1
|
Capotosto S, Nazemi AK, Komatsu DE, Penna J. Prolotherapy in the Treatment of Sports-Related Tendinopathies: A Systematic Review of Randomized Controlled Trials. Orthop J Sports Med 2024; 12:23259671241275087. [PMID: 39502373 PMCID: PMC11536850 DOI: 10.1177/23259671241275087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/02/2024] [Indexed: 11/08/2024] Open
Abstract
Background As sports have increased in popularity, the incidence of tendinopathy has also grown dramatically. Nonoperative techniques and treatments used to address these pathologies continue to evolve and improve. One such treatment, prolotherapy (PrT), has become increasingly popular and may provide patients with an alternative nonoperative treatment option. Purpose To review high-quality randomized controlled trials (RCTs) that analyzed PrT treatments for the most common tendinopathies. Specifically, this review aims to provide meaningful data regarding methods and outcomes for each condition treated and guide professionals who are considering PrT as a treatment option. Study Design Systematic review; Level of evidence, 2. Methods All RCTs published in English between January 1, 1980, and July 30, 2021, and reported in Embase, Medline, and Web of Science databases were reviewed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. After the initial search, a total of 3264 articles were identified. Studies analyzing sports medicine injuries and musculoskeletal pathologies using an RCT design were included, while case-reports, case-studies, reviews, and observational studies were excluded. Two independent researchers reviewed the search results, and conflicts were resolved by discussion of inclusion and exclusion criteria among all authors. The articles' quality was evaluated using the Cochrane tool for assessing the risk of bias. Statistical analysis and graphical representations were performed using SPSS Version 28.00. Results A total of 20 articles, including 1136 patients, met the inclusion criteria and were included in the study. Overall, in 85% of the studies, PrT was found to be effective in the treatment of tendinopathy. Specifically, PrT was superior to or as effective as the control in 83% (10/12) of the studies analyzing lateral epicondylitis (LE) and rotator cuff (RC) tendinopathies and in 88% (7/8) of the studies on plantar fasciitis (PF), Osgood-Schlatter disease (OSD), and Achilles tendinosis (AT). LE, RC, and PF tendinopathies were the most studied conditions (17/20 studies), while AT and OSD were the least studied (3/20 studies). Of the studies, 95% (19/20) used dextrose solutions, with only 1 using solutions of 2.5% phenol, 25% glycerin, and 25% dextrose in sterile water. Conclusion Our systematic review suggests that PrT appears to be a promising alternative treatment for common tendinopathies. Most studies used a hypertonic dextrose solution. Even though further, larger randomized controlled trials comparing PrT with other orthobiologics would be beneficial, based on this review, sports medicine physiciansmay safely pursue PrT as an additional component of conservative treatment.
Collapse
Affiliation(s)
| | | | - David E. Komatsu
- Department of Orthopedics and Rehabilitation, Stony Brook University Hospital, Stony Brook, New York, USA
| | - James Penna
- Department of Orthopedics and Rehabilitation, Stony Brook University Hospital, Stony Brook, New York, USA
| |
Collapse
|
2
|
Arias-Vázquez PI, Ramírez-Wakamatzu MA, Legorreta-Ramírez BG. Biopuncture, A Multitarget Therapy in the Treatment of Individuals with Knee Osteoarthritis: state of the art. J Pharmacopuncture 2024; 27:190-198. [PMID: 39350927 PMCID: PMC11439516 DOI: 10.3831/kpi.2024.27.3.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024] Open
Abstract
Objectives The objective of this manuscript was to carry out a comprehensive review of the published information on the use of Biopuncture in patients with knee osteoarthritis. Methods A scientific search was performed using online databases following the terms (Biopuncture) and (Knee Osteoarthritis) to identify scientific manuscripts that were related to the use of Biopuncture in the treatment of individuals with knee osteoarthritis. Results With the information found, a theoretical framework was integrated that describes the components of Biopuncture, its mechanism of action and practical topics for the application of the technique. Conclusion Biopuncture appears to be a potential, simple and low-risk therapeutic strategy in the treatment of knee osteoarthritis, which is applied through periarticular subcutaneous injections, with multitarget mechanisms of action at various physiopathological levels such as the modulation of the inflammatory process, decreased peripheral sensitization, and stimulation of antidegenerative and trophic mechanisms. Perhaps it can be part of the integrative treatments for knee osteoarthritis.
Collapse
Affiliation(s)
- Pedro Iván Arias-Vázquez
- Rehabilitation Medicine, Sports Medicine, Department of Rehabilitation, Multidisciplinary Academic Division of Comalcalco, Autonomous Juarez University of Tabasco, Comalcalco Tabasco, México
| | | | | |
Collapse
|
3
|
Iyer SH, Hinman JE, Warren T, Matthews SA, Simeone TA, Simeone KA. Altered ventilatory responses to hypercapnia-hypoxia challenges in a preclinical SUDEP model involve orexin neurons. Neurobiol Dis 2024; 199:106592. [PMID: 38971479 PMCID: PMC11648317 DOI: 10.1016/j.nbd.2024.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Failure to recover from repeated hypercapnia and hypoxemia (HH) challenges caused by severe GCS and postictal apneas may contribute to sudden unexpected death in epilepsy (SUDEP). Our previous studies found orexinergic dysfunction contributes to respiratory abnormalities in a preclinical model of SUDEP, Kcna1-/- mice. Here, we developed two gas challenges consisting of repeated HH exposures and used whole body plethysmography to determine whether Kcna1-/- mice have detrimental ventilatory responses. Kcna1-/- mice exhibited an elevated ventilatory response to a mild repeated hypercapnia-hypoxia (HH) challenge compared to WT. Moreover, 71% of Kcna1-/- mice failed to survive a severe repeated HH challenge, whereas all WT mice recovered. We next determined whether orexin was involved in these differences. Pretreating Kcna1-/- mice with a dual orexin receptor antagonist rescued the ventilatory response during the mild challenge and all subjects survived the severe challenge. In ex vivo extracellular recordings in the lateral hypothalamus of coronal brain slices, we found reducing pH either inhibits or stimulates putative orexin neurons similar to other chemosensitive neurons; however, a significantly greater percentage of putative orexin neurons from Kcna1-/-mice were stimulated and the magnitude of stimulation was increased resulting in augmentation of the calculated chemosensitivity index relative to WT. Collectively, our data suggest that increased chemosensitive activity of orexin neurons may be pathologic in the Kcna1-/- mouse model of SUDEP, and contribute to elevated ventilatory responses. Our preclinical data suggest that those at high risk for SUDEP may be more sensitive to HH challenges, whether induced by seizures or other means; and the depth and length of the HH exposure could dictate the probability of survival.
Collapse
Affiliation(s)
- Shruthi H Iyer
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Jillian E Hinman
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Ted Warren
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Stephanie A Matthews
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Timothy A Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Kristina A Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
4
|
Zhang T, Wang Y, Ding L, Ma C. Efficacy of hypertonic dextrose proliferation therapy in the treatment of rotator cuff lesions: a meta-analysis. J Orthop Surg Res 2024; 19:297. [PMID: 38750541 PMCID: PMC11094990 DOI: 10.1186/s13018-024-04754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND One of the most prevalent illnesses of the shoulder is rotator cuff tendinosis, which is also a major contributor to shoulder discomfort and shoulder joint dysfunction. According to statistics, rotator cuff tendinosis occurs in 0.3-5.5% of cases and affects 0.5-7.4% of people annually. It will be necessary to conduct a meta-analysis to evaluate the efficacy of hypertonic glucose proliferation therapy in the treatment of rotator cuff problems. METHODS The databases Cochrane PubMed, Library, Web of Science and EMbase, are retrieved by the computer. Individuals with rotator cuff lesions in the intervention group were treated with hypertonic dextrose proliferation therapy, whereas individuals in the control condition were treated with a placebo. Outcome markers for rotator cuff lesions patients; Pursuant to studies, the visual analogue scale (VAS) score, the shoulder pain & disability index (SPADI), & other metrics are used to evaluate the effects of hypertonic dextrose proliferation treatment on individuals with rotator cuff diseases. After carefully evaluating the calibre of the literature, data analysis was performed utilising the RevMan 5.3 programme. RESULTS Meta-analysis finally contained 6 papers. In six investigations, the test & control group's VAS scores improved, with the test team's score considerably outperforming the control team [standardized mean difference (SMD): 1.10; 95% Cl: 0.37,1.83; P < 0.01], shoulder pain and disability index (SPADI) score (SMD:8.13; 95% Cl: 5.34,10.91; P < 0.01), Flexion (SMD:5.73; 95% Cl: 0.99,10.47; P < 0.05), Abduction (SMD:6.49; 95% Cl: 0.66,12.31; P < 0.05), Internal rotation (SMD:-1.74; 95% Cl: -4.25,0.78; P = 0.176) and External rotation (SMD:2.78; 95% Cl: -0.13,5.69; P = 0.062). CONCLUSION The findings of this study suggest that individuals with rotator cuff injuries may benefit from hypertonic dextrose proliferation treatment based on the visual analogue scale (VAS) score, the Shoulder Pain and Disability Index (SPADI) score, Flexion, & Abduction. These results must, nevertheless, be supported by high-caliber follow-up research.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Rehabilitation Medicine, Central Hospital of Wuhan, Hubei Province, China
| | - YanFu Wang
- Department of Rehabilitation Medicine, Central Hospital of Wuhan, Hubei Province, China
| | - Lin Ding
- Department of Rehabilitation Medicine, Central Hospital of Wuhan, Hubei Province, China.
| | - ChaoYang Ma
- Department of Rehabilitation Medicine, Central Hospital of Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Zhang X, Perry RJ. Metabolic underpinnings of cancer-related fatigue. Am J Physiol Endocrinol Metab 2024; 326:E290-E307. [PMID: 38294698 DOI: 10.1152/ajpendo.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Cancer-related fatigue (CRF) is one of the most prevalent and detrimental complications of cancer. Emerging evidence suggests that obesity and insulin resistance are associated with CRF occurrence and severity in cancer patients and survivors. In this narrative review, we analyzed recent studies including both preclinical and clinical research on the relationship between obesity and/or insulin resistance and CRF. We also describe potential mechanisms for these relationships, though with the caveat that because the mechanisms underlying CRF are incompletely understood, the mechanisms mediating the association between obesity/insulin resistance and CRF are similarly incompletely delineated. The data suggest that, in addition to their effects to worsen CRF by directly promoting tumor growth and metastasis, obesity and insulin resistance may also contribute to CRF by inducing chronic inflammation, neuroendocrinological disturbance, and metabolic alterations. Furthermore, studies suggest that patients with obesity and insulin resistance experience more cancer-induced pain and are at more risk of emotional and behavioral disruptions correlated with CRF. However, other studies implied a potentially paradoxical impact of obesity and insulin resistance to reduce CRF symptoms. Despite the need for further investigation utilizing interventions to directly elucidate the mechanisms of cancer-related fatigue, current evidence demonstrates a correlation between obesity and/or insulin resistance and CRF, and suggests potential therapeutics for CRF by targeting obesity and/or obesity-related mediators.
