1
|
Underhill A, Webb S, Grandi FC, Jeng JY, de Monvel JB, Plion B, Carlton AJ, Amariutei AE, Voulgari N, De Faveri F, Ceriani F, Mustapha M, Johnson SL, Safieddine S, Kros CJ, Marcotti W. MYO7A is required for the functional integrity of the mechanoelectrical transduction complex in hair cells of the adult cochlea. Proc Natl Acad Sci U S A 2025; 122:e2414707122. [PMID: 39746042 PMCID: PMC11725811 DOI: 10.1073/pnas.2414707122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Myosin-VIIA (MYO7A) is an unconventional myosin responsible for syndromic (Usher 1B) or nonsyndromic forms of deafness in humans when mutated. In the cochlea, MYO7A is expressed in hair cells, where it is believed to act as the motor protein tensioning the mechanoelectrical transducer (MET) channels, thus setting their resting open probability (Po). However, direct evidence for this unique role for an unconventional myosin in mature hair cells is lacking. Here, we show that MYO7A has a distinct role in hair cells, being crucial for the structural integrity of hair bundles. Postnatal deletion of Myo7a leads to 87 to 96% reduction in MYO7A from hair cells by postnatal day 20 (P20), without affecting hearing function. During the following week, mice showed progressive decline in both hearing function and MET current amplitude in hair cells without affecting the resting Po and calcium sensitivity of the MET channel. Hair-bundle stiffness was normal at P20 but halved at P30, despite it having a normal staircase morphology and tip links. The reduction of MYO7A in the stereocilia (>87%) increased their vulnerability to sound-induced damage, with significantly more hearing loss and hair bundle deterioration than in control mice. RNA-sequencing identified a downregulation of several stereociliary genes in the Myo7a-deficient cochlea, indicating the presence of indirect compensatory mechanisms. This study reveals that mature hair cells seem to use a MYO7A-independent mechanism to maintain the resting Po of the MET channels. Instead, MYO7A is essential for maintaining the structural and functional integrity of the hair bundles.
Collapse
Affiliation(s)
- Anna Underhill
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Samuel Webb
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Fiorella C. Grandi
- Sorbonne Université, INSERM, Institute de Myologie, Centre de Researche en Myologie, ParisF-75013, France
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Jacques B. de Monvel
- Université de la Cité de Paris, Institut Pasteur, Assistance publique - Hôpitaux de Paris, Inserm, Fondation pour l’audition, CNRS, Instituts Hospitalo-Universitaires reConnect, ParisF-75012, France
| | - Baptiste Plion
- Université de la Cité de Paris, Institut Pasteur, Assistance publique - Hôpitaux de Paris, Inserm, Fondation pour l’audition, CNRS, Instituts Hospitalo-Universitaires reConnect, ParisF-75012, France
| | - Adam J. Carlton
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Ana E. Amariutei
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Niovi Voulgari
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Francesca De Faveri
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Saaid Safieddine
- Université de la Cité de Paris, Institut Pasteur, Assistance publique - Hôpitaux de Paris, Inserm, Fondation pour l’audition, CNRS, Instituts Hospitalo-Universitaires reConnect, ParisF-75012, France
| | - Corné J. Kros
- School of Life Sciences, University of Sussex, Falmer, BrightonBN1 9QG, United Kingdom
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, SheffieldS10 2TN, United Kingdom
| |
Collapse
|
2
|
Ebrahim S, Ballesteros A, Zheng WS, Mukherjee S, Hu G, Weng WH, Montgomery JS, Agyemang Y, Cui R, Sun W, Krystofiak E, Foster MP, Sotomayor M, Kachar B. Transmembrane channel-like 4 and 5 proteins at microvillar tips are potential ion channels and lipid scramblases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609173. [PMID: 39229161 PMCID: PMC11370596 DOI: 10.1101/2024.08.22.609173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Microvilli-membrane bound actin protrusions on the surface of epithelial cells-are sites of critical processes including absorption, secretion, and adhesion. Increasing evidence suggests microvilli are mechanosensitive, but underlying molecules and mechanisms remain unknown. Here, we localize transmembrane channel-like proteins 4 and 5 (TMC4 and 5) and calcium and integrin binding protein 3 (CIB3) to microvillar tips in intestinal epithelial cells, near glycocalyx insertion sites. We find that TMC5 colocalizes with CIB3 in cultured cells and that a TMC5 fragment forms a complex with CIB3 in vitro. Homology and AlphaFold2 models reveal a putative ion permeation pathway in TMC4 and 5, and molecular dynamics simulations predict both proteins can conduct ions and perform lipid scrambling. These findings raise the possibility that TMC4 and 5 interact with CIB3 at microvillar tips to form a mechanosensitive complex, akin to TMC1 and 2, and CIB2 and 3, within the mechanotransduction channel complex at the tips of inner ear stereocilia.
Collapse
Affiliation(s)
- Seham Ebrahim
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Angela Ballesteros
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - W. Sharon Zheng
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Shounak Mukherjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Gaizun Hu
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan S. Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yaw Agyemang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Runjia Cui
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Willy Sun
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan Krystofiak
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark P. Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Ng NHJ, Ghosh S, Bok CM, Ching C, Low BSJ, Chen JT, Lim E, Miserendino MC, Tan YS, Hoon S, Teo AKK. HNF4A and HNF1A exhibit tissue specific target gene regulation in pancreatic beta cells and hepatocytes. Nat Commun 2024; 15:4288. [PMID: 38909044 PMCID: PMC11193738 DOI: 10.1038/s41467-024-48647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/08/2024] [Indexed: 06/24/2024] Open
Abstract
HNF4A and HNF1A encode transcription factors that are important for the development and function of the pancreas and liver. Mutations in both genes have been directly linked to Maturity Onset Diabetes of the Young (MODY) and type 2 diabetes (T2D) risk. To better define the pleiotropic gene regulatory roles of HNF4A and HNF1A, we generated a comprehensive genome-wide map of their binding targets in pancreatic and hepatic cells using ChIP-Seq. HNF4A was found to bind and regulate known (ACY3, HAAO, HNF1A, MAP3K11) and previously unidentified (ABCD3, CDKN2AIP, USH1C, VIL1) loci in a tissue-dependent manner. Functional follow-up highlighted a potential role for HAAO and USH1C as regulators of beta cell function. Unlike the loss-of-function HNF4A/MODY1 variant I271fs, the T2D-associated HNF4A variant (rs1800961) was found to activate AKAP1, GAD2 and HOPX gene expression, potentially due to changes in DNA-binding affinity. We also found HNF1A to bind to and regulate GPR39 expression in beta cells. Overall, our studies provide a rich resource for uncovering downstream molecular targets of HNF4A and HNF1A that may contribute to beta cell or hepatic cell (dys)function, and set up a framework for gene discovery and functional validation.
Collapse
Affiliation(s)
- Natasha Hui Jin Ng
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Soumita Ghosh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Chek Mei Bok
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Carmen Ching
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Blaise Su Jun Low
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Juin Ting Chen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Euodia Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - María Clara Miserendino
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, IMCB, A*STAR, Singapore, 138673, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
- Precision Medicine Translational Research Programme (TRP), National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
4
|
Miyoshi T, Vishwasrao H, Belyantseva I, Sajeevadathan M, Ishibashi Y, Adadey S, Harada N, Shroff H, Friedman T. Live-cell single-molecule fluorescence microscopy for protruding organelles reveals regulatory mechanisms of MYO7A-driven cargo transport in stereocilia of inner ear hair cells. RESEARCH SQUARE 2024:rs.3.rs-4369958. [PMID: 38826223 PMCID: PMC11142366 DOI: 10.21203/rs.3.rs-4369958/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Stereocilia are unidirectional F-actin-based cylindrical protrusions on the apical surface of inner ear hair cells and function as biological mechanosensors of sound and acceleration. Development of functional stereocilia requires motor activities of unconventional myosins to transport proteins necessary for elongating the F-actin cores and to assemble the mechanoelectrical transduction (MET) channel complex. However, how each myosin localizes in stereocilia using the energy from ATP hydrolysis is only partially understood. In this study, we develop a methodology for live-cell single-molecule fluorescence microscopy of organelles protruding from the apical surface using a dual-view light-sheet microscope, diSPIM. We demonstrate that MYO7A, a component of the MET machinery, traffics as a dimer in stereocilia. Movements of MYO7A are restricted when scaffolded by the plasma membrane and F-actin as mediated by MYO7A's interacting partners. Here, we discuss the technical details of our methodology and its future applications including analyses of cargo transportation in various organelles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thomas Friedman
- National Institute on Deafness and Other Communication Disorders, NIH
| |
Collapse
|
5
|
Miyoshi T, Vishwasrao HD, Belyantseva IA, Sajeevadathan M, Ishibashi Y, Adadey SM, Harada N, Shroff H, Friedman TB. Live-cell single-molecule fluorescence microscopy for protruding organelles reveals regulatory mechanisms of MYO7A-driven cargo transport in stereocilia of inner ear hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.590649. [PMID: 38766013 PMCID: PMC11100596 DOI: 10.1101/2024.05.04.590649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stereocilia are unidirectional F-actin-based cylindrical protrusions on the apical surface of inner ear hair cells and function as biological mechanosensors of sound and acceleration. Development of functional stereocilia requires motor activities of unconventional myosins to transport proteins necessary for elongating the F-actin cores and to assemble the mechanoelectrical transduction (MET) channel complex. However, how each myosin localizes in stereocilia using the energy from ATP hydrolysis is only partially understood. In this study, we develop a methodology for live-cell single-molecule fluorescence microscopy of organelles protruding from the apical surface using a dual-view light-sheet microscope, diSPIM. We demonstrate that MYO7A, a component of the MET machinery, traffics as a dimer in stereocilia. Movements of MYO7A are restricted when scaffolded by the plasma membrane and F-actin as mediated by MYO7A's interacting partners. Here, we discuss the technical details of our methodology and its future applications including analyses of cargo transportation in various organelles.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Harshad D. Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Yasuko Ishibashi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Samuel M. Adadey
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Narinobu Harada
- Hearing Research Laboratory, Harada ENT Clinic, Higashi-Osaka, Osaka, 577-0816, Japan
| | - Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Li N, Liu S, Zhao D, Du H, Xi Y, Wei X, Liu Q, Müller U, Lu Q, Xiong W, Xu Z. Disruption of Cdh23 exon 68 splicing leads to progressive hearing loss in mice by affecting tip-link stability. Proc Natl Acad Sci U S A 2024; 121:e2309656121. [PMID: 38408254 PMCID: PMC10927504 DOI: 10.1073/pnas.2309656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024] Open
Abstract
Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.
