8119872 DOI: 10.1002/brb3.2093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Phenomena related to reward responsiveness have been extensively studied in their associations with substance use and socioemotional functioning. One important task in this literature is the Monetary Incentive Delay (MID) task. By cueing and delivering performance-contingent reward, the MID task has been demonstrated to elicit robust activation of neural circuits involved in different phases of reward responsiveness. However, systematic evaluations of common MID task contrasts have been limited to between-study comparisons of group-level activation maps, limiting their ability to directly evaluate how researchers' choice of contrasts impacts conclusions about individual differences in reward responsiveness or brain-behavior associations. METHODS In a sample of 104 participants (Age Mean = 19.3, SD = 1.3), we evaluate similarities and differences between contrasts in: group- and individual-level activation maps using Jaccard's similarity index, region of interest (ROI) mean signal intensities using Pearson's r, and associations between ROI mean signal intensity and psychological measures using Bayesian correlation. RESULTS Our findings demonstrate more similarities than differences between win and loss cues during the anticipation contrast, dissimilarity between some win anticipation contrasts, an apparent deactivation effect in the outcome phase, likely stemming from the blood oxygen level-dependent undershoot, and behavioral associations that are less robust than previously reported. CONCLUSION Consistent with recent empirical findings, this work has practical implications for helping researchers interpret prior MID studies and make more informed a priori decisions about how their contrast choices may modify results.
Collapse
Affiliation(s)
| | - Alexander S Weigard
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Addiction Center, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - Hyesue Jang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Jahn
- The Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Edward D Huntley
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Daniel P Keating
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Coelho A, Fernandes HM, Magalhães R, Moreira PS, Marques P, Soares JM, Amorim L, Portugal‐Nunes C, Castanho T, Santos NC, Sousa N. Reorganization of brain structural networks in aging: A longitudinal study. J Neurosci Res 2021; 99:1354-1376. [PMID: 33527512 PMCID: PMC8248023 DOI: 10.1002/jnr.24795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022]
Abstract
Normal aging is characterized by structural and functional changes in the brain contributing to cognitive decline. Structural connectivity (SC) describes the anatomical backbone linking distinct functional subunits of the brain and disruption of this communication is thought to be one of the potential contributors for the age-related deterioration observed in cognition. Several studies already explored brain network's reorganization during aging, but most focused on average connectivity of the whole-brain or in specific networks, such as the resting-state networks. Here, we aimed to characterize longitudinal changes of white matter (WM) structural brain networks, through the identification of sub-networks with significantly altered connectivity along time. Then, we tested associations between longitudinal changes in network connectivity and cognition. We also assessed longitudinal changes in topological properties of the networks. For this, older adults were evaluated at two timepoints, with a mean interval time of 52.8 months (SD = 7.24). WM structural networks were derived from diffusion magnetic resonance imaging, and cognitive status from neurocognitive testing. Our results show age-related changes in brain SC, characterized by both decreases and increases in connectivity weight. Interestingly, decreases occur in intra-hemispheric connections formed mainly by association fibers, while increases occur mostly in inter-hemispheric connections and involve association, commissural, and projection fibers, supporting the last-in-first-out hypothesis. Regarding topology, two hubs were lost, alongside with a decrease in connector-hub inter-modular connectivity, reflecting reduced integration. Simultaneously, there was an increase in the number of provincial hubs, suggesting increased segregation. Overall, these results confirm that aging triggers a reorganization of the brain structural network.