Collapse
Affiliation(s)
- Xinyi Zhang
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
6
|
Valizadeh P, Momtazmanesh S, Plazzi G, Rezaei N. Connecting the dots: An updated review of the role of autoimmunity in narcolepsy and emerging immunotherapeutic approaches. Sleep Med 2024; 113:378-396. [PMID: 38128432 DOI: 10.1016/j.sleep.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Narcolepsy type 1 (NT1) is a chronic disorder characterized by pathological daytime sleepiness and cataplexy due to the disappearance of orexin immunoreactive neurons in the hypothalamus. Genetic and environmental factors point towards a potential role for inflammation and autoimmunity in the pathogenesis of the disease. This study aims to comprehensively review the latest evidence on the autoinflammatory mechanisms and immunomodulatory treatments aimed at suspected autoimmune pathways in NT1. METHODS Recent relevant literature in the field of narcolepsy, its autoimmune hypothesis, and purposed immunomodulatory treatments were reviewed. RESULTS Narcolepsy is strongly linked to specific HLA alleles and T-cell receptor polymorphisms. Furthermore, animal studies and autopsies have found infiltration of T cells in the hypothalamus, supporting T cell-mediated immunity. However, the role of autoantibodies has yet to be definitively established. Increased risk of NT1 after H1N1 infection and vaccination supports the autoimmune hypothesis, and the potential role of coronavirus disease 2019 and vaccination in triggering autoimmune neurodegeneration is a recent finding. Alterations in cytokine levels, gut microbiota, and microglial activation indicate a potential role for inflammation in the disease's development. Reports of using immunotherapies in NT1 patients are limited and inconsistent. Early treatment with IVIg, corticosteroids, plasmapheresis, and monoclonal antibodies has seldomly shown some potential benefits in some studies. CONCLUSION The current body of literature supports that narcolepsy is an autoimmune disorder most likely caused by T-cell involvement. However, the potential for immunomodulatory treatments to reverse the autoinflammatory process remains understudied. Further clinical controlled trials may provide valuable insights into this area.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Giuseppe Plazzi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic, and Neural Sciences, Università Degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Teegala SB, Sarkar P, Siegel DM, Sheng Z, Hao L, Bello NT, De Lecea L, Beck KD, Routh VH. Lateral hypothalamus hypocretin/orexin glucose-inhibited neurons promote food seeking after calorie restriction. Mol Metab 2023; 76:101788. [PMID: 37536499 PMCID: PMC10448466 DOI: 10.1016/j.molmet.2023.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE The present study tests the hypothesis that changes in the glucose sensitivity of lateral hypothalamus (LH) hypocretin/orexin glucose-inhibited (GI) neurons following weight loss leads to glutamate plasticity on ventral tegmental area (VTA) dopamine neurons and drives food seeking behavior. METHODS C57BL/6J mice were calorie restricted to a 15% body weight loss and maintained at that body weight for 1 week. The glucose sensitivity of LH hypocretin/orexin GI and VTA dopamine neurons was measured using whole cell patch clamp recordings in brain slices. Food seeking behavior was assessed using conditioned place preference (CPP). RESULTS 1-week maintenance of calorie restricted 15% body weight loss reduced glucose inhibition of hypocretin/orexin GI neurons resulting in increased neuronal activation with reduced glycemia. The effect of decreased glucose on hypocretin/orexin GI neuronal activation was blocked by pertussis toxin (inhibitor of G-protein coupled receptor subunit Gαi/o) and Rp-cAMP (inhibitor of protein kinase A, PKA). This suggests that glucose sensitivity is mediated by the Gαi/o-adenylyl cyclase-cAMP-PKA signaling pathway. The excitatory effect of the hunger hormone, ghrelin, on hcrt/ox neurons was also blocked by Rp-cAMP suggesting that hormonal signals of metabolic status may converge on the glucose sensing pathway. Food restriction and weight loss increased glutamate synaptic strength (indexed by increased AMPA/NMDA receptor current ratio) on VTA dopamine neurons and the motivation to seek food (indexed by CPP). Chemogenetic inhibition of hypocretin/orexin neurons during caloric restriction and weight loss prevented these changes in glutamate plasticity and food seeking behavior. CONCLUSIONS We hypothesize that this change in the glucose sensitivity of hypocretin/orexin GI neurons may drive, in part, food seeking behavior following caloric restriction.
Collapse
Affiliation(s)
- Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Zhenyu Sheng
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Lihong Hao
- Department of Animal Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nicholas T Bello
- Department of Animal Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Luis De Lecea
- Department of Psychiatry and Behavioral Sciences. Wu Tsai Neuroscience Institute. 1201 Welch Rd. Stanford, CA 94305, USA
| | - Kevin D Beck
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; Neurobehavioral Research Laboratory, Research Service, Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
8
|
Peleg-Raibstein D, Viskaitis P, Burdakov D. Eat, seek, rest? An orexin/hypocretin perspective. J Neuroendocrinol 2023; 35:e13259. [PMID: 36994677 DOI: 10.1111/jne.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
Seeking and ingesting nutrients is an essential cycle of life in all species. In classical neuropsychology these two behaviours are viewed as fundamentally distinct from each other, and known as appetitive and consummatory, respectively. Appetitive behaviour is highly flexible and diverse, but typically involves increased locomotion and spatial exploration. Consummatory behaviour, in contrast, typically requires reduced locomotion. Another long-standing concept is "rest and digest", a hypolocomotive response to calorie intake, thought to facilitate digestion and storage of energy after eating. Here, we note that the classical seek➔ingest➔rest behavioural sequence is not evolutionarily advantageous for all ingested nutrients. Our limited stomach capacity should be invested wisely, rather than spent on the first available nutrient. This is because nutrients are not simply calories: some nutrients are more essential for survival than others. Thus, a key choice that needs to be made soon after ingestion: to eat more and rest, or to terminate eating and search for better food. We offer a perspective on recent work suggesting how nutrient-specific neural responses shape this choice. Specifically, the hypothalamic hypocretin/orexin neurons (HONs) - cells that promote hyperlocomotive explorative behaviours - are rapidly and differentially modulated by different ingested macronutrients. Dietary non-essential (but not essential) amino acids activate HONs, while glucose depresses HONs. This nutrient-specific HON modulation engages distinct reflex arcs, seek➔ingest➔seek and seek➔ingest➔rest, respectively. We propose that these nutri-neural reflexes evolved to facilitate optimal nutrition despite the limitations of our body.
Collapse
Affiliation(s)
- Daria Peleg-Raibstein
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Paulius Viskaitis
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Denis Burdakov
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| |
Collapse
|
9
|
Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci 2023; 17:1230428. [PMID: 37674517 PMCID: PMC10478345 DOI: 10.3389/fnins.2023.1230428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Sleep-wake and fasting-feeding are tightly coupled behavioral states that require coordination between several brain regions. The mammalian lateral hypothalamus (LH) is a functionally and anatomically complex brain region harboring heterogeneous cell populations that regulate sleep, feeding, and energy metabolism. Significant attempts were made to understand the cellular and circuit bases of LH actions. Rapid advancements in genetic and electrophysiological manipulation help to understand the role of discrete LH cell populations. The opposing action of LH orexin/hypocretin and melanin-concentrating hormone (MCH) neurons on metabolic sensing and sleep-wake regulation make them the candidate to explore in detail. This review surveys the molecular, genetic, and neuronal components of orexin and MCH signaling in the regulation of sleep and metabolism.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pawan Kumar Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Bahgat MM, Abdel-Hamid AM. Is dextrose prolotherapy beneficial in the management of temporomandibular joint internal derangement? A systematic review. Cranio 2023:1-9. [PMID: 37097125 DOI: 10.1080/08869634.2023.2204042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVE To highlight the current knowledge of the efficacy of dextrose as a prolotherapy agent in managing temporomandibular joint internal derangement (TMJ-ID). METHODS A "Population, Intervention, Comparison, Outcome" (PICO) strategy was executed using an electronic search through PubMed/MEDLINE, Cochrane databases, and Google Scholar from their inception to August 2022. Only randomized clinical trials investigating the treatment of TMJ-ID with hypertonic dextrose prolotherapy (HDPT) were included. Two independent reviewers assessed the eligibility of the studies with subsequent data extraction. RESULTS The systematic search identified 392 studies, and only 8 articles were considered eligible for selection, with a total of 286 patients; 72% were females, and 28% were males. The extracted data showed positive effects of dextrose on joint pain and maximum mouth opening (MMO) with high patient satisfaction. CONCLUSION HDPT can be effective in relieving TMD symptoms as it reduces pain, improves joint dysfunction, and increases MMO up to 12 months.