Collapse
Affiliation(s)
- Nana Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Shuang Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Dange Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Xiaoxi Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Qingling Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing102206, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong250014, China
| |
Collapse
|
8
|
Lye J, Delaney DS, Leith FK, Sardesai VS, McLenachan S, Chen FK, Atlas MD, Wong EYM. Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. Biomedicines 2023; 11:3347. [PMID: 38137568 PMCID: PMC10741758 DOI: 10.3390/biomedicines11123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Up to 1.5 billion people worldwide suffer from various forms of hearing loss, with an additional 1.1 billion people at risk from various insults such as increased consumption of recreational noise-emitting devices and ageing. The most common type of hearing impairment is sensorineural hearing loss caused by the degeneration or malfunction of cochlear hair cells or spiral ganglion nerves in the inner ear. There is currently no cure for hearing loss. However, emerging frontier technologies such as gene, drug or cell-based therapies offer hope for an effective cure. In this review, we discuss the current therapeutic progress for the treatment of hearing loss. We describe and evaluate the major therapeutic approaches being applied to hearing loss and summarize the key trials and studies.
Collapse
Affiliation(s)
- Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Fiona K. Leith
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Varda S. Sardesai
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
| | - Samuel McLenachan
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Fred K. Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
- Vitroretinal Surgery, Royal Perth Hospital, Perth, WA 6000, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
9
|
Smith ET, Sun P, Yu SK, Raible DW, Nicolson T. Differential expression of mechanotransduction complex genes in auditory/vestibular hair cells in zebrafish. Front Mol Neurosci 2023; 16:1274822. [PMID: 38035267 PMCID: PMC10682102 DOI: 10.3389/fnmol.2023.1274822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Ciliated sensory cells such as photo- and olfactory receptors employ multiple types of opsins or hundreds of unique olfactory G-protein coupled receptors to respond to various wavelengths of light or odorants. With respect to hearing and balance, the mechanotransduction machinery involves fewer variants; however, emerging evidence suggests that specialization occurs at the molecular level. To address how the mechanotransduction complex varies in the inner ear, we characterized the expression of paralogous genes that encode components required for mechanotransduction in zebrafish hair cells using RNA-FISH and bioinformatic analysis. Our data indicate striking zonal differences in the expression of two components of the mechanotransduction complex which are known to physically interact, the transmembrane channel-like 1 and 2 (tmc1/2) family members and the calcium and integrin binding 2 and 3 (cib2/3) paralogues. tmc1, tmc2b, and cib3 are largely expressed in peripheral or extrastriolar hair cells, whereas tmc2a and cib2 are enriched in central or striolar hair cells. In addition, a gene implicated in deaf-blindness, ush1c, is highly enriched in a subset of extrastriolar hair cells. These results indicate that specific combinations of these components may optimize responses to mechanical stimuli in subtypes of sensory receptors within the inner ear.
Collapse
Affiliation(s)
- Eliot T. Smith
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| | - Peng Sun
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| | - Shengyang Kevin Yu
- Department of Otolaryngology-HNS and Biological Structure, Viginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-HNS and Biological Structure, Viginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Teresa Nicolson
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| |
Collapse
|
10
|
Petit C, Bonnet C, Safieddine S. Deafness: from genetic architecture to gene therapy. Nat Rev Genet 2023; 24:665-686. [PMID: 37173518 DOI: 10.1038/s41576-023-00597-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Progress in deciphering the genetic architecture of human sensorineural hearing impairment (SNHI) or loss, and multidisciplinary studies of mouse models, have led to the elucidation of the molecular mechanisms underlying auditory system function, primarily in the cochlea, the mammalian hearing organ. These studies have provided unparalleled insights into the pathophysiological processes involved in SNHI, paving the way for the development of inner-ear gene therapy based on gene replacement, gene augmentation or gene editing. The application of these approaches in preclinical studies over the past decade has highlighted key translational opportunities and challenges for achieving effective, safe and sustained inner-ear gene therapy to prevent or cure monogenic forms of SNHI and associated balance disorders.
Collapse
Affiliation(s)
- Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France.
- Collège de France, F-75005, Paris, France.
| | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
| | - Saaïd Safieddine
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
- Centre National de la Recherche Scientifique, F-75016, Paris, France
| |
Collapse
|
11
|
Karagulyan N, Moser T. Synaptic activity is not required for establishing heterogeneity of inner hair cell ribbon synapses. Front Mol Neurosci 2023; 16:1248941. [PMID: 37745283 PMCID: PMC10512025 DOI: 10.3389/fnmol.2023.1248941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Neural sound encoding in the mammalian cochlea faces the challenge of representing audible sound pressures that vary over six orders of magnitude. The cochlea meets this demand through the use of active micromechanics as well as the diversity and adaptation of afferent neurons and their synapses. Mechanisms underlying neural diversity likely include heterogeneous presynaptic input from inner hair cells (IHCs) to spiral ganglion neurons (SGNs) as well as differences in the molecular profile of SGNs and in their efferent control. Here, we tested whether glutamate release from IHCs, previously found to be critical for maintaining different molecular SGN profiles, is required for establishing heterogeneity of active zones (AZs) in IHCs. We analyzed structural and functional heterogeneity of IHC AZs in mouse mutants with disrupted glutamate release from IHCs due to lack of a vesicular glutamate transporter (Vglut3) or impaired exocytosis due to defective otoferlin. We found the variance of the voltage-dependence of presynaptic Ca2+ influx to be reduced in exocytosis-deficient IHCs of otoferlin mutants. Yet, the spatial gradients of maximal amplitude and voltage-dependence of Ca2+ influx along the pillar-modiolar IHC axis were maintained in both mutants. Further immunohistochemical analysis showed an intact spatial gradient of ribbon size in Vglut3-/- mice. These results indicate that IHC exocytosis and glutamate release are not strictly required for establishing the heterogeneity of IHC AZs.
Collapse
Affiliation(s)
- Nare Karagulyan
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Nanophysiology Group, Max Planck Institute of Multidisciplinary Sciences, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Hertha Sponer College, Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Nanophysiology Group, Max Planck Institute of Multidisciplinary Sciences, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Hong G, Fu X, Qi J, Shao B, Han X, Fang Y, Liu S, Cheng C, Zhu C, Gao J, Gao X, Chen J, Xia M, Xiong W, Chai R. Dock4 is required for the maintenance of cochlear hair cells and hearing function. FUNDAMENTAL RESEARCH 2023; 3:557-569. [PMID: 38933554 PMCID: PMC11197514 DOI: 10.1016/j.fmre.2022.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Auditory hair cells (HCs) are the mechanosensory receptors of the cochlea, and HC loss or malfunction can result from genetic defects. Dock4, a member of the Dock180-related protein superfamily, is a guanine nucleotide exchange factor for Rac1, and previous reports have shown that Dock4 mutations are associated with autism spectrum disorder, myelodysplastic syndromes, and tumorigenesis. Here, we found that Dock4 is highly expressed in the cochlear HCs of mice. However, the role of Dock4 in the inner ear has not yet been investigated. Taking advantage of the piggyBac transposon system, Dock4 knockdown (KD) mice were established to explore the role of Dock4 in the cochlea. Compared to wild-type controls, Dock4 KD mice showed significant hearing impairment from postnatal day 60. Dock4 KD mice showed hair bundle deficits and increased oxidative stress, which eventually led to HC apoptosis, late-onset HC loss, and progressive hearing loss. Furthermore, molecular mechanism studies showed that Rac1/β-catenin signaling was significantly downregulated in Dock4 KD cochleae and that this was the cause for the disorganized stereocilia and increased oxidative stress in HCs. Overall, our work demonstrates that the Dock4/Rac1/β-catenin signaling pathway plays a critical role in the maintenance of auditory HCs and hearing function.