Collapse
Affiliation(s)
- Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center – BragaBragaPortugal
| | - Henrique M. Fernandes
- Center for Music in the Brain (MIB)Aarhus UniversityAarhusDenmark
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center – BragaBragaPortugal
| | - Pedro S. Moreira
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center – BragaBragaPortugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center – BragaBragaPortugal
| | - José M. Soares
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center – BragaBragaPortugal
| | - Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center – BragaBragaPortugal
| | - Carlos Portugal‐Nunes
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center – BragaBragaPortugal
| | - Teresa Castanho
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center – BragaBragaPortugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center – BragaBragaPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center – BragaBragaPortugal
| |
Collapse
|
36
|
Zhornitsky S, Dhingra I, Le TM, Wang W, Li CSR, Zhang S. Reward-Related Responses and Tonic Craving in Cocaine Addiction: An Imaging Study of the Monetary Incentive Delay Task. Int J Neuropsychopharmacol 2021; 24:634-644. [PMID: 33822080 PMCID: PMC8378081 DOI: 10.1093/ijnp/pyab016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cocaine addiction is associated with altered sensitivity to natural reinforcers and intense drug craving. However, previous findings on reward-related responses were mixed, and few studies have examined whether reward responses relate to tonic cocaine craving. METHODS We combined functional magnetic resonance imaging and a monetary incentive delay task to investigate these issues. Imaging data were processed with published routines, and the results were evaluated with a corrected threshold. We compared reward responses of 50 cocaine-dependent individuals (CDs) and 45 healthy controls (HCs) for the ventral striatum (VS) and the whole brain. We also examined the regional responses in association with tonic cocaine craving, as assessed by the Cocaine Craving Questionnaire (CCQ) in CDs. We performed mediation analyses to evaluate the relationship between regional responses, CCQ score, and recent cocaine use. RESULTS The VS showed higher activation to large as compared with small or no wins, but this reward-related activity did not differ between CDs and HCs. The precentral gyrus (PCG), anterior insula, and supplementary motor area showed higher activation during large vs no wins in positive correlation with the CCQ score in CDs. Mediation analyses suggested that days of cocaine use in the prior month contributed to higher CCQ scores and, in turn, PCG reward responses. CONCLUSIONS The results highlight a unique relationship between reward responses of the primary motor cortex, tonic cocaine craving, and recent cocaine use. The motor cortex may partake in the cognitive motor processes critical to drug-seeking behavior in addicted individuals.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Correspondence: Sheng Zhang, PhD, Connecticut Mental Health Center, S103, 34 Park Street, New Haven, CT 06519-1109, USA ()
| |
Collapse
|
37
|
Dhingra I, Zhang S, Zhornitsky S, Wang W, Le TM, Li CSR. Sex differences in neural responses to reward and the influences of individual reward and punishment sensitivity. BMC Neurosci 2021; 22:12. [PMID: 33639845 PMCID: PMC7913329 DOI: 10.1186/s12868-021-00618-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Men and women show differences in sensitivity to reward and punishment, which may impact behavior in health and disease. However, the neural bases of these sex differences remain under-investigated. Here, by combining functional magnetic resonance imaging (fMRI) and a variant of the Monetary Incentive Delay Task (MIDT), we examined sex differences in the neural responses to wins and losses and how individual reward and punishment sensitivity modulates these regional activities. METHODS Thirty-sex men and 27 women participated in the fMRI study. We assessed sensitivity to punishment (SP) and sensitivity to reward (SR) with the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ). In the MIDT, participants pressed a button to collect reward ($1, 1¢, or nil), with the reaction time window titrated across trials so participants achieved a success rate of approximately 67%. We processed the Imaging data with published routines and evaluated the results with a corrected threshold. RESULTS Women showed higher SP score than men and men showed higher SR score than women. Men relative to women showed higher response to the receipt of dollar or cent reward in bilateral orbitofrontal and visual cortex. Men as compared to women also showed higher response to dollar loss in bilateral orbitofrontal cortex. Further, in whole-brain regressions, women relative to men demonstrated more significant modulation by SP in the neural responses to wins and larger wins, and the sex differences were confirmed by slope tests. CONCLUSIONS Together, men showed higher SR and neural sensitivity to both wins, large or small, and losses than women. Individual differences in SP were associated with diminished neural responses to wins and larger wins in women only. These findings highlight how men and women may differ in reward-related brain activations in the MIDT and add to the imaging literature of sex differences in cognitive and affective functions.
Collapse
Affiliation(s)
- Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA.
- Connecticut Mental Health Center S112, 34 Park Street, New Haven, CT, 06519-1109, USA.
