1
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Robertson A, Miller DJ, Hull A, Butler BE. Quantifying myelin density in the feline auditory cortex. Brain Struct Funct 2024; 229:1927-1941. [PMID: 38981886 DOI: 10.1007/s00429-024-02821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
The cerebral cortex comprises many distinct regions that differ in structure, function, and patterns of connectivity. Current approaches to parcellating these regions often take advantage of functional neuroimaging approaches that can identify regions involved in a particular process with reasonable spatial resolution. However, neuroanatomical biomarkers are also very useful in identifying distinct cortical regions either in addition to, or in place of functional measures. For example, differences in myelin density are thought to relate to functional differences between regions, are sensitive to individual patterns of experience, and have been shown to vary across functional hierarchies in a predictable manner. Accordingly, the current study provides quantitative stereological estimates of myelin density for each of the 13 regions that make up the feline auditory cortex. We demonstrate that significant differences can be observed between auditory cortical regions, with the highest myelin density observed in the regions that comprise the auditory core (i.e., the primary auditory cortex and anterior auditory field). Moreover, our myeloarchitectonic map suggests that myelin density varies in a hierarchical fashion that conforms to the traditional model of spatial organization in auditory cortex. Taken together, these results establish myelin as a useful biomarker for parcellating auditory cortical regions, and provide detailed estimates against which other, less invasive methods of quantifying cortical myelination may be compared.
Collapse
Affiliation(s)
- Austin Robertson
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Daniel J Miller
- Department of Psychology, University of Western Ontario, 1151 Richmond Street N, London, ON, N6A5C1, Canada
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champagne, Urbana, IL, USA
| | - Adam Hull
- Undergraduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Blake E Butler
- Department of Psychology, University of Western Ontario, 1151 Richmond Street N, London, ON, N6A5C1, Canada.
- Western Institute for Neuroscience, University of Western Ontario, London, ON, Canada.
- National Centre for Audiology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
3
|
Golse M, Weinhofer I, Blanco B, Barbier M, Yazbeck E, Huiban C, Chaumette B, Pichon B, Fatemi A, Pascual S, Martinell M, Berger J, Perlbarg V, Galanaud D, Mochel F. Leriglitazone halts disease progression in adult patients with early cerebral adrenoleukodystrophy. Brain 2024; 147:3344-3351. [PMID: 38832897 DOI: 10.1093/brain/awae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 06/06/2024] Open
Abstract
Cerebral adrenoleukodystrophy (CALD) is an X-linked rapidly progressive demyelinating disease leading to death usually within a few years. The standard of care is haematopoietic stem cell transplantation (HSCT), but many men are not eligible due to age, absence of a matched donor or lesions of the corticospinal tracts (CST). Based on the ADVANCE study showing that leriglitazone decreases the occurrence of CALD, we treated 13 adult CALD patients (19-67 years of age) either not eligible for HSCT (n = 8) or awaiting HSCT (n = 5). Patients were monitored every 3 months with standardized neurological scores, plasma biomarkers and brain MRI comprising lesion volumetrics and diffusion tensor imaging. The disease stabilized clinically and radiologically in 10 patients with up to 2 years of follow-up. Five patients presented with gadolinium enhancing CST lesions that all turned gadolinium negative and, remarkably, regressed in four patients. Plasma neurofilament light chain levels stabilized in all 10 patients and correlated with lesion load. The two patients who continued to deteriorate were over 60 years of age with prominent cognitive impairment. One patient died rapidly from coronavirus disease 2019. These results suggest that leriglitazone can arrest disease progression in adults with early-stage CALD and may be an alternative treatment to HSCT.
Collapse
Affiliation(s)
- Marianne Golse
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, 75013 Paris, France
- Department of Neuroradiology, AP-HP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernardo Blanco
- Department of Medical Genetics, Reference Centers for Adult Neurometabolic diseases and Adult Leukodystrophies, AP-HP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, 75013 Paris, France
| | - Magali Barbier
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, 75013 Paris, France
| | - Elise Yazbeck
- Department of Medical Genetics, Reference Centers for Adult Neurometabolic diseases and Adult Leukodystrophies, AP-HP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Camille Huiban
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, 75013 Paris, France
| | - Boris Chaumette
- GHU Paris Psychiatrie & Neurosciences, Saint-Anne Hospital, 75014 Paris, France
| | - Bertrand Pichon
- Department of Neurology, AP-HP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Damien Galanaud
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, 75013 Paris, France
- Department of Neuroradiology, AP-HP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Fanny Mochel
- Department of Medical Genetics, Reference Centers for Adult Neurometabolic diseases and Adult Leukodystrophies, AP-HP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, 75013 Paris, France
| |
Collapse
|
4
|
Kaller MS, Lazari A, Feng Y, van der Toorn A, Rühling S, Thomas CW, Shimizu T, Bannerman D, Vyazovskiy V, Richardson WD, Sampaio-Baptista C, Johansen-Berg H. Ablation of oligodendrogenesis in adult mice alters brain microstructure and activity independently of behavioral deficits. Glia 2024; 72:1728-1745. [PMID: 38982743 DOI: 10.1002/glia.24576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Oligodendrocytes continue to differentiate from their precursor cells even in adulthood, a process that can be modulated by neuronal activity and experience. Previous work has indicated that conditional ablation of oligodendrogenesis in adult mice leads to learning and memory deficits in a range of behavioral tasks. The current study replicated and re-evaluated evidence for a role of oligodendrogenesis in motor learning, using a complex running wheel task. Further, we found that ablating oligodendrogenesis alters brain microstructure (ex vivo MRI) and brain activity (in vivo EEG) independent of experience with the task. This suggests a role for adult oligodendrocyte formation in the maintenance of brain function and indicates that task-independent changes due to oligodendrogenesis ablation need to be considered when interpreting learning and memory deficits in this model.
Collapse
Affiliation(s)
- Malte S Kaller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yingshi Feng
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht & Utrecht University, Utrecht, The Netherlands
| | - Sebastian Rühling
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Takahiro Shimizu
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Vladyslav Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - William D Richardson
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Rogujski P, Gewartowska M, Fiedorowicz M, Frontczak-Baniewicz M, Sanford J, Walczak P, Janowski M, Lukomska B, Stanaszek L. Multisite Injections of Canine Glial-Restricted Progenitors Promote Brain Myelination and Extend the Survival of Dysmyelinated Mice. Int J Mol Sci 2024; 25:10580. [PMID: 39408910 PMCID: PMC11477205 DOI: 10.3390/ijms251910580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Glial cell dysfunction results in myelin loss and leads to subsequent motor and cognitive deficits throughout the demyelinating disease course.Therefore, in various therapeutic approaches, significant attention has been directed toward glial-restricted progenitor (GRP) transplantation for myelin repair and remyelination, and numerous studies using exogenous GRP injection in rodent models of hypomyelinating diseases have been performed. Previously, we proposed the transplantation of canine glial-restricted progenitors (cGRPs) into the double-mutant immunodeficient, demyelinated neonatal shiverer mice (shiverer/Rag2-/-). The results of our previous study revealed the myelination of axons within the corpus callosum of transplanted animals; however, the extent of myelination and lifespan prolongation depended on the transplantation site (anterior vs. posterior). The goal of our present study was to optimize the therapeutic effect of cGRP transplantation by using a multisite injection protocol to achieve a broader dispersal of donor cells in the host and obtain better therapeutic results. Experimental analysis of cGRP graft recipients revealed a marked elevation in myelin basic protein (MBP) expression and prominent axonal myelination across the brains of shiverer mice. Interestingly, the proportion of galactosyl ceramidase (GalC) positive cells was similar between the brains of cGRP recipients and control mice, implying a natural propensity of exogenous cGRPs to generate mature, myelinating oligodendrocytes. Moreover, multisite injection of cGRPs improved mice survival as compared to non-transplanted animals.
Collapse
Affiliation(s)
- Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Magdalena Gewartowska
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Joanna Sanford
- Sanford Biotech LLC, Tissue and Cells Bank, Sioux Falls, SD 57106, USA;
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA; (P.W.); (M.J.)
| | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA; (P.W.); (M.J.)
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Oishi H, Berezovskii VK, Livingstone MS, Weiner KS, Arcaro MJ. Inferotemporal face patches are histo-architectonically distinct. Cell Rep 2024; 43:114732. [PMID: 39269905 DOI: 10.1016/j.celrep.2024.114732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
An interconnected group of cortical regions distributed across the primate inferotemporal cortex forms a network critical for face perception. Understanding the microarchitecture of this face network can refine mechanistic accounts of how individual areas function and interact to support visual perception. To address this, we acquire a unique dataset in macaque monkeys combining fMRI to localize face patches in vivo and then ex vivo histology to resolve their histo-architecture across cortical depths in the same individuals. Our findings reveal that face patches differ based on cytochrome oxidase (CO) and, to a lesser extent, myelin staining, with the middle lateral (ML) face patch exhibiting pronounced CO staining. Histo-architectonic differences are less pronounced when using probabilistic definitions of face patches, underscoring the importance of precision mapping integrating in vivo and ex vivo measurements in the same individuals. This study indicates that the macaque face patch network is composed of architectonically distinct components.
Collapse
Affiliation(s)
- Hiroki Oishi
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | | | | | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michael J Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Ho CY, Persohn S, Sankar M, Territo PR. Development of Myelin Growth Charts of the White Matter Using T1 Relaxometry. AJNR Am J Neuroradiol 2024; 45:1335-1345. [PMID: 39025639 PMCID: PMC11392380 DOI: 10.3174/ajnr.a8306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND PURPOSE Myelin maturation occurs in late fetal life to early adulthood, with the most rapid changes observed in the first few years of infancy. To quantify the degree of myelination, a specific MR imaging sequence is required to measure the changes in tissue proton relaxivity (R1). R1 positively correlates with the degree of myelination maturation at a given age. Similar to head circumference charts, these data can be used to develop normal growth charts for specific white matter tracts to detect pathologies involving abnormal myelination. MATERIALS AND METHODS This is a cross-sectional study using normal clinical pediatric brain MR images with the MP2RAGE sequence to generate T1 maps. The T1 maps were segmented to 75 brain regions from a brain atlas (white matter and gyri). Statistical modeling for all subjects across regions and the age range was computed, and estimates of population-level percentile ranking were computed to describe the effective myelination rate as a function of age. Test-retest analysis was performed to assess reproducibility. Logistic trendline and regression were performed for selected white matter regions and plotted for growth charts. RESULTS After exclusion for abnormal MR imaging or diseases affecting myelination from the electronic medical record, 103 subject MR images were included, ranging from birth to 17 years of age. Test-retest analysis resulted in a high correlation for white matter (r = 0.88) and gyri (r = 0.95). All white matter regions from the atlas had significant P values for logistic regression with R 2 values ranging from 0.41 to 0.99. CONCLUSIONS These data can serve as a myelination growth chart to permit patient comparisons with normal levels with respect to age and brain regions, thus improving detection of developmental disorders affecting myelin.
