1
|
de Leeuw NF, Budhathoki R, Russell LJ, Loerke D, Blankenship JT. Nuclei as mechanical bumpers during epithelial remodeling. J Cell Biol 2024; 223:e202405078. [PMID: 39325019 PMCID: PMC11450824 DOI: 10.1083/jcb.202405078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
The morphogenesis of developing tissues relies on extensive cellular rearrangements in shape, position, and identity. A key process in reshaping tissues is cell intercalation-driven elongation, where epithelial cells align and intercalate along a common axis. Typically, analyses focus on how peripheral cortical forces influence cell shape changes. Less attention is given to how inhomogeneities in internal structures, particularly the nucleus, impact cell shaping. Here, we examine how pulsed contractile and extension dynamics interact with the nucleus in elongating Drosophila embryos. Our data show that tightly packed nuclei in apical layers hinder tissue remodeling/oscillatory behaviors. We identify two mechanisms for resolving internuclear tensions: nuclear deformation and dispersion. Embryos with non-deformable nuclei use nuclear dispersion to maintain near-normal extensile rates, while those with non-dispersible nuclei due to microtubule inhibition exhibit disruptions in contractile behaviors. Disrupting both mechanisms leads to severe tissue extension defects and cell extrusion. These findings highlight the critical role of nuclear shape and positioning in topological remodeling of epithelia.
Collapse
Affiliation(s)
- Noah F. de Leeuw
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
| | - Rashmi Budhathoki
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Liam J. Russell
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
| | | |
Collapse
|
2
|
Yoshioka K, Nakagawa R, Nguyen CLK, Suzuki H, Ishigaki K, Mizuno S, Okiyoneda T, Ebihara S, Murata K. Proximity-dependent biotinylation reveals an interaction between ubiquitin-specific peptidase 46 and centrosome-related proteins. FEBS Open Bio 2024. [PMID: 39482856 DOI: 10.1002/2211-5463.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Protein ubiquitination extensively modulates protein functions and controls various biological processes, such as protein degradation, signal transduction, transcription, and DNA repair. Ubiquitination is a reversible post-translational modification, and deubiquitinating enzymes cleave ubiquitin from proteins. Ubiquitin-specific peptidase 46 (USP46), a deubiquitinase, is highly expressed in the brain and regulates neural functions. Deleting lysine 92 (ΔK92) in USP46 reduces murine depression-like behavior in the tail suspension test. However, the molecular basis for USP46's role in regulating neural function has not yet been fully understood. Here we employed a proximity-dependent biotinylation approach to characterize the USP46 protein interaction partners. Using homology-independent targeted integration (HITI), a genome editing technique, we established knockin cell lines that stably express USP46 wildtype- or ΔK92-biotin ligase fusion protein. We identified 286 candidate interaction partners, including well-known binding partners of USP46. Although there were no obvious differences in the interactome of USP46 between wildtype and ΔK92, a gene ontology analysis revealed that centrosome-related proteins were significantly enriched in the proximal proteins of USP46. Several centrosome-related proteins were bound to USP46 in Neuro2a cells, but their protein expression levels were not affected in the brains of USP46-deficient mice. These results uncover a potential relationship between USP46 and centrosome regulation independently of protein stabilization.
Collapse
Affiliation(s)
- Kazuma Yoshioka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Reiko Nakagawa
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Chi Lieu Kim Nguyen
- Doctoral Program in Human Biology, Degree Programs in Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | - Hayate Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Japan
| | - Kiyohiro Ishigaki
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Shizufumi Ebihara
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kazuya Murata
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Japan
| |
Collapse
|
3
|
Saji T, Endo M, Okada Y, Minami Y, Nishita M. KIF1C facilitates retrograde transport of lysosomes through Hook3 and dynein. Commun Biol 2024; 7:1305. [PMID: 39394274 PMCID: PMC11470034 DOI: 10.1038/s42003-024-07023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Lysosomes, crucial cellular organelles, undergo bidirectional transport along microtubules, mediated by motor proteins such as cytoplasmic dynein-1 (dynein) and various kinesins. While the kinesin-3 family member KIF1C is established in mediating anterograde vesicle transport, its role in lysosomal transport remains unclear. Our study reveals that KIF1C unexpectedly supports the retrograde transport of lysosomes, driven by dynein, and contributes to their perinuclear localization. Notably, while KIF1C facilitates this perinuclear positioning, its motor activity is not required and, instead, exerts an inhibitory effect on this process. Mechanistically, KIF1C facilitates this process by interacting with the dynein-activating adaptor Hook3, which associates with the lysosome-anchored protein RUFY3. This regulatory mechanism is critical for the efficient degradation of cargo in autophagic and endocytic pathways. Our findings identify an unconventional, non-motor role for KIF1C in activating dynein-driven lysosomal transport, expanding our understanding of its functional diversity in cellular trafficking.
