1
|
Seeley A, Mahmood R, Bellamy C, Roome EG, Williams BS, Davies NA, Wallace MJ. Concentration- and time-dependent behavioural effects of ethanol on Lumbriculus variegatus. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70006. [PMID: 39407413 PMCID: PMC11479948 DOI: 10.1111/gbb.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
Ethanol is one of the most widely used drugs in the world. Ethanol induces profound physiological and behavioural responses in invertebrate model organisms, such as Caenorhabditis elegans and Drosophila melanogaster. Lumbriculus variegatus (Annelida, Oligochaete) is an aquatic worm which shows behavioural responses to common drugs and thus is potentially useful in pharmacological research. The effects of ethanol are unknown in this organism. In this study, we examine the effects of acute exposure to ethanol (0-500 mM) on the stereotypical movements and locomotor activity of L. variegatus and examine the concentration- (0-500 mM) and time-dependent (0-210 min) effects of ethanol in L. variegatus. We show that ≥250 mM ethanol reversibly reduced the ability of tactile stimulation to elicit stereotypical movements, namely body reversal and helical swimming and locomotor activity (p < 0.05, N = 8). We also found that 2 min of exposure to ≥250 mM ethanol rapidly induces steady-state hypokinesis (p < 0.05, N = 11) and confirm ethanol absorption into L. variegatus tissues. Additionally, we also observed acute ethanol tolerance after 150 min of exposure to 500 mM ethanol (p < 0.05, N = 24). This study is the first to report the behavioural effects of ethanol in L. variegatus. Our results show that this is a model organism for use in ethanol studies, providing further evidence for its utility in pharmacological research.
Collapse
Affiliation(s)
- Aidan Seeley
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaWalesUK
| | - Romessa Mahmood
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaWalesUK
| | - Caitlin Bellamy
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaWalesUK
| | - Elis G. Roome
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaWalesUK
| | - Benjamin S. Williams
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaWalesUK
| | - Nia A. Davies
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaWalesUK
| | - Melisa J. Wallace
- Swansea Worm Integrative Research Laboratory (SWIRL)Swansea University Medical School, Swansea UniversitySwanseaWalesUK
| |
Collapse
|
2
|
Reinhardt F, Kaiser A, Prömel S, Stadler PF. Evolution of neuropeptide Y/RFamide-like receptors in nematodes. Heliyon 2024; 10:e34473. [PMID: 39130429 PMCID: PMC11315170 DOI: 10.1016/j.heliyon.2024.e34473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The Neuropeptide Y/RFamide-like receptors belong to the Rhodopsin-like G protein-coupled receptors G protein-coupled receptors (GPCRs) and are involved in functions such as locomotion, feeding and reproduction. With 41 described receptors they form the best-studied group of neuropeptide GPCRs in Caenorhabditis elegans. In order to understand the expansion of the Neuropeptide Y/RFamide-like receptor family in nematodes, we started from the sequences of selected receptor paralogs in C. elegans as query and surveyed the corresponding orthologous sequences in another 159 representative nematode target genomes. To this end we employed a automated pipeline based on ExonMatchSolver, a tool that solves the paralog-to-contig assignment problem. Utilizing subclass-specific HMMs we were able to detect a total of 1557 Neuropeptide Y/RFamide-like receptor sequences (1100 NPRs, 375 FRPRs and 82 C09F12.3) in the 159 target nematode genomes investigated here. These sequences demonstrate a good conservation of the Neuropeptide Y/RFamide-like receptors across the Nematoda and highlight the diversification of the family in nematode evolution. No other genus shares all Neuropeptide Y/RFamide-like receptors with the genus Caenorhabditis. At the same time, we observe large numbers of clade specific duplications and losses of family members across the phylum Nematoda.
Collapse
Affiliation(s)
- Franziska Reinhardt
- Bioinformatics Group, Institute of Computer Science, Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig, D-04107, Germany
| | - Anette Kaiser
- Leipzig University, Faculty of Medicine, Department of Anesthesiology and Intensive Care, Liebigstr. 19, Leipzig, D-04103, Germany
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, Leipzig, D-04103, Germany
| | - Simone Prömel
- Heinrich Heine University Düsseldorf, Universitätsstraße 1/ Gebäude 26.24, Düsseldorf, D-40225, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Institute of Computer Science, Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig, D-04107, Germany
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrße 22, D-04103 Leipzig, Germany
- Inst. f. Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad National de Colombia, Sede Bogota, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| |
Collapse
|
3
|
Bhandari A, Seguin A, Rothenfluh A. Synaptic Mechanisms of Ethanol Tolerance and Neuroplasticity: Insights from Invertebrate Models. Int J Mol Sci 2024; 25:6838. [PMID: 38999947 PMCID: PMC11241699 DOI: 10.3390/ijms25136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Alcohol tolerance is a neuroadaptive response that leads to a reduction in the effects of alcohol caused by previous exposure. Tolerance plays a critical role in the development of alcohol use disorder (AUD) because it leads to the escalation of drinking and dependence. Understanding the molecular mechanisms underlying alcohol tolerance is therefore important for the development of effective therapeutics and for understanding addiction in general. This review explores the molecular basis of alcohol tolerance in invertebrate models, Drosophila and C. elegans, focusing on synaptic transmission. Both organisms exhibit biphasic responses to ethanol and develop tolerance similar to that of mammals. Furthermore, the availability of several genetic tools makes them a great candidate to study the molecular basis of ethanol response. Studies in invertebrate models show that tolerance involves conserved changes in the neurotransmitter systems, ion channels, and synaptic proteins. These neuroadaptive changes lead to a change in neuronal excitability, most likely to compensate for the enhanced inhibition by ethanol.
Collapse
Affiliation(s)
- Aakriti Bhandari
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra Seguin
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Jee C, Batsaikhan E. JNK Signaling Positively Regulates Acute Ethanol Tolerance in C. elegans. Int J Mol Sci 2024; 25:6398. [PMID: 38928105 PMCID: PMC11203441 DOI: 10.3390/ijms25126398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Alcohol use disorder (AUD) is a chronic neurobehavioral condition characterized by a cycle of tolerance development, increased consumption, and reinstated craving and seeking behaviors during withdrawal. Understanding the intricate mechanisms of AUD necessitates reliable animal models reflecting its key features. Caenorhabditis elegans (C. elegans), with its conserved nervous system and genetic tractability, has emerged as a valuable model organism to study AUD. Here, we employ an ethanol vapor exposure model in Caenorhabditis elegans, recapitulating AUD features while maintaining high-throughput scalability. We demonstrate that ethanol vapor exposure induces intoxication-like behaviors, acute tolerance, and ethanol preference, akin to mammalian AUD traits. Leveraging this model, we elucidate the conserved role of c-jun N-terminal kinase (JNK) signaling in mediating acute ethanol tolerance. Mutants lacking JNK signaling components exhibit impaired tolerance development, highlighting JNK's positive regulation. Furthermore, we detect ethanol-induced JNK activation in C. elegans. Our findings underscore the utility of C. elegans with ethanol vapor exposure for studying AUD and offer novel insights into the molecular mechanisms underlying acute ethanol tolerance through JNK signaling.
Collapse
Affiliation(s)
- Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennesse Health Science Center, Memphis, TN 38163, USA;
| | | |
Collapse
|
5
|
Clites BL, Frohock B, Koury EJ, Andersen EC, Pierce JT. Natural variation in protein kinase D modifies alcohol sensitivity in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598102. [PMID: 38895441 PMCID: PMC11185769 DOI: 10.1101/2024.06.09.598102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Differences in naïve alcohol sensitivity between individuals are a strong predictor of later life alcohol use disorders (AUD). However, the genetic bases for alcohol sensitivity (beyond ethanol metabolism) and pharmacological approaches to modulate alcohol sensitivity remain poorly understood. We used a high-throughput behavioral screen to measure acute behavioral sensitivity to alcohol, a model of intoxication, in a genetically diverse set of over 150 wild strains of the nematode Caenorhabditis elegans. We performed a genome-wide association study to identify loci that underlie natural variation in alcohol sensitivity. We identified five quantitative trait loci (QTL) and further show that variants in the C. elegans ortholog of protein kinase D, dkf-2, likely underlie the chromosome V QTL. We found that resistance to intoxication was conferred by dkf-2 loss-of-function mutations as well as partly by a PKD inhibitor in a dkf-2-dependent manner. Protein kinase D might represent a conserved, druggable target to modify alcohol sensitivity with application towards AUD.
Collapse
Affiliation(s)
- Benjamin L Clites
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| | - Brooke Frohock
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| | - Emily J Koury
- Department of Biology, Johns Hopkins University, Baltimore MD
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore MD
| | - Jonathan T Pierce
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| |
Collapse
|
6
|
Chvilicek MM, Seguin A, Lathen DR, Titos I, Cummins‐Beebee PN, Pabon MA, Miščević M, Nickel E, Merrill CB, Rodan AR, Rothenfluh A. Large analysis of genetic manipulations reveals an inverse correlation between initial alcohol resistance and rapid tolerance phenotypes. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12884. [PMID: 38968320 PMCID: PMC10825885 DOI: 10.1111/gbb.12884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/07/2024]
Abstract
Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce identical behavioral effects. Tolerance is not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we analyzed our own, as well as data published by other labs to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes, thus classifying such mutants as 'secondary' tolerance mutants. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. These residuals provide predictive insight into the likelihood of a mutant being a 'primary' tolerance mutant, where a tolerance phenotype is not solely a consequence of initial resistance, and we offer a framework for understanding the relationship between initial resistance and tolerance.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Alexandra Seguin
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Daniel R. Lathen
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Iris Titos
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Pearl N. Cummins‐Beebee
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Miguel A. Pabon
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Maša Miščević
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Present address:
Department of Neuroscience, Physiological Sciences Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizonaUSA
| | - Emily Nickel
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Collin B. Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Aylin R. Rodan
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Division of Nephrology, Department of Internal Medicine, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Medical ServiceVeterans Affairs Salt Lake City Health Care SystemSalt Lake CityUtahUSA
- Department of Human Genetics, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Human Genetics, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Neurobiology, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
7
|
Salim C, Batsaikhan E, Kan AK, Chen H, Jee C. Nicotine Motivated Behavior in C. elegans. Int J Mol Sci 2024; 25:1634. [PMID: 38338915 PMCID: PMC10855306 DOI: 10.3390/ijms25031634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
To maximize the advantages offered by Caenorhabditis elegans as a high-throughput (HTP) model for nicotine dependence studies, utilizing its well-defined neuroconnectome as a robust platform, and to unravel the genetic basis of nicotine-motivated behaviors, we established the nicotine conditioned cue preference (CCP) paradigm. Nicotine CCP enables the assessment of nicotine preference and seeking, revealing a parallel to fundamental aspects of nicotine-dependent behaviors observed in mammals. We demonstrated that nicotine-elicited cue preference in worms is mediated by nicotinic acetylcholine receptors and requires dopamine for CCP development. Subsequently, we pinpointed nAChR subunits associated with nicotine preference and validated human GWAS candidates linked to nicotine dependence involved in nAChRs. Functional validation involves assessing the loss-of-function strain of the CACNA2D3 ortholog and the knock-out (KO) strain of the CACNA2D2 ortholog, closely related to CACNA2D3 and sharing human smoking phenotypes. Our orthogonal approach substantiates the functional conservation of the α2δ subunit of the calcium channel in nicotine-motivated behavior. Nicotine CCP in C. elegans serves as a potent affirmation of the cross-species functional relevance of GWAS candidate genes involved in nicotine seeking associated with tobacco abuse, providing a streamlined yet comprehensive system for investigating intricate behavioral paradigms within a simplified and reliable framework.