Collapse
Affiliation(s)
- Guodong Hong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Buwei Shao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xuan Han
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yuan Fang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100083, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Chengwen Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Junyan Gao
- Jiangsu Rehabilitation Research Center for Hearing and Speech Impairment, Nanjing, Jiangsu 210004, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Jie Chen
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Research Institute of Otolaryngology, Nanjing 210008, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250000, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong 250022, China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100083, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100101, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
13
|
Ayala Rodríguez SC, Ramirez Marquez E, Robles Bocanegra A, Izquierdo N, Oliver AL. Retinitis Pigmentosa Sine Pigmento in a Carrier of Usher Syndrome. Cureus 2023; 15:e37719. [PMID: 37206537 PMCID: PMC10191616 DOI: 10.7759/cureus.37719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
We report a carrier of Usher syndrome type I with retinitis pigmentosa sine pigmento. A 71-year-old male was referred for further evaluation of severe, progressive, painless vision loss in both eyes over the course of four years. He had bilateral sensorineural hearing loss. Upon a comprehensive examination, his best-corrected visual acuity was 20/100 in the right eye and 20/40 in the left eye. He had an unremarkable anterior segment examination and normal intraocular pressures in both eyes. Upon fundus examination, the patient had pale discs, optic disc cupping, and multiple scattered drusen in the macula and at the midperiphery of both eyes. Optical coherence tomography showed retinal nerve fiber layer thinning in all quadrants. The visual field was severely constricted in both eyes. A comprehensive workup for infectious and inflammatory causes, as well as a brain MRI, was unremarkable. Sequencing analysis showed that he carried a heterozygous pathogenic mutation, USH1C c.672C>A (p.Cys224*) variant. Usher syndrome is a rare genetic disease characterized by hearing loss and retinitis pigmentosa. Our case suggests that patients and carriers of Usher syndrome may have a phenotype compatible with retinitis pigmentosa sine pigmento.
Collapse
Affiliation(s)
- Sofía C Ayala Rodríguez
- Ophthalmology, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, PRI
| | | | | | - Natalio Izquierdo
- Surgery, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, PRI
| | - Armando L Oliver
- Ophthalmology, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, PRI
| |
Collapse
|
14
|
Jung J, Müller U. Mechanoelectrical transduction-related genetic forms of hearing loss. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100632. [PMID: 36936795 PMCID: PMC10022594 DOI: 10.1016/j.cophys.2023.100632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hair cells of the mammalian cochlea are specialized mechanosensory cells that convert mechanical stimuli into electrical signals to initiate the neuronal responses that lead to the perception of sound. The mechanoelectrical transduction (MET) machinery of cochlear hair cells is a multimeric protein complex that consists of the pore forming subunits of the MET channel and several essential accessory subunits that are crucial to regulate channel function and render the channel mechanically sensitive. Mutations have been discovered in the genes that encode all known components of the MET machinery. These mutations cause hearing loss with or without vestibular dysfunction. Some mutations also affect other tissues such as the retina. In this brief review, we will summarize gene mutations that affect the MET machinery of hair cells and how the study of the affected genes has illuminated our understanding of the physiological role of the encoded proteins.
Collapse
Affiliation(s)
- Jinsei Jung
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
16
|
Nagel-Wolfrum K, Fadl BR, Becker MM, Wunderlich KA, Schäfer J, Sturm D, Fritze J, Gür B, Kaplan L, Andreani T, Goldmann T, Brooks M, Starostik MR, Lokhande A, Apel M, Fath KR, Stingl K, Kohl S, DeAngelis MM, Schlötzer-Schrehardt U, Kim IK, Owen LA, Vetter JM, Pfeiffer N, Andrade-Navarro MA, Grosche A, Swaroop A, Wolfrum U. Expression and subcellular localization of USH1C/harmonin in human retina provides insights into pathomechanisms and therapy. Hum Mol Genet 2023; 32:431-449. [PMID: 35997788 PMCID: PMC9851744 DOI: 10.1093/hmg/ddac211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023] Open
Abstract
Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).
Collapse
Affiliation(s)
- Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Benjamin R Fadl
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirjana M Becker
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Daniel Sturm
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jacques Fritze
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Burcu Gür
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Tommaso Andreani
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Tobias Goldmann
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Matthew Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret R Starostik
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anagha Lokhande
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melissa Apel
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Karl R Fath
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Department of Biology, Queens College of CUNY, Kissena Blvd, Flushing, NY 11367, USA
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, NY 14209, USA
| | | | - Ivana K Kim
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Jan M Vetter
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Antje Grosche
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
17
|
Moreland ZG, Bird JE. Myosin motors in sensory hair bundle assembly. Curr Opin Cell Biol 2022; 79:102132. [PMID: 36257241 DOI: 10.1016/j.ceb.2022.102132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/31/2023]
Abstract
Mechanosensory hair bundles are assembled from actin-based stereocilia that project from the apical surface of hair cells in the inner ear. Stereocilia architecture is critical for the transduction of sound and accelerations, and structural defects in these mechano-sensors are a clinical cause of hearing and balance disorders in humans. Unconventional myosin motors are central to the assembly and shaping of stereocilia architecture. A sub-group of myosin motors with MyTH4-FERM domains (MYO7A, MYO15A) are particularly important in these processes, and hypothesized to act as transporters delivering structural and actin-regulatory cargos, in addition to generating force and tension. In this review, we summarize existing evidence for how MYO7A and MYO15A operate and how their dysfunction leads to stereocilia pathology. We further highlight emerging properties of the MyTH4/FERM myosin family and speculate how these new functions might contribute towards the acquisition and maintenance of mechano-sensitivity.
Collapse
Affiliation(s)
- Zane G Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA; Myology Institute, University of Florida, Gainesville, FL, 32610, USA; Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA; Myology Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
18
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
cAMP and voltage modulate rat auditory mechanotransduction by decreasing the stiffness of gating springs. Proc Natl Acad Sci U S A 2022; 119:e2107567119. [PMID: 35858439 PMCID: PMC9335186 DOI: 10.1073/pnas.2107567119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of auditory sensitivity contributes to the precision, dynamic range, and protection of the auditory system. Regulation of the hair cell mechanotransduction channel is a major contributor to controlling the sensitivity of the auditory transduction process. The gating spring is a critical piece of the mechanotransduction machinery because it opens and closes the mechanotransduction channel, and its stiffness regulates the sensitivity of the mechanotransduction process. In the present work, we characterize the effect of the second-messenger signaling molecule cyclic adenosine monophosphate (cAMP) and identify that it reduces gating spring stiffness likely through an exchange protein directly activated by cAMP (EPAC)-mediated pathway. This is a unique physiologic mechanism to regulate gating spring stiffness. Hair cells of the auditory and vestibular systems transform mechanical input into electrical potentials through the mechanoelectrical transduction process (MET). Deflection of the mechanosensory hair bundle increases tension in the gating springs that open MET channels. Regulation of MET channel sensitivity contributes to the auditory system’s precision, wide dynamic range and, potentially, protection from overexcitation. Modulating the stiffness of the gating spring modulates the sensitivity of the MET process. Here, we investigated the role of cyclic adenosine monophosphate (cAMP) in rat outer hair cell MET and found that cAMP up-regulation lowers the sensitivity of the channel in a manner consistent with decreasing gating spring stiffness. Direct measurements of the mechanical properties of the hair bundle confirmed a decrease in gating spring stiffness with cAMP up-regulation. In parallel, we found that prolonged depolarization mirrored the effects of cAMP. Finally, a limited number of experiments implicate that cAMP activates the exchange protein directly activated by cAMP to mediate the changes in MET sensitivity. These results reveal that cAMP signaling modulates gating spring stiffness to affect auditory sensitivity.
Collapse
|
20
|
Yan W, Chen G, Li J. Structure of the Harmonin PDZ2 and coiled-coil domains in a complex with CDHR2 tail and its implications. FASEB J 2022; 36:e22425. [PMID: 35747925 DOI: 10.1096/fj.202200403rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022]
Abstract
Harmonin is a protein containing multiple PDZ domains and is required for the development and maintenance of hair cell stereocilia and brush border microvilli. Mutations in the USH1C gene can cause Usher syndrome type 1C, a severe inheritable disease characterized by the loss of hearing and vision. Here, by solving the high-resolution crystal structure of Harmonin PDZ2 and coiled-coil domains in a complex with the tail of cadherin-related family member 2, we demonstrated that mutations located in the Harmonin PDZ2 domain and found in patients could affect its stability, and thus, the target binding capability. The structure also implies that the coiled-coil domain could form antiparallel dimers under high concentrations, possibly when Harmonin underwent liquid-liquid phase separation in the upper tip-link density in hair cell stereocilia or microvilli of enterocytes of the intestinal epithelium. The crystal structure, together with the biochemical analysis, provided mechanistic implications for Harmonin mutations causing Usher syndrome, non-syndromic deafness, or enteropathy.