Collapse
Affiliation(s)
- Takeshi Saji
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
4
|
Viola V, Chinnappa K, Francis F. Radial glia progenitor polarity in health and disease. Front Cell Dev Biol 2024; 12:1478283. [PMID: 39416687 PMCID: PMC11479994 DOI: 10.3389/fcell.2024.1478283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Radial glia (RG) are the main progenitor cell type in the developing cortex. These cells are highly polarized, with a long basal process spanning the entire thickness of the cortex and acting as a support for neuronal migration. The RG cell terminates by an endfoot that contacts the pial (basal) surface. A shorter apical process also terminates with an endfoot that faces the ventricle, with a primary cilium protruding in the cerebrospinal fluid. These cell domains have particular subcellular compositions that are critical for the correct functioning of RG. When altered, this can affect proper development of the cortex, ultimately leading to cortical malformations, associated with different pathological outcomes. In this review, we focus on the current knowledge concerning the cell biology of these bipolar stem cells and discuss the role of their polarity in health and disease.
Collapse
Affiliation(s)
- Valeria Viola
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| | - Kaviya Chinnappa
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| | - Fiona Francis
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| |
Collapse
|
5
|
Noble MA, Ji Y, Yim KM, Yang JW, Morales M, Abu-Shamma R, Pal A, Poulsen R, Baumgartner M, Noonan JP. Human Accelerated Regions regulate gene networks implicated in apical-to-basal neural progenitor fate transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601407. [PMID: 39005466 PMCID: PMC11244942 DOI: 10.1101/2024.06.30.601407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The evolution of the human cerebral cortex involved modifications in the composition and proliferative potential of the neural stem cell (NSC) niche during brain development. Human Accelerated Regions (HARs) exhibit a significant excess of human-specific sequence changes and have been implicated in human brain evolution. Multiple studies support that HARs include neurodevelopmental enhancers with novel activities in humans, but their biological functions in NSCs have not been empirically assessed at scale. Here we conducted a direct-capture Perturb-seq screen repressing 180 neurodevelopmentally active HARs in human iPSC-derived NSCs with single-cell transcriptional readout. After profiling >188,000 NSCs, we identified a set of HAR perturbations with convergent transcriptional effects on gene networks involved in NSC apicobasal polarity, a cellular process whose precise regulation is critical to the developmental emergence of basal radial glia (bRG), a progenitor population that is expanded in humans. Across multiple HAR perturbations, we found convergent dysregulation of specific apicobasal polarity and adherens junction regulators, including PARD3, ABI2, SETD2 , and PCM1 . We found that the repression of one candidate from the screen, HAR181, as well as its target gene CADM1 , disrupted apical PARD3 localization and NSC rosette formation. Our findings reveal interconnected roles for HARs in NSC biology and cortical development and link specific HARs to processes implicated in human cortical expansion.