Collapse
Affiliation(s)
- Chang Y Ho
- From the Department of Radiology and Imaging Sciences (C.Y.H., P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Scott Persohn
- Department of Medicine (S.P., M.S., P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Meghana Sankar
- Department of Medicine (S.P., M.S., P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul R Territo
- From the Department of Radiology and Imaging Sciences (C.Y.H., P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine (S.P., M.S., P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
- Stark Neuroscience Research Institute (P.R.T.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
8
|
Fujiwara Y, Eitoku S, Sakae N, Izumi T, Kumazoe H, Kitajima M. Single-point macromolecular proton fraction mapping using a 0.3 T permanent magnet MRI system: phantom and healthy volunteer study. Radiol Phys Technol 2024:10.1007/s12194-024-00843-5. [PMID: 39251498 DOI: 10.1007/s12194-024-00843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
In a 0.3 T permanent-magnet magnetic resonance imaging (MRI) system, quantifying myelin content is challenging owing to long imaging times and low signal-to-noise ratio. macromolecular proton fraction (MPF) offers a quantitative assessment of myelin in the nervous system. We aimed to demonstrate the practical feasibility of MPF mapping in the brain using a 0.3 T MRI. Both 0.3 T and 3.0 T MRI systems were used. The MPF-mapping protocol used a standard 3D fast spoiled gradient-echo sequence based on the single-point reference method. Proton density, T1, and magnetization transfer-weighted images were obtained from a protein phantom at 0.3 T and 3.0 T to calculate MPF maps. MPF was measured in all phantom sections to assess its relationship to protein concentration. We acquired MPF maps for 16 and 8 healthy individuals at 0.3 T and 3.0 T, respectively, measuring MPF in nine brain tissues. Differences in MPF between 0.3 T and 3.0 T, and between 0.3 T and previously reported MPF at 0.5 T, were investigated. Pearson's correlation coefficient between protein concentration and MPF at 0.3 T and 3.0 T was 0.92 and 0.90, respectively. The 0.3 T MPF of brain tissue strongly correlated with 3.0 T MPF and literature values measured at 0.5 T. The absolute mean differences in MPF between 0.3 T and 0.5 T were 0.42% and 1.70% in white and gray matter, respectively. Single-point MPF mapping using 0.3 T permanent-magnet MRI can effectively assess myelin content in neural tissue.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Department of Medical Imaging Technology, Faculty of Life Sciences, Kumamoto University, 4-24-1, Kuhonji, Chuo-Ku, Kumamoto, 862-0976, Japan.
| | - Shoma Eitoku
- Department of Radiology, Hospital of the University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8556, Japan
| | - Nobutaka Sakae
- Department of Neurology, National Hospital Organization Omuta National Hospital, 1044-1, Tachibana, Omuta, 837-0911, Japan
| | - Takahisa Izumi
- Department of Radiology, National Hospital Organization Kumamoto Saishun Medical Center, 2659 Suya, Koshi, Kumamoto, 861-1196, Japan
| | - Hiroyuki Kumazoe
- Department of Radiology, National Hospital Organization Omuta National Hospital, 1044-1, Tachibana, Omuta, 837-0911, Japan
| | - Mika Kitajima
- Department of Diagnostic Imaging Technology, Faculty of Life Sciences, Kumamoto University, 4-24-1, Kuhonji, Chuo-Ku, Kumamoto, 862-0976, Japan
| |
Collapse
|
9
|
Boudreau M, Karakuzu A, Cohen-Adad J, Bozkurt E, Carr M, Castellaro M, Concha L, Doneva M, Dual SA, Ensworth A, Foias A, Fortier V, Gabr RE, Gilbert G, Glide-Hurst CK, Grech-Sollars M, Hu S, Jalnefjord O, Jovicich J, Keskin K, Koken P, Kolokotronis A, Kukran S, Lee NG, Levesque IR, Li B, Ma D, Mädler B, Maforo NG, Near J, Pasaye E, Ramirez-Manzanares A, Statton B, Stehning C, Tambalo S, Tian Y, Wang C, Weiss K, Zakariaei N, Zhang S, Zhao Z, Stikov N. Repeat it without me: Crowdsourcing the T 1 mapping common ground via the ISMRM reproducibility challenge. Magn Reson Med 2024; 92:1115-1127. [PMID: 38730562 DOI: 10.1002/mrm.30111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.
Collapse
Affiliation(s)
- Mathieu Boudreau
- NeuroPoly Lab, Polytechnique Montréal, Montréal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
| | - Agah Karakuzu
- NeuroPoly Lab, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Polytechnique Montréal, Montréal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
- Unité de Neuroimagerie Fonctionnelle, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Mila-Quebec AI Institute, Montréal, Québec, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Ecem Bozkurt
- Magnetic Resonance Engineering Laboratory, University of Southern California, Los Angeles, California, USA
| | - Madeline Carr
- Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, Australia
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centers, Liverpool, Australia
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | | | - Seraina A Dual
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Alex Ensworth
- Medical Physics Unit, McGill University, Montréal, Québec, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexandru Foias
- NeuroPoly Lab, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Véronique Fortier
- Department of Medical Imaging, McGill University Health Center, Montréal, Québec, Canada
- Department of Radiology, McGill University, Montréal, Québec, Canada
| | - Refaat E Gabr
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | | | - Carri K Glide-Hurst
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Grech-Sollars
- Center for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Siyuan Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Oscar Jalnefjord
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Kübra Keskin
- Magnetic Resonance Engineering Laboratory, University of Southern California, Los Angeles, California, USA
| | | | - Anastasia Kolokotronis
- Medical Physics Unit, McGill University, Montréal, Québec, Canada
- Hopital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Simran Kukran
- Bioengineering, Imperial College London, London, UK
- Radiotherapy and Imaging, Institute of Cancer Research, Imperial College London, London, UK
| | - Nam G Lee
- Magnetic Resonance Engineering Laboratory, University of Southern California, Los Angeles, California, USA
| | - Ives R Levesque
- Medical Physics Unit, McGill University, Montréal, Québec, Canada
- Research Institute of the McGill University Health Center, Montréal, Québec, Canada
| | - Bochao Li
- Magnetic Resonance Engineering Laboratory, University of Southern California, Los Angeles, California, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Nyasha G Maforo
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
- Physics and Biology in Medicine IDP, University of California Los Angeles, Los Angeles, California, USA
| | - Jamie Near
- Douglas Brain Imaging Center, Montréal, Québec, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Erick Pasaye
- Institute of Neurobiology, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | | | - Ben Statton
- Medical Research Council, London Institute of Medical Sciences, Imperial College London, London, UK
| | | | - Stefano Tambalo
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Ye Tian
- Magnetic Resonance Engineering Laboratory, University of Southern California, Los Angeles, California, USA
| | - Chenyang Wang
- Department of Radiation Oncology-CNS Service, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kilian Weiss
- Clinical Science, Philips Healthcare, Hamburg, Germany
| | - Niloufar Zakariaei
- Department of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shuo Zhang
- Clinical Science, Philips Healthcare, Hamburg, Germany
| | - Ziwei Zhao
- Magnetic Resonance Engineering Laboratory, University of Southern California, Los Angeles, California, USA
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique Montréal, Montréal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
- Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, North Macedonia
| |
Collapse
|
10
|
Choi Y, Ko JS, Park JE, Jeong G, Seo M, Jun Y, Fujita S, Bilgic B. Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain. Invest Radiol 2024:00004424-990000000-00248. [PMID: 39159333 DOI: 10.1097/rli.0000000000001114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
ABSTRACT Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.
Collapse
Affiliation(s)
- Yangsean Choi
- From the Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Republic of Korea (Y.C., J.S.K., J.E.P.); AIRS Medical LLC, Seoul, Republic of Korea (G.J.); Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea (M.S.); Department of Radiology, Harvard Medical School, Boston, MA (Y.J., S.F., B.B.); Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA (Y.J., S.F., B.B.); and Harvard/MIT Health Sciences and Technology, Cambridge, MA (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hou J, Cai Z, Chen W, So TY. Spin-lock based fast whole-brain 3D macromolecular proton fraction mapping of relapsing-remitting multiple sclerosis. Sci Rep 2024; 14:17943. [PMID: 39095418 PMCID: PMC11297137 DOI: 10.1038/s41598-024-67445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
A sensitive and efficient imaging technique is required to assess the subtle abnormalities occurring in the normal-appearing white matter (NAWM) and normal-appearing grey matter (NAGM) in patients with relapsing-remitting multiple sclerosis (RRMS). In this study, a fast 3D macromolecular proton fraction (MPF) quantification based on spin-lock (fast MPF-SL) sequence was proposed for brain MPF mapping. Thirty-four participants, including 17 healthy controls and 17 RRMS patients were prospectively recruited. We conducted group comparison and correlation between conventional MPF-SL, fast MPF-SL, and DWI, and compared differences in quantified parameters within MS lesions and the regional NAWM, NAGM, and normal-appearing deep grey matter (NADGN). MPF of MS lesions was significantly reduced (7.17% ± 1.15%, P < 0.01) compared to all corresponding normal-appearing regions. MS patients also showed significantly reduced mean MPF values compared with controls in NAGM (4.87% ± 0.38% vs 5.21% ± 0.32%, P = 0.01), NAWM (9.49% ± 0.69% vs 10.32% ± 0.59%, P < 0.01) and NADGM (thalamus 5.59% ± 0.67% vs 6.00% ± 0.41%, P = 0.04; caudate 5.10% ± 0.55% vs 5.53% ± 0.58%, P = 0.03). MPF and ADC showed abnormalities in otherwise normal appearing close to lesion areas (P < 0.01). In conclusion, time-efficient MPF mapping of the whole brain can be acquired efficiently (< 3 min) using fast MPF-SL. It offers a promising alternative way to detect white matter abnormalities in MS.
Collapse
Affiliation(s)
- Jian Hou
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zongyou Cai
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Tiffany Y So
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Bouhali F, Dubois J, Hoeft F, Weiner KS. Unique longitudinal contributions of sulcal interruptions to reading acquisition in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605574. [PMID: 39131390 PMCID: PMC11312548 DOI: 10.1101/2024.07.30.605574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A growing body of literature indicates strong associations between indentations of the cerebral cortex (i.e., sulci) and individual differences in cognitive performance. Interruptions, or gaps, of sulci (historically known as pli de passage) are particularly intriguing as previous work suggests that these interruptions have a causal effect on cognitive development. Here, we tested how the presence and morphology of sulcal interruptions in the left posterior occipitotemporal sulcus (pOTS) longitudinally impact the development of a culturally-acquired skill: reading. Forty-three children were successfully followed from age 5 in kindergarten, at the onset of literacy instruction, to ages 7 and 8 with assessments of cognitive, pre-literacy, and literacy skills, as well as MRI anatomical scans at ages 5 and 8. Crucially, we demonstrate that the presence of a left pOTS gap at 5 years is a specific and robust longitudinal predictor of better future reading skills in children, with large observed benefits on reading behavior ranging from letter knowledge to reading comprehension. The effect of left pOTS interruptions on reading acquisition accumulated through time, and was larger than the impact of benchmark cognitive and familial predictors of reading ability and disability. Finally, we show that increased local U-fiber white matter connectivity associated with such sulcal interruptions possibly underlie these behavioral benefits, by providing a computational advantage. To our knowledge, this is the first quantitative evidence supporting a potential integrative gray-white matter mechanism underlying the cognitive benefits of macro-anatomical differences in sulcal morphology related to longitudinal improvements in a culturally-acquired skill.
Collapse
Affiliation(s)
- Florence Bouhali
- Department of Psychiatry and Behavioral Sciences & Weil Institute of Neuroscience, University of California San Francisco, San Francisco, CA, USA
- Aix-Marseille University, CNRS, CRPN, Marseille, France
| | - Jessica Dubois
- University Paris Cité, NeuroDiderot, INSERM, Paris, France
- University Paris-Saclay, NeuroSpin, UNIACT, CEA, France
| | - Fumiko Hoeft
- Department of Psychological Sciences, University of Connecticut Waterbury, Waterbury, CT, USA
| | - Kevin S. Weiner
- Department of Psychology, Department of Neuroscience, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
13
|
Singh S, Sutkus L, Li Z, Baker S, Bear J, Dilger RN, Miller DJ. Standardization of a silver stain to reveal mesoscale myelin in histological preparations of the mammalian brain. J Neurosci Methods 2024; 407:110139. [PMID: 38626852 DOI: 10.1016/j.jneumeth.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The brain is built of neurons supported by myelin, a fatty substance that improves cellular communication. Noninvasive magnetic resonance imaging (MRI) is now able to measure brain structure like myelin and requires histological validation. NEW METHOD Here we present work in small and large biomedical model mammals to standardize a silver impregnation method as a high-throughput histological myelin visualization procedure. Specifically, we built a new staining well plate to increase batch size, and then systematically varied the staining and clearing cycles to describe the staining response curve across taxa and conditions. We compared tissues fixed by immersion or perfusion, mounted versus free-floating, and cut as thicker or thinner slices, with two-weeks of post-fixation. RESULTS The staining response curves show optimal staining with a single exposure across taxa when incubation and clearing epochs are held to within 3-9 min. We show that clearing was slower in mounted vs free-floating tissue, and that staining was faster and caused fracturing earlier in thinner sliced and smaller volumes of tissue. COMPARISON WITH EXISTING METHODS We developed a batch processing approach to increase throughput while ensuring reproducibility and demonstrate the optimal conditions for fine myelinated fiber morphology visualization with short cycles (<9 minutes). CONCLUSIONS We present our optimized protocol to reveal mesoscale neuroanatomical myelin content in histology across mammals. This standard staining procedure will facilitate multiscale analyses of myelin content across development as well as in the presence of injury or disease.