Collapse
Affiliation(s)
- Wenxia Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Guanhao Chen
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Otorhinolaryngology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
22
|
Miyoshi T, Belyantseva IA, Kitajiri SI, Miyajima H, Nishio SY, Usami SI, Kim BJ, Choi BY, Omori K, Shroff H, Friedman TB. Human deafness-associated variants alter the dynamics of key molecules in hair cell stereocilia F-actin cores. Hum Genet 2022; 141:363-382. [PMID: 34232383 PMCID: PMC11351816 DOI: 10.1007/s00439-021-02304-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Stereocilia protrude up to 100 µm from the apical surface of vertebrate inner ear hair cells and are packed with cross-linked filamentous actin (F-actin). They function as mechanical switches to convert sound vibration into electrochemical neuronal signals transmitted to the brain. Several genes encode molecular components of stereocilia including actin monomers, actin regulatory and bundling proteins, motor proteins and the proteins of the mechanotransduction complex. A stereocilium F-actin core is a dynamic system, which is continuously being remodeled while maintaining an outwardly stable architecture under the regulation of F-actin barbed-end cappers, severing proteins and crosslinkers. The F-actin cores of stereocilia also provide a pathway for motor proteins to transport cargos including components of tip-link densities, scaffolding proteins and actin regulatory proteins. Deficiencies and mutations of stereocilia components that disturb this "dynamic equilibrium" in stereocilia can induce morphological changes and disrupt mechanotransduction causing sensorineural hearing loss, best studied in mouse and zebrafish models. Currently, at least 23 genes, associated with human syndromic and nonsyndromic hearing loss, encode proteins involved in the development and maintenance of stereocilia F-actin cores. However, it is challenging to predict how variants associated with sensorineural hearing loss segregating in families affect protein function. Here, we review the functions of several molecular components of stereocilia F-actin cores and provide new data from our experimental approach to directly evaluate the pathogenicity and functional impact of reported and novel variants of DIAPH1 in autosomal-dominant DFNA1 hearing loss using single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| | - Shin-Ichiro Kitajiri
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Hiroki Miyajima
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
- Department of Otolaryngology, Aizawa Hospital, Matsumoto, 390-8510, Japan
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, 30099, South Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet 2022; 141:709-735. [PMID: 35353227 PMCID: PMC9034986 DOI: 10.1007/s00439-022-02448-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Usher syndrome (USH) is the most common cause of deaf–blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes—USH1, 2 and 3—according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype–phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.
Collapse
|
24
|
Abstract
Usher syndrome (USH) encompasses a group of clinically and genetically heterogenous disorders defined by the triad of sensorineural hearing loss (SNHL), vestibular dysfunction, and vision loss. USH is the most common cause of deaf blindness. USH is divided clinically into three subtypes-USH1, USH2, and USH3-based on symptom severity, progression, and age of onset. The underlying genetics of these USH forms are, however, significantly more complex, with over a dozen genes linked to the three primary clinical subtypes and other atypical USH phenotypes. Several of these genes are associated with other deaf-blindness syndromes that share significant clinical overlap with USH, pointing to the limits of a clinically based classification system. The genotype-phenotype relationships among USH forms also may vary significantly based on the location and type of mutation in the gene of interest. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to USH. Currently, the state of knowledge varies widely depending on the gene of interest. Recent studies utilizing next-generation sequencing technology have expanded the list of known pathogenic mutations in USH genes, identified new genes associated with USH-like phenotypes, and proposed algorithms to predict the phenotypic effects of specific categories of allelic variants. Further work is required to validate USH gene causality, and better define USH genotype-phenotype relationships and disease natural histories-particularly for rare mutations-to lay the groundwork for the future of USH treatment.
Collapse
|
25
|
Ivanchenko MV, Indzhykulian AA, Corey DP. Electron Microscopy Techniques for Investigating Structure and Composition of Hair-Cell Stereociliary Bundles. Front Cell Dev Biol 2021; 9:744248. [PMID: 34746139 PMCID: PMC8569945 DOI: 10.3389/fcell.2021.744248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Hair cells—the sensory cells of the vertebrate inner ear—bear at their apical surfaces a bundle of actin-filled protrusions called stereocilia, which mediate the cells’ mechanosensitivity. Hereditary deafness is often associated with morphological disorganization of stereocilia bundles, with the absence or mislocalization within stereocilia of specific proteins. Thus, stereocilia bundles are closely examined to understand most animal models of hereditary hearing loss. Because stereocilia have a diameter less than a wavelength of light, light microscopy is not adequate to reveal subtle changes in morphology or protein localization. Instead, electron microscopy (EM) has proven essential for understanding stereocilia bundle development, maintenance, normal function, and dysfunction in disease. Here we review a set of EM imaging techniques commonly used to study stereocilia, including optimal sample preparation and best imaging practices. These include conventional and immunogold transmission electron microscopy (TEM) and scanning electron microscopy (SEM), as well as focused-ion-beam scanning electron microscopy (FIB-SEM), which enables 3-D serial reconstruction of resin-embedded biological structures at a resolution of a few nanometers. Parameters for optimal sample preparation, fixation, immunogold labeling, metal coating and imaging are discussed. Special attention is given to protein localization in stereocilia using immunogold labeling. Finally, we describe the advantages and limitations of these EM techniques and their suitability for different types of studies.
Collapse
Affiliation(s)
- Maryna V Ivanchenko
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Artur A Indzhykulian
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. Int J Mol Sci 2021; 22:6723. [PMID: 34201633 PMCID: PMC8268283 DOI: 10.3390/ijms22136723] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.
Collapse
Affiliation(s)
- Carla Fuster-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
27
|
Abstract
Filopodia, microvilli and stereocilia represent an important group of plasma membrane protrusions. These specialized projections are supported by parallel bundles of actin filaments and have critical roles in sensing the external environment, increasing cell surface area, and acting as mechanosensors. While actin-associated proteins are essential for actin-filament elongation and bundling in these protrusions, myosin motors have a surprising role in the formation and extension of filopodia and stereocilia and in the organization of microvilli. Actin regulators and specific myosins collaborate in controlling the length of these structures. Myosins can transport cargoes along the length of these protrusions, and, in the case of stereocilia and microvilli, interactions with adaptors and cargoes can also serve to anchor adhesion receptors to the actin-rich core via functionally conserved motor-adaptor complexes. This review highlights recent progress in understanding the diverse roles myosins play in filopodia, microvilli and stereocilia.
Collapse
Affiliation(s)
- Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France.
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Farhadi M, Razmara E, Balali M, Hajabbas Farshchi Y, Falah M. How Transmembrane Inner Ear (TMIE) plays role in the auditory system: A mystery to us. J Cell Mol Med 2021; 25:5869-5883. [PMID: 33987950 PMCID: PMC8256367 DOI: 10.1111/jcmm.16610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
Different cellular mechanisms contribute to the hearing sense, so it is obvious that any disruption in such processes leads to hearing impairment that greatly influences the global economy and quality of life of the patients and their relatives. In the past two decades, transmembrane inner ear (TMIE) protein has received a great deal of research interest because its impairments cause hereditary deafness in humans. This evolutionarily conserved membrane protein contributes to a fundamental complex that plays role in the maintenance and function of the sensory hair cells. Although the critical roles of the TMIE in mechanoelectrical transduction or hearing procedures have been discussed, there are little to no review papers summarizing the roles of the TMIE in the auditory system. In order to fill this gap, herein, we discuss the important roles of this protein in the auditory system including its role in mechanotransduction, olivocochlear synapse, morphology and different signalling pathways; we also review the genotype-phenotype correlation that can per se show the possible roles of this protein in the auditory system.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Ehsan Razmara
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | - Maryam Balali
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Yeganeh Hajabbas Farshchi
- Department of Cellular and Molecular BiologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health InstituteHazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| |
Collapse
|
29
|
Trouillet A, Miller KK, George SS, Wang P, Ali NES, Ricci A, Grillet N. Loxhd1 Mutations Cause Mechanotransduction Defects in Cochlear Hair Cells. J Neurosci 2021; 41:3331-3343. [PMID: 33707295 PMCID: PMC8051682 DOI: 10.1523/jneurosci.0975-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Sound detection happens in the inner ear via the mechanical deflection of the hair bundle of cochlear hair cells. The hair bundle is an apical specialization consisting of actin-filled membrane protrusions (called stereocilia) connected by tip links (TLs) that transfer the deflection force to gate the mechanotransduction channels. Here, we identified the hearing loss-associated Loxhd1/DFNB77 gene as being required for the mechanotransduction process. LOXHD1 consists of 15 polycystin lipoxygenase α-toxin (PLAT) repeats, which in other proteins can bind lipids and proteins. LOXHD1 was distributed along the length of the stereocilia. Two LOXHD1 mouse models with mutations in the 10th PLAT repeat exhibited mechanotransduction defects (in both sexes). While mechanotransduction currents in mutant inner hair cells (IHCs) were similar to wild-type levels in the first postnatal week, they were severely affected by postnatal day 11. The onset of the mechanotransduction phenotype was consistent with the temporal progression of postnatal LOXHD1 expression/localization in the hair bundle. The mechanotransduction defect observed in Loxhd1-mutant IHCs was not accompanied by a morphologic defect of the hair bundle or a reduction in TL number. Using immunolocalization, we found that two proteins of the upper and lower TL protein complexes (Harmonin and LHFPL5) were maintained in the mutants, suggesting that the mechanotransduction machinery was present but not activatable. This work identified a novel LOXHD1-dependent step in hair bundle development that is critical for mechanotransduction in mature hair cells as well as for normal hearing function in mice and humans.SIGNIFICANCE STATEMENT Hair cells detect sound-induced forces via the hair bundle, which consists of membrane protrusions connected by tip links. The mechanotransduction machinery forms protein complexes at the tip-link ends. The current study showed that LOXHD1, a multirepeat protein responsible for hearing loss in humans and mice when mutated, was required for hair-cell mechanotransduction, but only after the first postnatal week. Using immunochemistry, we demonstrated that this defect was not caused by the mislocalization of the tip-link complex proteins Harmonin or LHFPL5, suggesting that the mechanotransduction protein complexes were maintained. This work identified a new step in hair bundle development, which is critical for both hair-cell mechanotransduction and hearing.