Collapse
|
6
|
Zhao X, Wang Y, Mouilleau V, Solak AC, Garcia J, Chen X, Wilkinson CJ, Royer L, Dong Z, Guo S. PCM1 conveys centrosome asymmetry to polarized endosome dynamics in regulating daughter cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599416. [PMID: 38948739 PMCID: PMC11212863 DOI: 10.1101/2024.06.17.599416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Vertebrate radial glia progenitors (RGPs), the principal neural stem cells, balance self-renewal and differentiation through asymmetric cell division (ACD), during which unequal inheritance of centrosomes is observed. Mechanistically, how centrosome asymmetry leads to distinct daughter cell fate remains largely unknown. Here we find that the centrosome protein Pericentriolar Material 1 (Pcm1), asymmetrically distributed at the centrosomes, regulates polarized endosome dynamics and RGP fate. In vivo time-lapse imaging and nanoscale-resolution expansion microscopy of zebrafish embryonic RGPs detect Pcm1 on Notch ligand-containing endosomes, in a complex with the polarity regulator Par-3 and dynein motor. Loss of pcm1 disrupts endosome dynamics, with clonal analysis uncovering increased neuronal production at the expense of progenitors. Pcm1 facilitates an exchange of Rab5b (early) for Rab11a (recycling) endosome markers and promotes the formation of Par-3 and dynein macromolecular complexes on recycling endosomes. Finally, in human-induced pluripotent stem cell-derived brain organoids, PCM1 shows asymmetry and co-localization with PARD3 and RAB11A in mitotic neural progenitors. Our data reveal a new mechanism by which centrosome asymmetry is conveyed by Pcm1 to polarize endosome dynamics and Notch signaling in regulating ACD and progenitor fate.
Collapse
|
7
|
Begar E, Seyrek E, Firat-Karalar EN. Navigating centriolar satellites: the role of PCM1 in cellular and organismal processes. FEBS J 2024. [PMID: 38825736 DOI: 10.1111/febs.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Centriolar satellites are ubiquitous membrane-less organelles that play critical roles in numerous cellular and organismal processes. They were initially discovered through electron microscopy as cytoplasmic granules surrounding centrosomes in vertebrate cells. These structures remained enigmatic until the identification of pericentriolar material 1 protein (PCM1) as their molecular marker, which has enabled their in-depth characterization. Recently, centriolar satellites have come into the spotlight due to their links to developmental and neurodegenerative disorders. This review presents a comprehensive summary of the major advances in centriolar satellite biology, with a focus on studies that investigated their biology associated with the essential scaffolding protein PCM1. We begin by exploring the molecular, cellular, and biochemical properties of centriolar satellites, laying the groundwork for a deeper understanding of their functions and mechanisms at both cellular and organismal levels. We then examine the implications of their dysregulation in various diseases, particularly highlighting their emerging roles in neurodegenerative and developmental disorders, as revealed by organismal models of PCM1. We conclude by discussing the current state of knowledge and posing questions about the adaptable nature of these organelles, thereby setting the stage for future research.
Collapse
Affiliation(s)
- Efe Begar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ece Seyrek
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
8
|
Renaud CC, Nicolau CA, Maghe C, Trillet K, Jardine J, Escot S, David N, Gavard J, Bidère N. Necrosulfonamide causes oxidation of PCM1 and impairs ciliogenesis and autophagy. iScience 2024; 27:109580. [PMID: 38600973 PMCID: PMC11004361 DOI: 10.1016/j.isci.2024.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Centriolar satellites are high-order assemblies, scaffolded by the protein PCM1, that gravitate as particles around the centrosome and play pivotal roles in fundamental cellular processes notably ciliogenesis and autophagy. Despite stringent control mechanisms involving phosphorylation and ubiquitination, the landscape of post-translational modifications shaping these structures remains elusive. Here, we report that necrosulfonamide (NSA), a small molecule known for binding and inactivating the pivotal effector of cell death by necroptosis MLKL, intersects with centriolar satellites, ciliogenesis, and autophagy independently of MLKL. NSA functions as a potent redox cycler and triggers the oxidation and aggregation of PCM1 alongside select partners, while minimally impacting the overall distribution of centriolar satellites. Additionally, NSA-mediated ROS production disrupts ciliogenesis and leads to the accumulation of autophagy markers, partially alleviated by PCM1 deletion. Together, these results identify PCM1 as a redox sensor protein and provide new insights into the interplay between centriolar satellites and autophagy.