Collapse
Affiliation(s)
- S Singh
- Department of Evolution, Ecology, and Behavior, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - L Sutkus
- Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - Z Li
- Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - S Baker
- Machine Shop, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - J Bear
- Machine Shop, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - R N Dilger
- Department of Animal Sciences, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - D J Miller
- Department of Evolution, Ecology, and Behavior, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America.
| |
Collapse
|
14
|
Lancione M, Cencini M, Scaffei E, Cipriano E, Buonincontri G, Schulte RF, Pirkl CM, Buchignani B, Pasquariello R, Canapicchi R, Battini R, Biagi L, Tosetti M. Magnetic resonance fingerprinting-based myelin water fraction mapping for the assessment of white matter maturation and integrity in typical development and leukodystrophies. NMR IN BIOMEDICINE 2024; 37:e5114. [PMID: 38390667 DOI: 10.1002/nbm.5114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
A quantitative biomarker for myelination, such as myelin water fraction (MWF), would boost the understanding of normative and pathological neurodevelopment, improving patients' diagnosis and follow-up. We quantified the fraction of a rapidly relaxing pool identified as MW using multicomponent three-dimensional (3D) magnetic resonance fingerprinting (MRF) to evaluate white matter (WM) maturation in typically developing (TD) children and alterations in leukodystrophies (LDs). We acquired DTI and 3D MRF-based R1, R2 and MWF data of 15 TD children and 17 LD patients (9 months-12.5 years old) at 1.5 T. We computed normative maturation curves in corpus callosum and corona radiata and performed WM tract profile analysis, comparing MWF with R1, R2 and fractional anisotropy (FA). Normative maturation curves demonstrated a steep increase for all tissue parameters in the first 3 years of age, followed by slower growth for MWF while R1, R2R2 and FA reached a plateau. Unlike FA, MWF values were similar for regions of interest (ROIs) with different degrees of axonal packing, suggesting independence from fiber bundle macro-organization and higher myelin specificity. Tract profile analysis indicated a specific spatial pattern of myelination in the major fiber bundles, consistent across subjects. LD were better distinguished from TD by MWF rather than FA, showing reduced MWF with respect to age-matched controls in both ROI-based and tract analysis. In conclusion, MRF-based MWF provides myelin-specific WM maturation curves and is sensitive to alteration due to LDs, suggesting its potential as a biomarker for WM disorders. As MRF allows fast simultaneous acquisition of relaxometry and MWF, it can represent a valuable diagnostic tool to study and follow up developmental WM disorders in children.
Collapse
Affiliation(s)
| | - Matteo Cencini
- Pisa Division, National Institute for Nuclear Physics (INFN), Pisa, Italy
| | | | - Emilio Cipriano
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Physics, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | - Roberta Battini
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, Università di Pisa, Pisa, Italy
| | | | | |
Collapse
|
15
|
Lazari A, Tachrount M, Valverde JM, Papp D, Beauchamp A, McCarthy P, Ellegood J, Grandjean J, Johansen-Berg H, Zerbi V, Lerch JP, Mars RB. The mouse motor system contains multiple premotor areas and partially follows human organizational principles. Cell Rep 2024; 43:114191. [PMID: 38717901 DOI: 10.1016/j.celrep.2024.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/10/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
While humans are known to have several premotor cortical areas, secondary motor cortex (M2) is often considered to be the only higher-order motor area of the mouse brain and is thought to combine properties of various human premotor cortices. Here, we show that axonal tracer, functional connectivity, myelin mapping, gene expression, and optogenetics data contradict this notion. Our analyses reveal three premotor areas in the mouse, anterior-lateral motor cortex (ALM), anterior-lateral M2 (aM2), and posterior-medial M2 (pM2), with distinct structural, functional, and behavioral properties. By using the same techniques across mice and humans, we show that ALM has strikingly similar functional and microstructural properties to human anterior ventral premotor areas and that aM2 and pM2 amalgamate properties of human pre-SMA and cingulate cortex. These results provide evidence for the existence of multiple premotor areas in the mouse and chart a comparative map between the motor systems of humans and mice.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Mohamed Tachrount
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Juan Miguel Valverde
- DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70150 Kuopio, Finland
| | - Daniel Papp
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Paul McCarthy
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Joanes Grandjean
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFL, 1015 Lausanne, Switzerland; CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
16
|
Thurston LT, Skorska MN, Lobaugh NJ, Zucker KJ, Chakravarty MM, Lai MC, Chavez S, VanderLaan DP. White matter microstructure in transmasculine and cisgender adolescents: A multiparametric and multivariate study. PLoS One 2024; 19:e0300139. [PMID: 38470896 DOI: 10.1371/journal.pone.0300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Adolescence is a sensitive developmental period for neural sex/gender differentiation. The present study used multiparametric mapping to better characterize adolescent white matter (WM) microstructure. WM microstructure was investigated using diffusion tensor indices (fractional anisotropy; mean, radial, and axial diffusivity [AD]) and quantitative T1 relaxometry (T1) in hormone therapy naïve adolescent cisgender girls, cisgender boys, and transgender boys (i.e., assigned female at birth and diagnosed with gender dysphoria). Diffusion indices were first analyzed for group differences using tract-based spatial statistics, which revealed a group difference in AD. Thus, two multiparametric and multivariate analyses assessed AD in conjunction with T1 relaxation time, and with respect to developmental proxy variables (i.e., age, serum estradiol, pubertal development, sexual attraction) thought to be relevant to adolescent brain development. The multivariate analyses showed a shared pattern between AD and T1 such that higher AD was associated with longer T1, and AD and T1 strongly related to all five developmental variables in cisgender boys (10 significant correlations, r range: 0.21-0.73). There were fewer significant correlations between the brain and developmental variables in cisgender girls (three correlations, r range: -0.54-0.54) and transgender boys (two correlations, r range: -0.59-0.77). Specifically, AD related to direction of sexual attraction (i.e., gynephilia, androphilia) in all groups, and T1 related to estradiol inversely in cisgender boys compared with transgender boys. These brain patterns may be indicative of less myelination and tissue density in cisgender boys, which corroborates other reports of protracted WM development in cisgender boys. Further, these findings highlight the importance of considering developmental trajectory when assessing the subtleties of neural structure associated with variations in sex, gender, and sexual attraction.
Collapse
Affiliation(s)
- Lindsey T Thurston
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Malvina N Skorska
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nancy J Lobaugh
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Division of Neurology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth J Zucker
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Doug P VanderLaan
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Reveley C, Ye FQ, Leopold DA. Diffusion kurtosis MRI tracks gray matter myelin content in the primate cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584058. [PMID: 38496676 PMCID: PMC10942417 DOI: 10.1101/2024.03.08.584058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Diffusion magnetic resonance imaging (dMRI) has been widely employed to model the trajectory of myelinated fiber bundles in white matter. Increasingly, dMRI is also used to assess local tissue properties throughout the brain. In the cerebral cortex, myelin content is a critical indicator of the maturation, regional variation, and disease related degeneration of gray matter tissue. Gray matter myelination can be measured and mapped using several non-diffusion MRI strategies; however, first order diffusion statistics such as fractional anisotropy (FA) show only weak spatial correlation with cortical myelin content. Here we show that a simple higher order diffusion parameter, the mean diffusion kurtosis (MK), is strongly correlated with the laminar and regional variation of myelin in the primate cerebral cortex. We carried out ultra-high resolution, multi-shelled dMRI in ex vivo marmoset monkey brains and compared dMRI parameters from a number of higher order models (diffusion kurtosis, NODDI and MAP MRI) to the distribution of myelin obtained using histological staining, and via Magnetization Transfer Ratio MRI (MTR), a non-diffusion MRI method. In contrast to FA, MK closely matched the myelin content assessed by histology and by MTR in the same sample. The parameter maps from MAP-MRI and NODDI also showed good correspondence with cortical myelin content. The results demonstrate that dMRI can be used to assess the variation of local myelin content in the primate cortical cortex, which may be of great value for assessing tissue integrity and tracking disease in living human patients.
Collapse
Affiliation(s)
- Colin Reveley
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
18
|
Margolis ET, Gabard-Durnam LJ. Prenatal influences on postnatal neuroplasticity: Integrating DOHaD and sensitive/critical period frameworks to understand biological embedding in early development. INFANCY 2024. [PMID: 38449347 DOI: 10.1111/infa.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Early environments can have significant and lasting effects on brain, body, and behavior across the lifecourse. Here, we address current research efforts to understand how experiences impact neurodevelopment with a new perspective integrating two well-known conceptual frameworks - the Developmental Origins of Health and Disease (DOHaD) and sensitive/critical period frameworks. Specifically, we consider how prenatal experiences characterized in the DOHaD model impact two key neurobiological mechanisms of sensitive/critical periods for adapting to and learning from the postnatal environment. We draw from both animal and human research to summarize the current state of knowledge on how particular prenatal substance exposures (psychoactive substances and heavy metals) and nutritional profiles (protein-energy malnutrition and iron deficiency) each differentially impact brain circuits' excitation/GABAergic inhibition balance and myelination. Finally, we highlight new research directions that emerge from this integrated framework, including testing how prenatal environments alter sensitive/critical period timing and learning and identifying potential promotional/buffering prenatal exposures to impact postnatal sensitive/critical periods. We hope this integrative framework considering prenatal influences on postnatal neuroplasticity will stimulate new research to understand how early environments have lasting consequences on our brains, behavior, and health.
Collapse
Affiliation(s)
- Emma T Margolis
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
| | | |
Collapse
|
19
|
Pedrosa DA, de Paula Oliveira LKL, Bertanha R, Júnior EA, Fernandes GBP, Thomaz RB. Acute disseminated encephalomyelitis following Saint Louis encephalitis virus infection. Neurol Sci 2024; 45:1263-1266. [PMID: 38177968 DOI: 10.1007/s10072-023-07246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Saint Louis encephalitis virus (SLEV) infection is an arbovirosis associated with a broad spectrum of neurological complications. We present a case of a 55-year-old man hailing from Manaus, a city situated in the heart of the Amazon Rainforest, who exhibited symptoms of vertigo, tremors, urinary and fecal retention, compromised gait, and encephalopathy 3 weeks following SLEV infection. Neuroaxis MRI revealed diffuse, asymmetric, and poorly defined margins hyperintense lesions with peripheral and ring enhancement in subcortical white matter, as well as severe spinal cord involvement. Serology for SLEV was positive both on serum and cerebrospinal fluid. To the best of our knowledge, the present report is the first to show brain lesions along with myelitis as a post-infectious complication of SLEV infection.