Collapse
Affiliation(s)
- Alix Trouillet
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| | - Katharine K Miller
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| | - Shefin Sam George
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| | - Pei Wang
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| | - Noor-E-Seher Ali
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| | - Anthony Ricci
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, California 94305
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Stanford, California 94305
| |
Collapse
|
30
|
Shin HY, Fukuda S, Schmid-Schönbein GW. Fluid shear stress-mediated mechanotransduction in circulating leukocytes and its defect in microvascular dysfunction. J Biomech 2021; 120:110394. [PMID: 33784517 DOI: 10.1016/j.jbiomech.2021.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Leukocytes (neutrophils, monocytes) in the active circulation exhibit multiple phenotypic indicators for a low level of cellular activity, like lack of pseudopods and minimal amounts of activated, cell-adhesive integrins on their surfaces. In contrast, before these cells enter the circulation in the bone marrow or when they recross the endothelium into extravascular tissues of peripheral organs they are fully activated. We review here a multifaceted mechanism mediated by fluid shear stress that can serve to deactivate leukocytes in the circulation. The fluid shear stress controls pseudopod formation via the FPR receptor, the same receptor responsible for pseudopod projection by localized actin polymerization. The bioactivity of macromolecular factors in the blood plasma that interfere with receptor stimulation by fluid flow, such as proteolytic cleavage in the extracellular domain of the receptor or the membrane actions of cholesterol, leads to a defective ability to respond to fluid shear stress by actin depolymerization. The cell reaction to fluid shear involves CD18 integrins, nitric oxide, cGMP and Rho GTPases, is attenuated in the presence of inflammatory mediators and modified by glucocorticoids. The mechanism is abolished in disease models (genetic hypertension and hypercholesterolemia) leading to an increased number of activated leukocytes in the circulation with enhanced microvascular resistance and cell entrapment. In addition to their role in binding to biochemical agonists/antagonists, membrane receptors appear to play a second role: to monitor local fluid shear stress levels. The fluid shear stress control of many circulating cell types such as lymphocytes, stem cells, tumor cells remains to be elucidated.
Collapse
Affiliation(s)
- Hainsworth Y Shin
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States; Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories Center for Devices and Radiological Health, The Food & Drive Administration, Silver Spring, MD, United States
| | - Shunichi Fukuda
- Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | |
Collapse
|
31
|
Koleilat A, Dugdale JA, Christenson TA, Bellah JL, Lambert AM, Masino MA, Ekker SC, Schimmenti LA. L-type voltage-gated calcium channel agonists mitigate hearing loss and modify ribbon synapse morphology in the zebrafish model of Usher syndrome type 1. Dis Model Mech 2020; 13:dmm043885. [PMID: 33361086 PMCID: PMC7710014 DOI: 10.1242/dmm.043885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
The mariner (myo7aa-/- ) mutant is a zebrafish model for Usher syndrome type 1 (USH1). To further characterize hair cell synaptic elements in myo7aa-/- mutants, we focused on the ribbon synapse and evaluated ultrastructure, number and distribution of immunolabeled ribbons, and postsynaptic densities. By transmission electron microscopy, we determined that myo7aa-/- zebrafish have fewer glutamatergic vesicles tethered to ribbon synapses, yet maintain a comparable ribbon area. In myo7aa-/- hair cells, immunolocalization of Ctbp2 showed fewer ribbon-containing cells in total and an altered distribution of Ctbp2 puncta compared to wild-type hair cells. myo7aa-/- mutants have fewer postsynaptic densities - as assessed by MAGUK immunolabeling - compared to wild-type zebrafish. We quantified the circular swimming behavior of myo7aa-/- mutant fish and measured a greater turning angle (absolute smooth orientation). It has previously been shown that L-type voltage-gated calcium channels are necessary for ribbon localization and occurrence of postsynaptic density; thus, we hypothesized and observed that L-type voltage-gated calcium channel agonists change behavioral and synaptic phenotypes in myo7aa-/- mutants in a drug-specific manner. Our results indicate that treatment with L-type voltage-gated calcium channel agonists alter hair cell synaptic elements and improve behavioral phenotypes of myo7aa-/- mutants. Our data support that L-type voltage-gated calcium channel agonists induce morphological changes at the ribbon synapse - in both the number of tethered vesicles and regarding the distribution of Ctbp2 puncta - shift swimming behavior and improve acoustic startle response.
Collapse
Affiliation(s)
- Alaa Koleilat
- College of Continuing and Professional Studies, University of Minnesota, Minneapolis, MN 55108, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Clinical and Translational Science Track, Rochester, MN 55905, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph A Dugdale
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jeffrey L Bellah
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
- Department of Genetics and Development, Columbia University, New York City, NY 10032, USA
| | - Aaron M Lambert
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mark A Masino
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen C Ekker
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lisa A Schimmenti
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota, Minneapolis, MN 55454, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
32
|
Interaction of protocadherin-15 with the scaffold protein whirlin supports its anchoring of hair-bundle lateral links in cochlear hair cells. Sci Rep 2020; 10:16430. [PMID: 33009420 PMCID: PMC7532178 DOI: 10.1038/s41598-020-73158-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 09/07/2020] [Indexed: 11/26/2022] Open
Abstract
The hair bundle of cochlear hair cells is the site of auditory mechanoelectrical transduction. It is formed by three rows of stiff microvilli-like protrusions of graduated heights, the short, middle-sized, and tall stereocilia. In developing and mature sensory hair cells, stereocilia are connected to each other by various types of fibrous links. Two unconventional cadherins, protocadherin-15 (PCDH15) and cadherin-23 (CDH23), form the tip-links, whose tension gates the hair cell mechanoelectrical transduction channels. These proteins also form transient lateral links connecting neighboring stereocilia during hair bundle morphogenesis. The proteins involved in anchoring these diverse links to the stereocilia dense actin cytoskeleton remain largely unknown. We show that the long isoform of whirlin (L-whirlin), a PDZ domain-containing submembrane scaffold protein, is present at the tips of the tall stereocilia in mature hair cells, together with PCDH15 isoforms CD1 and CD2; L-whirlin localization to the ankle-link region in developing hair bundles moreover depends on the presence of PCDH15-CD1 also localizing there. We further demonstrate that L-whirlin binds to PCDH15 and CDH23 with moderate-to-high affinities in vitro. From these results, we suggest that L-whirlin is part of the molecular complexes bridging PCDH15-, and possibly CDH23-containing lateral links to the cytoskeleton in immature and mature stereocilia.
Collapse
|
33
|
He Y, Li J, Zhang M. Myosin VII, USH1C, and ANKS4B or USH1G Together Form Condensed Molecular Assembly via Liquid-Liquid Phase Separation. Cell Rep 2020; 29:974-986.e4. [PMID: 31644917 DOI: 10.1016/j.celrep.2019.09.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/18/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023] Open
Abstract
Hair cell stereocilia tip-links function to sense mechanical forces generated by sound waves and maintain the structure of stereocilia by rooting the tail of cadherins to highly dense structures known as tip-link densities. Although the molecular components are largely known, the mechanisms underlying the tip-link density formation are unknown. Here, we show that Myosin VIIB (MYO7B), USH1C, and ANKS4B, which form a specific complex stabilizing tip-links in intestine microvilli, could form dense condensates via liquid-liquid phase separation in vitro and in cells. The MYO7A, USH1C, and USH1G complex also undergoes phase separation in cells. Formation of the MYO7A/USH1C/USH1G and MYO7B/USH1C/ANKS4B condensates requires strong and multivalent interactions between proteins in both tripartite complexes. Point mutations of MYO7A found in Usher syndrome patients weaken or even disrupt the multivalent interactions of the MYO7A/USH1C/USH1G complex and impair its phase separation. Thus, the stereocilia tip-link densities may form via phase separation of the MYO7A/USH1C/USH1G complex.