Collapse
Affiliation(s)
| | | | | | | | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.S.)
| |
Collapse
|
8
|
Bale R, Doshi G. Cross talk about the role of Neuropeptide Y in CNS disorders and diseases. Neuropeptides 2023; 102:102388. [PMID: 37918268 DOI: 10.1016/j.npep.2023.102388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
A peptide composed of a 36 amino acid called Neuropeptide Y (NPY) is employed in a variety of physiological processes to manage and treat conditions affecting the endocrine, circulatory, respiratory, digestive, and neurological systems. NPY naturally binds to G-protein coupled receptors, activating the Y-receptors (Y1-Y5 and y6). The findings on numerous therapeutic applications of NPY for CNS disease are presented in this review by the authors. New targets for treating diseases will be revealed by medication combinations that target NPY and its receptors. This review is mainly focused on disorders such as anxiety, Alzheimer's disease, Parkinson's disease, Huntington's disease, Machado Joseph disease, multiple sclerosis, schizophrenia, depression, migraine, alcohol use disorder, and substance use disorder. The findings from the preclinical studies and clinical studies covered in this article may help create efficient therapeutic plans to treat neurological conditions on the one hand and psychiatric disorders on the other. They may also open the door to the creation of novel NPY receptor ligands as medications to treat these conditions.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India.
| |
Collapse
|
9
|
van Wijk MH, Davies AG, Sterken MG, Mathies LD, Quamme EC, Blackwell GG, Riksen JAG, Kammenga JE, Bettinger JC. Natural allelic variation modifies acute ethanol response phenotypes in wild strains of C. elegans. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1505-1517. [PMID: 37356915 DOI: 10.1111/acer.15139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Genetic variation contributes to the likelihood that an individual will develop an alcohol use disorder (AUD). Traditional laboratory studies in animal models have elucidated the molecular pharmacology of ethanol, but laboratory-derived genetic manipulations rarely model the naturally occurring genetic variation observed in wild populations. Rather, these manipulations are biased toward identifying genes of central importance in the phenotypes. Because changes in such genes can confer selective disadvantages, they are not ideal candidates for carrying AUD risk alleles in humans. We sought to exploit Caenorhabditis elegans to identify allelic variation existing in the wild that modulates ethanol response behaviors. METHODS We tested the acute ethanol responses of four strains recently isolated from the wild (JU1511, JU1926, JU1931, and JU1941) and 41 multiparental recombinant inbred lines (mpRILs) derived from them. We assessed locomotion at 10, 30, and 50 min on low and high ethanol concentrations. We performed principal component analyses (PCA) on the different phenotypes, tested for transgressive behavior, calculated heritability, and determined the correlations between behavioral responses. RESULTS We observed a range of responses to ethanol across the strains. We detected a low-concentration locomotor activation effect in some of the mpRILs not seen in the laboratory wild-type strain. PCA showed different ethanol response behaviors to be independent. We observed transgressive behavior for many of the measured phenotypes and found that multiple behaviors were uncorrelated. The average broad-sense heritability for all phenotypes was 23.2%. CONCLUSIONS Genetic variation significantly affects multiple acute ethanol response behaviors, many of which are independent of one another. This suggests that the genetic variation captured by these strains likely affects multiple biological mechanisms through which ethanol acts. Further study of these strains may allow these distinct mechanisms to be identified.
Collapse
Affiliation(s)
- Marijke H van Wijk
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elizabeth C Quamme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - GinaMari G Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Gentry AE, Alexander JC, Ahangari M, Peterson RE, Miles MF, Bettinger JC, Davies AG, Groteweil M, Bacanu SA, Kendler KS, Riley BP, Webb BT. Case-only exome variation analysis of severe alcohol dependence using a multivariate hierarchical gene clustering approach. PLoS One 2023; 18:e0283985. [PMID: 37098020 PMCID: PMC10128939 DOI: 10.1371/journal.pone.0283985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Variation in genes involved in ethanol metabolism has been shown to influence risk for alcohol dependence (AD) including protective loss of function alleles in ethanol metabolizing genes. We therefore hypothesized that people with severe AD would exhibit different patterns of rare functional variation in genes with strong prior evidence for influencing ethanol metabolism and response when compared to genes not meeting these criteria. OBJECTIVE Leverage a novel case only design and Whole Exome Sequencing (WES) of severe AD cases from the island of Ireland to quantify differences in functional variation between genes associated with ethanol metabolism and/or response and their matched control genes. METHODS First, three sets of ethanol related genes were identified including those a) involved in alcohol metabolism in humans b) showing altered expression in mouse brain after alcohol exposure, and altering ethanol behavioral responses in invertebrate models. These genes of interest (GOI) sets were matched to control gene sets using multivariate hierarchical clustering of gene-level summary features from gnomAD. Using WES data from 190 individuals with severe AD, GOI were compared to matched control genes using logistic regression to detect aggregate differences in abundance of loss of function, missense, and synonymous variants, respectively. RESULTS Three non-independent sets of 10, 117, and 359 genes were queried against control gene sets of 139, 1522, and 3360 matched genes, respectively. Significant differences were not detected in the number of functional variants in the primary set of ethanol-metabolizing genes. In both the mouse expression and invertebrate sets, we observed an increased number of synonymous variants in GOI over matched control genes. Post-hoc simulations showed the estimated effects sizes observed are unlikely to be under-estimated. CONCLUSION The proposed method demonstrates a computationally viable and statistically appropriate approach for genetic analysis of case-only data for hypothesized gene sets supported by empirical evidence.
Collapse
Affiliation(s)
- Amanda Elswick Gentry
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jeffry C. Alexander
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mohammad Ahangari
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Integrative Life Sciences Ph.D. Program, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Roseann E. Peterson
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael F. Miles
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jill C. Bettinger
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrew G. Davies
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mike Groteweil
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Silviu A. Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Bradley T. Webb
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, North Caroline, United States of America
| | | |
Collapse
|
11
|
Clites BL, Hofmann HA, Pierce JT. The Promise of an Evolutionary Perspective of Alcohol Consumption. Neurosci Insights 2023; 18:26331055231163589. [PMID: 37051560 PMCID: PMC10084549 DOI: 10.1177/26331055231163589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
The urgent need for medical treatments of alcohol use disorders has motivated the search for novel molecular targets of alcohol response. Most studies exploit the strengths of lab animals without considering how these and other species may have adapted to respond to alcohol in an ecological context. Here, we provide an evolutionary perspective on the molecular and genetic underpinnings of alcohol consumption by reviewing evidence that alcohol metabolic enzymes have undergone adaptive evolution at 2 evolutionary junctures: first, to enable alcohol consumption accompanying the advent of a frugivorous diet in a primate ancestor, and second, to decrease the likelihood of excessive alcohol consumption concurrent with the spread of agriculture and fermentation in East Asia. By similarly considering how diverse vertebrate and invertebrate species have undergone natural selection for alcohol responses, novel conserved molecular targets of alcohol are likely be discovered that may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Benjamin L Clites
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Hans A Hofmann
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jonathan T Pierce
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Neurobiological Basis of Aversion-Resistant Ethanol Seeking in C. elegans. Metabolites 2022; 13:metabo13010062. [PMID: 36676987 PMCID: PMC9861758 DOI: 10.3390/metabo13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Persistent alcohol seeking despite the risk of aversive consequences is a crucial characteristic of alcohol use disorders (AUDs). Therefore, an improved understanding of the molecular basis of alcohol seeking despite aversive stimuli or punishment in animal models is an important strategy to understand the mechanism that underpins the pathology of AUDs. Aversion-resistant seeking (ARS) is characterized by disruption in control of alcohol use featured by an imbalance between the urge for alcohol and the mediation of aversive stimuli. We exploited C. elegans, a genetically tractable invertebrate, as a model to elucidate genetic components related to this behavior. We assessed the seb-3 neuropeptide system and its transcriptional regulation to progress aversion-resistant ethanol seeking at the system level. Our functional genomic approach preferentially selected molecular components thought to be involved in cholesterol metabolism, and an orthogonal test defined functional roles in ARS through behavioral elucidation. Our findings suggest that fmo-2 (flavin-containing monooxygenase-2) plays a role in the progression of aversion-resistant ethanol seeking in C. elegans.
Collapse
|
13
|
Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Romero VL, Gonzales-Moreno C, Carranza AD, Moran Y, Asis R, Virgolini MB. Reduced acute functional tolerance and enhanced preference for ethanol in Caenorhabditis elegans exposed to lead during development: Potential role of alcohol dehydrogenase. Neurotoxicol Teratol 2022; 94:107131. [DOI: 10.1016/j.ntt.2022.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
|
14
|
Guzman DM, Chakka K, Shi T, Marron A, Fiorito AE, Rahman NS, Ro S, Sucich DG, Pierce JT. Transgenerational effects of alcohol on behavioral sensitivity to alcohol in Caenorhabditis elegans. PLoS One 2022; 17:e0271849. [PMID: 36256641 PMCID: PMC9578632 DOI: 10.1371/journal.pone.0271849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Alcohol abuse and dependence have a substantial heritable component. Although the genome has been considered the sole vehicle of heritable phenotypes, recent studies suggest that drug or alcohol exposure may induce alterations in gene expression that are transmitted across generations. Still, the transgenerational impact of alcohol use (and abuse) remains largely unexplored in part because multigenerational studies using rodent models present challenges for time, sample size, and genetic heterogeneity. Here, we took advantage of the extremely short generation time, large broods, and clonal form of reproduction of the nematode Caenorhabditis elegans. We developed a model of pre-fertilization parental alcohol exposure to test alterations in behavioral responses to acute alcohol treatment (referred to in short as intoxication) in subsequent F1, F2 and F3 generations. We found that chronic and intermittent alcohol-treatment paradigms resulted in opposite changes to intoxication sensitivity of F3 progeny that were only apparent when controlling for yoked trials. Chronic alcohol-treatment paradigm in the parental generation resulted in alcohol-naïve F3 progeny displaying moderate resistance to intoxication. Intermittent treatment resulted in alcohol-naïve F3 progeny displaying moderate hypersensitivity to intoxication. Further study of these phenomena using this new C. elegans model may yield mechanistic insights into how transgenerational effects may occur in other animals.