Collapse
Affiliation(s)
- Mariam M Bahgat
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
11
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
12
|
Liao CD, Chen HC, Huang MH, Liou TH, Lin CL, Huang SW. Comparative Efficacy of Intra-Articular Injection, Physical Therapy, and Combined Treatments on Pain, Function, and Sarcopenia Indices in Knee Osteoarthritis: A Network Meta-Analysis of Randomized Controlled Trials. Int J Mol Sci 2023; 24:ijms24076078. [PMID: 37047058 PMCID: PMC10094194 DOI: 10.3390/ijms24076078] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Knee osteoarthritis (KOA) is associated with a high risk of sarcopenia. Both intra-articular injections (IAIs) and physical therapy (PT) exert benefits in KOA. This network meta-analysis (NMA) study aimed to identify comparative efficacy among the combined treatments (IAI+PT) in patients with KOA. Seven electronic databases were systematically searched from inception until January 2023 for randomized controlled trials (RCTs) reporting the effects of IAI+PT vs. IAI or PT alone in patients with KOA. All RCTs which had treatment arms of IAI agents (autologous conditioned serum, botulinum neurotoxin type A, corticosteroids, dextrose prolotherapy (DxTP), hyaluronic acid, mesenchymal stem cells (MSC), ozone, platelet-rich plasma, plasma rich in growth factor, and stromal vascular fraction of adipose tissue) in combination with PT (exercise therapy, physical agent modalities (electrotherapy, shockwave therapy, thermal therapy), and physical activity training) were included in this NMA. A control arm receiving placebo IAI or usual care, without any other IAI or PT, was used as the reference group. The selected RCTs were analyzed through a frequentist method of NMA. The main outcomes included pain, global function (GF), and walking capability (WC). Meta-regression analyses were performed to explore potential moderators of the treatment efficacy. We included 80 RCTs (6934 patients) for analyses. Among the ten identified IAI+PT regimens, DxTP plus PT was the most optimal treatment for pain reduction (standard mean difference (SMD) = -2.54) and global function restoration (SMD = 2.28), whereas MSC plus PT was the most effective for enhancing WC recovery (SMD = 2.54). More severe KOA was associated with greater changes in pain (β = -2.52) and WC (β = 2.16) scores. Combined IAI+PT treatments afford more benefits than do their corresponding monotherapies in patients with KOA; however, treatment efficacy is moderated by disease severity.
Collapse
Affiliation(s)
- Chun-De Liao
- International Ph.D. Program in Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei 110301, Taiwan
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Mao-Hua Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98015, USA
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Che-Li Lin
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Wei Huang
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
13
|
Hernandez CC, Gimenez LE, Dahir NS, Peisley A, Cone RD. The unique structural characteristics of the Kir 7.1 inward rectifier potassium channel: a novel player in energy homeostasis control. Am J Physiol Cell Physiol 2023; 324:C694-C706. [PMID: 36717105 PMCID: PMC10026989 DOI: 10.1152/ajpcell.00335.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Abstract
The inward rectifier potassium channel Kir7.1, encoded by the KCNJ13 gene, is a tetramer composed of two-transmembrane domain-spanning monomers, closer in homology to Kir channels associated with potassium transport such as Kir1.1, 1.2, and 1.3. Compared with other channels, Kir7.1 exhibits small unitary conductance and low dependence on external potassium. Kir7.1 channels also show a phosphatidylinositol 4,5-bisphosphate (PIP2) dependence for opening. Accordingly, retinopathy-associated Kir7.1 mutations mapped at the binding site for PIP2 resulted in channel gating defects leading to channelopathies such as snowflake vitreoretinal degeneration and Leber congenital amaurosis in blind patients. Lately, this channel's role in energy homeostasis was reported due to the direct interaction with the melanocortin type 4 receptor (MC4R) in the hypothalamus. As this channel seems to play a multipronged role in potassium homeostasis and neuronal excitability, we will discuss what is predicted from a structural viewpoint and its possible implications for hunger control.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Alys Peisley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
14
|
López JM, Carballeira P, Pozo J, León-Espinosa G, Muñoz A. Hypothalamic orexinergic neuron changes during the hibernation of the Syrian hamster. Front Neuroanat 2022; 16:993421. [PMID: 36157325 PMCID: PMC9501701 DOI: 10.3389/fnana.2022.993421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hibernation in small mammals is a highly regulated process with periods of torpor involving drops in body temperature and metabolic rate, as well as a general decrease in neural activity, all of which proceed alongside complex brain adaptive changes that appear to protect the brain from extreme hypoxia and low temperatures. All these changes are rapidly reversed, with no apparent brain damage occurring, during the short periods of arousal, interspersed during torpor—characterized by transitory and partial rewarming and activity, including sleep activation, and feeding in some species. The orexins are neuropeptides synthesized in hypothalamic neurons that project to multiple brain regions and are known to participate in the regulation of a variety of processes including feeding behavior, the sleep-wake cycle, and autonomic functions such as brown adipose tissue thermogenesis. Using multiple immunohistochemical techniques and quantitative analysis, we have characterized the orexinergic system in the brain of the Syrian hamster—a facultative hibernator. Our results revealed that orexinergic neurons in this species consisted of a neuronal population restricted to the lateral hypothalamic area, whereas orexinergic fibers distribute throughout the rostrocaudal extent of the brain, particularly innervating catecholaminergic and serotonergic neuronal populations. We characterized the changes of orexinergic cells in the different phases of hibernation based on the intensity of immunostaining for the neuronal activity marker C-Fos and orexin A (OXA). During torpor, we found an increase in C-Fos immunostaining intensity in orexinergic neurons, accompanied by a decrease in OXA immunostaining. These changes were accompanied by a volume reduction and a fragmentation of the Golgi apparatus (GA) as well as a decrease in the colocalization of OXA and the GA marker GM-130. Importantly, during arousal, C-Fos and OXA expression in orexinergic neurons was highest and the structural appearance and the volume of the GA along with the colocalization of OXA/GM-130 reverted to euthermic levels. We discuss the involvement of orexinergic cells in the regulation of mammalian hibernation and, in particular, the possibility that the high activation of orexinergic cells during the arousal stage guides the rewarming as well as the feeding and sleep behaviors characteristic of this phase.
Collapse
Affiliation(s)
- Jesús M. López
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Paula Carballeira
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Javier Pozo
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Gonzalo León-Espinosa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
| | - Alberto Muñoz
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Alberto Muñoz,
| |
Collapse
|
15
|
Gao XB, Horvath TL. From Molecule to Behavior: Hypocretin/orexin Revisited From a Sex-dependent Perspective. Endocr Rev 2022; 43:743-760. [PMID: 34792130 PMCID: PMC9277634 DOI: 10.1210/endrev/bnab042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/19/2022]
Abstract
The hypocretin/orexin (Hcrt/Orx) system in the perifornical lateral hypothalamus has been recognized as a critical node in a complex network of neuronal systems controlling both physiology and behavior in vertebrates. Our understanding of the Hcrt/Orx system and its array of functions and actions has grown exponentially in merely 2 decades. This review will examine the latest progress in discerning the roles played by the Hcrt/Orx system in regulating homeostatic functions and in executing instinctive and learned behaviors. Furthermore, the gaps that currently exist in our knowledge of sex-related differences in this field of study are discussed.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Villano I, La Marra M, Di Maio G, Monda V, Chieffi S, Guatteo E, Messina G, Moscatelli F, Monda M, Messina A. Physiological Role of Orexinergic System for Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8353. [PMID: 35886210 PMCID: PMC9323672 DOI: 10.3390/ijerph19148353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
Orexins, or hypocretins, are excitatory neuropeptides involved in the regulation of feeding behavior and the sleep and wakefulness states. Since their discovery, several lines of evidence have highlighted that orexin neurons regulate a great range of physiological functions, giving it the definition of a multitasking system. In the present review, we firstly describe the mechanisms underlining the orexin system and their interactions with the central nervous system (CNS). Then, the system's involvement in goal-directed behaviors, sleep/wakefulness state regulation, feeding behavior and energy homeostasis, reward system, and aging and neurodegenerative diseases are described. Advanced evidence suggests that the orexin system is crucial for regulating many physiological functions and could represent a promising target for therapeutical approaches to obesity, drug addiction, and emotional stress.
Collapse
Affiliation(s)
- Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80138 Naples, Italy; (V.M.); (E.G.)
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Ezia Guatteo
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80138 Naples, Italy; (V.M.); (E.G.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (G.M.); (F.M.)
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (G.M.); (F.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| |
Collapse
|
17
|
Chao TC, Reeves KD, Lam KHS, Li TY, Wu YT. The Effectiveness of Hydrodissection with 5% Dextrose for Persistent and Recurrent Carpal Tunnel Syndrome: A Retrospective Study. J Clin Med 2022; 11:jcm11133705. [PMID: 35806998 PMCID: PMC9267718 DOI: 10.3390/jcm11133705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
Patients with failure of primary surgery for carpal tunnel syndrome (CTS) present a frustrating clinical problem because there are no relevant treatment guidelines, and the effect of current conservative management or revision surgery is unsatisfactory. Hydrodissection with 5% dextrose is emerging as an effective treatment for primary CTS and may be an effective alternative treatment method for persistent or recurrent post-surgical CTS. We retrospectively investigated the long-term effectiveness of hydrodissection with 5% dextrose for persistent or recurrent CTS. Thirty-six of forty consecutively-treated patients with either persistent or recurrent symptoms of CTS after surgery, who were treated with ultrasound-guided hydrodissection of the median nerve using 10 mL of 5% dextrose, were available to provide outcome data by a structured phone interview at least six months after treatment completion. Symptom relief ≥ 50% represented an effective outcome, while symptom relief < 50% was rated as a poor outcome. Nearly 2/3 (61.1%) of patients reported an effective outcome after a mean of 3.1 injections, with a post-injection follow-up mean of 33 (6−67) months. A non-significant trend toward a more frequently-effective outcome was observed in those with recurrent versus persistent symptoms following CTS (76.9% vs. 52.2%, p = 0.165). However, a significantly higher percentage of those with recurrent symptoms reported an excellent outcome, defined as a greater than 70% improvement (8/13 [61.6%] vs. 3/23 [13%], p = 0.006). The percentage of patients achieving an effective outcome was not significantly different between <2, 2−4, and >4 years of post-treatment follow-up (36.4% vs. 77.8% vs. 57.1%; p = 0.077). Hydrodissection with 5% dextrose may result in a clinically important and durable benefit in those experiencing persistent or recurrent CTS after surgery.