Collapse
Affiliation(s)
- Yunyun He
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
34
|
Pyott SJ, van Tuinen M, Screven LA, Schrode KM, Bai JP, Barone CM, Price SD, Lysakowski A, Sanderford M, Kumar S, Santos-Sacchi J, Lauer AM, Park TJ. Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats. Curr Biol 2020; 30:4329-4341.e4. [PMID: 32888484 DOI: 10.1016/j.cub.2020.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Naked mole-rats are highly vocal, eusocial, subterranean rodents with, counterintuitively, poor hearing. The causes underlying their altered hearing are unknown. Moreover, whether altered hearing is degenerate or adaptive to their unique lifestyles is controversial. We used various methods to identify the factors contributing to altered hearing in naked and the related Damaraland mole-rats and to examine whether these alterations result from relaxed or adaptive selection. Remarkably, we found that cochlear amplification was absent from both species despite normal prestin function in outer hair cells isolated from naked mole-rats. Instead, loss of cochlear amplification appears to result from abnormal hair bundle morphologies observed in both species. By exploiting a well-curated deafness phenotype-genotype database, we identified amino acid substitutions consistent with abnormal hair bundle morphology and reduced hearing sensitivity. Amino acid substitutions were found in unique groups of six hair bundle link proteins. Molecular evolutionary analyses revealed shifts in selection pressure at both the gene and the codon level for five of these six hair bundle link proteins. Substitutions in three of these proteins are associated exclusively with altered hearing. Altogether, our findings identify the likely mechanism of altered hearing in African mole-rats, making them the only identified mammals naturally lacking cochlear amplification. Moreover, our findings suggest that altered hearing in African mole-rats is adaptive, perhaps tailoring hearing to eusocial and subterranean lifestyles. Finally, our work reveals multiple, unique evolutionary trajectories in African mole-rat hearing and establishes species members as naturally occurring disease models to investigate human hearing loss.
Collapse
Affiliation(s)
- Sonja J Pyott
- University Medical Center Groningen and University of Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713GZ Groningen, the Netherlands.
| | - Marcel van Tuinen
- University Medical Center Groningen and University of Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713GZ Groningen, the Netherlands
| | - Laurel A Screven
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Katrina M Schrode
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Jun-Ping Bai
- Yale University School of Medicine, Department of Neurology, 333 Cedar Street, New Haven, CT 06510, USA
| | - Catherine M Barone
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60612, USA
| | - Steven D Price
- University of Illinois at Chicago, Department of Anatomy and Cell Biology, Chicago, IL 60612, USA
| | - Anna Lysakowski
- University of Illinois at Chicago, Department of Anatomy and Cell Biology, Chicago, IL 60612, USA
| | - Maxwell Sanderford
- Temple University, Institute for Genomics and Evolutionary Medicine and Department of Biology, Philadelphia, PA 19122, USA
| | - Sudhir Kumar
- Temple University, Institute for Genomics and Evolutionary Medicine and Department of Biology, Philadelphia, PA 19122, USA; King Abdulaziz University, Center for Excellence in Genome Medicine and Research, Jeddah, Saudi Arabia
| | - Joseph Santos-Sacchi
- Yale University School of Medicine, Department of Surgery (Otolaryngology) and Department of Neuroscience and Cellular and Molecular Physiology, 333 Cedar Street, New Haven, CT 06510, USA
| | - Amanda M Lauer
- Johns Hopkins School of Medicine, Department of Otolaryngology, Baltimore, MD 21205, USA
| | - Thomas J Park
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60612, USA
| |
Collapse
|
35
|
Askew C, Chien WW. Adeno-associated virus gene replacement for recessive inner ear dysfunction: Progress and challenges. Hear Res 2020; 394:107947. [PMID: 32247629 PMCID: PMC7939749 DOI: 10.1016/j.heares.2020.107947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/08/2023]
Abstract
Approximately 3 in 1000 children in the US under 4 years of age are affected by hearing loss. Currently, cochlear implants represent the only line of treatment for patients with severe to profound hearing loss, and there are no targeted drug or biological based therapies available. Gene replacement is a promising therapeutic approach for hereditary hearing loss, where viral vectors are used to deliver functional cDNA to "replace" defective genes in dysfunctional cells in the inner ear. Proof-of-concept studies have successfully used this approach to improve auditory function in mouse models of hereditary hearing loss, and human clinical trials are on the immediate horizon. The success of this method is ultimately determined by the underlying biology of the defective gene and design of the treatment strategy, relying on intervention before degeneration of the sensory structures occurs. A challenge will be the delivery of a corrective gene to the proper target within the therapeutic window of opportunity, which may be unique for each specific defective gene. Although rescue of pre-lingual forms of recessive deafness have been explored in animal models thus far, future identification of genes with post-lingual onset that are amenable to gene replacement holds even greater promise for treatment, since the therapeutic window is likely open for a much longer period of time. This review summarizes the current state of adeno-associated virus (AAV) gene replacement therapy for recessive hereditary hearing loss and discusses potential challenges and opportunities for translating inner ear gene replacement therapy for patients with hereditary hearing loss.
Collapse
Affiliation(s)
- Charles Askew
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wade W Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Cunningham CL, Qiu X, Wu Z, Zhao B, Peng G, Kim YH, Lauer A, Müller U. TMIE Defines Pore and Gating Properties of the Mechanotransduction Channel of Mammalian Cochlear Hair Cells. Neuron 2020; 107:126-143.e8. [PMID: 32343945 PMCID: PMC7351599 DOI: 10.1016/j.neuron.2020.03.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/24/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022]
Abstract
TMC1 and TMC2 (TMC1/2) have been proposed to form the pore of the mechanotransduction channel of cochlear hair cells. Here, we show that TMC1/2 cannot form mechanotransduction channels in cochlear hair cells without TMIE. TMIE binds to TMC1/2, and a TMIE mutation that perturbs TMC1/2 binding abolishes mechanotransduction. N-terminal TMIE deletions affect the response of the mechanotransduction channel to mechanical force. Similar to mechanically gated TREK channels, the C-terminal cytoplasmic TMIE domain contains charged amino acids that mediate binding to phospholipids, including PIP2. TMIE point mutations in the C terminus that are linked to deafness disrupt phospholipid binding, sensitize the channel to PIP2 depletion from hair cells, and alter the channel's unitary conductance and ion selectivity. We conclude that TMIE is a subunit of the cochlear mechanotransduction channel and that channel function is regulated by a phospholipid-sensing domain in TMIE with similarity to those in other mechanically gated ion channels.
Collapse
Affiliation(s)
- Christopher L Cunningham
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zizhen Wu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Zhao
- Department of Otolaryngology - Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Guihong Peng
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye-Hyun Kim
- Department of Otolaryngology - HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda Lauer
- Department of Otolaryngology - HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Ivanchenko MV, Cicconet M, Jandal HA, Wu X, Corey DP, Indzhykulian AA. Serial scanning electron microscopy of anti-PKHD1L1 immuno-gold labeled mouse hair cell stereocilia bundles. Sci Data 2020; 7:182. [PMID: 32555200 PMCID: PMC7299942 DOI: 10.1038/s41597-020-0509-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 11/11/2022] Open
Abstract
Serial electron microscopy techniques have proven to be a powerful tool in biology. Unfortunately, the data sets they generate lack robust and accurate automated segmentation algorithms. In this data descriptor publication, we introduce a serial focused ion beam scanning electron microscopy (FIB-SEM) dataset consisting of six outer hair cell (OHC) stereocilia bundles, and the supranuclear part of the hair cell bodies. Also presented are the manual segmentations of stereocilia bundles and the gold bead labeling of PKHD1L1, a coat protein of hair cell stereocilia important for hearing in mice. This depository includes all original data and several intermediate steps of the manual analysis, as well as the MATLAB algorithm used to generate a three-dimensional distribution map of gold labels. They serve as a reference dataset, and they enable reproduction of our analysis, evaluation and improvement of current methods of protein localization, and training of algorithms for accurate automated segmentation.