Collapse
Affiliation(s)
- Dawn M. Guzman
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Keerthana Chakka
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Ted Shi
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Alyssa Marron
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Ansley E. Fiorito
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Nima S. Rahman
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Stephanie Ro
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Dylan G. Sucich
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jonathan T. Pierce
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
15
|
Rose JK, Butterfield M, Liang J, Parvand M, Lin CHS, Rankin CH. Neuroligin Plays a Role in Ethanol-Induced Disruption of Memory and Corresponding Modulation of Glutamate Receptor Expression. Front Behav Neurosci 2022; 16:908630. [PMID: 35722190 PMCID: PMC9204643 DOI: 10.3389/fnbeh.2022.908630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to alcohol causes deficits in long-term memory formation across species. Using a long-term habituation memory assay in Caenorhabditis elegans, the effects of ethanol on long-term memory (> 24 h) for habituation were investigated. An impairment in long-term memory was observed when animals were trained in the presence of ethanol. Cues of internal state or training context during testing did not restore memory. Ethanol exposure during training also interfered with the downregulation of AMPA/KA-type glutamate receptor subunit (GLR-1) punctal expression previously associated with long-term memory for habituation in C. elegans. Interestingly, ethanol exposure alone had the opposite effect, increasing GLR-1::GFP punctal expression. Worms with a mutation in the C. elegans ortholog of vertebrate neuroligins (nlg-1) were resistant to the effects of ethanol on memory, as they displayed both GLR-1::GFP downregulation and long-term memory for habituation after training in the presence of ethanol. These findings provide insights into the molecular mechanisms through which alcohol consumption impacts memory.
Collapse
|
16
|
Devine J, Vidal-García M, Liu W, Neves A, Lo Vercio LD, Green RM, Richbourg HA, Marchini M, Unger CM, Nickle AC, Radford B, Young NM, Gonzalez PN, Schuler RE, Bugacov A, Rolian C, Percival CJ, Williams T, Niswander L, Calof AL, Lander AD, Visel A, Jirik FR, Cheverud JM, Klein OD, Birnbaum RY, Merrill AE, Ackermann RR, Graf D, Hemberger M, Dean W, Forkert ND, Murray SA, Westerberg H, Marcucio RS, Hallgrímsson B. MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses. Sci Data 2022; 9:230. [PMID: 35614082 PMCID: PMC9133120 DOI: 10.1038/s41597-022-01338-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase ( www.facebase.org , https://doi.org/10.25550/3-HXMC ) and GitHub ( https://github.com/jaydevine/MusMorph ).
Collapse
Affiliation(s)
- Jay Devine
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Marta Vidal-García
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Wei Liu
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Amanda Neves
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Lucas D Lo Vercio
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Rebecca M Green
- School of Dental Medicine, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15213, USA
| | - Heather A Richbourg
- Orthopaedic Trauma Institute, ZSFG, UCSF, 2550 23rd St, San Francisco, CA, 94110, USA
| | - Marta Marchini
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Colton M Unger
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada
| | - Audrey C Nickle
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, 2250 Alcazar St, Los Angeles, CA, 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, 1975 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Bethany Radford
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Nathan M Young
- Orthopaedic Trauma Institute, ZSFG, UCSF, 2550 23rd St, San Francisco, CA, 94110, USA
| | - Paula N Gonzalez
- Institute for Studies in Neuroscience and Complex Systems (ENyS) CONICET, Av. Calchaquí, 5402, Florencio Varela, Buenos Aires, Argentina
| | - Robert E Schuler
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA, 90292, USA
| | - Alejandro Bugacov
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA, 90292, USA
| | - Campbell Rolian
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Christopher J Percival
- Department of Anthropology, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, 80045, USA
| | - Lee Niswander
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Anne L Calof
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Arthur D Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Frank R Jirik
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - James M Cheverud
- Department of Biology, Loyola University Chicago, 1032 W Sheridan Rd, Chicago, IL, 60660, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
- Department of Pediatrics, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Ramon Y Birnbaum
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, David Ben Gurion Blvd 1, Be'er Sheva, Israel
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, 2250 Alcazar St, Los Angeles, CA, 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, 1975 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Rebecca R Ackermann
- Department of Archaeology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave, Edmonton, AB, T6G 2R3, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Myriam Hemberger
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | | | - Henrik Westerberg
- Department of Bioimaging Informatics, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Ralph S Marcucio
- Orthopaedic Trauma Institute, ZSFG, UCSF, 2550 23rd St, San Francisco, CA, 94110, USA
| | - Benedikt Hallgrímsson
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada.
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
17
|
Salim C, Kan AK, Batsaikhan E, Patterson EC, Jee C. Neuropeptidergic regulation of compulsive ethanol seeking in C. elegans. Sci Rep 2022; 12:1804. [PMID: 35110557 PMCID: PMC8810865 DOI: 10.1038/s41598-022-05256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the catastrophic consequences of alcohol abuse, alcohol use disorders (AUD) and comorbidities continue to strain the healthcare system, largely due to the effects of alcohol-seeking behavior. An improved understanding of the molecular basis of alcohol seeking will lead to enriched treatments for these disorders. Compulsive alcohol seeking is characterized by an imbalance between the superior drive to consume alcohol and the disruption or erosion in control of alcohol use. To model the development of compulsive engagement in alcohol seeking, we simultaneously exploited two distinct and conflicting Caenorhabditis elegans behavioral programs, ethanol preference and avoidance of aversive stimulus. We demonstrate that the C. elegans model recapitulated the pivotal features of compulsive alcohol seeking in mammals, specifically repeated attempts, endurance, and finally aversion-resistant alcohol seeking. We found that neuropeptide signaling via SEB-3, a CRF receptor-like GPCR, facilitates the development of ethanol preference and compels animals to seek ethanol compulsively. Furthermore, our functional genomic approach and behavioral elucidation suggest that the SEB-3 regulates another neuropeptidergic signaling, the neurokinin receptor orthologue TKR-1, to facilitate compulsive ethanol-seeking behavior.
Collapse
Affiliation(s)
- Chinnu Salim
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Ann Ke Kan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Enkhzul Batsaikhan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - E Clare Patterson
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA.
| |
Collapse
|
18
|
Bhat US, Shahi N, Surendran S, Babu K. Neuropeptides and Behaviors: How Small Peptides Regulate Nervous System Function and Behavioral Outputs. Front Mol Neurosci 2021; 14:786471. [PMID: 34924955 PMCID: PMC8674661 DOI: 10.3389/fnmol.2021.786471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
One of the reasons that most multicellular animals survive and thrive is because of the adaptable and plastic nature of their nervous systems. For an organism to survive, it is essential for the animal to respond and adapt to environmental changes. This is achieved by sensing external cues and translating them into behaviors through changes in synaptic activity. The nervous system plays a crucial role in constantly evaluating environmental cues and allowing for behavioral plasticity in the organism. Multiple neurotransmitters and neuropeptides have been implicated as key players for integrating sensory information to produce the desired output. Because of its simple nervous system and well-established neuronal connectome, C. elegans acts as an excellent model to understand the mechanisms underlying behavioral plasticity. Here, we critically review how neuropeptides modulate a wide range of behaviors by allowing for changes in neuronal and synaptic signaling. This review will have a specific focus on feeding, mating, sleep, addiction, learning and locomotory behaviors in C. elegans. With a view to understand evolutionary relationships, we explore the functions and associated pathophysiology of C. elegans neuropeptides that are conserved across different phyla. Further, we discuss the mechanisms of neuropeptidergic signaling and how these signals are regulated in different behaviors. Finally, we attempt to provide insight into developing potential therapeutics for neuropeptide-related disorders.
Collapse
Affiliation(s)
- Umer Saleem Bhat
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Navneet Shahi
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Siju Surendran
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
19
|
Sterken MG, van Wijk MH, Quamme EC, Riksen JAG, Carnell L, Mathies LD, Davies AG, Kammenga JE, Bettinger JC. Transcriptional analysis of the response of C. elegans to ethanol exposure. Sci Rep 2021; 11:10993. [PMID: 34040055 PMCID: PMC8155136 DOI: 10.1038/s41598-021-90282-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Ethanol-induced transcriptional changes underlie important physiological responses to ethanol that are likely to contribute to the addictive properties of the drug. We examined the transcriptional responses of Caenorhabditis elegans across a timecourse of ethanol exposure, between 30 min and 8 h, to determine what genes and genetic pathways are regulated in response to ethanol in this model. We found that short exposures to ethanol (up to 2 h) induced expression of metabolic enzymes involved in metabolizing ethanol and retinol, while longer exposure (8 h) had much more profound effects on the transcriptome. Several genes that are known to be involved in the physiological response to ethanol, including direct ethanol targets, were regulated at 8 h of exposure. This longer exposure to ethanol also resulted in the regulation of genes involved in cilia function, which is consistent with an important role for the effects of ethanol on cilia in the deleterious effects of chronic ethanol consumption in humans. Finally, we found that food deprivation for an 8-h period induced gene expression changes that were somewhat ameliorated by the presence of ethanol, supporting previous observations that worms can use ethanol as a calorie source.
Collapse
Affiliation(s)
- Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Marijke H van Wijk
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Elizabeth C Quamme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Lucinda Carnell
- Department of Biological Sciences, Central Washington University, Ellensburg, WA, 98926, USA
| | - Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA.
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA.