Collapse
Affiliation(s)
- Ta-Chung Chao
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (T.-C.C.); (T.-Y.L.)
| | | | - King Hei Stanley Lam
- The Hong Kong Institute of Musculoskeletal Medicine, Hong Kong;
- Department of Family Medicine, The Chinese University of Hong Kong, Hong Kong
- Department of Family Medicine, The University of Hong Kong, Hong Kong
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Tsung-Ying Li
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (T.-C.C.); (T.-Y.L.)
- Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Yung-Tsan Wu
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (T.-C.C.); (T.-Y.L.)
- Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Department of Research and Development, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923311 (ext. 13342)
| |
Collapse
|
18
|
Mechanism of Glucose Water as a Neural Injection: A Perspective on Neuroinflammation. Life (Basel) 2022; 12:life12060832. [PMID: 35743863 PMCID: PMC9225069 DOI: 10.3390/life12060832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
The entrapment of peripheral nerves is associated with chronic neuroinflammation and neuropathic pain, and perineural injection therapy with glucose is emerging as an effective treatment for peripheral entrapment neuropathy. However, the mechanism underlying the pharmacological effect of glucose on nerves remains unclear. One of the hypothesized mechanisms is that glucose reduces neurogenic inflammation. Therefore, we investigated the effects of high glucose concentrations on cytokine-induced neuroinflammation in vitro. Human SH-SY5Y neuronal cells were challenged with 10 ng/mL TNF-α for 16 h and subsequently treated with different glucose concentrations (0–25 mM) for 24 h. Cell viability was evaluated using the diphenyltetrazolium bromide assay, and proinflammatory cytokine levels were assessed using ELISA and quantitative PCR. In addition, mRNA levels of NF-κB and cyclooxygenase-2 were analyzed using quantitative PCR. Exposure to 10 ng/mL TNF-α resulted in decreased viability of SH-SY5Y cells and significant upregulation of IL-6, IL-1β, NF-κB, and cyclooxygenase-2. Subsequent exposure to high glucose levels (25 mM) markedly reduced the upregulation of IL-6, IL-1β, cyclooxygenase-2, and NF-κB, and restored the functional metabolism of SH-SY5Y cells, compared with that of the normal glucose control. Our findings suggest that high glucose concentrations can mitigate TNF-α-induced NF-κB activation, upregulation of proinflammatory cytokines, and metabolic dysfunction.
Collapse
|
19
|
Insulin-like Growth Factor I Couples Metabolism with Circadian Activity through Hypo-Thalamic Orexin Neurons. Int J Mol Sci 2022; 23:ijms23094679. [PMID: 35563069 PMCID: PMC9101627 DOI: 10.3390/ijms23094679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Uncoupling of metabolism and circadian activity is associated with an increased risk of a wide spectrum of pathologies. Recently, insulin and the closely related insulin-like growth factor I (IGF-I) were shown to entrain feeding patterns with circadian rhythms. Both hormones act centrally to modulate peripheral glucose metabolism; however, whereas central targets of insulin actions are intensely scrutinized, those mediating the actions of IGF-I remain less defined. We recently showed that IGF-I targets orexin neurons in the lateral hypothalamus, and now we evaluated whether IGF-I modulates orexin neurons to align circadian rhythms with metabolism. Mice with disrupted IGF-IR activity in orexin neurons (Firoc mice) showed sexually dimorphic alterations in daily glucose rhythms and feeding activity patterns which preceded the appearance of metabolic disturbances. Thus, Firoc males developed hyperglycemia and glucose intolerance, while females developed obesity. Since IGF-I directly modulates orexin levels and hepatic expression of KLF genes involved in circadian and metabolic entrainment in an orexin-dependent manner, it seems that IGF-I entrains metabolism and circadian rhythms by modulating the activity of orexin neurons.
Collapse
|
20
|
Hsieh RL, Lee WC. Effects of Intra-Articular Coinjections of Hyaluronic Acid and Hypertonic Dextrose on Knee Osteoarthritis: A Prospective, Randomized, Double-Blind Trial. Arch Phys Med Rehabil 2022; 103:1505-1514. [DOI: 10.1016/j.apmr.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
|
21
|
Meta-analysis of clinical trials focusing on hypertonic dextrose prolotherapy (HDP) for knee osteoarthritis. Aging Clin Exp Res 2022; 34:715-724. [PMID: 34449061 DOI: 10.1007/s40520-021-01963-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Hypertonic dextrose prolotherapy (HDP) is an injection of a concentrated dextrose solution for the purpose of local treatment of musculoskeletal pain and possible enhancement of repair mechanisms. This systematic review and meta-analysis examines the clinical utility of HDP injection for treatment of knee osteoarthritis (OA). Randomized controlled trials (RCTs) utilizing HDP to treat knee OA were retrieved from MEDLINE, EMBASE, and Cochrane Library (CENTRAL). Identification and inclusion of RCTs utilizing intra-articular and extra-articular administration of HDP vs administration of other injectate or physical therapy as control for knee OA were included. Primary clinical outcomes were changes in knee WOMAC, pain and function score. Secondary outcomes were adverse events related to HDP. For continuous outcomes with same or different measurements, we calculated, respectively the weighted mean difference (WMD) or the standardized mean difference (SMD), respectively. Results were pooled using DerSimonian and Laird random effect models across the included studies and heterogeneity between studies was estimated using the I2 index. Five studies comprising a total of 319 treated patients met inclusion criteria and were included in the final analysis. At a mean of 22.8 weeks follow-up, HDP treatment significantly improved total WOMAC score (WMD = 13.77, 95% CI: 6.75-20.78; p < 0.001; I2 = 90%), pain (SMD = 1.33, 95% CI: 0.49-2.17; p < 0.001; I2 = 91%) and knee function (SMD = 1.30, 95% CI: 0.45-2.14; p < 0.001; I2 = 91%) compared with control group. There were no severe adverse events related to dextrose injection reported in all the included studies. HDP is a promising treatment for knee OA with a reasonable safety profile. Further research in mechanism of HDP activity and long-term follow-up study will be needed for exploring this novel therapy modality.
Collapse
|
22
|
The Sleep-Promoting Ventrolateral Preoptic Nucleus: What Have We Learned over the Past 25 Years? Int J Mol Sci 2022; 23:ijms23062905. [PMID: 35328326 PMCID: PMC8954377 DOI: 10.3390/ijms23062905] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023] Open
Abstract
For over a century, the role of the preoptic hypothalamus and adjacent basal forebrain in sleep-wake regulation has been recognized. However, for years, the identity and location of sleep- and wake-promoting neurons in this region remained largely unresolved. Twenty-five years ago, Saper and colleagues uncovered a small collection of sleep-active neurons in the ventrolateral preoptic nucleus (VLPO) of the preoptic hypothalamus, and since this seminal discovery the VLPO has been intensively investigated by labs around the world, including our own. Herein, we first review the history of the preoptic area, with an emphasis on the VLPO in sleep-wake control. We then attempt to synthesize our current understanding of the circuit, cellular and synaptic bases by which the VLPO both regulates and is itself regulated, in order to exert a powerful control over behavioral state, as well as examining data suggesting an involvement of the VLPO in other physiological processes.
Collapse
|
23
|
Zhu M, Rabago D, Chung VCH, Reeves KD, Wong SYS, Sit RWS. Effects of Hypertonic Dextrose Injection (Prolotherapy) in Lateral Elbow Tendinosis: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2022; 103:2209-2218. [PMID: 35240122 DOI: 10.1016/j.apmr.2022.01.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To systematic review the effectiveness of hypertonic dextrose prolotherapy (DPT) on pain intensity and physical functioning in patients with lateral elbow tendinosis (LET) compared with other active non-surgical treatments. DATA SOURCES Systematic search of CENTRAL, MEDLINE, EMBASE, Web of Science, PubMed, Dimensions, Global Health, NHS Health Technology Assessment, AMED and OVID nursing database from inception to 15 June 2021, without language restrictions. STUDY SELECTION Two reviewers independently identified parallel or cross-over RCTs that evaluated the effectiveness of DPT in LET. The search identified 245 records; data from 8 studies (354 patients) were included. DATA EXTRACTION Two reviewers independently extracted data and assessed included studies. The Cochrane Risk of Bias 2 tool was used to evaluate risk of bias. The Grading of Recommendation Assessment, Development, and Evaluation approach was used to assess quality of the evidence. DATA SYNTHESIS Pooled results favored the use of DPT in reducing tennis elbow pain intensity compared with active controls at 12 weeks post-enrollment, with standardized mean difference (SMD) of -0.44 (95% CI -0.88 to -0.01, P =0.04) and of moderate heterogeneity (I2= 49%). Pooled results also favored the use of DPT on physical functioning compared with active controls at 12 weeks, with DASH score achieving mean difference (MD) -15.04 (95% CI -20.25 to -9.82, P < 0.001) and of low heterogeneity (I2= 0.0%). No major related adverse events have been reported. CONCLUSIONS DPT is superior to active controls at 12 weeks for decreasing pain intensity and functioning by margins that meet criteria for clinical relevance in the treatment of LET. While existing studies are too small to assess rare adverse events, for LET patients, especially those refractory to first-line treatments, DPT can be considered a non-surgical treatment option in carefully selected patients. Further high-quality trials with comparison with other injection therapies are needed.