Collapse
Affiliation(s)
- Maryna V Ivanchenko
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Marcelo Cicconet
- Image and Data Analysis Core, Harvard Medical School, 43 Shattuck St, Boston, MA, 02115, USA
| | - Hoor Al Jandal
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
- Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Xudong Wu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Artur A Indzhykulian
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Otolaryngology, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, 02114, USA.
| |
Collapse
|
38
|
Wang L, Kempton JB, Jiang H, Jodelka FM, Brigande AM, Dumont RA, Rigo F, Lentz JJ, Hastings ML, Brigande JV. Fetal antisense oligonucleotide therapy for congenital deafness and vestibular dysfunction. Nucleic Acids Res 2020; 48:5065-5080. [PMID: 32249312 PMCID: PMC7229850 DOI: 10.1093/nar/gkaa194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Disabling hearing loss impacts ∼466 million individuals worldwide with 34 million children affected. Gene and pharmacotherapeutic strategies to rescue auditory function in mouse models of human deafness are most effective when administered before hearing onset, after which therapeutic efficacy is significantly diminished or lost. We hypothesize that preemptive correction of a mutation in the fetal inner ear prior to maturation of the sensory epithelium will optimally restore sensory function. We previously demonstrated that transuterine microinjection of a splice-switching antisense oligonucleotide (ASO) into the amniotic cavity immediately surrounding the embryo on embryonic day 13-13.5 (E13-13.5) corrected pre-mRNA splicing in the juvenile Usher syndrome type 1c (Ush1c) mouse mutant. Here, we show that this strategy only marginally rescues hearing and partially rescues vestibular function. To improve therapeutic outcomes, we microinjected ASO directly into the E12.5 inner ear. A single intra-otic dose of ASO corrects harmonin RNA splicing, restores harmonin protein expression in sensory hair cell bundles, prevents hair cell loss, improves hearing sensitivity, and ameliorates vestibular dysfunction. Improvements in auditory and vestibular function were sustained well into adulthood. Our results demonstrate that an ASO pharmacotherapeutic administered to a developing organ system in utero preemptively corrects pre-mRNA splicing to abrogate the disease phenotype.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - J Beth Kempton
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Han Jiang
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Francine M Jodelka
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Alev M Brigande
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachel A Dumont
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010 USA
| | - Jennifer J Lentz
- Department of Otorhinolaryngology, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - John V Brigande
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
39
|
Li S, Mecca A, Kim J, Caprara GA, Wagner EL, Du TT, Petrov L, Xu W, Cui R, Rebustini IT, Kachar B, Peng AW, Shin JB. Myosin-VIIa is expressed in multiple isoforms and essential for tensioning the hair cell mechanotransduction complex. Nat Commun 2020; 11:2066. [PMID: 32350269 PMCID: PMC7190839 DOI: 10.1038/s41467-020-15936-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/01/2020] [Indexed: 11/09/2022] Open
Abstract
Mutations in myosin-VIIa (MYO7A) cause Usher syndrome type 1, characterized by combined deafness and blindness. MYO7A is proposed to function as a motor that tensions the hair cell mechanotransduction (MET) complex, but conclusive evidence is lacking. Here we report that multiple MYO7A isoforms are expressed in the mouse cochlea. In mice with a specific deletion of the canonical isoform (Myo7a-ΔC mouse), MYO7A is severely diminished in inner hair cells (IHCs), while expression in outer hair cells is affected tonotopically. IHCs of Myo7a-ΔC mice undergo normal development, but exhibit reduced resting open probability and slowed onset of MET currents, consistent with MYO7A's proposed role in tensioning the tip link. Mature IHCs of Myo7a-ΔC mice degenerate over time, giving rise to progressive hearing loss. Taken together, our study reveals an unexpected isoform diversity of MYO7A expression in the cochlea and highlights MYO7A's essential role in tensioning the hair cell MET complex.
Collapse
Affiliation(s)
- Sihan Li
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Andrew Mecca
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeewoo Kim
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Ting-Ting Du
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Leonid Petrov
- Department of Mathematics, University of Virginia, Charlottesville, VA, USA
| | - Wenhao Xu
- Genetically Engineered Murine Model (GEMM) Core, University of Virginia, Charlottesville, VA, USA
| | - Runjia Cui
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, USA
| | - Ivan T Rebustini
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, USA
| | - Bechara Kachar
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, USA
| | - Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA. .,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
40
|
Géléoc GGS, El-Amraoui A. Disease mechanisms and gene therapy for Usher syndrome. Hear Res 2020; 394:107932. [PMID: 32199721 DOI: 10.1016/j.heares.2020.107932] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Usher syndrome (USH) is a major cause of deaf-blindness in humans, affecting ∼400 000 patients worldwide. Three clinical subtypes, USH1-3, have been defined, with 10 USH genes identified so far. In recent years, in addition to identification of new Usher genes and diagnostic tools, major progress has been made in understanding the role of Usher proteins and how they cooperate through interaction networks to ensure proper development, architecture and function of the stereociliary bundle at the apex of sensory hair cells in the inner ear. Several Usher mouse models of known human Usher genes have been characterized. These mice faithfully reproduce the auditory phenotype associated with Usher syndrome and the vestibular phenotype associated with some mutations in USH genes, particularly USH1. Interestingly, very few mouse models of Usher syndrome recapitulate the retinal phenotype associated with the disease in human. Usher patients can benefit from hearing aids or cochlear implants, which partially alleviate auditory sensory deprivation. However, there are currently no biological treatments available for auditory or visual dysfunction in Usher patients. Development of novel therapies for Usher syndrome has sprouted over the past decade, building on recent progress in gene transfer and new gene editing tools. Promising success demonstrating recovery of hearing and balance functions have been obtained via distinct therapeutic strategies in animal models. Clinical translation to Usher patients, however, calls for further improvements and concerted efforts to overcome the challenges ahead.
Collapse
Affiliation(s)
- Gwenaelle G S Géléoc
- Boston Children's Hospital and Harvard Medical School, 3, Blackfan circle, Center for Life Science, 03001, Boston, MA, 02115, United States.
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Institut Pasteur, INSERM-UMRS1120, Sorbonne Université, 25 rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
41
|
Friedman TB, Belyantseva IA, Frolenkov GI. Myosins and Hearing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:317-330. [DOI: 10.1007/978-3-030-38062-5_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Yao Q, Wang L, Mittal R, Yan D, Richmond MT, Denyer S, Requena T, Liu K, Varshney GK, Lu Z, Liu XZ. Transcriptomic Analyses of Inner Ear Sensory Epithelia in Zebrafish. Anat Rec (Hoboken) 2019; 303:527-543. [PMID: 31883312 DOI: 10.1002/ar.24331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Analysis of gene expression has the potential to assist in the understanding of multiple cellular processes including proliferation, cell-fate specification, senesence, and activity in both healthy and disease states. Zebrafish model has been increasingly used to understand the process of hearing and the development of the vertebrate auditory system. Within the zebrafish inner ear, there are three otolith organs, each containing a sensory macula of hair cells. The saccular macula is primarily involved in hearing, the utricular macula is primarily involved in balance and the function of the lagenar macula is not completely understood. The goal of this study is to understand the transcriptional differences in the sensory macula associated with different otolith organs with the intention of understanding the genetic mechanisms responsible for the distinct role each organ plays in sensory perception. The sensory maculae of the saccule, utricle, and lagena were dissected out of adult Et(krt4:GFP)sqet4 zebrafish expressing green fluorescent protein in hair cells for transcriptional analysis. The total RNAs of the maculae were isolated and analyzed by RNA GeneChip microarray. Several of the differentially expressed genes are known to be involved in deafness, otolith development and balance. Gene expression among these otolith organs was very well conserved with less than 10% of genes showing differential expression. Data from this study will help to elucidate which genes are involved in hearing and balance. Furthermore, the findings of this study will assist in the development of the zebrafish model for human hearing and balance disorders. Anat Rec, 303:527-543, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Qi Yao
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Biology, University of Miami, Miami, Florida
| | - Lingyu Wang
- Department of Biology, University of Miami, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Steven Denyer
- Department of Biology, University of Miami, Miami, Florida
| | - Teresa Requena
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Kaili Liu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Zhongmin Lu
- Department of Biology, University of Miami, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
43
|
Richardson GP, Petit C. Hair-Bundle Links: Genetics as the Gateway to Function. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033142. [PMID: 30617060 DOI: 10.1101/cshperspect.a033142] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to five distinct cell-surface specializations interconnect the stereocilia and the kinocilium of the mature hair bundle in some species: kinocilial links, tip links, top connectors, shaft connectors, and ankle links. In developing hair bundles, transient lateral links are prominent. Mutations in genes encoding proteins associated with these links cause Usher deafness/blindness syndrome or nonsyndromic (isolated) forms of human hereditary deafness, and mice with constitutive or conditional alleles of these genes have provided considerable insight into the molecular composition and function of the different links. We describe the structure of these links and review evidence showing CDH23 and PCDH15 are components of the tip, kinocilial, and transient-lateral links, that stereocilin (STRC) and protein tyrosine phosphatase (PTPRQ) are associated with top and shaft connectors, respectively, and that USH2A and ADGRV1 are associated with the ankle links. Whereas tip links are required for mechanoelectrical transduction, all link proteins play key roles in the normal development and/or the maintenance of hair bundle structure and function. Recent crystallographic and single-particle analyses of PCDH15 and CDH23 provide insight as to how the structure of tip link may contribute to the elastic element predicted to lie in series with the hair cell's mechanoelectrical transducer channel.