| |
Collapse
|
20
|
Ryvkin J, Bentzur A, Shmueli A, Tannenbaum M, Shallom O, Dokarker S, Benichou JIC, Levi M, Shohat-Ophir G. Transcriptome Analysis of NPFR Neurons Reveals a Connection Between Proteome Diversity and Social Behavior. Front Behav Neurosci 2021; 15:628662. [PMID: 33867948 PMCID: PMC8044454 DOI: 10.3389/fnbeh.2021.628662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Social behaviors are mediated by the activity of highly complex neuronal networks, the function of which is shaped by their transcriptomic and proteomic content. Contemporary advances in neurogenetics, genomics, and tools for automated behavior analysis make it possible to functionally connect the transcriptome profile of candidate neurons to their role in regulating behavior. In this study we used Drosophila melanogaster to explore the molecular signature of neurons expressing receptor for neuropeptide F (NPF), the fly homolog of neuropeptide Y (NPY). By comparing the transcription profile of NPFR neurons to those of nine other populations of neurons, we discovered that NPFR neurons exhibit a unique transcriptome, enriched with receptors for various neuropeptides and neuromodulators, as well as with genes known to regulate behavioral processes, such as learning and memory. By manipulating RNA editing and protein ubiquitination programs specifically in NPFR neurons, we demonstrate that the proper expression of their unique transcriptome and proteome is required to suppress male courtship and certain features of social group interaction. Our results highlight the importance of transcriptome and proteome diversity in the regulation of complex behaviors and pave the path for future dissection of the spatiotemporal regulation of genes within highly complex tissues, such as the brain.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Assa Bentzur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Anat Shmueli
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Miriam Tannenbaum
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omri Shallom
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shiran Dokarker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jennifer I. C. Benichou
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mali Levi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Shohat-Ophir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
21
|
Abstract
Although Caenorhabditis elegans has been used as a model host for studying host-pathogen interactions for more than 20 years, the mechanisms by which it identifies pathogens are not well understood. This is largely due to its lack of most known pattern recognition receptors (PRRs) that recognize pathogen-derived molecules. Recent behavioral research in C. elegans indicates that its nervous system plays a major role in microbe sensing. With the increasing integration of neurobiology in immunological research, future studies may find that neuronal detection of pathogens is an integral part of C. elegans-pathogen interactions. Similar to that of mammals, the C. elegans nervous system regulates its immune system to maintain immunological homeostasis. Studies in the nematode have revealed unprecedented details regarding the molecules, cells, and signaling pathways involved in neural regulation of immunity. Notably, some of the studies indicate that some neuroimmune regulatory circuits need not be "activated" by pathogen infection because they are tonically active and that there could be a predetermined set point for internal immunity, around which the nervous system adjusts immune responses to internal or external environmental changes. Here, we review recent progress on the roles of the C. elegans nervous system in pathogen detection and immune regulation. Because of its advantageous characteristics, we expect that the C. elegans model will be critical for deciphering complex neuroimmune signaling mechanisms that integrate and process multiple sensory cues.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- Genomics Core, Washington State University, Spokane, Washington, USA
| | - Jingru Sun
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
22
|
Mathies LD, Lindsay JH, Handal AP, Blackwell GG, Davies AG, Bettinger JC. SWI/SNF complexes act through CBP-1 histone acetyltransferase to regulate acute functional tolerance to alcohol. BMC Genomics 2020; 21:646. [PMID: 32957927 PMCID: PMC7507291 DOI: 10.1186/s12864-020-07059-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
Background SWI/SNF chromatin remodeling genes are required for normal acute responses to alcohol in C. elegans and are associated with alcohol use disorder in two human populations. In an effort to discover the downstream genes that are mediating this effect, we identified SWI/SNF-regulated genes in C. elegans. Results To identify SWI/SNF-regulated genes in adults, we compared mRNA expression in wild type and swsn-1(os22ts) worms under conditions that produce inactive swsn-1 in mature cells. To identify SWI/SNF-regulated genes in neurons, we compared gene expression in swsn-9(ok1354) null mutant worms that harbor a neuronal rescue or a control construct. RNA sequencing was performed to an average depth of 25 million reads per sample using 50-base, paired-end reads. We found that 6813 transcripts were significantly differentially expressed between swsn-1(os22ts) mutants and wild-type worms and 2412 transcripts were significantly differentially expressed between swsn-9(ok1354) mutants and swsn-9(ok1354) mutants with neuronal rescue. We examined the intersection between these two datasets and identified 603 genes that were differentially expressed in the same direction in both comparisons; we defined these as SWI/SNF-regulated genes in neurons and in adults. Among the differentially expressed genes was cbp-1, a C. elegans homolog of the mammalian CBP/p300 family of histone acetyltransferases. CBP has been implicated in the epigenetic regulation in response to alcohol in animal models and a polymorphism in the human CBP gene, CREBBP, has been associated with alcohol-related phenotypes. We found that cbp-1 is required for the development of acute functional tolerance to alcohol in C. elegans. Conclusions We identified 603 transcripts that were regulated by two different SWI/SNF complex subunits in adults and in neurons. The SWI/SNF-regulated genes were highly enriched for genes involved in membrane rafts, suggesting an important role for this membrane microdomain in the acute alcohol response. Among the differentially expressed genes was cbp-1; CBP-1 homologs have been implicated in alcohol responses across phyla and we found that C. elegans cbp-1 was required for the acute alcohol response in worms.
Collapse
Affiliation(s)
- Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA.
| | - Jonathan H Lindsay
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Amal P Handal
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - GinaMari G Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| |
Collapse
|
23
|
Schmitt RE, Messick MR, Shell BC, Dunbar EK, Fang H, Shelton KL, Venton BJ, Pletcher SD, Grotewiel M. Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function. Addict Biol 2020; 25:e12779. [PMID: 31169340 DOI: 10.1111/adb.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 03/23/2019] [Accepted: 05/02/2019] [Indexed: 01/10/2023]
Abstract
Abuse of alcohol is a major clinical problem with far-reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol-related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast-induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet-induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol-related behavior in other species.
Collapse
Affiliation(s)
- Rebecca E. Schmitt
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Monica R. Messick
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Brandon C. Shell
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Ellyn K. Dunbar
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Huai‐Fang Fang
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Keith L. Shelton
- Department of Pharmacology and Toxicology Virginia Commonwealth University Richmond VA USA
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center University of Michigan Ann Arbor MI USA
| | - Mike Grotewiel
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
- Virginia Commonwealth University Alcohol Research Center Richmond VA USA
| |
Collapse
|
24
|
Robinson KJ, Bosch OJ, Levkowitz G, Busch KE, Jarman AP, Ludwig M. Social creatures: Model animal systems for studying the neuroendocrine mechanisms of social behaviour. J Neuroendocrinol 2019; 31:e12807. [PMID: 31679160 PMCID: PMC6916380 DOI: 10.1111/jne.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The interaction of animals with conspecifics, termed social behaviour, has a major impact on the survival of many vertebrate species. Neuropeptide hormones modulate the underlying physiology that governs social interactions, and many findings concerning the neuroendocrine mechanisms of social behaviours have been extrapolated from animal models to humans. Neurones expressing neuropeptides show similar distribution patterns within the hypothalamic nucleus, even when evolutionarily distant species are compared. During evolution, hypothalamic neuropeptides and releasing hormones have retained not only their structures, but also their biological functions, including their effects on behaviour. Here, we review the current understanding of the mechanisms of social behaviours in several classes of animals, such as worms, insects and fish, as well as laboratory, wild and domesticated mammals.
Collapse
Affiliation(s)
- Kelly J. Robinson
- Sea Mammal Research UnitScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular NeurobiologyUniversity of RegensburgRegensburgGermany
| | - Gil Levkowitz
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Andrew P. Jarman
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Mike Ludwig
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for NeuroendocrinologyDepartment of ImmunologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
25
|
Scholz H. Unraveling the Mechanisms of Behaviors Associated With AUDs Using Flies and Worms. Alcohol Clin Exp Res 2019; 43:2274-2284. [PMID: 31529787 DOI: 10.1111/acer.14199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders (AUDs) are very common worldwide and negatively affect both individuals and societies. To understand how normal behavior turns into uncontrollable use of alcohol, several approaches have been utilized in the last decades. However, we still do not completely understand how AUDs evolve or how they are maintained in the brains of affected individuals. In addition, efficient and effective treatment is still in need of development. This review focuses on alternative approaches developed over the last 20 years using Drosophila melanogaster (Drosophila) and Caenorhabditis elegans (C. elegans) as genetic model systems to determine the mechanisms underlying the action of ethanol (EtOH) and behaviors associated with AUDs. All the results and insights of studies over the last 20 years cannot be comprehensively summarized. Thus, a few prominent examples are provided highlighting the principles of the genes and mechanisms that have been uncovered and are involved in the action of EtOH at the cellular level. In addition, examples are provided of the genes and mechanisms that regulate behaviors relevant to acquiring and maintaining excessive alcohol intake, such as decision making, reward and withdrawal, and/or relapse regulation. How the insight gained from the results of Drosophila and C. elegans models can be translated to higher organisms, such as rodents and/or humans, is discussed, as well as whether these insights have any relevance or impact on our understanding of the mechanisms underlying AUDs in humans. Finally, future directions are presented that might facilitate the identification of drugs to treat AUDs.
Collapse
Affiliation(s)
- Henrike Scholz
- From the, Department of Biology, Institute for Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Gershkovich MM, Groß VE, Kaiser A, Prömel S. Pharmacological and functional similarities of the human neuropeptide Y system in C. elegans challenges phylogenetic views on the FLP/NPR system. Cell Commun Signal 2019; 17:123. [PMID: 31533726 PMCID: PMC6751662 DOI: 10.1186/s12964-019-0436-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The neuropeptide Y system affects various processes, among others food intake, and is frequently discussed in the context of targeting obesity. Studies in model organisms are indispensable to enable molecular studies in a physiological context. Although the NPY system is evolutionarily conserved in all bilaterians, in the widely used model Caenorhabditis elegans there is controversy on the existence of NPY orthologous molecules. While the FMRFamide-like peptide (FLP)/Neuropeptide receptor-Resemblance (NPR) system in the nematode was initially suggested to be orthologous to the mammalian NPY system, later global phylogenetic studies indicate that FLP/NPR is protostome-specific. METHODS We performed a comprehensive pharmacological study of the FLP/NPR system in transfected cells in vitro, and tested for functional substitution in C. elegans knockout strains. Further, we phenotypically compared different flp loss-of-function strains. Differences between groups were compared by ANOVA and post-hoc testing (Dunnett, Bonferroni). RESULTS Our pharmacological analysis of the FLP/NPR system including formerly functionally uncharacterized NPY-like peptides from C. elegans demonstrates that G protein-coupling and ligand requirements for receptor activation are similar to the human NPY system. In vitro and in vivo analyses show cross-reactivity of NPY with the FLP/NPR system manifesting in the ability of the human GPCRs to functionally substitute FLP/NPR signaling in vivo. The high pharmacological/functional similarities enabled us to identify C. elegans FLP-14 as a key molecule in avoidance behavior. CONCLUSIONS Our data demonstrate the pharmacological and functional similarities of human NPY and C. elegans NPR systems. This adds a novel perspective to current phylogenetic reconstructions of the neuropeptide Y system. NPY and NPR receptors are pharmacologically so similar that the human receptors can functionally compensate for the C. elegans ones, suggesting orthologous relationships. This is also underlined by the presence of NPY-like peptides and parallels in peptide requirements for receptor activation. Further, the results presented here highlight the potential of this knowledge for physiological as well as molecular studies on neuropeptide GPCRs such as the NPY system in the future.
Collapse
Affiliation(s)
| | - Victoria Elisabeth Groß
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Simone Prömel
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Katner SN, Bredhold KE, Steagall KB, Bell RL, Neal-Beliveau BS, Cheong MC, Engleman EA. Caenorhabditis elegans as a model system to identify therapeutics for alcohol use disorders. Behav Brain Res 2019; 365:7-16. [PMID: 30802531 DOI: 10.1016/j.bbr.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/15/2019] [Accepted: 02/10/2019] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) cause serious problems in society and few effective treatments are available. Caenorhabditis elegans (C. elegans) is an excellent invertebrate model to study the neurobiological basis of human behavior with a conserved, fully tractable genome, and a short generation time for fast generation of data at a fraction of the cost of other organisms. C. elegans demonstrate movement toward, and concentration-dependent self-exposure to various psychoactive drugs. The discovery of opioid receptors in C. elegans provided the impetus to test the hypothesis that C. elegans may be used as a medications screen to identify new AUD treatments. We tested the effects of naltrexone, an opioid antagonist and effective treatment for AUDs, on EtOH preference in C. elegans. Six-well agar test plates were prepared with EtOH placed in a target zone on one side and water in the opposite target zone of each well. Worms were treated with naltrexone before EtOH preference testing and then placed in the center of each well. Wild-type worms exhibited a concentration-dependent preference for 50, 70 and 95% EtOH. Naltrexone blocked acute EtOH preference, but had no effect on attraction to food or benzaldehyde in wild-type worms. Npr-17 opioid receptor knockout mutants did not display a preference for EtOH. In contrast, npr-17 opioid receptor rescue mutants exhibited significant EtOH preference behavior, which was attenuated by naltrexone. Chronic EtOH exposure induced treatment resistance and compulsive-like behavior. These data indicate that C. elegans can serve as a model system to identify compounds to treat AUDs.