Collapse
Affiliation(s)
- Denison Alves Pedrosa
- Albert Einstein Israelita Hospital, Av. Albert Einstein 627, São Paulo, 05620-900, Brazil.
| | | | - Renata Bertanha
- Albert Einstein Israelita Hospital, Av. Albert Einstein 627, São Paulo, 05620-900, Brazil
| | - Edson Amaro Júnior
- Albert Einstein Israelita Hospital, Av. Albert Einstein 627, São Paulo, 05620-900, Brazil
| | | | - Rodrigo B Thomaz
- Albert Einstein Israelita Hospital, Av. Albert Einstein 627, São Paulo, 05620-900, Brazil
| |
Collapse
|
20
|
Ananthavarathan P, Sahi N, Chard DT. An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression. Expert Rev Neurother 2024; 24:201-216. [PMID: 38235594 DOI: 10.1080/14737175.2024.2304116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear. AREAS COVERED The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning. EXPERT OPINION Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.
Collapse
Affiliation(s)
- Piriyankan Ananthavarathan
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Nitin Sahi
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Declan T Chard
- Clinical Research Associate & Consultant Neurologist, Institute of Neurology - Queen Square Multiple Sclerosis Centre, London, UK
| |
Collapse
|
21
|
Merenstein JL, Zhao J, Overson DK, Truong TK, Johnson KG, Song AW, Madden DJ. Depth- and curvature-based quantitative susceptibility mapping analyses of cortical iron in Alzheimer's disease. Cereb Cortex 2024; 34:bhad525. [PMID: 38185996 PMCID: PMC10839848 DOI: 10.1093/cercor/bhad525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
In addition to amyloid beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been associated with elevated iron in deep gray matter nuclei using quantitative susceptibility mapping (QSM). However, only a few studies have examined cortical iron, using more macroscopic approaches that cannot assess layer-specific differences. Here, we conducted column-based QSM analyses to assess whether AD-related increases in cortical iron vary in relation to layer-specific differences in the type and density of neurons. We obtained global and regional measures of positive (iron) and negative (myelin, protein aggregation) susceptibility from 22 adults with AD and 22 demographically matched healthy controls. Depth-wise analyses indicated that global susceptibility increased from the pial surface to the gray/white matter boundary, with a larger slope for positive susceptibility in the left hemisphere for adults with AD than controls. Curvature-based analyses indicated larger global susceptibility for adults with AD versus controls; the right hemisphere versus left; and gyri versus sulci. Region-of-interest analyses identified similar depth- and curvature-specific group differences, especially for temporo-parietal regions. Finding that iron accumulates in a topographically heterogenous manner across the cortical mantle may help explain the profound cognitive deterioration that differentiates AD from the slowing of general motor processes in healthy aging.
Collapse
Affiliation(s)
- Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
| | - Jiayi Zhao
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - Kim G Johnson
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
22
|
Aggarwal N, Oler JA, Tromp DPM, Roseboom PH, Riedel MK, Elam VR, Brotman MA, Kalin NH. A preliminary study of the effects of an antimuscarinic agent on anxious behaviors and white matter microarchitecture in nonhuman primates. Neuropsychopharmacology 2024; 49:405-413. [PMID: 37516801 PMCID: PMC10724160 DOI: 10.1038/s41386-023-01686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Myelination subserves efficient neuronal communication, and alterations in white matter (WM) microstructure have been implicated in numerous psychiatric disorders, including pathological anxiety. Recent work in rodents suggests that muscarinic antagonists may enhance myelination with behavioral benefits; however, the neural and behavioral effects of muscarinic antagonists have yet to be explored in non-human primates (NHP). Here, as a potentially translatable therapeutic strategy for human pathological anxiety, we present data from a first-in-primate study exploring the effects of the muscarinic receptor antagonist solifenacin on anxious behaviors and WM microstructure. 12 preadolescent rhesus macaques (6 vehicle control, 6 experimental; 8F, 4M) were included in a pre-test/post-test between-group study design. The experimental group received solifenacin succinate for ~60 days. Subjects underwent pre- and post-assessments of: 1) anxious temperament (AT)-related behaviors in the potentially threatening no-eye-contact (NEC) paradigm (30-min); and 2) WM and regional brain metabolism imaging metrics, including diffusion tensor imaging (DTI), quantitative relaxometry (QR), and FDG-PET. In relation to anxiety-related behaviors expressed during the NEC, significant Group (vehicle control vs. solifenacin) by Session (pre vs. post) interactions were found for freezing, cooing, and locomotion. Compared to vehicle controls, solifenacin-treated subjects exhibited effects consistent with reduced anxiety, specifically decreased freezing duration, increased locomotion duration, and increased cooing frequency. Furthermore, the Group-by-Session-by-Sex interaction indicated that these effects occurred predominantly in the males. Exploratory whole-brain voxelwise analyses of post-minus-pre differences in DTI, QR, and FDG-PET metrics revealed some solifenacin-related changes in WM microstructure and brain metabolism. These findings in NHPs support the further investigation of the utility of antimuscarinic agents in targeting WM microstructure as a means to treat pathological anxiety.
Collapse
Affiliation(s)
- Nakul Aggarwal
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA.
| | - Jonathan A Oler
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Do P M Tromp
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Patrick H Roseboom
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Marissa K Riedel
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Victoria R Elam
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Melissa A Brotman
- Neuroscience and Novel Therapeutics Unit, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| |
Collapse
|
23
|
Khormi I, Al-Iedani O, Alshehri A, Ramadan S, Lechner-Scott J. MR myelin imaging in multiple sclerosis: A scoping review. J Neurol Sci 2023; 455:122807. [PMID: 38035651 DOI: 10.1016/j.jns.2023.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/20/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
The inability of disease-modifying therapies to stop the progression of multiple sclerosis (MS), has led to the development of a new therapeutic strategy focussing on myelin repair. While conventional MRI lacks sensitivity for quantifying myelin damage, advanced MRI techniques are proving effective. The development of targeted therapeutics requires histological validation of myelin imaging results, alongside the crucial task of establishing correlations between myelin imaging results and clinical assessments, so that the effectiveness of therapeutic interventions can be evaluated. The aims of this scoping review were to identify myelin imaging methods - some of which have been histologically validated, and to determine how these approaches correlate with clinical assessments of people with MS (pwMS), thus allowing for effective therapeutic evaluation. A search of two databases was undertaken for publications relating to studies on adults MS using either MRI/MR-histology of the MS brain in the range 1990-to-2022. The myelin imaging methods specified were relaxometry, magnetization transfer, and quantitative susceptibility. Relaxometry was used most frequently, with myelin water fraction (MWF) being the primary metric. Studies conducted on tissue from various regions of the brain showed that MWF was significantly lower in pwMS than in healthy controls. Magnetization transfer ratio indicated that the macromolecular content of lesions was lower than that of normal-appearing tissue. Higher magnetic susceptibility of lesions were indicative of myelin breakdown and iron accumulation. Several myelin imaging metrics were correlated with disability, disease severity and duration. Many studies showed a good correlation between myelin measured histologically and by MR myelin imaging techniques.
Collapse
Affiliation(s)
- Ibrahim Khormi
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia; College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Oun Al-Iedani
- Hunter Medical Research Institute, New Lambton Heights, Australia; School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia
| | - Abdulaziz Alshehri
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia; Department of Radiology, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saadallah Ramadan
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia.
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, Australia; Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia; School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia
| |
Collapse
|
24
|
Lehmann N, Aye N, Kaufmann J, Heinze HJ, Düzel E, Ziegler G, Taubert M. Changes in Cortical Microstructure of the Human Brain Resulting from Long-Term Motor Learning. J Neurosci 2023; 43:8637-8648. [PMID: 37875377 PMCID: PMC10727185 DOI: 10.1523/jneurosci.0537-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
The mechanisms subserving motor skill acquisition and learning in the intact human brain are not fully understood. Previous studies in animals have demonstrated a causal relationship between motor learning and structural rearrangements of synaptic connections, raising the question of whether neurite-specific changes are also observable in humans. Here, we use advanced diffusion magnetic resonance imaging (MRI), sensitive to dendritic and axonal processes, to investigate neuroplasticity in response to long-term motor learning. We recruited healthy male and female human participants (age range 19-29) who learned a challenging dynamic balancing task (DBT) over four consecutive weeks. Diffusion MRI signals were fitted using Neurite Orientation Dispersion and Density Imaging (NODDI), a theory-driven biophysical model of diffusion, yielding measures of tissue volume, neurite density and the organizational complexity of neurites. While NODDI indices were unchanged and reliable during the control period, neurite orientation dispersion increased significantly during the learning period mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor areas. Importantly, reorganization of cortical microstructure during the learning phase predicted concurrent behavioral changes, whereas there was no relationship between microstructural changes during the control phase and learning. Changes in neurite complexity were independent of alterations in tissue density, cortical thickness, and intracortical myelin. Our results are in line with the notion that structural modulation of neurites is a key mechanism supporting complex motor learning in humans.SIGNIFICANCE STATEMENT The structural correlates of motor learning in the human brain are not fully understood. Results from animal studies suggest that synaptic remodeling (e.g., reorganization of dendritic spines) in sensorimotor-related brain areas is a crucial mechanism for the formation of motor memory. Using state-of-the-art diffusion magnetic resonance imaging (MRI), we found a behaviorally relevant increase in the organizational complexity of neocortical microstructure, mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor regions, following training of a challenging dynamic balancing task (DBT). Follow-up analyses suggested structural modulation of synapses as a plausible mechanism driving this increase, while colocalized changes in cortical thickness, tissue density, and intracortical myelin could not be detected. These results advance our knowledge about the neurobiological basis of motor learning in humans.
Collapse
Affiliation(s)
- Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg 39120, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
- Leibniz-Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg 39120, Germany
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg 39120, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
25
|
Galbusera R, Bahn E, Weigel M, Schaedelin S, Franz J, Lu P, Barakovic M, Melie‐Garcia L, Dechent P, Lutti A, Sati P, Reich DS, Nair G, Brück W, Kappos L, Stadelmann C, Granziera C. Postmortem quantitative MRI disentangles histological lesion types in multiple sclerosis. Brain Pathol 2023; 33:e13136. [PMID: 36480267 PMCID: PMC10580009 DOI: 10.1111/bpa.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Quantitative MRI (qMRI) probes the microstructural properties of the central nervous system (CNS) by providing biophysical measures of tissue characteristics. In this work, we aimed to (i) identify qMRI measures that distinguish histological lesion types in postmortem multiple sclerosis (MS) brains, especially the remyelinated ones; and to (ii) investigate the relationship between those measures and quantitative histological markers of myelin, axons, and astrocytes in the same experimental setting. Three fixed MS whole brains were imaged with qMRI at 3T to obtain magnetization transfer ratio (MTR), myelin water fraction (MWF), quantitative T1 (qT1), quantitative susceptibility mapping (QSM), fractional anisotropy (FA) and radial diffusivity (RD) maps. The identification of lesion types (active, inactive, chronic active, or remyelinated) and quantification of tissue components were performed using histological staining methods as well as immunohistochemistry and immunofluorescence. Pairwise logistic and LASSO regression models were used to identify the best qMRI discriminators of lesion types. The association between qMRI and quantitative histological measures was performed using Spearman's correlations and linear mixed-effect models. We identified a total of 65 lesions. MTR and MWF best predicted the chance of a lesion to be remyelinated, whereas RD and QSM were useful in the discrimination of active lesions. The measurement of microstructural properties through qMRI did not show any difference between chronic active and inactive lesions. MWF and RD were associated with myelin content in both lesions and normal-appearing white matter (NAWM), FA was the measure most associated with axon content in both locations, while MWF was associated with astrocyte immunoreactivity only in lesions. Moreover, we provided evidence of extensive astrogliosis in remyelinated lesions. Our study provides new information on the discriminative power of qMRI in differentiating MS lesions -especially remyelinated ones- as well as on the relative association between multiple qMRI measures and myelin, axon and astrocytes.