Collapse
Affiliation(s)
- Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Christine Petit
- Institut Pasteur, 75724 Paris Cedex 15, France.,Collège de France, 75231 Paris Cedex 05, France
| |
Collapse
|
44
|
Taiber S, Avraham KB. Genetic Therapies for Hearing Loss: Accomplishments and Remaining Challenges. Neurosci Lett 2019; 713:134527. [PMID: 31586696 PMCID: PMC7219656 DOI: 10.1016/j.neulet.2019.134527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/01/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023]
Abstract
More than 15 years have passed since the official completion of the Human Genome Project. Predominantly due to this project, over one hundred genes have now been linked to hearing loss. Although major advancements have been made in the understanding of underlying pathologies in deafness as a consequence of these gene discoveries, biological treatments for these conditions are still not available and current treatments rely on amplification or prosthetics. A promising approach for developing treatments for genetic hearing loss is the most simplistic one, that of gene therapy. Gene therapy would intuitively be ideal for these conditions since it is directed at the very source of the problem. Recent achievements in this field in laboratory models spike hope and optimism among scientists, patients, and industry, and suggest that this approach can mature into clinical trials in the coming years. Here we review the existing literature and discuss the different aspects of developing gene therapy for genetic hearing loss.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
Dunbar LA, Patni P, Aguilar C, Mburu P, Corns L, Wells HRR, Delmaghani S, Parker A, Johnson S, Williams D, Esapa CT, Simon MM, Chessum L, Newton S, Dorning J, Jeyarajan P, Morse S, Lelli A, Codner GF, Peineau T, Gopal SR, Alagramam KN, Hertzano R, Dulon D, Wells S, Williams FM, Petit C, Dawson SJ, Brown SDM, Marcotti W, El‐Amraoui A, Bowl MR. Clarin-2 is essential for hearing by maintaining stereocilia integrity and function. EMBO Mol Med 2019; 11:e10288. [PMID: 31448880 PMCID: PMC6728604 DOI: 10.15252/emmm.201910288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
Hearing relies on mechanically gated ion channels present in the actin-rich stereocilia bundles at the apical surface of cochlear hair cells. Our knowledge of the mechanisms underlying the formation and maintenance of the sound-receptive structure is limited. Utilizing a large-scale forward genetic screen in mice, genome mapping and gene complementation tests, we identified Clrn2 as a new deafness gene. The Clrn2clarinet/clarinet mice (p.Trp4* mutation) exhibit a progressive, early-onset hearing loss, with no overt retinal deficits. Utilizing data from the UK Biobank study, we could show that CLRN2 is involved in human non-syndromic progressive hearing loss. Our in-depth morphological, molecular and functional investigations establish that while it is not required for initial formation of cochlear sensory hair cell stereocilia bundles, clarin-2 is critical for maintaining normal bundle integrity and functioning. In the differentiating hair bundles, lack of clarin-2 leads to loss of mechano-electrical transduction, followed by selective progressive loss of the transducing stereocilia. Together, our findings demonstrate a key role for clarin-2 in mammalian hearing, providing insights into the interplay between mechano-electrical transduction and stereocilia maintenance.
Collapse
Affiliation(s)
- Lucy A Dunbar
- Mammalian Genetics UnitMRC Harwell InstituteHarwellUK
| | - Pranav Patni
- Déficits Sensoriels ProgressifsInstitut PasteurINSERM UMR‐S 1120Sorbonne UniversitésParisFrance
| | | | | | - Laura Corns
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Helena RR Wells
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
| | - Sedigheh Delmaghani
- Déficits Sensoriels ProgressifsInstitut PasteurINSERM UMR‐S 1120Sorbonne UniversitésParisFrance
| | - Andrew Parker
- Mammalian Genetics UnitMRC Harwell InstituteHarwellUK
| | - Stuart Johnson
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | | | | | | | | | | | | | | - Susan Morse
- Mammalian Genetics UnitMRC Harwell InstituteHarwellUK
| | - Andrea Lelli
- Génétique et Physiologie de l'AuditionInstitut PasteurINSERM UMR‐S 1120Collège de FranceSorbonne UniversitésParisFrance
| | | | - Thibault Peineau
- Laboratoire de Neurophysiologie de la Synapse AuditiveUniversité de BordeauxBordeauxFrance
| | - Suhasini R Gopal
- Department of Otolaryngology – Head and Neck SurgeryUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
| | - Kumar N Alagramam
- Department of Otolaryngology – Head and Neck SurgeryUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, Anatomy and Neurobiology and Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Didier Dulon
- Laboratoire de Neurophysiologie de la Synapse AuditiveUniversité de BordeauxBordeauxFrance
| | - Sara Wells
- Mary Lyon CentreMRC Harwell InstituteHarwellUK
| | - Frances M Williams
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
| | - Christine Petit
- Génétique et Physiologie de l'AuditionInstitut PasteurINSERM UMR‐S 1120Collège de FranceSorbonne UniversitésParisFrance
| | | | | | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Aziz El‐Amraoui
- Déficits Sensoriels ProgressifsInstitut PasteurINSERM UMR‐S 1120Sorbonne UniversitésParisFrance
| | | |
Collapse
|
46
|
Cunningham CL, Müller U. Molecular Structure of the Hair Cell Mechanoelectrical Transduction Complex. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033167. [PMID: 30082452 DOI: 10.1101/cshperspect.a033167] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cochlear hair cells employ mechanically gated ion channels located in stereocilia that open in response to sound wave-induced motion of the basilar membrane, converting mechanical stimulation to graded changes in hair cell membrane potential. Membrane potential changes in hair cells cause neurotransmitter release from hair cells that initiate electrical signals in the nerve terminals of afferent fibers from spiral ganglion neurons. These signals are then propagated within the central nervous system (CNS) to mediate the sensation of hearing. Recent studies show that the mechanoelectrical transduction (MET) machinery of hair cells is formed by an ensemble of proteins. Candidate components forming the MET channel have been identified, but none alone fulfills all criteria necessary to define them as pore-forming subunits of the MET channel. We will review here recent findings on the identification and function of proteins that are components of the MET machinery in hair cells and consider remaining open questions.
Collapse
Affiliation(s)
- Christopher L Cunningham
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
| | - Ulrich Müller
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
47
|
Li X, Yu X, Chen X, Liu Z, Wang G, Li C, Wong EYM, Sham MH, Tang J, He J, Xiong W, Liu Z, Huang P. Localization of TMC1 and LHFPL5 in auditory hair cells in neonatal and adult mice. FASEB J 2019; 33:6838-6851. [DOI: 10.1096/fj.201802155rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaofen Li
- Department of Chemical and Biological EngineeringHong Kong University of Science and Technology (HKUST)Hong KongChina
| | - Xiaojie Yu
- Division of Life ScienceHong Kong University of Science and Technology (HKUST)Hong KongChina
| | - Xibing Chen
- Division of Life ScienceHong Kong University of Science and Technology (HKUST)Hong KongChina
| | - Zhengzhao Liu
- Division of Life ScienceHong Kong University of Science and Technology (HKUST)Hong KongChina
| | - Guangqin Wang
- Institute of NeuroscienceChinese Academy of ScienceShanghaiChina
| | - Chao Li
- Institute of NeuroscienceChinese Academy of ScienceShanghaiChina
| | - Elaine Y. M. Wong
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Ear Science Institute AustraliaSubiacoWestern AustraliaAustralia
| | - Mai Har Sham
- Ear Science Institute AustraliaSubiacoWestern AustraliaAustralia
| | - Jie Tang
- Department of PhysiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jufang He
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Wei Xiong
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Zhiyong Liu
- Institute of NeuroscienceChinese Academy of ScienceShanghaiChina
| | - Pingbo Huang
- Department of Chemical and Biological EngineeringHong Kong University of Science and Technology (HKUST)Hong KongChina
- Division of Life ScienceHong Kong University of Science and Technology (HKUST)Hong KongChina
- State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and Technology (HKUST)Hong KongChina
- Shenzhen Research InstituteHong Kong University of Science and Technology (HKUST)Hong KongChina
| |
Collapse
|
48
|
Stawicki TM, Linbo T, Hernandez L, Parkinson L, Bellefeuille D, Rubel EW, Raible DW. The role of retrograde intraflagellar transport genes in aminoglycoside-induced hair cell death. Biol Open 2019; 8:bio.038745. [PMID: 30578252 PMCID: PMC6361216 DOI: 10.1242/bio.038745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sensory hair cells are susceptible to numerous insults, including certain therapeutic medications like aminoglycoside antibiotics, and hearing and balance disorders are often a dose-limiting side effect of these medications. We show that mutations in multiple genes in both the retrograde intraflagellar transport (IFT) motor and adaptor complexes lead to resistance to aminoglycoside-induced hair cell death. These mutations also lead to defects in the entry of both aminoglycosides and the vital dye FM1-43 into hair cells, both processes that depend on hair cell mechanotransduction activity. However, the trafficking of proteins important for mechanotransduction activity is not altered by these mutations. Our data suggest that both retrograde IFT motor and adaptor complex genes are playing a role in aminoglycoside toxicity through affecting aminoglycoside uptake into hair cells. Summary: Here we show that both retrograde intraflagellar transport motor proteins and IFT-A adaptor molecules play a role in aminoglycoside-induced hair cell death, seemingly through regulating aminoglycoside uptake.
Collapse
Affiliation(s)
- Tamara M Stawicki
- Program in Neuroscience, Lafayette College, Easton, PA 18042, USA .,Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Liana Hernandez
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Lauren Parkinson
- Program in Neuroscience, Lafayette College, Easton, PA 18042, USA
| | | | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
49
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
50
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|