Collapse
Affiliation(s)
- Mengting Zhu
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| | - David Rabago
- Department of Family and Community Medicine, Pennsylvania State University, United States of America.
| | - Vincent Chi-Ho Chung
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| | | | - Samuel Yeung-Shan Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| | - Regina Wing-Shan Sit
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| |
Collapse
|
24
|
Duffet L, Kosar S, Panniello M, Viberti B, Bracey E, Zych AD, Radoux-Mergault A, Zhou X, Dernic J, Ravotto L, Tsai YC, Figueiredo M, Tyagarajan SK, Weber B, Stoeber M, Gogolla N, Schmidt MH, Adamantidis AR, Fellin T, Burdakov D, Patriarchi T. A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nat Methods 2022; 19:231-241. [PMID: 35145320 PMCID: PMC8831244 DOI: 10.1038/s41592-021-01390-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
Orexins (also called hypocretins) are hypothalamic neuropeptides that carry out essential functions in the central nervous system; however, little is known about their release and range of action in vivo owing to the limited resolution of current detection technologies. Here we developed a genetically encoded orexin sensor (OxLight1) based on the engineering of circularly permutated green fluorescent protein into the human type-2 orexin receptor. In mice OxLight1 detects optogenetically evoked release of endogenous orexins in vivo with high sensitivity. Photometry recordings of OxLight1 in mice show rapid orexin release associated with spontaneous running behavior, acute stress and sleep-to-wake transitions in different brain areas. Moreover, two-photon imaging of OxLight1 reveals orexin release in layer 2/3 of the mouse somatosensory cortex during emergence from anesthesia. Thus, OxLight1 enables sensitive and direct optical detection of orexin neuropeptides with high spatiotemporal resolution in living animals.
Collapse
Affiliation(s)
- Loïc Duffet
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Seher Kosar
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Mariangela Panniello
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Bianca Viberti
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Edward Bracey
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Anna D Zych
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Dernic
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Yuan-Chen Tsai
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Marta Figueiredo
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nadine Gogolla
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Markus H Schmidt
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Antoine R Adamantidis
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Borniger JC. Cancer as a tool for preclinical psychoneuroimmunology. Brain Behav Immun Health 2021; 18:100351. [PMID: 34988496 PMCID: PMC8710415 DOI: 10.1016/j.bbih.2021.100351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer represents a novel homeostatic challenge to the host system. How the brain senses and responds to changes in peripheral physiology elicited by tumor growth is a largely untapped area of research. This is especially relevant given the widespread prevalence of systemic problems that people with various types of cancer experience. These include disruptions in sleep/wake cycles, cognitive function, depression, and changes in appetite/food intake, among others. Critically, many of these problems are evident prior to diagnosis, indicating that their etiology is potentially distinct from the effects of cancer treatment or the stress of a cancer diagnosis. Psychoneuroimmunology (PNI) is well equipped to tackle these types of problems, as it uses approaches from multiple disciplines to understand how specific stimuli (endogenous and environmental) are transduced into neural, endocrine, and immune signals that ultimately regulate health and behavior. In this article, I first provide a brief historical perspective of cancer and PNI, introduce the idea of cancer as a systemic homeostatic challenge, and provide examples from preclinical literature supporting this hypothesis. Given the rise of advanced tools in neuroscience (e.g., calcium imaging), we can now monitor and manipulate genetically defined neural circuits over the extended time scales necessary to disentangle distal communication between peripheral tumors and the brain.
Collapse
|
26
|
Abstract
A molecular circadian clock exists not only in the brain, but also in most cells of the body. Research over the past two decades has demonstrated that it directs daily rhythmicity of nearly every aspect of metabolism. It also consolidates sleep-wake behavior each day into an activity/feeding period and a sleep/fasting period. Otherwise, sleep-wake states are mostly controlled by hypothalamic and thalamic regulatory circuits in the brain that direct overall brain state. Recent evidence suggests that hypothalamic control of appetite and metabolism may be concomitant with sleep-wake regulation, and even share the same control centers. Thus, circadian control of metabolic pathways might be overlaid by sleep-wake control of the same pathways, providing a flexible and redundant system to modify metabolism according to both activity and environment.
Collapse
|
27
|
Peleg-Raibstein D, Burdakov D. Do orexin/hypocretin neurons signal stress or reward? Peptides 2021; 145:170629. [PMID: 34416308 DOI: 10.1016/j.peptides.2021.170629] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/14/2021] [Indexed: 12/23/2022]
Abstract
Hypothalamic neurons that produce the peptide transmitters orexins/hypocretins (HONs) broadcast their predominantly neuroexcitatory outputs to the entire brain via their extremely wide axonal projections. HONs were originally reported to be activated by food deprivation, and to stimulate arousal, energy expenditure, and eating. This led to extensive studies of HONs in the context of nutrient-sensing and energy balance control. While activation of HONs by body energy depletion continues to be supported by experimental evidence, it has also become clear that HONs are robustly activated not only by nutrient depletion, but also by diverse sensory stimuli (both neutral and those associated with rewarding or aversive events), seemingly unrelated to each other or to energy balance. One theory that could unify these findings is that all these stimuli signal "stress" - defined either as a potentially harmful state, or an awareness of reward deficiency. If HON activity is conceptualized as a cumulative representation of stress, then many of the reported HONs outputs - including EEG arousal, sympathetic activation, place avoidance, and exploratory behaviours - could be viewed as logical stress-counteracting responses. We discuss evidence for and against this unifying theory of HON function, including the alterations in HON activity observed in anxiety and depression disorders. We propose that, in order to orchestrate stress-countering responses, HONs need to coactivate motivation and aversion brain systems, and the impact of HON stimulation on affective states may be perceived as rewarding or aversive depending on the baseline HON activity.
Collapse
Affiliation(s)
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Switzerland.
| |
Collapse
|
28
|
Saad L, Kalsbeek A, Zwiller J, Anglard P. Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling. Genes (Basel) 2021; 12:genes12081195. [PMID: 34440369 PMCID: PMC8392220 DOI: 10.3390/genes12081195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
The circadian system interacts with the mesocorticolimbic reward system to modulate reward and memory in a time-of-day dependent manner. The circadian discrimination of reward, however, remains difficult to address between natural reinforcers and drugs of abuse. Circadian rhythms control cocaine sensitization and conversely cocaine causes long-term alteration in circadian periodicity in part through the serotonergic neurotransmission. Since neural circuits activated by cocaine and natural reinforcers do not completely overlap, we compared the effect of cocaine with that of sucrose, a strong reinforcer in rodents, by using passive chronic administration. The expression of fifteen genes playing a major role in DNA methylation (Dnmts, Tets), circadian rhythms (Clock, Bmal1, Per1/2, Cry1/2, Rev-Erbβ, Dbp1), appetite, and satiety (Orexin, Npy) was analyzed in dopamine projection areas like the prefrontal cortex, the caudate putamen, and the hypothalamus interconnected with the reward system. The corresponding proteins of two genes (Orexin, Per2) were examined by IHC. For many factors controlling biological and cognitive functions, striking opposite responses were found between the two reinforcers, notably for genes controlling DNA methylation/demethylation processes and in global DNA methylation involved in chromatin remodeling. The data are consistent with a repression of critical core-clock genes by cocaine, suggesting that, consequently, both agents differentially modulate day/night cycles. Whether observed cocaine and sucrose-induced changes in DNA methylation in a time dependent manner are long lasting or contribute to the establishment of addiction requires further neuroepigenetic investigation. Understanding the mechanisms dissociating drugs of abuse from natural reinforcers remains a prerequisite for the design of selective therapeutic tools for compulsive behaviors.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
- Correspondence: (A.K.); or (P.A.)
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- CNRS, Centre National de la Recherche Scientifique, 75016 Paris, France
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- INSERM, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Correspondence: (A.K.); or (P.A.)
| |
Collapse
|
29
|
Efficacy of hypertonic dextrose injection (prolotherapy) in temporomandibular joint dysfunction: a systematic review and meta-analysis. Sci Rep 2021; 11:14638. [PMID: 34282199 PMCID: PMC8289855 DOI: 10.1038/s41598-021-94119-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Hypertonic dextrose prolotherapy (DPT) has been reported to be effective for temporomandibular disorders (TMDs) in clinical trials but its overall efficacy is uncertain. To conduct a systematic review with meta-analysis of randomized controlled trials (RCTs) to synthesize evidence on the effectiveness of DPT for TMDs. Eleven electronic databases were searched from their inception to October, 2020. The primary outcome of interest was pain intensity. Secondary outcomes included maximum inter-incisal mouth opening (MIO) and disability score. Studies were graded by “Cochrane risk of bias 2” tool; if data could be pooled, a meta-analysis was performed. Ten RCTs (n = 336) with some to high risk of bias were included. In a meta-analysis of 5 RCTs, DPT was significantly superior to placebo injections in reducing TMJ pain at 12 weeks, with moderate effect size and low heterogeneity (Standardized Mean Difference: − 0.76; 95% CI − 1.19 to − 0.32, I2 = 0%). No statistically significant differences were detected for changes in MIO and functional scores. In this systematic review and meta-analysis, evidence from low to moderate quality studies show that DPT conferred a large positive effect which met criteria for clinical relevance in the treatment of TMJ pain, compared with placebo injections. Protocol registration at PROSPERO: CRD42020214305.