Collapse
Affiliation(s)
- Simon N Katner
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA.
| | | | - Kevin B Steagall
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| | - Richard L Bell
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| | | | - Mi C Cheong
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Eric A Engleman
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| |
Collapse
|
28
|
Alfhili MA, Yoon DS, Faten TA, Francis JA, Cha DS, Zhang B, Pan X, Lee MH. Non-Ionic Surfactants Antagonize Toxicity of Potential Phenolic Endocrine-Disrupting Chemicals, Including Triclosan in Caenorhabditis elegans. Mol Cells 2018; 41:1052-1060. [PMID: 30453732 PMCID: PMC6315314 DOI: 10.14348/molcells.2018.0378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
Triclosan (TCS) is a phenolic antimicrobial chemical used in consumer products and medical devices. Evidence from in vitro and in vivo animal studies has linked TCS to numerous health problems, including allergic, cardiovascular, and neurodegenerative disease. Using Caenorhabditis elegans as a model system, we here show that short-term TCS treatment (LC50: ~0.2 mM) significantly induced mortality in a dose-dependent manner. Notably, TCS-induced mortality was dramatically suppressed by co-treatment with non-ionic surfactants (NISs: e.g., Tween 20, Tween 80, NP-40, and Triton X-100), but not with anionic surfactants (e.g., sodium dodecyl sulfate). To identify the range of compounds susceptible to NIS inhibition, other structurally related chemical compounds were also examined. Of the compounds tested, only the toxicity of phenolic compounds (bisphenol A and benzyl 4-hydroxybenzoic acid) was significantly abrogated by NISs. Mechanistic analyses using TCS revealed that NISs appear to interfere with TCS-mediated mortality by micellar solubilization. Once internalized, the TCS-micelle complex is inefficiently exported in worms lacking PMP-3 (encoding an ATP-binding cassette (ABC) transporter) transmembrane protein, resulting in overt toxicity. Since many EDCs and surfactants are extensively used in commercial products, findings from this study provide valuable insights to devise safer pharmaceutical and nutritional preparations.
Collapse
Affiliation(s)
- Mohammad A. Alfhili
- Department of Medicine (Hematology/Oncology Division), Brody School of Medicine at East Carolina University, Greenville, NC 27834,
USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433,
Saudi Arabia
| | - Dong Suk Yoon
- Department of Medicine (Hematology/Oncology Division), Brody School of Medicine at East Carolina University, Greenville, NC 27834,
USA
| | - Taki A. Faten
- Department of Biology, East Carolina University, Greenville, NC 27858,
USA
| | - Jocelyn A. Francis
- Department of Chemistry, East Carolina University, Greenville, NC 27858,
USA
| | - Dong Seok Cha
- Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk 565-701,
Korea
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858,
USA
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858,
USA
| | - Myon-Hee Lee
- Department of Medicine (Hematology/Oncology Division), Brody School of Medicine at East Carolina University, Greenville, NC 27834,
USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599,
USA
| |
Collapse
|
29
|
Farris SP, Riley BP, Williams RW, Mulligan MK, Miles MF, Lopez MF, Hitzemann R, Iancu OD, Colville A, Walter NAR, Darakjian P, Oberbeck DL, Daunais JB, Zheng CL, Searles RP, McWeeney SK, Grant KA, Mayfield RD. Cross-species molecular dissection across alcohol behavioral domains. Alcohol 2018; 72:19-31. [PMID: 30213503 PMCID: PMC6309876 DOI: 10.1016/j.alcohol.2017.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 9-12, 2017. Psychiatric diseases, including alcohol-use disorders (AUDs), are influenced through complex interactions of genes, neurobiological pathways, and environmental influences. A better understanding of the common neurobiological mechanisms underlying an AUD necessitates an integrative approach, involving a systematic assessment of diverse species and phenotype measures. As part of the World Congress on Stress and Alcoholism, this symposium provided a detailed account of current strategies to identify mechanisms underlying the development and progression of AUDs. Dr. Sean Farris discussed the integration and organization of transcriptome and postmortem human brain data to identify brain regional- and cell type-specific differences related to excessive alcohol consumption that are conserved across species. Dr. Brien Riley presented the results of a genome-wide association study of DSM-IV alcohol dependence; although replication of genetic associations with alcohol phenotypes in humans remains challenging, model organism studies show that COL6A3, KLF12, and RYR3 affect behavioral responses to ethanol, and provide substantial evidence for their role in human alcohol-related traits. Dr. Rob Williams expanded upon the systematic characterization of extensive genetic-genomic resources for quantifying and clarifying phenotypes across species that are relevant to precision medicine in human disease. The symposium concluded with Dr. Robert Hitzemann's description of transcriptome studies in a mouse model selectively bred for high alcohol ("binge-like") consumption and a non-human primate model of long-term alcohol consumption. Together, the different components of this session provided an overview of systems-based approaches that are pioneering the experimental prioritization and validation of novel genes and gene networks linked with a range of behavioral phenotypes associated with stress and AUDs.
Collapse
Affiliation(s)
- Sean P Farris
- University of Texas at Austin, Austin, TX, United States
| | - Brien P Riley
- Virginia Commonwealth University, Richmond, VA, United States
| | - Robert W Williams
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Megan K Mulligan
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Michael F Miles
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marcelo F Lopez
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert Hitzemann
- Oregon Health and Science University, Portland, OR, United States
| | - Ovidiu D Iancu
- Oregon Health and Science University, Portland, OR, United States
| | | | | | | | | | - James B Daunais
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - Robert P Searles
- Oregon Health and Science University, Portland, OR, United States
| | | | - Kathleen A Grant
- Oregon Health and Science University, Portland, OR, United States
| | | |
Collapse
|
30
|
Ubuka T, Tsutsui K. Comparative and Evolutionary Aspects of Gonadotropin-Inhibitory Hormone and FMRFamide-Like Peptide Systems. Front Neurosci 2018; 12:747. [PMID: 30405335 PMCID: PMC6200920 DOI: 10.3389/fnins.2018.00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was found in the brain of Japanese quail when investigating the existence of RFamide peptides in birds. GnIH was named because it decreased gonadotropin release from cultured anterior pituitary, which was located in the hypothalamo-hypophysial system. GnIH and GnIH precursor gene related peptides have a characteristic C-terminal LPXRFamide (X = L or Q) motif that is conserved in jawed vertebrates. Orthologous peptides to GnIH are also named RFamide related peptide or LPXRFamide peptide from their structure. A G-protein coupled receptor GPR147 is the primary receptor for GnIH. Similarity-based clustering of neuropeptide precursors in metazoan species indicates that GnIH precursor of vertebrates is evolutionarily related to FMRFamide precursor of mollusk and nematode. FMRFamide peptide is the first RFamide peptide that was identified from the ganglia of the venus clam. In order to infer the evolutionary history of the GnIH-GnIH receptor system we investigate the structural similarities between GnIH and its receptor and well-studied nematode Caenorhabditis elegans (C. elegans) FMRFamide-like peptides (FLPs) and their receptors. We also compare the functions of FLPs of nematode with GnIH of chordates. A multiple sequence alignment and phylogenetic analyses of GnIH, neuropeptide FF (NPFF), a paralogous peptide of GnIH, and FLP precursors have shown that GnIH and NPFF precursors belong to different clades and some FLP precursors have structural similarities to either precursor. The peptide coding regions of FLP precursors in the same clade align well with those of GnIH or NPFF precursors. Alignment of GnIH (LPXRFa) peptides of chordates and FLPs of C. elegans grouped the peptides into five groups according to the last C-terminal amino acid sequences, which were MRFa, LRFa, VRFa, IRFa, and PQRFa. Phylogenetic analysis of receptors suggested that GPR147 has evolutionary relationships with FLP receptors, which regulate reproduction, aggression, locomotion, and feeding. GnIH and some FLPs mediate the effect of stress on reproduction and behavior, which may also be a conserved property of these peptide systems. Future studies are needed to investigate the mechanism of how neuropeptide precursor genes are mutated to evolve new neuropeptides and their inheritance.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| |
Collapse
|
31
|
Abstract
The honeybee is being developed as a simple invertebrate model for alcohol-related studies. To date, several effects of ethanol consumption have been demonstrated in honeybees, but the tolerance effect, one of the hallmarks of alcohol overuse, has never been shown. Here, we confirm our hypothesis that the response to ethanol (in terms of motor impairment) is lower in bees that have previously experienced intoxication than in bees encountering ethanol for the first time, indicating that the chronic tolerance effect occurs in honeybees. Furthermore, we investigated the basis of this effect and found that it likely results from conditioned compensatory responses to cues associated with ethanol delivery. Our findings significantly improve our understanding of the suitability of honeybees as models for alcoholism-related research and underline the first and foremost function of all conditioned reactions – their adaptive value.
Collapse
|
32
|
Chen YH, Ge CL, Wang H, Ge MH, He QQ, Zhang Y, Tian W, Wu ZX. GCY-35/GCY-36-TAX-2/TAX-4 Signalling in O 2 Sensory Neurons Mediates Acute Functional Ethanol Tolerance in Caenorhabditis elegans. Sci Rep 2018; 8:3020. [PMID: 29445226 PMCID: PMC5813177 DOI: 10.1038/s41598-018-20477-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/18/2018] [Indexed: 11/29/2022] Open
Abstract
Ethanol is a widely used beverage and abused drug. Alcoholism causes severe damage to human health and creates serious social problems. Understanding the mechanisms underlying ethanol actions is important for the development of effective therapies. Alcohol has a wide spectrum of effects on physiological activities and behaviours, from sensitization to sedation and even intoxication with increasing concentrations. Animals develop tolerance to ethanol. However, the underlying mechanisms are not well understood. In Caenorhabditis elegans, NPR-1 negatively regulates the development of acute tolerance to ethanol. Here, using in vivo Ca2+ imaging, behavioural tests and chemogenetic manipulation, we show that the soluble guanylate cyclase complex GCY-35/GCY-36-TAX-2/TAX-4 signalling pathway in O2 sensory neurons positively regulates acute functional tolerance in npr-1 worms.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Chang-Li Ge
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Hong Wang
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Qing-Qin He
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yu Zhang
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Wei Tian
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
| |
Collapse
|
33
|
Robinson SL, Thiele TE. The Role of Neuropeptide Y (NPY) in Alcohol and Drug Abuse Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:177-197. [PMID: 29056151 DOI: 10.1016/bs.irn.2017.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropeptide Y (NPY) is a neuromodulator that is widely expressed throughout the central nervous system (CNS) and which is cosecreted with classic neurotransmitters including GABA and glutamate. There is a long history of research implicating a role for NPY in modulating neurobiological responses to alcohol (ethanol) as well as other drugs of abuse. Both ethanol exposure and withdrawal from chronic ethanol have been shown to produce changes in NPY and NPY receptor protein levels and mRNA expression in the CNS. Importantly, manipulations of NPY Y1 and Y2 receptor signaling have been shown to alter ethanol consumption and self-administration in a brain region-specific manner, with Y1 receptor activation and Y2 receptor blockade in regions of the extended amygdala promoting robust reductions of ethanol intake. Similar observations have been made in studies examining neurobiological responses to nicotine, psychostimulants, and opioids. When taken together with observations of potential genetic linkage between the NPY system and the human alcohol abuse disorders, NPY represents a promising target for treating problematic alcohol and drug use, and in protecting individuals from relapse during abstinence.