Collapse
Affiliation(s)
- Clotilde C.N. Renaud
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Carolina Alves Nicolau
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Clément Maghe
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Kilian Trillet
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Jane Jardine
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sophie Escot
- Laboratoire d’Optique et de Biosciences LOB, Ecole Polytechnique, Palaiseau, France
| | - Nicolas David
- Laboratoire d’Optique et de Biosciences LOB, Ecole Polytechnique, Palaiseau, France
| | - Julie Gavard
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Institut de Cancérologie de l’Ouest (ICO), Saint-Herblain, France
| | - Nicolas Bidère
- Team SOAP, CRCINA, Nantes University, INSERM, CNRS, Université d’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
9
|
Renaud CCN, Trillet K, Jardine J, Merlet L, Renoult O, Laurent-Blond M, Catinaud Z, Pecqueur C, Gavard J, Bidère N. The centrosomal protein 131 participates in the regulation of mitochondrial apoptosis. Commun Biol 2023; 6:1271. [PMID: 38102401 PMCID: PMC10724242 DOI: 10.1038/s42003-023-05676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Centriolar satellites are multiprotein aggregates that orbit the centrosome and govern centrosome homeostasis and primary cilia formation. In contrast to the scaffold PCM1, which nucleates centriolar satellites and has been linked to microtubule dynamics, autophagy, and intracellular trafficking, the functions of its interactant CEP131 beyond ciliogenesis remain unclear. Using a knockout strategy in a non-ciliary T-cell line, we report that, although dispensable for centriolar satellite assembly, CEP131 participates in optimal tubulin glycylation and polyglutamylation, and microtubule regrowth. Our unsupervised label-free proteomic analysis by quantitative mass spectrometry further uncovered mitochondrial and apoptotic signatures. CEP131-deficient cells showed an elongated mitochondrial network. Upon cell death inducers targeting mitochondria, knockout cells displayed delayed cytochrome c release from mitochondria, subsequent caspase activation, and apoptosis. This mitochondrial permeabilization defect was intrinsic, and replicable in vitro with isolated organelles. These findings extend CEP131 functions to life-and-death decisions and propose ways to interfere with mitochondrial apoptosis.
Collapse
Affiliation(s)
- Clotilde C N Renaud
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Kilian Trillet
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Jane Jardine
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Laura Merlet
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Ophélie Renoult
- Team PETRY, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
| | - Mélanie Laurent-Blond
- Team PETRY, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
| | - Zoé Catinaud
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Claire Pecqueur
- Team PETRY, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
- Institut de Cancérologie de l'Ouest (ICO), Saint-Herblain, France
| | - Nicolas Bidère
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France.
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France.
| |
Collapse
|
10
|
Wimmer R, Baffet AD. The microtubule cytoskeleton of radial glial progenitor cells. Curr Opin Neurobiol 2023; 80:102709. [PMID: 37003105 DOI: 10.1016/j.conb.2023.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
A high number of genetic mutations associated with cortical malformations are found in genes coding for microtubule-related factors. This has stimulated research to understand how the various microtubule-based processes are regulated to build a functional cerebral cortex. Here, we focus our review on the radial glial progenitor cells, the stem cells of the developing neocortex, summarizing research mostly performed in rodents and humans. We highlight how the centrosomal and acentrosomal microtubule networks are organized during interphase to support polarized transport and proper attachment of the apical and basal processes. We describe the molecular mechanism for interkinetic nuclear migration (INM), a microtubule-dependent oscillation of the nucleus. Finally, we describe how the mitotic spindle is built to ensure proper chromosome segregation, with a strong focus on factors mutated in microcephaly.
Collapse
Affiliation(s)
- Ryszard Wimmer
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France. https://twitter.com/RyWim
| | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France; Institut national de la santé et de la recherche médicale (INSERM), France.