Collapse
|
30
|
Giordano L, Murrell WD, Maffulli N. Prolotherapy for chronic low back pain: a review of literature. Br Med Bull 2021; 138:96-111. [PMID: 33884404 DOI: 10.1093/bmb/ldab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 01/23/2021] [Accepted: 01/31/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Low back pain is common and imposes major societal burdens for patient suffering and costs. Prolotherapy injections are used for musculoskeletal conditions including tendinopathies, osteoarthritis and low back pain to enhance soft-tissue healing. This review aims to clarify the place of prolotherapy in chronic low back pain (CLBP). SOURCES OF DATA Using multiple databases, a systematic search was performed to identify studies detailing the use of prolotherapy to manage CLBP. A total of 12 articles was included in the present work. AREAS OF AGREEMENT Considering the level of evidence and the quality of the studies assessed using the modified Coleman Score, prolotherapy is an effective management modality for CLBP patients in whom conservative therapies failed. AREAS OF CONTROVERSY The presence of co-interventions and the clinical heterogeneity of the work contributes to confound the overall conclusions. GROWING POINTS AND AREAS FOR RESEARCH The analysis of the studies included in the review, using appropriate tools, showed how their quality has decreased over the years, reflecting the need for appropriately powered well planned and performed randomized control trials.
Collapse
Affiliation(s)
- Lorenzo Giordano
- Department of Trauma and Orthopaedic Surgery, Azienda Ospedaliera Universitaria, San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy
| | - William D Murrell
- Emirates-Integra Medical and Surgical Centre, Dubai, United Arab Emirates.,Department of Orthopaedics, Podiatry, and Rehabilitation, Fort Belvoir Community Hospital, 9300 Fort Belvoir, VA 22060, USA
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Azienda Ospedaliera Universitaria, San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, England.,Institute of Science and Technology in Medicine, Keele University School of Medicine, Thornburrow Drive, Stoke-on-Trent ST5 5B, England
| |
Collapse
|
31
|
Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021; 234:113370. [PMID: 33621561 PMCID: PMC8053680 DOI: 10.1016/j.physbeh.2021.113370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
The intranasal (IN) administration of neuropeptides, such as insulin and orexins, has been suggested as a treatment strategy for age-related cognitive decline (ARCD). Because dysfunctional neuropeptide signaling is an observed characteristic of ARCD, it has been suggested that IN delivery of insulin and/or orexins may restore endogenous peptide signaling and thereby preserve cognition. IN administration is particularly alluring as it is a relatively non-invasive method that directly targets peptides to the brain. Several laboratories have examined the behavioral effects of IN insulin in young, aged, and cognitively impaired rodents and humans. These studies demonstrated improved performance on various cognitive tasks following IN insulin administration. Fewer laboratories have assessed the effects of IN orexins; however, this peptide also holds promise as an effective treatment for ARCD through the activation of the cholinergic system and/or the reduction of neuroinflammation. Here, we provide a brief overview of the advantages of IN administration and the delivery pathway, then summarize the current literature on IN insulin and orexins. Additional preclinical studies will be useful to ultimately uncover the mechanisms underlying the pro-cognitive effects of IN insulin and orexins, whereas future clinical studies will aid in the determination of the most efficacious dose and dosing paradigm. Eventually, IN insulin and/or orexin administration may be a widely used treatment strategy in the clinic for ARCD.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States.
| | - Coleman B Calva
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC, 29208, United States
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| |
Collapse
|
32
|
Güzel İ, Gül D, Akpancar S, Lyftogt J. Effectiveness of Perineural Injections Combined with Standard Postoperative Total Knee Arthroplasty Protocols in the Management of Chronic Postsurgical Pain After Total Knee Arthroplasty. Med Sci Monit 2021; 27:e928759. [PMID: 33547269 PMCID: PMC7874529 DOI: 10.12659/msm.928759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Despite increased experience and technical developments in total knee arthroplasty (TKA), chronic postsurgical pain (CPSP) remains one of physicians’ biggest challenges. The aim of the present study was to evaluate the effectiveness of perineural injection therapy (PIT) in the management of CPSP after TKA. Material/Methods A total of 60 patients who had been surgically treated with TKA because of advanced knee osteoarthritis was included in the present study. The study included 2 groups. Group A consisted of patients who received 3 rounds of PIT combined with standard postoperative TKA protocol during the same period. Group B received standard postoperative TKA protocols (rehabilitation programs, oral and intravenous analgesics). Clinical effectiveness was evaluated via Western Ontario and McMaster Universities Arthritis Index (WOMAC) and Visual Analog Scale (VAS) at baseline and 1-, 3-, and 6-month follow-ups. Results All repeated measures showed significant improvements (P<0.001) in both groups for VAS and WOMAC scores. These scores were significantly better in group A in all follow-up periods compared with group B (P<0.001). Twenty-nine patients (93.5%) in group A reported excellent or good outcomes compared with 26 patients (89.6%) in group B. Conclusions PIT is a promising approach in CPSP with minimal cost, simple and secure injection procedures, minimal side effects, and higher clinical efficacy.
Collapse
Affiliation(s)
- İsmail Güzel
- Department of Orthopedic Surgery, Malatya Training and Research Hospital, Malatya, Turkey
| | - Deniz Gül
- Department of Orthopedic Surgery, Bursa Kestel State Hospital, Bursa, Turkey
| | - Serkan Akpancar
- Department of Orthopedic Surgery, Malatya Training and Research Hospital, Malatya, Turkey
| | - John Lyftogt
- Private Practice (Retired), Christchurch, New Zealand
| |
Collapse
|
33
|
Sohn JW, Ho WK. Cellular and systemic mechanisms for glucose sensing and homeostasis. Pflugers Arch 2020; 472:1547-1561. [PMID: 32960363 DOI: 10.1007/s00424-020-02466-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/14/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022]
Abstract
Glucose is a major source of energy in animals. Maintaining blood glucose levels within a physiological range is important for facilitating glucose uptake by cells, as required for optimal functioning. Glucose homeostasis relies on multiple glucose-sensing cells in the body that constantly monitor blood glucose levels and respond accordingly to adjust its glycemia. These include not only pancreatic β-cells and α-cells that secrete insulin and glucagon, but also central and peripheral neurons regulating pancreatic endocrine function. Different types of cells respond distinctively to changes in blood glucose levels, and the mechanisms involved in glucose sensing are diverse. Notably, recent studies have challenged the currently held views regarding glucose-sensing mechanisms. Furthermore, peripheral and central glucose-sensing cells appear to work in concert to control blood glucose level and maintain glucose and energy homeostasis in organisms. In this review, we summarize the established concepts and recent advances in the understanding of cellular and systemic mechanisms that regulate glucose sensing and its homeostasis.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| | - Won-Kyung Ho
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
34
|
Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472:1299-1343. [PMID: 32789766 PMCID: PMC7462931 DOI: 10.1007/s00424-020-02441-x] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters in capillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-d-glucose cotransporters SGLT1 are expressed. The glucose transporters mediate uptake of d-glucose across the blood-brain barrier and delivery of d-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demands in response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified and proposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based on experiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and their cerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, and SGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functional changes of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy deficiency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome.
Collapse
|
35
|
Garau C, Blomeley C, Burdakov D. Orexin neurons and inhibitory Agrp→orexin circuits guide spatial exploration in mice. J Physiol 2020; 598:4371-4383. [PMID: 32667686 DOI: 10.1113/jp280158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Photoinhibition of endogenous activity of lateral hypothalamic orexin neurons causes place preference and reduces innate avoidance Endogenous activity of orexin neurons correlates with place preference Mediobasal hypothalamic Agrp neurons inhibit orexin neurons via GABA, and chemogenetic suppression of Agrp neurons increases avoidance in an orexin receptor-dependent manner. ABSTRACT Hypothalamic orexin/hypocretin neurons integrate multiple sensory cues and project brain-wide to orchestrate diverse innate behaviours. Their loss impairs many context-appropriate actions, but the motivational characteristics of orexin cell activity remain unclear. We and others previously approached this question by artificial orexin stimulation, which could induce either rewarding (positive valence) or aversive (negative valence) brain activity. It is unknown to what extent such approaches replicate natural/endogenous orexin signals, which rapidly fluctuate during wakefulness. Here we took an alternative approach, focusing on observing and silencing natural orexin cell signals associated with a fundamental innate behaviour, self-paced spatial exploration. We found that mice are more likely to stay in places paired with orexin cell optosilencing. The orexin cell optosilencing also reduced avoidance of places that mice find innately aversive. Correspondingly, calcium recordings revealed that orexin cell activity rapidly reduced upon exiting the innately aversive places. Furthermore, we provide optogenetic evidence for an inhibitory GABAergic Agrp→orexin hypothalamic neurocircuit, and find that Agrp cell suppression increases innate avoidance behaviour, consistent with orexin disinhibition. These results imply that exploration may be motivated and oriented by a need to reduce aversive orexin cell activity, and suggest a hypothalamic circuit for fine-tuning orexin signals to changing ethological priorities.
Collapse
Affiliation(s)
- Celia Garau
- The Francis Crick Institute, London, NW1 1AT, UK
| | | | | |
Collapse
|
36
|
Carey M, Lontchi-Yimagou E, Mitchell W, Reda S, Zhang K, Kehlenbrink S, Koppaka S, Maginley SR, Aleksic S, Bhansali S, Huffman DM, Hawkins M. Central K ATP Channels Modulate Glucose Effectiveness in Humans and Rodents. Diabetes 2020; 69:1140-1148. [PMID: 32217610 PMCID: PMC7243288 DOI: 10.2337/db19-1256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this "glucose effectiveness" is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). KATP channels in the central nervous system have been shown to regulate EGP in humans and rodents. We examined the contribution of central KATP channels to glucose effectiveness. Under fixed hormonal conditions (studies using a pancreatic clamp), hyperglycemia suppressed EGP by ∼50% in both humans without diabetes and normal Sprague-Dawley rats. By contrast, antagonism of KATP channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes were abolished in rats by intracerebroventricular administration of the KATP channel agonist diazoxide. These findings indicate that about half of the suppression of EGP by hyperglycemia is mediated by central KATP channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in subjects with T2D.