Collapse
Affiliation(s)
- Riccardo Galbusera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| | - Erik Bahn
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
| | - Sabine Schaedelin
- Clinical Trial Unit, Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Jonas Franz
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
- Campus Institute for Dynamics of Biological NetworksUniversity of GöttingenGöttingenGermany
- Max Planck Institute for Experimental MedicineGöttingenGermany
| | - Po‐Jui Lu
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| | - Lester Melie‐Garcia
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| | - Peter Dechent
- Department of Cognitive NeurologyMR‐Research in Neurosciences, University Medical Center GöttingenGöttingenGermany
| | - Antoine Lutti
- Centre for Research in Neuroscience, Department of Clinical NeurosciencesLaboratoire de Recherche en Neuroimagerie (LREN) University Hospital and University of LausanneLausanneSwitzerland
| | - Pascal Sati
- Department of NeurologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Daniel S. Reich
- Translational Neuroradiology SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Govind Nair
- National Institute of Neurological Disorders and StrokeBethesdaMarylandUSA
| | - Wolfgang Brück
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| | - Christine Stadelmann
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Network of Excitable Cells (MBExC) ”University of GoettingenGermany
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| |
Collapse
|
26
|
Blanke N, Chang S, Novoseltseva A, Wang H, Boas DA, Bigio IJ. Multiscale label-free imaging of myelin in human brain tissue with polarization-sensitive optical coherence tomography and birefringence microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:5946-5964. [PMID: 38021128 PMCID: PMC10659784 DOI: 10.1364/boe.499354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 12/01/2023]
Abstract
The combination of polarization-sensitive optical coherence tomography (PS-OCT) and birefringence microscopy (BRM) enables multiscale assessment of myelinated axons in postmortem brain tissue, and these tools are promising for the study of brain connectivity and organization. We demonstrate label-free imaging of myelin structure across the mesoscopic and microscopic spatial scales by performing serial-sectioning PS-OCT of a block of human brain tissue and periodically sampling thin sections for high-resolution imaging with BRM. In co-registered birefringence parameter maps, we observe good correspondence and demonstrate that BRM enables detailed validation of myelin (hence, axonal) organization, thus complementing the volumetric information content of PS-OCT.
Collapse
Affiliation(s)
- Nathan Blanke
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Shuaibin Chang
- Department of Electrical & Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
| | - Anna Novoseltseva
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Hui Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, USA
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Irving J. Bigio
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Department of Electrical & Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
| |
Collapse
|
27
|
Richerson WT, Muftuler LT, Wolfgram DF, Schmit BD. Characterization of diffusion MRI using the mean apparent propagator model in hemodialysis patients: A pilot study. Magn Reson Imaging 2023; 102:69-78. [PMID: 37150269 PMCID: PMC10524280 DOI: 10.1016/j.mri.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
To better understand documented cognitive decline in hemodialysis (HD) patients, diffusion MRI (dMRI) has been used to characterize brain anatomical deficits relative to controls. Studies to this point have primarily used diffusion tensor imaging (DTI) to model the three-dimensional diffusion of water in HD patients, with DTI parameters reflecting underlying microstructural changes of brain tissue. Since DTI has some limitations in characterizing tissue microstructure, some of which may be complicated by HD, we explored the use of the mean apparent propagator (MAP) model to describe diffusion in HD patients. We collected anatomical T1 and T2 FLAIR MRIs as well as multi-shell dMRI in ten HD participants and ten age-matched controls. The T1 and T2 FLAIR MRIs were used for tissue segmentation and identification of white matter hyperintensity, respectively. Multi-shell dMRI data were used to estimate MAP and DTI diffusion models. Each model was then used to characterize the differences between the HD cohort and the age-matched controls in normal appearing white matter, subcortical gray matter, corpus callosum (CC) and bilateral radiata (Rad). As expected, parameters of both DTI and MAP models of dMRI were significantly different in HD participants compared to controls. However, some MAP parameters suggested additional tissue microstructural changes in HD participants, such as increased axonal diameter. Measurements of non-Gaussianity indicated that MAP provided better a diffusion estimate than DTI, and MAP appeared to provide a more accurate measure of anisotropy in Rad, based on measures of the Rad/CC ratio. In conclusion, parameters of the MAP and DTI models were both sensitive to changes in diffusivity in HD participants compared to controls; however, the MAP model appeared to provide additional detailed information about changes in brain tissue microstructure.
Collapse
Affiliation(s)
- Wesley T Richerson
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States of America.
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Dawn F Wolfgram
- Department of Medicine, Medical College of Wisconsin and Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States of America
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
28
|
Şişman M, Nguyen TD, Roberts AG, Romano DJ, Dimov AV, Kovanlikaya I, Spincemaille P, Wang Y. Microstructure-Informed Myelin Mapping (MIMM) from Gradient Echo MRI using Stochastic Matching Pursuit. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.22.23295993. [PMID: 37808826 PMCID: PMC10557811 DOI: 10.1101/2023.09.22.23295993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Quantification of the myelin content of the white matter is important for studying demyelination in neurodegenerative diseases such as Multiple Sclerosis (MS), particularly for longitudinal monitoring. A novel noninvasive MRI method, called Microstructure-Informed Myelin Mapping (MIMM), is developed to quantify the myelin volume fraction (MVF) by utilizing a multi gradient echo sequence (mGRE) and a detailed biophysical model of tissue microstructure. Myelin is modeled as anisotropic negative susceptibility source based on the Hollow Cylindrical Fiber Model (HCFM), and iron as isotropic positive susceptibility source in the extracellular region. Voxels with a range of biophysical parameters are simulated to create a dictionary of MR echo time magnitude signals and total susceptibility values. MRI signals measured using a mGRE sequence are then matched voxel-by-voxel to the created dictionary to obtain the spatial distributions of myelin and iron. Three different MIMM versions are presented to deal with the fiber orientation dependent susceptibility effects of the myelin sheaths: a basic variation, which assumes fiber orientation is an unknown to fit, two orientation informed variations, which assume the fiber orientation distribution is available either from a separate diffusion tensor imaging (DTI) acquisition or from a DTI atlas based fiber orientation map. While all showed a significant linear correlation with the reference method based on T2-relaxometry (p < 0.0001), DTI orientation informed and atlas orientation informed variations reduced overestimation at white matter tracts compared to the basic variation. Finally, the implications and usefulness of attaining an additional iron susceptibility distribution map are discussed. Highlights novel stochastic matching pursuit algorithm called microstructure-informed myelin mapping (MIMM) is developed to quantify Myelin Volume Fraction (MVF) using Magnetic Resonance Imaging (MRI) and microstructural modeling.utilizes a detailed biophysical model to capture the susceptibility effects on both magnitude and phase to quantify myelin and iron.matter fiber orientation effects are considered for the improved MVF quantification in the major fiber tracts.acquired myelin and iron maps may be utilized to monitor longitudinal disease progress.
Collapse
|
29
|
Cheng GWY, Ma IWT, Huang J, Yeung SHS, Ho P, Chen Z, Mak HKF, Herrup K, Chan KWY, Tse KH. Cuprizone drives divergent neuropathological changes in different mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.547147. [PMID: 37546935 PMCID: PMC10402084 DOI: 10.1101/2023.07.24.547147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the β-amyloid (Aβ) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aβ deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aβ immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.
Collapse
|
30
|
Drobyshevsky A, Synowiec S, Goussakov I, Yarnykh V. Developmental and regional dependence of macromolecular proton fraction and fractional anisotropy in fixed brain tissue. NMR IN BIOMEDICINE 2023; 36:e4915. [PMID: 36895100 PMCID: PMC11293180 DOI: 10.1002/nbm.4915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 02/04/2023] [Indexed: 05/06/2023]
Abstract
An important advantage of imaging fixed tissue is a gain in signal-to-noise ratio and in resolution due to unlimited scan time. However, the fidelity of quantitative MRI parameters in fixed brain tissue, particularly in developmental settings, requires validation. Macromolecular proton fraction (MPF) and fractional anisotropy (FA) indices are quantitative markers of myelination and axonal integrity relevant to preclinical and clinical research. The goal of this study was to assert the correspondence of MR-derived markers of brain development MPF and FA between in vivo and fixed tissue measures. MPF and FA were compared in several white and gray matter structures of the normal mouse brain at 2, 4, and 12 weeks of age. At each developmental stage, in vivo imaging was performed, followed by paraformaldehyde fixation and a second imaging session. MPF maps were acquired from three source images (magnetization transfer weighted, proton density weighted, and T1 weighted), and FA was obtained from diffusion tensor imaging. The MPF and FA values, measured in the cortex, striatum, and major fiber tracts, were compared before and after fixation using Bland-Altman plots, regression analysis, and analysis of variance. MPF values of the fixed tissue were consistently greater than those from in vivo measurements. Importantly, this bias varied significantly with brain region and the developmental stage of the tissue. At the same time, FA values were preserved after fixation, across tissue types and developmental stages. The results of this study suggest that MPF and FA in fixed brain tissue can be used as a proxy for in vivo measurements, but additional considerations should be made to correct for the bias in MPF.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Ivan Goussakov
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Vuong A, Joshi SH, Staudt LA, Matsumoto JH, Fowler EG. Improved Myelination following Camp Leg Power, a Selective Motor Control Intervention for Children with Spastic Bilateral Cerebral Palsy: A Diffusion Tensor MRI Study. AJNR Am J Neuroradiol 2023; 44:700-706. [PMID: 37142433 PMCID: PMC10249693 DOI: 10.3174/ajnr.a7860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND PURPOSE Children with spastic cerebral palsy have motor deficits associated with periventricular leukomalacia indicating WM damage to the corticospinal tracts. We investigated whether practice of skilled lower extremity selective motor control movements would elicit neuroplasticity. MATERIALS AND METHODS Twelve children with spastic bilateral cerebral palsy and periventricular leukomalacia born preterm (mean age, 11.5 years; age range, 7.3-16.6 years) participated in a lower extremity selective motor control intervention, Camp Leg Power. Activities promoted isolated joint movement including isokinetic knee exercises, ankle-controlled gaming, gait training, and sensorimotor activities (3 hours/day, 15 sessions, 1 month). DWI scans were collected pre- and postintervention. Tract-Based Spatial Statistics was used to analyze changes in fractional anisotropy, radial diffusivity, axial diffusivity, and mean diffusivity. RESULTS Significantly reduced radial diffusivity (P < . 05) was found within corticospinal tract ROIs, including 28.4% of the left and 3.6% of the right posterior limb of the internal capsule and 14.1% of the left superior corona radiata. Reduced mean diffusivity was found within the same ROIs (13.3%, 11.6%, and 6.6%, respectively). Additionally, decreased radial diffusivity was observed in the left primary motor cortex. Additional WM tracts had decreased radial diffusivity and mean diffusivity, including the anterior limb of the internal capsule, external capsule, anterior corona radiata, and corpus callosum body and genu. CONCLUSIONS Myelination of the corticospinal tracts improved following Camp Leg Power. Neighboring WM changes suggest recruitment of additional tracts involved in regulating neuroplasticity of the motor regions. Intensive practice of skilled lower extremity selective motor control movements promotes neuroplasticity in children with spastic bilateral cerebral palsy.
Collapse
Affiliation(s)
- A Vuong
- From the Departments of Bioengineering (A.V., S.H.J.)
- Orthopaedic Surgery (A.V., L.A.S., E.G.F.)
- Center for Cerebral Palsy (A.V., L.A.S., E.G.F.), University of California Los Angeles/Orthopaedic Institute for Children, Los Angeles, California
| | - S H Joshi
- From the Departments of Bioengineering (A.V., S.H.J.)
- Neurology (S.H.J.), Ahmanson Lovelace Brain Mapping Center
| | - L A Staudt
- Orthopaedic Surgery (A.V., L.A.S., E.G.F.)