| |
Collapse
|
38
|
Li G, Chen Y, Wang W, Dhingra I, Zhornitsky S, Tang X, Li CSR. Sex Differences in Neural Responses to the Perception of Social Interactions. Front Hum Neurosci 2020; 14:565132. [PMID: 33061901 PMCID: PMC7518190 DOI: 10.3389/fnhum.2020.565132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Social interaction is critical to emotional well-being. Previous studies have suggested sex differences in the perception of social interaction. However, the findings depend on the nature of interactions and whether it involves facial emotions. Here, we explored sex differences in neural responses to the perception of social interaction using the Human Connectome Project data. Participants (n = 969, 505 women) were engaged in a social cognition task with geometric objects moving and colliding to simulate social interaction. Behaviorally, men relative to women demonstrated higher accuracy in perceiving social vs. random interactions. Men vs. women showed higher activation in the right superior temporal gyrus, bilateral occipital and posterior cingulate cortex and precuneus, and women vs. men showed higher activation in the right inferior frontal cortex, during exposure to social vs. random interactions. In whole-brain regressions, the differences in accuracy rate in identifying social vs. random interactions (AR SOC - AR RAN ) were associated with higher activation in the paracentral lobule (PCL) and lower activation in bilateral anterior insula (AI), pre-supplementary motor area (preSMA), and left middle frontal gyrus (MFG) in men and women combined, lower activation in bilateral AI, preSMA and left MFG in men alone, and higher activation in the PCL and the medial orbitofrontal cortex in women alone. The latter sex differences were confirmed by slope tests. Further, the PCL activity mediated the correlation between an internalizing syndromal score, as assessed by the Achenbach Self-Report, and (AR SOC - AR RAN ) across all subjects. These findings highlighted sex differences in the behavioral and neural processes underlying the perception of social interaction, as well as the influence of internalizing traits on these processes.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
39
|
Jang H, Lin Z, Lustig C. Losing Money and Motivation: Effects of Loss Incentives on Motivation and Metacognition in Younger and Older Adults. Front Psychol 2020; 11:1489. [PMID: 32765347 PMCID: PMC7381126 DOI: 10.3389/fpsyg.2020.01489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/04/2020] [Indexed: 01/15/2023] Open
Abstract
Incentives are usually expected to increase motivation and cognitive control and to thereby improve performance. A small but growing number of studies have begun to investigate whether the effects of incentive on cognitive performance differ for younger vs. older adults. Most have used attention and cognitive control paradigms, trial-wise implementation of incentive condition, and gain incentives (reward), with only a very few investigating the effects of loss incentives. The present study takes a complementary approach: We tested younger and older adults in a working memory paradigm with loss incentives implemented session-wide (between subjects). We also included self-report measures to ask how loss incentive affected participants’ perceptions of the mental demand of the task, as well as their perceived effort, frustration, motivation, distraction, and metacognitive judgments of how well they had performed. This allowed us to test the disparate predictions of different theoretical views: the intuitive hypothesis that incentive should increase motivation and performance, the motivational shift proposal that older adults are especially motivated to avoid losses (Freund and Ebner, 2005), a heuristic “positivity effect” perspective that older adults ignore losses (Brassen et al., 2012; Williams et al., 2017), and a more nuanced view that suggests that when negative information is unavoidable and increases perceived costs, older adults may instead disengage from the situation (Charles, 2010; Hess, 2014). The results seemed most consistent with the more nuanced view of the positivity effect. While neither group showed incentive-related performance differences, both younger and older adults reported greater perceived demand and frustration under loss incentive, especially in the most challenging conditions. Loss incentive increased the accuracy of immediate metacognitive judgments, but reduced the accuracy of later, more global judgments of competency for older adults. Self-report measures suggested that the loss incentive manipulation was distracting to young adults and demotivating for older adults. The results suggest a need for caution in generalizing from existing studies to everyday life, and that additional studies parameterizing critical aspects of task design and incentive manipulation are needed to fully understand how incentives affect cognition and motivation in younger and older adults.
Collapse
Affiliation(s)
- Hyesue Jang
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Ziyong Lin
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | - Cindy Lustig
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
40
|
Demidenko MI, Huntley ED, Jahn A, Thomason ME, Monk CS, Keating DP. Cortical and subcortical response to the anticipation of reward in high and average/low risk-taking adolescents. Dev Cogn Neurosci 2020; 44:100798. [PMID: 32479377 PMCID: PMC7262007 DOI: 10.1016/j.dcn.2020.100798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/28/2022] Open
Abstract
Since the first neurodevelopmental models that sought to explain the influx of risky behaviors during adolescence were proposed, there have been a number of revisions, variations and criticisms. Despite providing a strong multi-disciplinary heuristic to explain the development of risk behavior, extant models have not yet reliably isolated neural systems that underlie risk behaviors in adolescence. To address this gap, we screened 2017 adolescents from an ongoing longitudinal study that assessed 15-health risk behaviors, targeting 104 adolescents (Age Range: 17-to-21.4), characterized as high-or-average/low risk-taking. Participants completed the Monetary Incentive Delay (MID) fMRI task, examining reward anticipation to "big win" versus "neutral". We examined neural response variation associated with both baseline and longitudinal (multi-wave) risk classifications. Analyses included examination of a priori regions of interest (ROIs); and exploratory non-parametric, whole-brain analyses. Hypothesis-driven ROI analysis revealed no significant differences between high- and average/low-risk profiles using either baseline or multi-wave classification. Results of whole-brain analyses differed according to whether risk assessment was based on baseline or multi-wave data. Despite significant mean-level task activation, these results do not generalize prior neural substrates implicated in reward anticipation and adolescent risk-taking. Further, these data indicate that whole-brain differences may depend on how risk-behavior profiles are defined.