Collapse
Affiliation(s)
- Michelle Carey
- Albert Einstein College of Medicine, Bronx, NY
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | | | | | - Sarah Reda
- Albert Einstein College of Medicine, Bronx, NY
| | - Kehao Zhang
- Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Vasquez JH, Borniger JC. Neuroendocrine and Behavioral Consequences of Hyperglycemia in Cancer. Endocrinology 2020; 161:5810322. [PMID: 32193527 PMCID: PMC7174055 DOI: 10.1210/endocr/bqaa047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
A hallmark of cancer is the disruption of cellular metabolism during the course of malignant growth. Major focus is now on how these cell-autonomous processes propagate to the tumor microenvironment and, more generally, to the entire host system. This chain of events can have major consequences for a patient's health and wellbeing. For example, metabolic "waste" produced by cancer cells activates systemic inflammatory responses, which can interfere with hepatic insulin receptor signaling and glucose homeostasis. Research is just now beginning to understand how these processes occur, and how they contribute to systemic symptoms prevalent across cancers, including hyperglycemia, fatigue, pain, and sleep disruption. Indeed, it is only recently that we have begun to appreciate that the brain does not play a passive role in responding to cancer-induced changes in physiology. In this review, we provide a brief discussion of how oncogene-directed metabolic reprogramming disrupts host metabolism, with a specific emphasis on cancer-induced hyperglycemia. We further discuss how the brain senses circulating glucose concentrations and how this process goes awry as a response to distant neoplastic growth. Finally, as glucose-sensing neurons control diverse aspects of physiology and behavior, we link cancer-induced changes in energy balance to neuroendocrine and behavioral consequences for the host organism.
Collapse
Affiliation(s)
- Juan H Vasquez
- Department of Biology, University of Texas – San Antonio, San Antonio, Texas
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Correspondence: Jeremy C. Borniger, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724. E-mail:
| |
Collapse
|
39
|
Polito R, Monda V, Nigro E, Messina A, Di Maio G, Giuliano MT, Orrù S, Imperlini E, Calcagno G, Mosca L, Mollica MP, Trinchese G, Scarinci A, Sessa F, Salerno M, Marsala G, Buono P, Mancini A, Monda M, Daniele A, Messina G. The Important Role of Adiponectin and Orexin-A, Two Key Proteins Improving Healthy Status: Focus on Physical Activity. Front Physiol 2020; 11:356. [PMID: 32390865 PMCID: PMC7188914 DOI: 10.3389/fphys.2020.00356] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise represents the most important integrative therapy in metabolic, immunologic and chronic diseases; it represents a valid strategy in the non-pharmacological intervention of lifestyle linked diseases. A large body of evidence indicates physical exercise as an effective measure against chronic non-communicable diseases. The worldwide general evidence for health benefits are both for all ages and skill levels. In a dysregulated lifestyle such as in the obesity, there is an imbalance in the production of different cytokines. In particular, we focused on Adiponectin, an adipokine producted by adipose tissue, and on Orexin-A, a neuropeptide synthesized in the lateral hypothalamus. The production of both Adiponectin and Orexin-A increases following regular and structured physical activity and both these hormones have similar actions. Indeed, they improve energy and glucose metabolism, and also modulate energy expenditure and thermogenesis. In addition, a relevant biological role of Adiponectin and Orexin A has been recently highlighted in the immune system, where they function as immune-suppressor factors. The strong connection between these two cytokines and healthy status is mediated by physical activity and candidates these hormones as potential biomarkers of the beneficial effects induced by physical activity. For these reasons, this review aims to underly the interconnections among Adiponectin, Orexin-A, physical activity and healthy status. Furthermore, it is analyzed the involvement of Adiponectin and Orexin-A in physical activity as physiological factors improving healthy status through physical exercise.
Collapse
Affiliation(s)
- Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Antonietta Messina
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Girolamo Di Maio
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Giuliano
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | | | - Giuseppe Calcagno
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università degli Studi del Molise, Campobasso, Italy
| | - Laura Mosca
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Maria Pina Mollica
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Giovanna Trinchese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Alessia Scarinci
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Medical, Surgery Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gabriella Marsala
- Struttura Complessa di Farmacia, Azienda Ospedaliero Universitaria - Ospedali Riuniti, Foggia, Italy
| | - Pasqualina Buono
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Annamaria Mancini
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marcellino Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
40
|
Karnani MM, Schöne C, Bracey EF, González JA, Viskaitis P, Li HT, Adamantidis A, Burdakov D. Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Prog Neurobiol 2020; 187:101771. [PMID: 32058043 PMCID: PMC7086232 DOI: 10.1016/j.pneurobio.2020.101771] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/04/2022]
Abstract
Appropriate motor control is critical for normal life, and requires hypothalamic hypocretin/orexin neurons (HONs). HONs are slowly regulated by nutrients, but also display rapid (subsecond) activity fluctuations in vivo. The necessity of these activity bursts for sensorimotor control and their roles in specific phases of movement are unknown. Here we show that temporally-restricted optosilencing of spontaneous or sensory-evoked HON bursts disrupts locomotion initiation, but does not affect ongoing locomotion. Conversely, HON optostimulation initiates locomotion with subsecond delays in a frequency-dependent manner. Using 2-photon volumetric imaging of activity of >300 HONs during sensory stimulation and self-initiated locomotion, we identify several locomotion-related HON subtypes, which distinctly predict the probability of imminent locomotion initiation, display distinct sensory responses, and are differentially modulated by food deprivation. By causally linking HON bursts to locomotion initiation, these findings reveal the sensorimotor importance of rapid spontaneous and evoked fluctuations in HON ensemble activity.
Collapse
Affiliation(s)
- Mahesh M Karnani
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; The Francis Crick Institute, London, UK; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Cornelia Schöne
- The Francis Crick Institute, London, UK; Systems Neuroscience, University of Göttingen, Germany
| | - Edward F Bracey
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; The Francis Crick Institute, London, UK
| | - J Antonio González
- The Francis Crick Institute, London, UK; The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Han-Tao Li
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Antoine Adamantidis
- Department of Neurology, Inselspital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; The Francis Crick Institute, London, UK; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Neuroscience Center Zürich (ZNZ), ETH Zürich and University of Zürich, Zürich, Switzerland
| |
Collapse
|
41
|
Hirschberg PR, Sarkar P, Teegala SB, Routh VH. Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis? J Neuroendocrinol 2020; 32:e12773. [PMID: 31329314 PMCID: PMC7074896 DOI: 10.1111/jne.12773] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022]
Abstract
The ventromedial hypothalamus (VMH) plays a complex role in glucose and energy homeostasis. The VMH is necessary for the counter-regulatory response to hypoglycaemia (CRR) that increases hepatic gluconeogenesis to restore euglycaemia. On the other hand, the VMH also restrains hepatic glucose production during euglycaemia and stimulates peripheral glucose uptake. The VMH is also important for the ability of oestrogen to increase energy expenditure. This latter function is mediated by VMH modulation of the lateral/perifornical hypothalamic area (lateral/perifornical hypothalamus) orexin neurones. Activation of VMH AMP-activated protein kinase (AMPK) is necessary for the CRR. By contrast, VMH AMPK inhibition favours decreased basal glucose levels and is required for oestrogen to increase energy expenditure. Specialised VMH glucose-sensing neurones confer the ability to sense and respond to changes in blood glucose levels. Glucose-excited (GE) neurones increase and glucose-inhibited (GI) neurones decrease their activity as glucose levels rise. VMH GI neurones, in particular, appear to be important in the CRR, although a role for GE neurones cannot be discounted. AMPK mediates glucose sensing in VMH GI neurones suggesting that, although activation of these neurones is important for the CRR, it is necessary to silence them to lower basal glucose levels and enable oestrogen to increase energy expenditure. In support of this, we found that oestrogen reduces activation of VMH GI neurones in low glucose by inhibiting AMPK. In this review, we present the evidence underlying the role of the VMH in glucose and energy homeostasis. We then discuss the role of VMH glucose-sensing neurones in mediating these effects, with a strong emphasis on oestrogenic regulation of glucose sensing and how this may affect glucose and energy homeostasis.
Collapse
Affiliation(s)
- Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
42
|
Prolotherapy for knee osteoarthritis using hypertonic dextrose vs other interventional treatments: systematic review of clinical trials. Adv Rheumatol 2019; 59:39. [DOI: 10.1186/s42358-019-0083-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
|
43
|
Kosse C, Burdakov D. Natural hypothalamic circuit dynamics underlying object memorization. Nat Commun 2019; 10:2505. [PMID: 31175285 PMCID: PMC6555780 DOI: 10.1038/s41467-019-10484-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022] Open
Abstract
Brain signals that govern memory formation remain incompletely identified. The hypothalamus is implicated in memory disorders, but how its rapidly changing activity shapes memorization is unknown. During encounters with objects, hypothalamic melanin-concentrating hormone (MCH) neurons emit brief signals that reflect object novelty. Here we show that targeted optogenetic silencing of these signals, performed selectively during the initial object encounters (i.e. memory acquisition), prevents future recognition of the objects. We identify an upstream inhibitory microcircuit from hypothalamic GAD65 neurons to MCH neurons, which constrains the memory-promoting MCH cell bursts. Finally, we demonstrate that silencing the GAD65 cells during object memory acquisition improves future object recognition through MCH-receptor-dependent pathways. These results provide causal evidence that object-associated signals in genetically distinct but interconnected hypothalamic neurons differentially control whether the brain forms object memories. This gating of memory formation by hypothalamic activity establishes appropriate behavioral responses to novel and familiar objects.