- Center for Cerebral Palsy (A.V., L.A.S., E.G.F.), University of California Los Angeles/Orthopaedic Institute for Children, Los Angeles, California
| | - J H Matsumoto
- Pediatrics (J.H.M.), University of California Los Angeles, Los Angeles, California
| | - E G Fowler
- Orthopaedic Surgery (A.V., L.A.S., E.G.F.)
- Center for Cerebral Palsy (A.V., L.A.S., E.G.F.), University of California Los Angeles/Orthopaedic Institute for Children, Los Angeles, California
| |
Collapse
|
32
|
Guo Y, Dong D, Wu H, Xue Z, Zhou F, Zhao L, Li Z, Feng T. The intracortical myelin content of impulsive choices: results from T1- and T2-weighted MRI myelin mapping. Cereb Cortex 2023; 33:7163-7174. [PMID: 36748995 PMCID: PMC10422924 DOI: 10.1093/cercor/bhad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Delay discounting (DD) refers to a phenomenon that humans tend to choose small-sooner over large-later rewards during intertemporal choices. Steep discounting of delayed outcome is related to a variety of maladaptive behaviors and is considered as a transdiagnostic process across psychiatric disorders. Previous studies have investigated the association between brain structure (e.g. gray matter volume) and DD; however, it is unclear whether the intracortical myelin (ICM) influences DD. Here, based on a sample of 951 healthy young adults drawn from the Human Connectome Project, we examined the relationship between ICM, which was measured by the contrast of T1w and T2w images, and DD and further tested whether the identified associations were mediated by the regional homogeneity (ReHo) of brain spontaneous activity. Vertex-wise regression analyses revealed that steeper DD was significantly associated with lower ICM in the left temporoparietal junction (TPJ) and right middle-posterior cingulate cortex. Region-of-interest analysis revealed that the ReHo values in the left TPJ partially mediated the association of its myelin content with DD. Our findings provide the first evidence that cortical myelination is linked with individual differences in decision impulsivity and suggest that the myelin content affects cognitive performances partially through altered local brain synchrony.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship education, Chongqing University of Posts and Telecommunications, Chongqing, China
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Huimin Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyuan Xue
- School of Humanities and Management, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Stellingwerff MD, Pouwels PJW, Roosendaal SD, Barkhof F, van der Knaap MS. Quantitative MRI in leukodystrophies. Neuroimage Clin 2023; 38:103427. [PMID: 37150021 PMCID: PMC10193020 DOI: 10.1016/j.nicl.2023.103427] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Leukodystrophies constitute a large and heterogeneous group of genetic diseases primarily affecting the white matter of the central nervous system. Different disorders target different white matter structural components. Leukodystrophies are most often progressive and fatal. In recent years, novel therapies are emerging and for an increasing number of leukodystrophies trials are being developed. Objective and quantitative metrics are needed to serve as outcome measures in trials. Quantitative MRI yields information on microstructural properties, such as myelin or axonal content and condition, and on the chemical composition of white matter, in a noninvasive fashion. By providing information on white matter microstructural involvement, quantitative MRI may contribute to the evaluation and monitoring of leukodystrophies. Many distinct MR techniques are available at different stages of development. While some are already clinically applicable, others are less far developed and have only or mainly been applied in healthy subjects. In this review, we explore the background, current status, potential and challenges of available quantitative MR techniques in the context of leukodystrophies.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefan D Roosendaal
- Amsterdam UMC Location University of Amsterdam, Department of Radiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; University College London, Institutes of Neurology and Healthcare Engineering, London, UK
| | - Marjo S van der Knaap
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, De Boelelaan 1105, Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Morita T, Takemura H, Naito E. Functional and Structural Properties of Interhemispheric Interaction between Bilateral Precentral Hand Motor Regions in a Top Wheelchair Racing Paralympian. Brain Sci 2023; 13:brainsci13050715. [PMID: 37239187 DOI: 10.3390/brainsci13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Long-term motor training can cause functional and structural changes in the human brain. Assessing how the training of specific movements affects specific parts of the neural circuitry is essential to understand better the underlying mechanisms of motor training-induced plasticity in the human brain. We report a single-case neuroimaging study that investigated functional and structural properties in a professional athlete of wheelchair racing. As wheelchair racing requires bilateral synchronization of upper limb movements, we hypothesized that functional and structural properties of interhemispheric interactions in the central motor system might differ between the professional athlete and controls. Functional and diffusion magnetic resonance imaging (fMRI and dMRI) data were obtained from a top Paralympian (P1) in wheelchair racing. With 23 years of wheelchair racing training starting at age eight, she holds an exceptional competitive record. Furthermore, fMRI and dMRI data were collected from three other paraplegic participants (P2-P4) with long-term wheelchair sports training other than wheelchair racing and 37 able-bodied control volunteers. Based on the fMRI data analyses, P1 showed activation in the bilateral precentral hand sections and greater functional connectivity between these sections during a right-hand unimanual task. In contrast, other paraplegic participants and controls showed activation in the contralateral hemisphere and deactivation in the ipsilateral hemisphere. Moreover, dMRI data analysis revealed that P1 exhibited significantly lower mean diffusivity along the transcallosal pathway connecting the bilateral precentral motor regions than control participants, which was not observed in the other paraplegic participants. These results suggest that long-term training with bilaterally synchronized upper-limb movements may promote bilateral recruitment of the precentral hand sections. Such recruitment may affect the structural circuitry involved in the interhemispheric interaction between the bilateral precentral regions. This study provides valuable evidence of the extreme adaptability of the human brain.
Collapse
Affiliation(s)
- Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Aichi, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama 240-0193, Kanagawa, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
35
|
Drobyshevsky A, Synowiec S, Goussakov I, Lu J, Gascoigne D, Aksenov DP, Yarnykh V. Temporal trajectories of normal myelination and axonal development assessed by quantitative macromolecular and diffusion MRI: Ultrastructural and immunochemical validation in a rabbit model. Neuroimage 2023; 270:119974. [PMID: 36848973 PMCID: PMC10103444 DOI: 10.1016/j.neuroimage.2023.119974] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
INTRODUCTION Quantitative and non-invasive measures of brain myelination and maturation during development are of great importance to both clinical and translational research communities. While the metrics derived from diffusion tensor imaging, are sensitive to developmental changes and some pathologies, they remain difficult to relate to the actual microstructure of the brain tissue. The advent of advanced model-based microstructural metrics requires histological validation. The purpose of the study was to validate novel, model-based MRI techniques, such as macromolecular proton fraction mapping (MPF) and neurite orientation and dispersion indexing (NODDI), against histologically derived indexes of myelination and microstructural maturation at various stages of development. METHODS New Zealand White rabbit kits underwent serial in-vivo MRI examination at postnatal days 1, 5, 11, 18, and 25, and as adults. Multi-shell, diffusion-weighted experiments were processed to fit NODDI model to obtain estimates, intracellular volume fraction (ICVF) and orientation dispersion index (ODI). Macromolecular proton fraction (MPF) maps were obtained from three source (MT-, PD-, and T1-weighted) images. After MRI sessions, a subset of animals was euthanized and regional samples of gray and white matter were taken for western blot analysis, to determine myelin basic protein (MBP), and electron microscopy, to estimate axonal, myelin fractions and g-ratio. RESULTS MPF of white matter regions showed a period of fast growth between P5 and P11 in the internal capsule, with a later onset in the corpus callosum. This MPF trajectory was in agreement with levels of myelination in the corresponding brain region, as assessed by western blot and electron microscopy. In the cortex, the greatest increase of MPF occurred between P18 and P26. In contrast, myelin, according to MBP western blot, saw the largest hike between P5 and P11 in the sensorimotor cortex and between P11 and P18 in the frontal cortex, which then seemingly plateaued after P11 and P18 respectively. G-ratio by MRI markers decreased with age in the white matter. However, electron microscopy suggest a relatively stable g-ratio throughout development. CONCLUSION Developmental trajectories of MPF accurately reflected regional differences of myelination rate in different cortical regions and white matter tracts. MRI-derived estimation of g-ratio was inaccurate during early development, likely due to the overestimation of axonal volume fraction by NODDI due to the presence of a large proportion of unmyelinated axons.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA.
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Ivan Goussakov
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Jing Lu
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - David Gascoigne
- Center for Basic MR Research, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Daniil P Aksenov
- Center for Basic MR Research, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
Haenelt D, Trampel R, Nasr S, Polimeni JR, Tootell RBH, Sereno MI, Pine KJ, Edwards LJ, Helbling S, Weiskopf N. High-resolution quantitative and functional MRI indicate lower myelination of thin and thick stripes in human secondary visual cortex. eLife 2023; 12:e78756. [PMID: 36888685 PMCID: PMC9995117 DOI: 10.7554/elife.78756] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
The characterization of cortical myelination is essential for the study of structure-function relationships in the human brain. However, knowledge about cortical myelination is largely based on post-mortem histology, which generally renders direct comparison to function impossible. The repeating pattern of pale-thin-pale-thick stripes of cytochrome oxidase (CO) activity in the primate secondary visual cortex (V2) is a prominent columnar system, in which histology also indicates different myelination of thin/thick versus pale stripes. We used quantitative magnetic resonance imaging (qMRI) in conjunction with functional magnetic resonance imaging (fMRI) at ultra-high field strength (7 T) to localize and study myelination of stripes in four human participants at sub-millimeter resolution in vivo. Thin and thick stripes were functionally localized by exploiting their sensitivity to color and binocular disparity, respectively. Resulting functional activation maps showed robust stripe patterns in V2 which enabled further comparison of quantitative relaxation parameters between stripe types. Thereby, we found lower longitudinal relaxation rates (R1) of thin and thick stripes compared to surrounding gray matter in the order of 1-2%, indicating higher myelination of pale stripes. No consistent differences were found for effective transverse relaxation rates (R2*). The study demonstrates the feasibility to investigate structure-function relationships in living humans within one cortical area at the level of columnar systems using qMRI.