| |
Collapse
|
11
|
Tous C, Muñoz-Redondo C, Bravo-Gil N, Gavilan A, Fernández RM, Antiñolo J, Navarro-González E, Antiñolo G, Borrego S. Identification of Novel Candidate Genes for Familial Thyroid Cancer by Whole Exome Sequencing. Int J Mol Sci 2023; 24:ijms24097843. [PMID: 37175550 PMCID: PMC10178269 DOI: 10.3390/ijms24097843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Thyroid carcinoma (TC) can be classified as medullary (MTC) and non-medullary (NMTC). While most TCs are sporadic, familial forms of MTC and NMTC also exist (less than 1% and 3-9% of all TC cases, respectively). Germline mutations in RET are found in more than 95% of familial MTC, whereas familial NMTC shows a high degree of genetic heterogeneity. Herein, we aimed to identify susceptibility genes for familial NMTC and non-RET MTC by whole exome sequencing in 58 individuals belonging to 18 Spanish families with these carcinomas. After data analysis, 53 rare candidate segregating variants were identified in 12 of the families, 7 of them located in previously TC-associated genes. Although no common mutated genes were detected, biological processes regulating functions such as cell proliferation, differentiation, survival and adhesion were enriched. The reported functions of the identified genes together with pathogenicity and structural predictions, reinforced the candidacy of 36 of them, suggesting new loci related to TC and novel genotype-phenotype correlations. Therefore, our strategy provides clues to possible molecular mechanisms underlying familial forms of MTC and NMTC. These new molecular findings and clinical data of patients may be helpful for the early detection, development of tailored therapies and optimizing patient management.
Collapse
Affiliation(s)
- Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Carmen Muñoz-Redondo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Angela Gavilan
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Juan Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Elena Navarro-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Department of Endocrinology and Nutrition, University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
12
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
13
|
Renaud CCN, Bidère N. Function of Centriolar Satellites and Regulation by Post-Translational Modifications. Front Cell Dev Biol 2021; 9:780502. [PMID: 34888313 PMCID: PMC8650133 DOI: 10.3389/fcell.2021.780502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Centriolar satellites are small membrane-less granules that gravitate around the centrosome. Recent advances in defining the satellite proteome and interactome have unveiled hundreds of new satellite components thus illustrating the complex nature of these particles. Although initially linked to the homeostasis of centrosome and the formation of primary cilia, these composite and highly dynamic structures appear to participate in additional cellular processes, such as proteostasis, autophagy, and cellular stress. In this review, we first outline the main features and many roles of centriolar satellites. We then discuss how post-translational modifications, such as phosphorylation and ubiquitination, shape their composition and functions. This is of particular interest as interfering with these processes may provide ways to manipulate these structures.
Collapse
Affiliation(s)
| | - Nicolas Bidère
- CNRS, CRCINA, INSERM, Université de Nantes, Nantes, France
| |
Collapse
|
14
|
Petitpierre M, Stenz L, Paoloni-Giacobino A. Epigenomic changes after acupuncture treatment in patients suffering from burnout. Complement Med Res 2021; 29:109-119. [PMID: 34875647 DOI: 10.1159/000521347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The effects of acupuncture treatment in patients suffering from burnout may imply an epigenetic control mediated by DNA methylation changes. In this observational study, a genome-wide characterization of epigenetic changes in blood DNA, before and after acupuncture treatment, was performed in a cohort of 11 patients suffering from burnout. METHODS Burnout was assessed using the Maslach Burnout Inventory (MBI) and DNA was extracted from blood samples and analyzed by Illumina EPIC BeadChip. RESULTS Before acupuncture, all patients suffered of emotional exhaustion (EE) (MBI-EE score, 44±6), 81% suffered of depersonalization (DP) (MBI-DP score, 16±6), and 72% of low feelings of personal accomplishment (PA) (MBI-PA score, 29±9). After acupuncture, all MBI dimensions improved significantly (EE, 16±11 [p=1.5*10-4]; DP, 4±5 [p=5.3*10-4]; and PA, 40±6 [p=4.1*10-3]). For each patient, both methylomes obtained before and after acupuncture co-clustered in the multidimensional scaling plot, indicating a high level of similarity. Genes corresponding to the 10 most differentially methylated CpGs showed enrichment in the brain dopaminergic signalling, steroid synthesis and in the insulin sensitivity pathways. CONCLUSION Acupuncture treatment was found to be highly effective on all burnout dimensions and the epigenetic targets identified were involved in some major disturbances of this syndrome.