Collapse
Affiliation(s)
- Stacey L Robinson
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd E Thiele
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
34
|
Maulik M, Mitra S, Bult-Ito A, Taylor BE, Vayndorf EM. Behavioral Phenotyping and Pathological Indicators of Parkinson's Disease in C. elegans Models. Front Genet 2017; 8:77. [PMID: 28659967 PMCID: PMC5468440 DOI: 10.3389/fgene.2017.00077] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with symptoms that progressively worsen with age. Pathologically, PD is characterized by the aggregation of α-synuclein in cells of the substantia nigra in the brain and loss of dopaminergic neurons. This pathology is associated with impaired movement and reduced cognitive function. The etiology of PD can be attributed to a combination of environmental and genetic factors. A popular animal model, the nematode roundworm Caenorhabditis elegans, has been frequently used to study the role of genetic and environmental factors in the molecular pathology and behavioral phenotypes associated with PD. The current review summarizes cellular markers and behavioral phenotypes in transgenic and toxin-induced PD models of C. elegans.
Collapse
Affiliation(s)
- Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska FairbanksFairbanks, AK, United States
| | - Barbara E Taylor
- Department of Biological Sciences, California State University, Long BeachLong Beach, CA, United States
| | - Elena M Vayndorf
- Institute of Arctic Biology, University of Alaska FairbanksFairbanks, AK, United States
| |
Collapse
|
35
|
Adkins AE, Hack LM, Bigdeli TB, Williamson VS, McMichael GO, Mamdani M, Edwards A, Aliev F, Chan RF, Bhandari P, Raabe RC, Alaimo JT, Blackwell GG, Moscati AA, Poland RS, Rood B, Patterson DG, Walsh D, Whitfield JB, Zhu G, Montgomery GW, Henders AK, Martin NG, Heath AC, Madden PA, Frank J, Ridinger M, Wodarz N, Soyka M, Zill P, Ising M, Nöthen MM, Kiefer F, Rietschel M, Gelernter J, Sherva R, Koesterer R, Almasy L, Zhao H, Kranzler HR, Farrer LA, Maher BS, Prescott CA, Dick DM, Bacanu SA, Mathies LD, Davies AG, Vladimirov VI, Grotewiel M, Bowers MS, Bettinger JC, Webb BT, Miles MF, Kendler KS, Riley BP. Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol-Response Behaviors in Model Organisms. Alcohol Clin Exp Res 2017; 41:911-928. [PMID: 28226201 PMCID: PMC5404949 DOI: 10.1111/acer.13362] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 02/16/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Alcohol dependence (AD) shows evidence for genetic liability, but genes influencing risk remain largely unidentified. METHODS We conducted a genomewide association study in 706 related AD cases and 1,748 unscreened population controls from Ireland. We sought replication in 15,496 samples of European descent. We used model organisms (MOs) to assess the role of orthologous genes in ethanol (EtOH)-response behaviors. We tested 1 primate-specific gene for expression differences in case/control postmortem brain tissue. RESULTS We detected significant association in COL6A3 and suggestive association in 2 previously implicated loci, KLF12 and RYR3. None of these signals are significant in replication. A suggestive signal in the long noncoding RNA LOC339975 is significant in case:control meta-analysis, but not in a population sample. Knockdown of a COL6A3 ortholog in Caenorhabditis elegans reduced EtOH sensitivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss of function of the KLF12 ortholog in C. elegans impaired development of acute functional tolerance (AFT). Klf12 expression correlated with locomotor activation following EtOH injection in mice. Loss of function of the RYR3 ortholog reduced EtOH sensitivity in C. elegans and rapid tolerance in Drosophila. The ryanodine receptor antagonist dantrolene reduced motivation to self-administer EtOH in rats. Expression of LOC339975 does not differ between cases and controls but is reduced in carriers of the associated rs11726136 allele in nucleus accumbens (NAc). CONCLUSIONS We detect association between AD and COL6A3, KLF12, RYR3, and LOC339975. Despite nonreplication of COL6A3, KLF12, and RYR3 signals, orthologs of these genes influence behavioral response to EtOH in MOs, suggesting potential involvement in human EtOH response and AD liability. The associated LOC339975 allele may influence gene expression in human NAc. Although the functions of long noncoding RNAs are poorly understood, there is mounting evidence implicating these genes in multiple brain functions and disorders.
Collapse
Affiliation(s)
- Amy E. Adkins
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Laura M. Hack
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Tim B. Bigdeli
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Vernell S. Williamson
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - G. Omari McMichael
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Mohammed Mamdani
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Alexis Edwards
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Fazil Aliev
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Robin F. Chan
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Poonam Bhandari
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Richard C. Raabe
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Joseph T. Alaimo
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - GinaMari G. Blackwell
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Arden A. Moscati
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Ryan S. Poland
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Benjamin Rood
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Diana G. Patterson
- Shaftesbury Square Hospital, 116-120 Great Victoria Street, Belfast,
BT2 7BG, United Kingdom
| | - Dermot Walsh
- Health Research Board, 67-72 Lower Mount Street, Dublin 2,
Ireland
| | | | - John B. Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute,
Royal Brisbane and Women’s Hospital, 300 Herston Road, Brisbane, QLD 4006,
Australia
| | - Gu Zhu
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute,
Royal Brisbane and Women’s Hospital, 300 Herston Road, Brisbane, QLD 4006,
Australia
| | - Grant W. Montgomery
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute,
Royal Brisbane and Women’s Hospital, 300 Herston Road, Brisbane, QLD 4006,
Australia
| | - Anjali K. Henders
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute,
Royal Brisbane and Women’s Hospital, 300 Herston Road, Brisbane, QLD 4006,
Australia
| | - Nicholas G. Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute,
Royal Brisbane and Women’s Hospital, 300 Herston Road, Brisbane, QLD 4006,
Australia
| | - Andrew C. Heath
- Department of Psychiatry, Washington University School of Medicine,
4560 Clayton Ave., Suite 1000, St. Louis, MO, 63110, USA
| | - Pamela A.F. Madden
- Department of Psychiatry, Washington University School of Medicine,
4560 Clayton Ave., Suite 1000, St. Louis, MO, 63110, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute
of Mental Health, Medical Faculty Mannheim/Heidelberg University, J 5, 68159
Mannheim, Germany
| | - Monika Ridinger
- Department of Psychiatry, University Hospital Regensburg,
University of Regensburg, 93042 Regensburg, Germany
| | - Norbert Wodarz
- Department of Psychiatry, University Hospital Regensburg,
University of Regensburg, 93042 Regensburg, Germany
| | - Michael Soyka
- Privatklinik Meiringen, Willigen, 3860 Meiringen, Switzerland
- Department of Psychiatry and Psychotherapy, University of Munich,
Nussbaumstrasse 7, 80336 Munich, Germany
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University of Munich,
Nussbaumstrasse 7, 80336 Munich, Germany
| | - Marcus Ising
- Department of Molecular Psychology, Max-Planck-Institute of
Psychiatry, Kraepelinstrasse 2–10, 80804 Munich, Germany
| | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of
Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
- Department of Institute of Human Genetics, University of Bonn,
Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of
Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J 5,
68159 Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute
of Mental Health, Medical Faculty Mannheim/Heidelberg University, J 5, 68159
Mannheim, Germany
| | | | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, 333
Cedar Street, New Haven, CT, 06510, USA
- Department of Neurobiology, Yale University School of Medicine, 333
Cedar Street, New Haven, CT, 06510, USA
- Department of Genetics, Yale University School of Medicine, 333
Cedar Street, New Haven, CT, 06510, USA
- Department of Psychiatry, VA CT Healthcare Center, 950 Campbell
Avenue, West Haven, CT, 06516, USA
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University
School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Ryan Koesterer
- Department of Medicine (Biomedical Genetics), Boston University
School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Laura Almasy
- Texas Biomedical Research Institute, Department of Genetics, P.O.
Box 760549, San Antonio, TX, 78245-0549, USA
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, 333
Cedar Street, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale University School of Medicine,
333 Cedar Street, New Haven, CT, 06510, USA
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman
School of Medicine, Treatment Research Center, 3900 Chestnut Street, Philadelphia,
PA 19104, USA
- VISN 4 MIRECC, Philadelphia VA Medical Center, 3900 Woodland
Avenue, Philadelphia, PA, 19104, USA
| | - Lindsay A. Farrer
- Department of Psychiatry, VA CT Healthcare Center, 950 Campbell
Avenue, West Haven, CT, 06516, USA
- Department of Neurology, Boston University School of Medicine, 72
East Concord Street, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University School of Medicine,
72 East Concord Street, Boston, MA, 02118, USA
- Department of Genetics and Genomics, Boston University School of
Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Department of Epidemiology and Biostatistics, Boston University
School of Public Health, 715 Albany Street, Boston, MA, 02118, USA
| | - Brion S. Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of
Public Health, 624 N. Broadway, 8th Floor, Baltimore, MD, 21205, USA
| | - Carol A. Prescott
- Department of Psychology, University of Southern California, SGM
501, 3620 South McClintock Ave., Los Angeles, CA, 90089-1061, USA
| | - Danielle M. Dick
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Silviu A. Bacanu
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Laura D. Mathies
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Andrew G. Davies
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Vladimir I. Vladimirov
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
- Lieber Institute for Brain Development, Johns Hopkins University,
855 North Wolfe Street Suite 300, Baltimore, MD, 21205, USA
- Center for Biomarker Research and Personalized Medicine, School of
Pharmacy, PO Box 980533, Virginia Commonwealth University, Richmond, VA 23298-0533,
USA
| | - Mike Grotewiel
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - M. Scott Bowers
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Jill C. Bettinger
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Bradley T. Webb
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Michael F. Miles
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Kenneth S. Kendler
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Brien P. Riley
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| |
Collapse
|
36
|
Natural Genetic Variation in the Caenorhabditis elegans Response to Pseudomonas aeruginosa. G3-GENES GENOMES GENETICS 2017; 7:1137-1147. [PMID: 28179390 PMCID: PMC5386862 DOI: 10.1534/g3.117.039057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Caenorhabditis elegans responds to pathogenic microorganisms by activating its innate immune system, which consists of physical barriers, behavioral responses, and microbial killing mechanisms. We examined whether natural variation plays a role in the response of C. elegans to Pseudomonas aeruginosa using two C. elegans strains that carry the same allele of npr-1, a gene that encodes a G-protein-coupled receptor related to mammalian neuropeptide Y receptors, but that differ in their genetic backgrounds. Strains carrying an allele for the NPR-1 215F isoform have been shown to exhibit lack of pathogen avoidance behavior and deficient immune response toward P. aeruginosa relative to the wild-type (N2) strain. We found that the wild isolate from Germany RC301, which carries the allele for NPR-1 215F, shows an enhanced resistance to P. aeruginosa infection when compared with strain DA650, which also carries NPR-1 215F but in an N2 background. Using a whole-genome sequencing single-nucleotide polymorphism (WGS-SNP) mapping strategy, we determined that the resistance to P. aeruginosa infection maps to a region on chromosome V. Furthermore, we demonstrated that the mechanism for the enhanced resistance to P. aeruginosa infection relies exclusively on strong P. aeruginosa avoidance behavior, and does not involve the main immune, stress, and lifespan extension pathways in C. elegans. Our findings underscore the importance of pathogen-specific behavioral immune defense in the wild, which seems to be favored over the more energy-costly mechanism of activation of physiological cellular defenses.