Collapse
Affiliation(s)
- Daniel Haenelt
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and PlasticityLeipzigGermany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Roger BH Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Martin I Sereno
- Department of Psychology, College of Sciences, San Diego State UniversitySan DiegoUnited States
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Saskia Helbling
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Poeppel Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurt am MainGermany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig UniversityLeipzigGermany
| |
Collapse
|
37
|
Huber E, Corrigan NM, Yarnykh VL, Ferjan Ramírez N, Kuhl PK. Language Experience during Infancy Predicts White Matter Myelination at Age 2 Years. J Neurosci 2023; 43:1590-1599. [PMID: 36746626 PMCID: PMC10008053 DOI: 10.1523/jneurosci.1043-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Parental input is considered a key predictor of language achievement during the first years of life, yet relatively few studies have assessed the effects of parental language input and parent-infant interactions on early brain development. We examined the relationship between measures of parent and child language, obtained from naturalistic home recordings at child ages 6, 10, 14, 18, and 24 months, and estimates of white matter myelination, derived from quantitative MRI at age 2 years (mean = 26.30 months, SD = 1.62, N = 22). Analysis of the white matter focused on dorsal pathways associated with expressive language development and long-term language ability, namely, the left arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF). Frequency of parent-infant conversational turns (CT) uniquely predicted myelin density estimates in both the AF and SLF. Moreover, the effect of CT remained significant while controlling for total adult speech and child speech-related utterances, suggesting a specific role for interactive language experience, rather than simply speech exposure or production. An exploratory analysis of 18 additional tracts, including the right AF and SLF, indicated a high degree of anatomic specificity. Longitudinal analyses of parent and child language variables indicated an effect of CT as early as 6 months of age, as well as an ongoing effect over infancy. Together, these results link parent-infant conversational turns to white matter myelination at age 2 years, and suggest that early, interactive experiences with language uniquely contribute to the development of white matter associated with long-term language ability.SIGNIFICANCE STATEMENT Children's earliest experiences with language are thought to have profound and lasting developmental effects. Recent studies suggest that intervention can increase the quality of parental language input and improve children's learning outcomes. However, important questions remain about the optimal timing of intervention, and the relationship between specific aspects of language experience and brain development. We report that parent-infant turn-taking during home language interactions correlates with myelination of language related white matter pathways through age 2 years. Effects were independent of total speech exposure and infant vocalizations and evident starting at 6 months of age, suggesting that structured language interactions throughout infancy may uniquely support the ongoing development of brain systems critical to long-term language ability.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington 98195
| | - Naja Ferjan Ramírez
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Linguistics, University of Washington, Seattle, Washington 98195
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
38
|
McKavanagh A, Ridzuan-Allen A, Kreilkamp BAK, Chen Y, Manjón JV, Coupé P, Bracewell M, Das K, Taylor PN, Marson AG, Keller SS. Midbrain structure volume, estimated myelin and functional connectivity in idiopathic generalised epilepsy. Epilepsy Behav 2023; 140:109084. [PMID: 36702054 DOI: 10.1016/j.yebeh.2023.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Structural and functional neuroimaging studies often overlook lower basal ganglia structures located in and adjacent to the midbrain due to poor contrast on clinically acquired T1-weighted scans. Here, we acquired T1-weighted, T2-weighted, and resting-state fMRI scans to investigate differences in volume, estimated myelin content and functional connectivity of the substantia nigra (SN), subthalamic nuclei (SubTN) and red nuclei (RN) of the midbrain in IGE. METHODS Thirty-three patients with IGE (23 refractory, 10 non-refractory) and 39 age and sex-matched healthy controls underwent MR imaging. Midbrain structures were automatically segmented from T2-weighted images and structural volumes were calculated. The estimated myelin content for each structure was determined using a T1-weighted/T2-weighted ratio method. Resting-state functional connectivity analysis of midbrain structures (seed-based) was performed using the CONN toolbox. RESULTS An increased volume of the right RN was found in IGE and structural volumes of the right SubTN differed between patients with non-refractory and refractory IGE. However, no volume findings survived corrections for multiple comparisons. No myelin alterations of midbrain structures were found for any subject groups. We found functional connectivity alterations including significantly decreased connectivity between the left SN and the thalamus and significantly increased connectivity between the right SubTN and the superior frontal gyrus in IGE. CONCLUSIONS We report volumetric and functional connectivity alterations of the midbrain in patients with IGE. We postulate that potential increases in structural volumes are due to increased iron deposition that impacts T2-weighted contrast. These findings are consistent with previous studies demonstrating pathophysiological abnormalities of the lower basal ganglia in animal models of generalised epilepsy.
Collapse
Affiliation(s)
- Andrea McKavanagh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK.
| | - Adam Ridzuan-Allen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Barbara A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK; Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Yachin Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital', United States
| | - José V Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Pierrick Coupé
- Pictura Research Group, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR 5800), Laboratoire Bordelais de Recherche en Informatique, Bordeaux, France
| | - Martyn Bracewell
- The Walton Centre NHS Foundation Trust, Liverpool, UK; Schools of Medical Sciences and Psychology, Bangor University, Bangor, UK
| | - Kumar Das
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, UK
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
39
|
Ziminski JJ, Frangou P, Karlaftis VM, Emir U, Kourtzi Z. Microstructural and neurochemical plasticity mechanisms interact to enhance human perceptual decision-making. PLoS Biol 2023; 21:e3002029. [PMID: 36897881 PMCID: PMC10032544 DOI: 10.1371/journal.pbio.3002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/22/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023] Open
Abstract
Experience and training are known to boost our skills and mold the brain's organization and function. Yet, structural plasticity and functional neurotransmission are typically studied at different scales (large-scale networks, local circuits), limiting our understanding of the adaptive interactions that support learning of complex cognitive skills in the adult brain. Here, we employ multimodal brain imaging to investigate the link between microstructural (myelination) and neurochemical (GABAergic) plasticity for decision-making. We test (in males, due to potential confounding menstrual cycle effects on GABA measurements in females) for changes in MRI-measured myelin, GABA, and functional connectivity before versus after training on a perceptual decision task that involves identifying targets in clutter. We demonstrate that training alters subcortical (pulvinar, hippocampus) myelination and its functional connectivity to visual cortex and relates to decreased visual cortex GABAergic inhibition. Modeling interactions between MRI measures of myelin, GABA, and functional connectivity indicates that pulvinar myelin plasticity interacts-through thalamocortical connectivity-with GABAergic inhibition in visual cortex to support learning. Our findings propose a dynamic interplay of adaptive microstructural and neurochemical plasticity in subcortico-cortical circuits that supports learning for optimized decision-making in the adult human brain.
Collapse
Affiliation(s)
- Joseph J Ziminski
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Polytimi Frangou
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Vasilis M Karlaftis
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Uzay Emir
- Purdue University School of Health Sciences, West Lafayette, Indiana, United States of America
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Piekarski DJ, Colich NL, Ho TC. The effects of puberty and sex on adolescent white matter development: A systematic review. Dev Cogn Neurosci 2023; 60:101214. [PMID: 36913887 PMCID: PMC10010971 DOI: 10.1016/j.dcn.2023.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Adolescence, the transition between childhood and adulthood, is characterized by rapid brain development in white matter (WM) that is attributed in part to rising levels in adrenal and gonadal hormones. The extent to which pubertal hormones and related neuroendocrine processes explain sex differences in WM during this period is unclear. In this systematic review, we sought to examine whether there are consistent associations between hormonal changes and morphological and microstructural properties of WM across species and whether these effects are sex-specific. We identified 90 (75 human, 15 non-human) studies that met inclusion criteria for our analyses. While studies in human adolescents show notable heterogeneity, results broadly demonstrate that increases in gonadal hormones across pubertal development are associated with macro- and microstructural changes in WM tracts that are consistent with the sex differences found in non-human animals, particularly in the corpus callosum. We discuss limitations of the current state of the science and recommend important future directions for investigators in the field to consider in order to advance our understanding of the neuroscience of puberty and to promote forward and backward translation across model organisms.
Collapse
Affiliation(s)
| | | | - Tiffany C Ho
- Department of Psychology, University of California, Los Angeles, United States.
| |
Collapse
|
41
|
Neural Network in the Analysis of the MR Signal as an Image Segmentation Tool for the Determination of T 1 and T 2 Relaxation Times with Application to Cancer Cell Culture. Int J Mol Sci 2023; 24:ijms24021554. [PMID: 36675075 PMCID: PMC9861169 DOI: 10.3390/ijms24021554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Artificial intelligence has been entering medical research. Today, manufacturers of diagnostic instruments are including algorithms based on neural networks. Neural networks are quickly entering all branches of medical research and beyond. Analyzing the PubMed database from the last 5 years (2017 to 2021), we see that the number of responses to the query "neural network in medicine" exceeds 10,500 papers. Deep learning algorithms are of particular importance in oncology. This paper presents the use of neural networks to analyze the magnetic resonance imaging (MRI) images used to determine MRI relaxometry of the samples. Relaxometry is becoming an increasingly common tool in diagnostics. The aim of this work was to optimize the processing time of DICOM images by using a neural network implemented in the MATLAB package by The MathWorks with the patternnet function. The application of a neural network helps to eliminate spaces in which there are no objects with characteristics matching the phenomenon of longitudinal or transverse MRI relaxation. The result of this work is the elimination of aerated spaces in MRI images. The whole algorithm was implemented as an application in the MATLAB package.
Collapse
|
42
|
Mapping myelin in white matter with T1-weighted/T2-weighted maps: discrepancy with histology and other myelin MRI measures. Brain Struct Funct 2023; 228:525-535. [PMID: 36692695 PMCID: PMC9944377 DOI: 10.1007/s00429-022-02600-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/18/2022] [Indexed: 01/25/2023]
Abstract
The ratio of T1-weighted/T2-weighted magnetic resonance images (T1w/T2w MRI) has been successfully applied at the cortical level since 2011 and is now one of the most used myelin mapping methods. However, no reports have explored the histological validity of T1w/T2w myelin mapping in white matter. Here we compare T1w/T2w with ex vivo postmortem histology and in vivo MRI methods, namely quantitative susceptibility mapping (QSM) and multi-echo T2 myelin water fraction (MWF) mapping techniques. We report a discrepancy between T1w/T2w myelin maps of the human corpus callosum and the histology and analyse the putative causes behind such discrepancy. T1w/T2w does not positively correlate with Luxol Fast Blue (LFB)-Optical Density but shows a weak to moderate, yet significant, negative correlation. On the contrary, MWF is strongly and positively correlated with LFB, whereas T1w/T2w and MWF maps are weakly negatively correlated. The discrepancy between T1w/T2w MRI maps, MWF and histological myelin maps suggests caution in using T1w/T2w as a white matter mapping method at the callosal level. While T1w/T2w imaging may correlate with myelin content at the cortical level, it is not a specific method to map myelin density in white matter.
Collapse
|
43
|
Inhomogeneous Magnetization Transfer (ihMT) imaging in the acute cuprizone mouse model of demyelination/remyelination. Neuroimage 2023; 265:119785. [PMID: 36464096 DOI: 10.1016/j.neuroimage.2022.119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To investigate the association of ihMT (inhom signals with the demyelination and remyelination phases of the acute cuprizone mouse model in comparison with histology, and to assess the extent of tissue damage and repair from MRI data. METHODS Acute demyelination by feeding 0.2% cuprizone for five weeks, followed by a four-week remyelination period was applied on genetically modified plp-GFP mice. Animals were scanned at different time points of the demyelination and remyelination phases of the cuprizone model using a multimodal MRI protocol, including ihMT T1D-filters, MPF (Macromolecular Proton Fraction) and R1 (longitudinal relaxation rate). For histology, plp-GFP (proteolipid protein - Green Fluorescent Protein) microscopy and LFB (Luxol Fast Blue) staining were employed as references for the myelin content. Comparison of MRI with histology was performed in the medial corpus callosum (mCC) and cerebral cortex (CTX) at two brain levels whereas ROI-wise and voxel-based analyses of the MRI metrics allowed investigating in vivo the spatial extent of myelin alterations. RESULTS IhMT high-pass T1D-filters, targeted toward long T1D components, showed significant temporal variations in the mCC consistent with the effects induced by the cuprizone toxin. In addition, the corresponding signals correlated strongly and significantly with the myelin content assessed by GFP fluorescence and LFB staining over the demyelination and the remyelination phases. The signal of the band-pass T1D-filter, which isolates short T1D components, showed changes over time that were poorly correlated with histology, hence suggesting a sensitivity to pathological processes possibly not related to myelin. Although MPF was also highly correlated to histology, ihMT high-pass T1D-filters showed better capability to characterize the spatial-temporal patterns during the demyelination and remyelination phases of the acute cuprizone model (e.g., rostro-caudal gradient of demyelination in the mCC previously described in the literature). CONCLUSIONS IhMT sequences selective for long T1D components are specific and sensitive in vivo markers of demyelination and remyelination and have successfully captured the spatially heterogeneous pattern of the demyelination and remyelination mechanisms in the cuprizone model. Interestingly, differences in signal variations between the ihMT high-pass and band-pass T1D-filter, suggest a sensitivity of the ihMT sequences targeted to short T1Ds to alterations other than those of myelin. Future studies will need to further address these differences by examining more closely the origin of the short T1D components and the variation of each T1D component in pathology.