Collapse
Affiliation(s)
- Christin Kosse
- The Francis Crick Institute, London, NW1 1AT, UK
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, 10065, USA
| | - Denis Burdakov
- The Francis Crick Institute, London, NW1 1AT, UK.
- Neurobehavioural Dynamics Lab, Institute for Neuroscience, D-HEST, Swiss Federal Institute of Technology / ETH Zürich, Zürich, 8603, Switzerland.
| |
Collapse
|
44
|
Walker WH, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019; 20:E2780. [PMID: 31174326 PMCID: PMC6600154 DOI: 10.3390/ijms20112780] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Sleep is essential for health. Indeed, poor sleep is consistently linked to the development of systemic disease, including depression, metabolic syndrome, and cognitive impairments. Further evidence has accumulated suggesting the role of sleep in cancer initiation and progression (primarily breast cancer). Indeed, patients with cancer and cancer survivors frequently experience poor sleep, manifesting as insomnia, circadian misalignment, hypersomnia, somnolence syndrome, hot flushes, and nightmares. These problems are associated with a reduction in the patients' quality of life and increased mortality. Due to the heterogeneity among cancers, treatment regimens, patient populations and lifestyle factors, the etiology of cancer-induced sleep disruption is largely unknown. Here, we discuss recent advances in understanding the pathways linking cancer and the brain and how this leads to altered sleep patterns. We describe a conceptual framework where tumors disrupt normal homeostatic processes, resulting in aberrant changes in physiology and behavior that are detrimental to health. Finally, we discuss how this knowledge can be leveraged to develop novel therapeutic approaches for cancer-associated sleep disruption, with special emphasis on host-tumor interactions.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Stanley S, Moheet A, Seaquist ER. Central Mechanisms of Glucose Sensing and Counterregulation in Defense of Hypoglycemia. Endocr Rev 2019; 40:768-788. [PMID: 30689785 PMCID: PMC6505456 DOI: 10.1210/er.2018-00226] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Glucose homeostasis requires an organism to rapidly respond to changes in plasma glucose concentrations. Iatrogenic hypoglycemia as a result of treatment with insulin or sulfonylureas is the most common cause of hypoglycemia in humans and is generally only seen in patients with diabetes who take these medications. The first response to a fall in glucose is the detection of impending hypoglycemia by hypoglycemia-detecting sensors, including glucose-sensing neurons in the hypothalamus and other regions. This detection is then linked to a series of neural and hormonal responses that serve to prevent the fall in blood glucose and restore euglycemia. In this review, we discuss the current state of knowledge about central glucose sensing and how detection of a fall in glucose leads to the stimulation of counterregulatory hormone and behavior responses. We also review how diabetes and recurrent hypoglycemia impact glucose sensing and counterregulation, leading to development of impaired awareness of hypoglycemia in diabetes.
Collapse
Affiliation(s)
- Sarah Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amir Moheet
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth R Seaquist
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
46
|
Tanaka S, Honda Y, Takaku S, Koike T, Oe S, Hirahara Y, Yoshida T, Takizawa N, Takamori Y, Kurokawa K, Kodama T, Yamada H. Involvement of PLAGL1/ZAC1 in hypocretin/orexin transcription. Int J Mol Med 2019; 43:2164-2176. [PMID: 30896835 PMCID: PMC6445593 DOI: 10.3892/ijmm.2019.4143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
The hypocretin/orexin neuropeptide system coordinates the regulation of various physiological processes. Our previous study reported that a reduction in the expression of pleomorphic adenoma gene-like 1 (Plagl1), which encodes a C2H2 zinc-finger transcription factor, occurs in hypocretin neuron-ablated transgenic mice, suggesting that PLAGL1 is co-expressed in hypocretin neurons and regulates hypocretin transcription. The present study examined whether canonical prepro-hypocretin transcription is functionally modulated by PLAGL1. Double immunostaining indicated that the majority of hypocretin neurons were positive for PLAGL1 immunore-activity in the nucleus. Notably, PLAGL1 immunoreactivity in hypocretin neurons was altered in response to several conditions affecting hypocretin function. An uneven localization of PLAGL1 was detected in the nuclei of hypocretin neurons following sleep deprivation. Chromatin immunoprecipitation revealed that endogenous PLAGL1 may bind to a putative PLAGL1-binding site in the proximal region of the hypocretin gene, in the murine hypothalamus. In addition, electroporation of the PLAGL1 expression vector into the fetal hypothalamus promoted hypothalamic hypocretin transcription. These results suggested that PLAGL1 may regulate hypothalamic hypocretin transcription.
Collapse
Affiliation(s)
- Susumu Tanaka
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Yoshiko Honda
- SLEEP Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156‑8506, Japan
| | - Shizuka Takaku
- SLEEP Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156‑8506, Japan
| | - Taro Koike
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Souichi Oe
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Yukie Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka 573‑1191, Japan
| | - Nae Takizawa
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Yasuharu Takamori
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Kiyoshi Kurokawa
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Tohru Kodama
- SLEEP Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156‑8506, Japan
| | - Hisao Yamada
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| |
Collapse
|
47
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
48
|
Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018; 9:790. [PMID: 30344503 PMCID: PMC6183196 DOI: 10.3389/fneur.2018.00790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
The hypocretin (Hcrt) system has been implicated in a wide range of physiological functions from sleep-wake regulation to cardiovascular, behavioral, metabolic, and thermoregulagtory control. These wide-ranging physiological effects have challenged the identification of a parsimonious function for Hcrt. A compelling hypothesis suggests that Hcrt plays a role in the integration of sleep-wake neurophysiology with energy metabolism. For example, Hcrt neurons promote waking and feeding, but are also sensors of energy balance. Loss of Hcrt function leads to an increase in REM sleep propensity, but a potential role for Hcrt linking energy balance with REM sleep expression has not been addressed. Here we examine a potential role for Hcrt and the lateral hypothalamus (LH) in state-dependent resource allocation as a means of optimizing resource utilization and, as a result, energy conservation. We review the energy allocation hypothesis of sleep and how state-dependent metabolic partitioning may contribute toward energy conservation, but with additional examination of how the loss of thermoregulatory function during REM sleep may impact resource optimization. Optimization of energy expenditures at the whole organism level necessitates a top-down network responsible for coordinating metabolic operations in a state-dependent manner across organ systems. In this context, we then specifically examine the potential role of the LH in regulating this output control, including the contribution from both Hcrt and melanin concentrating hormone (MCH) neurons among a diverse LH cell population. We propose that this hypothalamic integration system is responsible for global shifts in state-dependent resource allocations, ultimately promoting resource optimization and an energy conservation function of sleep-wake cycling.
Collapse
Affiliation(s)
- Blerina Latifi
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus H Schmidt
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Ohio Sleep Medicine Institute, Dublin, OH, United States
| |
Collapse
|
49
|
Alvarsson A, Stanley SA. Remote control of glucose-sensing neurons to analyze glucose metabolism. Am J Physiol Endocrinol Metab 2018; 315:E327-E339. [PMID: 29812985 PMCID: PMC6171010 DOI: 10.1152/ajpendo.00469.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
The central nervous system relies on a continual supply of glucose, and must be able to detect glucose levels and regulate peripheral organ functions to ensure that its energy requirements are met. Specialized glucose-sensing neurons, first described half a century ago, use glucose as a signal and modulate their firing rates as glucose levels change. Glucose-excited neurons are activated by increasing glucose concentrations, while glucose-inhibited neurons increase their firing rate as glucose concentrations fall and decrease their firing rate as glucose concentrations rise. Glucose-sensing neurons are present in multiple brain regions and are highly expressed in hypothalamic regions, where they are involved in functions related to glucose homeostasis. However, the roles of glucose-sensing neurons in healthy and disease states remain poorly understood. Technologies that can rapidly and reversibly activate or inhibit defined neural populations provide invaluable tools to investigate how specific neural populations regulate metabolism and other physiological roles. Optogenetics has high temporal and spatial resolutions, requires implants for neural stimulation, and is suitable for modulating local neural populations. Chemogenetics, which requires injection of a synthetic ligand, can target both local and widespread populations. Radio- and magnetogenetics offer rapid neural activation in localized or widespread neural populations without the need for implants or injections. These tools will allow us to better understand glucose-sensing neurons and their metabolism-regulating circuits.
Collapse
Affiliation(s)
- Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Sarah A Stanley
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai , New York, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The goal of the present paper is to review current literature supporting the occurrence of fundamental changes in brain energy metabolism during the transition from wakefulness to sleep. RECENT FINDINGS Latest research in the field indicates that glucose utilization and the concentrations of several brain metabolites consistently change across the sleep-wake cycle. Lactate, a product of glycolysis that is involved in synaptic plasticity, has emerged as a good biomarker of brain state. Sleep-induced changes in cerebral metabolite levels result from a shift in oxidative metabolism, which alters the reliance of brain metabolism upon carbohydrates. We found wide support for the notion that brain energetics is state dependent. In particular, fatty acids and ketone bodies partly replace glucose as cerebral energy source during sleep. This mechanism plausibly accounts for increases in biosynthetic pathways and functional alterations in neuronal activity associated with sleep. A better account of brain energy metabolism during sleep might help elucidate the long mysterious restorative effects of sleep for the whole organism.
Collapse
Affiliation(s)
- Nadia Nielsen Aalling
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, 14640, USA
| | - Mauro DiNuzzo
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.
| |
Collapse
|