Collapse
|
37
|
Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons. Handb Exp Pharmacol 2017; 248:281-309. [PMID: 29204711 DOI: 10.1007/164_2017_78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among all members of the voltage-gated, TM6 ion channel superfamily, the proteins that constitute calcium- and voltage-gated potassium channels of large conductance (BK) and their coding genes are unique for their involvement in ethanol-induced disruption of normal physiology and behavior. Moreover, in vitro studies document that BK activity is modified by ethanol with an EC50~23 mM, which is near blood alcohol levels considered legal intoxication in most states of the USA (0.08 g/dL = 17.4 mM). Following a succinct introduction to our current understanding of BK structure and function in central neurons, with a focus on neural circuits that contribute to the neurobiology of alcohol use disorders (AUD), we review the modifications in organ physiology by alcohol exposure via BK and the different molecular elements that determine the ethanol response of BK in alcohol-naïve systems, including the role of an ethanol-recognizing site in the BK-forming slo1 protein, modulation of accessory BK subunits, and their coding genes. The participation of these and additional elements in determining the response of a system or an organism to protracted ethanol exposure is consequently analyzed, with insights obtained from invertebrate and vertebrate models. Particular emphasis is put on the role of BK and coding genes in different forms of tolerance to alcohol exposure. We finally discuss genetic results on BK obtained in invertebrate organisms and rodents in light of possible extrapolation to human AUD.
Collapse
|
38
|
Johnson JR, Rajamanoharan D, McCue HV, Rankin K, Barclay JW. Small Heat Shock Proteins Are Novel Common Determinants of Alcohol and Nicotine Sensitivity in Caenorhabditis elegans. Genetics 2016; 202:1013-27. [PMID: 26773049 PMCID: PMC4788107 DOI: 10.1534/genetics.115.185025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/11/2016] [Indexed: 12/26/2022] Open
Abstract
Addiction to drugs is strongly determined by multiple genetic factors. Alcohol and nicotine produce distinct pharmacological effects within the nervous system through discrete molecular targets; yet, data from family and twin analyses support the existence of common genetic factors for addiction in general. The mechanisms underlying addiction, however, are poorly described and common genetic factors for alcohol and nicotine remain unidentified. We investigated the role that the heat shock transcription factor, HSF-1, and its downstream effectors played as common genetic modulators of sensitivity to addictive substances. Using Caenorhabditis elegans, an exemplary model organism with substance dose-dependent responses similar to mammals, we demonstrate that HSF-1 altered sensitivity to both alcohol and nicotine. Using a combination of a targeted RNAi screen of downstream factors and transgenic approaches we identified that these effects were contingent upon the constitutive neuronal expression of HSP-16.48, a small heat shock protein (HSP) homolog of human α-crystallin. Furthermore we demonstrated that the function of HSP-16.48 in drug sensitivity surprisingly was independent of chaperone activity during the heat shock stress response. Instead we identified a distinct domain within the N-terminal region of the HSP-16.48 protein that specified its function in comparison to related small HSPs. Our findings establish and characterize a novel genetic determinant underlying sensitivity to diverse addictive substances.
Collapse
Affiliation(s)
- James R Johnson
- The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Dayani Rajamanoharan
- The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Hannah V McCue
- The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Kim Rankin
- The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Jeff W Barclay
- The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
39
|
Watts JL. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids. J Clin Med 2016; 5:jcm5020019. [PMID: 26848697 PMCID: PMC4773775 DOI: 10.3390/jcm5020019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/05/2016] [Accepted: 01/28/2016] [Indexed: 01/14/2023] Open
Abstract
The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
40
|
Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:229-52. [PMID: 26810004 DOI: 10.1016/bs.pmbts.2015.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission in human addiction. Overall, C. elegans can be used to model aspects of drug addiction and identify systems and molecular mechanisms that mediate drug effects. The findings are surprisingly consistent with analogous findings in higher-level organisms. Further, model refinement is warranted to improve model validity and increase utility for medications development.
Collapse
|
41
|
Grotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. Alcohol Clin Exp Res 2015; 39:1292-311. [PMID: 26173477 PMCID: PMC4656040 DOI: 10.1111/acer.12785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral-genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. METHODS In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. RESULTS Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. CONCLUSIONS Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD.
Collapse
Affiliation(s)
- Mike Grotewiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| |
Collapse
|
42
|
Campbell JC, Chin-Sang ID, Bendena WG. Mechanosensation circuitry in Caenorhabditis elegans: A focus on gentle touch. Peptides 2015; 68:164-74. [PMID: 25543196 DOI: 10.1016/j.peptides.2014.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 01/02/2023]
Abstract
Forward or reverse movement in Caenorhabditis elegans is the result of sequential contraction of muscle cells arranged along the body. In larvae, muscle cells are innervated by distinct classes of motorneurons. B motorneurons regulate forward movement and A motorneurons regulate backward movement. Ablation of the D motor neurons results in animals that are uncoordinated in either direction, which suggests that D motorneurons regulate the interaction between the two circuits. C. elegans locomotion is dictated by inputs from interneurons that regulate the activity of motorneurons which coordinate muscle contraction to facilitate forward or backwards movement. As C. elegans moves through the environment, sensory neurons interpret chemical and mechanical information which is relayed to the motor neurons that control locomotory direction. A mechanosensory input known as light nose touch can be simulated in the laboratory by touching the nose of the animal with a human eyebrow hair. The recoil reaction that follows from light nose touch appears to be primarily mediated by glutamate release from the polymodal sensory neuron ASH. Numerous glutamate receptor types are found in different neurons and interneurons which suggest that several pathways may regulate the aversive response. Based on the phenotypes of mutants in which neuropeptide processing is abolished, neuropeptides play a role in circuit regulation. The light touch response is also regulated by transient receptor channel proteins and degenerin/epithelial sodium channels which modulate the activity of sensory neurons involved in the nose touch response.
Collapse
Affiliation(s)
- Jason C Campbell
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ian D Chin-Sang
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada
| | - William G Bendena
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada; Centre for Neuroscience, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
43
|
Davies AG, Blackwell GG, Raabe RC, Bettinger JC. An Assay for Measuring the Effects of Ethanol on the Locomotion Speed of Caenorhabditis elegans. J Vis Exp 2015:52681. [PMID: 25938273 PMCID: PMC4476067 DOI: 10.3791/52681] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Alcohol use disorders are a significant public health concern, for which there are few effective treatment strategies. One difficulty that has delayed the development of more effective treatments is the relative lack of understanding of the molecular underpinnings of the effects of ethanol on behavior. The nematode, Caenorhabditis elegans (C. elegans), provides a useful model in which to generate and test hypotheses about the molecular effects of ethanol. Here, we describe an assay that has been developed and used to examine the roles of particular genes and environmental factors in behavioral responses to ethanol, in which locomotion is the behavioral output. Ethanol dose-dependently causes an acute depression of crawling on an agar surface. The effects are dynamic; animals exposed to a high concentration demonstrate an initial strong depression of crawling, referred to here as initial sensitivity, and then partially recover locomotion speed despite the continued presence of the drug. This ethanol-induced behavioral plasticity is referred to here as the development of acute functional tolerance. This assay has been used to demonstrate that these two phenotypes are distinct and genetically separable. The straightforward locomotion assay described here is suitable for examining the effects of both genetic and environmental manipulations on these acute behavioral responses to ethanol in C. elegans.
Collapse
Affiliation(s)
- Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University; VCU Alcohol Research Center, Virginia Commonwealth University
| | - GinaMari G Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University; VCU Alcohol Research Center, Virginia Commonwealth University
| | - Richard C Raabe
- Department of Pharmacology and Toxicology, Virginia Commonwealth University
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University; VCU Alcohol Research Center, Virginia Commonwealth University;
| |
Collapse
|
44
|
The laboratory domestication of Caenorhabditis elegans. Trends Genet 2015; 31:224-31. [PMID: 25804345 DOI: 10.1016/j.tig.2015.02.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/17/2022]
Abstract
Model organisms are of great importance to our understanding of basic biology and to making advances in biomedical research. However, the influence of laboratory cultivation on these organisms is underappreciated, and especially how that environment can affect research outcomes. Recent experiments led to insights into how the widely used laboratory reference strain of the nematode Caenorhabditis elegans compares with natural strains. Here we describe potential selective pressures that led to the fixation of laboratory-derived alleles for the genes npr-1, glb-5, and nath-10. These alleles influence a large number of traits, resulting in behaviors that affect experimental interpretations. Furthermore, strong phenotypic effects caused by these laboratory-derived alleles hinder the discovery of natural alleles. We highlight strategies to reduce the influence of laboratory-derived alleles and to harness the full power of C. elegans.
Collapse
|
45
|
SWI/SNF chromatin remodeling regulates alcohol response behaviors in Caenorhabditis elegans and is associated with alcohol dependence in humans. Proc Natl Acad Sci U S A 2015; 112:3032-7. [PMID: 25713357 DOI: 10.1073/pnas.1413451112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alcohol abuse is a widespread and serious problem. Understanding the factors that influence the likelihood of abuse is important for the development of effective therapies. There are both genetic and environmental influences on the development of abuse, but it has been difficult to identify specific liability factors, in part because of both the complex genetic architecture of liability and the influences of environmental stimuli on the expression of that genetic liability. Epigenetic modification of gene expression can underlie both genetic and environmentally sensitive variation in expression, and epigenetic regulation has been implicated in the progression to addiction. Here, we identify a role for the switching defective/sucrose nonfermenting (SWI/SNF) chromatin-remodeling complex in regulating the behavioral response to alcohol in the nematode Caenorhabditis elegans. We found that SWI/SNF components are required in adults for the normal behavioral response to ethanol and that different SWI/SNF complexes regulate different aspects of the acute response to ethanol. We showed that the SWI/SNF subunits SWSN-9 and SWSN-7 are required in neurons and muscle for the development of acute functional tolerance to ethanol. Examination of the members of the SWI/SNF complex for association with a diagnosis of alcohol dependence in a human population identified allelic variation in a member of the SWI/SNF complex, suggesting that variation in the regulation of SWI/SNF targets may influence the propensity to develop abuse disorders. Together, these data strongly implicate the chromatin remodeling associated with SWI/SNF complex members in the behavioral responses to alcohol across phyla.