Collapse
|
44
|
Guo Y, Wu H, Dong D, Zhou F, Li Z, Zhao L, Long Z. Stress and the brain: Emotional support mediates the association between myelination in the right supramarginal gyrus and perceived chronic stress. Neurobiol Stress 2022; 22:100511. [PMID: 36632310 PMCID: PMC9826980 DOI: 10.1016/j.ynstr.2022.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Perceived stress, which refers to people's evaluation of a stressful event and their ability to cope with it, has emerged as a stable predictor for physical and mental health outcomes. Increasing evidence has suggested the buffering effect of social support on perceived stress. Although previous studies have investigated the brain structural features (e.g., gray matter volume) associated with perceived stress, less is known about the association between perceived chronic stress and intra-cortical myelin (ICM), which is an important microstructure of brain and is essential for healthy brain functions, and the role of social support in this association. Using a sample of 1076 healthy young adults drawn from the Human Connectome Project, we quantified the ICMby the contrast of T1w and T2w images and examined its association with perceived chronic stress during the last month and social support. Behavioral results showed that perceived chronic stress was negatively associated with both emotional support and instrumental support. Vertex-wise multiple regression analyses revealed that higher level of perceived chronic stress was significantly associated with lower ICM content of a cluster in the right supramarginal gyrus (rSMG). Interestingly, the emotional support, but not the instrumental support, significantly mediated the association of perceived chronic stress with ICM in the rSMG. Overall, the present study provides novel evidence for the cortical myelination of perceived chronic stress in humans and highlights the essential role of the rSMG in perceived chronic stress and emotional support.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China,School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China,Key Laboratory of Cognition and Personality, Ministry of Education, China,Corresponding author. School of Bioinformatics, Chongqing University of Posts and Telecommunications, No. 2, Chongwen Road, Nanan District, China.
| | - Huimin Wu
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhangyong Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhiliang Long
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Meisler SL, Gabrieli JDE. Fiber-specific structural properties relate to reading skills in children and adolescents. eLife 2022; 11:e82088. [PMID: 36576253 PMCID: PMC9815823 DOI: 10.7554/elife.82088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Recent studies suggest that the cross-sectional relationship between reading skills and white matter microstructure, as indexed by fractional anisotropy, is not as robust as previously thought. Fixel-based analyses yield fiber-specific micro- and macrostructural measures, overcoming several shortcomings of the traditional diffusion tensor model. We ran a whole-brain analysis investigating whether the product of fiber density and cross-section (FDC) related to single-word reading skills in a large, open, quality-controlled dataset of 983 children and adolescents ages 6-18. We also compared FDC between participants with (n = 102) and without (n = 570) reading disabilities. We found that FDC positively related to reading skills throughout the brain, especially in left temporoparietal and cerebellar white matter, but did not differ between reading proficiency groups. Exploratory analyses revealed that among metrics from other diffusion models - diffusion tensor imaging, diffusion kurtosis imaging, and neurite orientation dispersion and density imaging - only the orientation dispersion and neurite density indexes from NODDI were associated (inversely) with reading skills. The present findings further support the importance of left-hemisphere dorsal temporoparietal white matter tracts in reading. Additionally, these results suggest that future DWI studies of reading and dyslexia should be designed to benefit from advanced diffusion models, include cerebellar coverage, and consider continuous analyses that account for individual differences in reading skill.
Collapse
Affiliation(s)
- Steven Lee Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical SchoolBostonUnited States
| | | |
Collapse
|
46
|
Anti-Correlated Myelin-Sensitive MRI Levels in Humans Consistent with a Subcortical to Sensorimotor Regulatory Process-Multi-Cohort Multi-Modal Evidence. Brain Sci 2022; 12:brainsci12121693. [PMID: 36552153 PMCID: PMC9776387 DOI: 10.3390/brainsci12121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Differential axonal myelination synchronises signalling over different axon lengths. The consequences of myelination processes described at the cellular level for the regulation of myelination at the macroscopic level are unknown. We analysed multiple cohorts of myelin-sensitive brain MRI. Our aim was to (i) confirm a previous report of anti-correlation between myelination in subcortical and sensorimotor areas in healthy subjects, (ii) and thereby test our hypothesis for a regulatory interaction between them. We analysed nine image-sets across three different human cohorts using six MRI modalities. Each image-set contained healthy controls (HC) and ME/CFS subjects. Subcortical and Sensorimotor regions of interest (ROI) were optimised for the detection of anti-correlations and the same ROIs were used to test the HC in all image-sets. For each cohort, median MRI values were computed in both regions for each subject and their correlation across the cohort was computed. We confirmed negative correlations in healthy controls between subcortical and sensorimotor regions in six image-sets: three T1wSE (p = 5 × 10-8, 5 × 10-7, 0.002), T2wSE (p =2 × 10-6), MTC (p = 0.01), and WM volume (p = 0.02). T1/T2 was the exception with a positive correlation (p = 0.01). This myelin regulation study is novel in several aspects: human subjects, cross-sectional design, ROI optimization, spin-echo MRI and reproducible across multiple independent image-sets. In multiple independent image-sets we confirmed an anti-correlation between subcortical and sensorimotor myelination which supports a previously unreported regulatory interaction. The subcortical region contained the brain's primary regulatory nuclei. We suggest a mechanism has evolved whereby relatively low subcortical myelination in an individual is compensated by upregulated sensorimotor myelination to maintain adequate sensorimotor performance.
Collapse
|
47
|
Berg RC, Menegaux A, Amthor T, Gilbert G, Mora M, Schlaeger S, Pongratz V, Lauerer M, Sorg C, Doneva M, Vavasour I, Mühlau M, Preibisch C. Comparing myelin-sensitive magnetic resonance imaging measures and resulting g-ratios in healthy and multiple sclerosis brains. Neuroimage 2022; 264:119750. [PMID: 36379421 PMCID: PMC9931395 DOI: 10.1016/j.neuroimage.2022.119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
The myelin concentration and the degree of myelination of nerve fibers can provide valuable information on the integrity of human brain tissue. Magnetic resonance imaging (MRI) of myelin-sensitive parameters can help to non-invasively evaluate demyelinating diseases such as multiple sclerosis (MS). Several different myelin-sensitive MRI methods have been proposed to determine measures of the degree of myelination, in particular the g-ratio. However, variability in underlying physical principles and different biological models influence measured myelin concentrations, and consequently g-ratio values. We therefore investigated similarities and differences between five different myelin-sensitive MRI measures and their effects on g-ratio mapping in the brains of both MS patients and healthy volunteers. We compared two different estimates of the myelin water fraction (MWF) as well as the inhomogeneous magnetization transfer ratio (ihMTR), magnetization transfer saturation (MTsat), and macromolecular tissue volume (MTV) in 13 patients with MS and 14 healthy controls. In combination with diffusion-weighted imaging, we derived g-ratio parameter maps for each of the five different myelin measures. The g-ratio values calculated from different myelin measures varied strongly, especially in MS lesions. While, compared to normal-appearing white matter, MTsat and one estimate of the MWF resulted in higher g-ratio values within lesions, ihMTR, MTV, and the second MWF estimate resulted in lower lesion g-ratio values. As myelin-sensitive measures provide rough estimates of myelin content rather than absolute myelin concentrations, resulting g-ratio values strongly depend on the utilized myelin measure and model used for g-ratio mapping. When comparing g-ratio values, it is, thus, important to utilize the same MRI methods and models or to consider methodological differences. Particular caution is necessary in pathological tissue such as MS lesions.
Collapse
Affiliation(s)
- Ronja C. Berg
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany,Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany,Corresponding author at: Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaninger Str. 22, 81675, München, Germany. (R.C. Berg)
| | - Aurore Menegaux
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany
| | | | | | - Maria Mora
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany
| | - Sarah Schlaeger
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany
| | - Viola Pongratz
- Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany
| | - Markus Lauerer
- Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany
| | - Christian Sorg
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany,Technical University of Munich, School of Medicine, Department of Psychiatry, Munich, Germany
| | | | - Irene Vavasour
- University of British Columbia, Department of Radiology, Vancouver, BC, Canada
| | - Mark Mühlau
- Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany,Technical University of Munich, School of Medicine, Department of Neurology, Munich, Germany,Technical University of Munich, School of Medicine, TUM Neuroimaging Center, Munich, Germany
| |
Collapse
|
48
|
Vaher K, Bogaert D, Richardson H, Boardman JP. Microbiome-gut-brain axis in brain development, cognition and behavior during infancy and early childhood. DEVELOPMENTAL REVIEW 2022. [DOI: 10.1016/j.dr.2022.101038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
A macroscopic link between interhemispheric tract myelination and cortico-cortical interactions during action reprogramming. Nat Commun 2022; 13:4253. [PMID: 35869067 PMCID: PMC9307658 DOI: 10.1038/s41467-022-31687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination has been increasingly implicated in the function and dysfunction of the adult human brain. Although it is known that axon myelination shapes axon physiology in animal models, it is unclear whether a similar principle applies in the living human brain, and at the level of whole axon bundles in white matter tracts. Here, we hypothesised that in humans, cortico-cortical interactions between two brain areas may be shaped by the amount of myelin in the white matter tract connecting them. As a test bed for this hypothesis, we use a well-defined interhemispheric premotor-to-motor circuit. We combined TMS-derived physiological measures of cortico-cortical interactions during action reprogramming with multimodal myelin markers (MT, R1, R2* and FA), in a large cohort of healthy subjects. We found that physiological metrics of premotor-to-motor interaction are broadly associated with multiple myelin markers, suggesting interindividual differences in tract myelination may play a role in motor network physiology. Moreover, we also demonstrate that myelination metrics link indirectly to action switching by influencing local primary motor cortex dynamics. These findings suggest that myelination levels in white matter tracts may influence millisecond-level cortico-cortical interactions during tasks. They also unveil a link between the physiology of the motor network and the myelination of tracts connecting its components, and provide a putative mechanism mediating the relationship between brain myelination and human behaviour. Myelination is a key regulator of brain function. Here the authors use MR-based myelin measures to examine if cortico-cortical interactions, as assessed by paired pulse transcranial magnetic stimulation, are affected by variations in myelin in the human brain.
Collapse
|
50
|
Kor DZL, Jbabdi S, Huszar IN, Mollink J, Tendler BC, Foxley S, Wang C, Scott C, Smart A, Ansorge O, Pallebage-Gamarallage M, Miller KL, Howard AFD. An automated pipeline for extracting histological stain area fraction for voxelwise quantitative MRI-histology comparisons. Neuroimage 2022; 264:119726. [PMID: 36368503 PMCID: PMC10933753 DOI: 10.1016/j.neuroimage.2022.119726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The acquisition of MRI and histology in the same post-mortem tissue sample enables direct correlation between MRI and histologically-derived parameters. However, there still lacks a standardised automated pipeline to process histology data, with most studies relying on manual intervention. Here, we introduce an automated pipeline to extract a quantitative histological measure for staining density (stain area fraction, SAF) from multiple immunohistochemical (IHC) stains. The pipeline is designed to directly address key IHC artefacts related to tissue staining and slide digitisation. Here, the pipeline was applied to post-mortem human brain data from multiple subjects, relating MRI parameters (FA, MD, RD, AD, R2*, R1) to IHC slides stained for myelin, neurofilaments, microglia and activated microglia. Utilising high-quality MRI-histology co-registrations, we then performed whole-slide voxelwise comparisons (simple correlations, partial correlations and multiple regression analyses) between multimodal MRI- and IHC-derived parameters. The pipeline was found to be reproducible, robust to artefacts and generalisable across multiple IHC stains. Our partial correlation results suggest that some simple MRI-SAF correlations should be interpreted with caution, due to the co-localisation of other tissue features (e.g., myelin and neurofilaments). Further, we find activated microglia-a generic biomarker of inflammation-to consistently be the strongest predictor of high DTI FA and low RD, which may suggest sensitivity of diffusion MRI to aspects of neuroinflammation related to microglial activation, even after accounting for other microstructural changes (demyelination, axonal loss and general microglia infiltration). Together, these results show the utility of this approach in carefully curating IHC data and performing multimodal analyses to better understand microstructural relationships with MRI.
Collapse
Affiliation(s)
- Daniel Z L Kor
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Istvan N Huszar
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Jeroen Mollink
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Sean Foxley
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Connor Scott
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Adele Smart
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom; Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Olaf Ansorge
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Menuka Pallebage-Gamarallage
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Amy F D Howard
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| |
Collapse
|