Collapse
Affiliation(s)
| | - Edward D Huntley
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, United States
| | - Andrew Jahn
- The Functional MRI Laboratory, University of Michigan, Ann Arbor, United States
| | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Langone, New York, United States
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, United States; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, United States
| | - Daniel P Keating
- Department of Psychology, University of Michigan, Ann Arbor, United States; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, United States
| |
Collapse
|
41
|
Li G, Zhang S, Le TM, Tang X, Li CSR. Neural Responses to Reward in a Gambling Task: Sex Differences and Individual Variation in Reward-Driven Impulsivity. Cereb Cortex Commun 2020; 1:tgaa025. [PMID: 32864617 PMCID: PMC7446303 DOI: 10.1093/texcom/tgaa025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/12/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Previous work suggests sex differences in reward sensitivity. However, it remains unclear how men and women differ in the neural processes of reward-driven impulsivity. With a data set of 968 subjects (502 women) curated from the Human Connectome Project, we investigated sex differences in regional activations to reward and to punishment in a gambling task. Individual variations in reward-driven impulsivity were quantified by the difference in reaction time between reward and punishment blocks in the gambling task, as well as by a behavioral measure of delay discounting. At a corrected threshold, men and women exhibited significant differences in regional activations to reward and to punishment. Longer reaction times during reward versus punishment blocks, indicative of more cautious responding, were associated with left-hemispheric lateral prefrontal cortical activation to reward in men but not women. Steeper discounting was associated with higher activation to reward in the right-hemispheric dorsal anterior cingulate cortex and angular gyrus in women but not men. These sex differences were confirmed in slope tests. Together, the results highlight the sex-specific neural processes of reward-driven impulsivity with left-hemispheric prefrontal cortex supporting impulse control in men and right-hemispheric saliency circuit playing a more important role in diminished impulse control in women.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
42
|
Le TM, Chao H, Levy I, Li CSR. Age-Related Changes in the Neural Processes of Reward-Directed Action and Inhibition of Action. Front Psychol 2020; 11:1121. [PMID: 32587547 PMCID: PMC7298110 DOI: 10.3389/fpsyg.2020.01121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Aging is associated with structural and functional brain changes which may impact the regulation of motivated behaviors, including both action and inhibition of action. As behavioral regulation is often exercised in response to reward, it remains unclear how aging may influence reward-directed action and inhibition of action differently. Here we addressed this issue with the functional magnetic resonance imaging data of 72 participants (aged 21-74) performing a reward go/no-go (GNG) task with approximately 2/3 go and 1/3 no-go trials. The go and no-go success trials were rewarded with a dollar or a nickel, and the incorrect responses were penalized. An additional block of the GNG task without reward/punishment served as the control to account for age-related slowing in processing speed. The results showed a prolonged response time (RT) in rewarded (vs. control) go trials with increasing age. Whole-brain multiple regressions of rewarded (vs. control) go trials against age and RT both revealed an age-related reduced activity of the anterior insula, middle frontal gyrus, and rostral anterior cingulate cortex. Furthermore, activity from these regions mediated the relationship between age and go performance. During rewarded (vs. control) no-go trials, age was associated with increased accuracy rate but decreased activation in the medial superior frontal and postcentral gyri. As these regions also exhibited age-related activity reduction during rewarded go, the finding suggests aging effects on common brain substrates that regulate both action and action inhibition. Taken together, age shows a broad negative modulation on neural activations but differential effects on performance during rewarded action and inhibition of action.
Collapse
Affiliation(s)
- Thang M. Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Herta Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut Healthcare System, West Haven, CT, United States
| | - Ifat Levy
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|