Collapse
|
46
|
Balla KM, Andersen EC, Kruglyak L, Troemel ER. A wild C. elegans strain has enhanced epithelial immunity to a natural microsporidian parasite. PLoS Pathog 2015; 11:e1004583. [PMID: 25680197 PMCID: PMC4334554 DOI: 10.1371/journal.ppat.1004583] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/18/2014] [Indexed: 12/27/2022] Open
Abstract
Microbial pathogens impose selective pressures on their hosts, and combatting these pathogens is fundamental to the propagation of a species. Innate immunity is an ancient system that provides the foundation for pathogen resistance, with epithelial cells in humans increasingly appreciated to play key roles in innate defense. Here, we show that the nematode C. elegans displays genetic variation in epithelial immunity against intestinal infection by its natural pathogen, Nematocida parisii. This pathogen belongs to the microsporidia phylum, which comprises a large phylum of over 1400 species of fungal-related parasites that can infect all animals, including humans, but are poorly understood. Strikingly, we find that a wild C. elegans strain from Hawaii is able to clear intracellular infection by N. parisii, with this ability restricted to young larval animals. Notably, infection of older larvae does not impair progeny production, while infection of younger larvae does. The early-life immunity of Hawaiian larvae enables them to produce more progeny later in life, providing a selective advantage in a laboratory setting—in the presence of parasite it is able to out-compete a susceptible strain in just a few generations. We show that enhanced immunity is dominant to susceptibility, and we use quantitative trait locus mapping to identify four genomic loci associated with resistance. Furthermore, we generate near-isogenic strains to directly demonstrate that two of these loci influence resistance. Thus, our findings show that early-life immunity of C. elegans against microsporidia is a complex trait that enables the host to produce more progeny later in life, likely improving its evolutionary success. Infectious diseases caused by microbes create some of the strongest forces in evolution, by killing their hosts, and impairing their ability to produce progeny. Microsporidia are very common microbes that cause disease in all animals, including roundworms, insects, fish and people. We investigated microsporidia infection in the roundworm C. elegans, and found that strains from diverse parts of the world have differing levels of resistance against infection. Interestingly, a C. elegans strain from Hawaii can clear infection but only during the earliest stage of life. This resistance appears to be evolutionarily important, because it is during this early stage of life when infection can greatly reduce the number of progeny produced by the host. Consistent with this idea, if the Hawaiian strain is infected when young, it will ultimately produce more progeny than a susceptible strain of C. elegans. We find that this early life resistance of Hawaiian animals is due to a combination of genetic regions, which together provide enhanced immunity against a natural pathogen, thus enabling this strain to have more offspring.
Collapse
Affiliation(s)
- Keir M. Balla
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Emily R. Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Luo J, Xu Z, Tan Z, Zhang Z, Ma L. Neuropeptide receptors NPR-1 and NPR-2 regulate Caenorhabditis elegans avoidance response to the plant stress hormone methyl salicylate. Genetics 2015; 199:523-31. [PMID: 25527285 PMCID: PMC4317659 DOI: 10.1534/genetics.114.172239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/16/2014] [Indexed: 11/18/2022] Open
Abstract
Methyl salicylate (MeSa) is a stress hormone released by plants under attack by pathogens or herbivores . MeSa has been shown to attract predatory insects of herbivores and repel pests. The molecules and neurons underlying animal response to MeSa are not known. Here we found that the nematode Caenorhabditis elegans exhibits a strong avoidance response to MeSa, which requires the activities of two closely related neuropeptide receptors NPR-1 and NPR-2. Molecular analyses suggest that NPR-1 expressed in the RMG inter/motor neurons is required for MeSa avoidance. An NPR-1 ligand FLP-18 is also required. Using a rescuing npr-2 promoter to drive a GFP transgene, we identified that NPR-2 is expressed in multiple sensory and interneurons. Genetic rescue experiments suggest that NPR-2 expressed in the AIZ interneurons is required for MeSa avoidance. We also provide evidence that the AWB sensory neurons might act upstream of RMGs and AIZs to detect MeSa. Our results suggest that NPR-2 has an important role in regulating animal behavior and that NPR-1 and NPR-2 act on distinct interneurons to affect C. elegans avoidance response to MeSa.
Collapse
Affiliation(s)
- Jintao Luo
- The State Key Laboratory of Medical Genetics, School of Life Sciences
| | - Zhaofa Xu
- The State Key Laboratory of Medical Genetics, School of Life Sciences
| | - Zhiping Tan
- Clinical Center for Gene Diagnosis and Therapy of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China, 410008
| | - Zhuohua Zhang
- The State Key Laboratory of Medical Genetics, School of Life Sciences
| | - Long Ma
- The State Key Laboratory of Medical Genetics, School of Life Sciences
| |
Collapse
|
48
|
Nagy S, Tramm N, Sanders J, Iwanir S, Shirley IA, Levine E, Biron D. Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms. eLife 2014; 3:e04380. [PMID: 25474127 PMCID: PMC4273442 DOI: 10.7554/elife.04380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/03/2014] [Indexed: 12/12/2022] Open
Abstract
Biological homeostasis invokes modulatory responses aimed at stabilizing internal conditions. Using tunable photo- and mechano-stimulation, we identified two distinct categories of homeostatic responses during the sleep-like state of Caenorhabditis elegans (lethargus). In the presence of weak or no stimuli, extended motion caused a subsequent extension of quiescence. The neuropeptide Y receptor homolog, NPR-1, and an inhibitory neuropeptide known to activate it, FLP-18, were required for this process. In the presence of strong stimuli, the correlations between motion and quiescence were disrupted for several minutes but homeostasis manifested as an overall elevation of the time spent in quiescence. This response to strong stimuli required the function of the DAF-16/FOXO transcription factor in neurons, but not that of NPR-1. Conversely, response to weak stimuli did not require the function of DAF-16/FOXO. These findings suggest that routine homeostatic stabilization of sleep may be distinct from homeostatic compensation following a strong disturbance. DOI:http://dx.doi.org/10.7554/eLife.04380.001 The regenerative properties of sleep are required by all animals, with even the simplest animal, the nematode Caenorhabditis elegans, displaying a sleep-like state called lethargus. During development, nematodes must pass through four larval stages en route to adulthood, and the end of each stage is preceded by a period of lethargus lasting 2 to 3 hr. Human sleep is divided into distinct stages that recur in a prescribed order throughout the night. Nematodes, on the other hand, simply experience alternating periods of activity and stillness as they sleep. Nevertheless, in both species, any disruptions to sleep automatically lead to adjustments of the rest of the sleep cycle to compensate for the disturbance and to ensure that the organism gets an adequate amount of sleep overall. To date, it has been assumed that a single mechanism is responsible for adjusting the sleep cycle after any disturbance, regardless of its severity. However, Nagy, Tramm, Sanders et al. now show that this is not the case in C. elegans. Sleeping nematodes that were lightly disturbed by exposing them to light or to vibrations—causing them to briefly increase their activity levels—compensated for the disturbance by lengthening their next inactive period. By contrast, worms that were vigorously agitated by stronger vibrations showed a different response: the alternating pattern of stillness and activity was disrupted for several minutes, followed by an overall increase in the length of time spent in the stillness phase. Experiments using genetically modified worms revealed that these two responses involve distinct molecular pathways. A signaling molecule called neuropeptide Y affects the response to minor sleep disruptions, whereas a transcription factor called DAF-16/FOXO is involved in the corresponding role after major disruptions. Given that neuropeptide Y has already been implicated in sleep regulation in humans and flies, it is not implausible that similar mechanisms may occur in response to disturbances of our own sleep. DOI:http://dx.doi.org/10.7554/eLife.04380.002
Collapse
Affiliation(s)
- Stanislav Nagy
- Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| | - Nora Tramm
- Department of Physics, University of Chicago, Chicago, United States
| | - Jarred Sanders
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, United States
| | - Shachar Iwanir
- Department of Physics, University of Chicago, Chicago, United States
| | - Ian A Shirley
- Department of Physics, University of Chicago, Chicago, United States
| | - Erel Levine
- Department of Physics, Harvard University, Cambridge, United States
| | - David Biron
- Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| |
Collapse
|
49
|
Patananan AN, Budenholzer LM, Eskin A, Torres ER, Clarke SG. Ethanol-induced differential gene expression and acetyl-CoA metabolism in a longevity model of the nematode Caenorhabditis elegans. Exp Gerontol 2014; 61:20-30. [PMID: 25449858 DOI: 10.1016/j.exger.2014.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/17/2014] [Accepted: 11/16/2014] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that exposing adults of the soil-dwelling nematode Caenorhabditis elegans to concentrations of ethanol in the range of 100-400mM results in slowed locomotion, decreased fertility, and reduced longevity. On the contrary, lower concentrations of ethanol (0.86-68mM) have been shown to cause a two- to three-fold increase in the life span of animals in the stress resistant L1 larval stage in the absence of a food source. However, little is known about how gene and protein expression is altered by low concentrations of ethanol and the mechanism for the increased longevity. Therefore, we used biochemical assays and next generation mRNA sequencing to identify genes and biological pathways altered by ethanol. RNA-seq analysis of L1 larvae incubated in the presence of 17mM ethanol resulted in the significant differential expression of 649 genes, 274 of which were downregulated and 375 were upregulated. Many of the genes significantly altered were associated with the conversion of ethanol and triglycerides to acetyl-CoA and glucose, suggesting that ethanol is serving as an energy source in the increased longevity of the L1 larvae as well as a signal for fat utilization. We also asked if L1 larvae could sense ethanol and respond by directed movement. Although we found that L1 larvae can chemotax to benzaldehyde, we observed little or no chemotaxis to ethanol. Understanding how low concentrations of ethanol increase the lifespan of L1 larvae may provide insight into not only the longevity pathways in C. elegans, but also in those of higher organisms.
Collapse
Affiliation(s)
| | | | - Ascia Eskin
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | - Eric Rommel Torres
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| | - Steven Gerard Clarke
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
A novel cholinergic action of alcohol and the development of tolerance to that effect in Caenorhabditis elegans. Genetics 2014; 199:135-49. [PMID: 25342716 DOI: 10.1534/genetics.114.171884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the genes and mechanisms involved in acute alcohol responses has the potential to allow us to predict an individual's predisposition to developing an alcohol use disorder. To better understand the molecular pathways involved in the activating effects of alcohol and the acute functional tolerance that can develop to such effects, we characterized a novel ethanol-induced hypercontraction response displayed by Caenorhabditis elegans. We compared body size of animals prior to and during ethanol treatment and showed that acute exposure to ethanol produced a concentration-dependent decrease in size followed by recovery to their untreated size by 40 min despite continuous treatment. An increase in cholinergic signaling, leading to muscle hypercontraction, is implicated in this effect because pretreatment with mecamylamine, a nicotinic acetylcholine receptor (nAChR) antagonist, blocked ethanol-induced hypercontraction, as did mutations causing defects in cholinergic signaling (cha-1 and unc-17). Analysis of mutations affecting specific subunits of nAChRs excluded a role for the ACR-2R, the ACR-16R, and the levamisole-sensitive AChR and indicated that this excitation effect is dependent on an uncharacterized nAChR that contains the UNC-63 α-subunit. We performed a forward genetic screen and identified eg200, a mutation that affects a conserved glycine in EAT-6, the α-subunit of the Na(+)/K(+) ATPase. The eat-6(eg200) mutant fails to develop tolerance to ethanol-induced hypercontraction and remains contracted for at least 3 hr of continuous ethanol exposure. These data suggest that cholinergic signaling through a specific α-subunit-containing nAChR is involved in ethanol-induced excitation and that tolerance to this ethanol effect is modulated by Na(+)/K(+) ATPase function.
Collapse
|