Collapse
Affiliation(s)
- Marc Petitpierre
- General Medicine, Acupuncture and Chinese Pharmacotherapy Office, Rolle, Switzerland
| | - Ludwig Stenz
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland,
| | | |
Collapse
|
15
|
Abdelrahman AH, Eid OM, Ibrahim MH, Abd El-Fattah SN, Eid MM, Meguid NA. Evaluation of circulating miRNAs and mRNAs expression patterns in autism spectrum disorder. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism spectrum disorder is a condition related to brain development that affects a person’s perception and socialization, resulting in problems in social interaction and communication. It has no single known cause, yet several different genes appear to be involved in autism. As a genetically complex disease, dysregulation of miRNA expression and miRNA–mRNA interactions might be a feature of autism spectrum disorder. The aim of the current study was to investigate the expression profile of circulating miRNA-128, miRNA-7 and SHANK gene family in ASD patients and to assess the possible influence of miRNA-128 and miRNA-7 on SHANK genes, which might provide an insight into the pathogenic mechanisms of ASD and introduce noninvasive molecular biomarkers for the disease diagnosis and prognosis. Quantitative real-time PCR technique was employed to determine expression levels of miRNA-128, miRNA-7 and SHANK gene family in blood samples of 40 autistic cases along with 30 age- and sex-matched normal volunteer subjects.
Results
Our study revealed a statistical significant upregulation of miRNA-128 expression levels in ASD cases compared to controls (p value < 0.001). A statistical significant difference in SHANK-3 expression was encountered on comparing cases to controls (p value < 0.001). However, miRNA-7 expression showed no significant difference between the studied groups.
Conclusions
MiRNA-128 and SHANK-3 gene are emerging players in the field of ASD. They are promising candidates as noninvasive biomarkers in autism. Future studies are needed to emphasize their pivotal role.
Collapse
|
16
|
Liu WN, Wu KX, Wang XT, Lin LR, Tong ML, Liu LL. LncRNA- ENST00000421645 promotes T cells to secrete IFN-γ by sponging PCM1 in neurosyphilis. Epigenomics 2021; 13:1187-1203. [PMID: 34382410 DOI: 10.2217/epi-2021-0163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Neurosyphilis patients exhibited significant expression of long noncoding RNA (lncRNA) in peripheral blood T lymphocytes. In this study, we further clarified the role of lncRNA-ENST00000421645 in the pathogenic mechanism of neurosyphilis. Methods: lncRNA-ENST00000421645 was transfected into Jurkat-E6-1 cells, namely lentivirus (Lv)-1645 cells. RNA pull-down assay, flow cytometry, RT-qPCR, ELISA (Neobioscience Technology Co Ltd, Shenzhen, China) and RNA immunoprecipitation chip assay were used to analyze the function of lncRNA-ENST00000421645. Results: The expression of IFN-γ in Lv-1645 cells was significantly increased compared to that in Jurkat-E6-1 cells stimulated by phorbol-12-myristate-13-acetate (PMA). Then, it was suggested that lncRNA-ENST00000421645 interacts with PCM1 protein. Silencing PCM1 significantly increased the level of IFN-γ in Lv-1645 cells stimulated by PMA. Conclusion: This study revealed that lncRNA-ENST00000421645 mediates the production of IFN-γ by sponging PCM1 protein after PMA stimulation.
Collapse
Affiliation(s)
- Wen-Na Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China.,Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science & Technology of China, Chengdu, China
| | - Kai-Xuan Wu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao-Tong Wang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medical, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
17
|
Midazolam increases cisplatin-sensitivity in non-small cell lung cancer (NSCLC) via the miR-194-5p/HOOK3 axis. Cancer Cell Int 2021; 21:401. [PMID: 34321010 PMCID: PMC8317376 DOI: 10.1186/s12935-021-02104-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Backgrounds As previously reported, midazolam anesthesia exerts tumor-suppressing effects in non-small cell lung cancer (NSCLC), but the regulating effects of this drug on cisplatin-resistance in NSCLC have not been studied. Thus, we designed this study to investigate this issue and preliminarily delineate the potential molecular mechanisms. Methods We performed MTT assay and trypan blue staining assay to measure cell proliferation and viability. Cell apoptosis was examined by FCM. qRT-PCR and immunoblotting were performed to determine the expression levels of genes. The targeting sites between genes were predicted by bioinformatics analysis and were validated by dual-luciferase reporter gene system assay. Mice tumor-bearing models were established and the tumorigenesis was evaluated by measuring tumor weight and volume. Immunohistochemistry (IHC) was used to examine the pro-proliferative Ki67 protein expressions in mice tumor tissues. Results The cisplatin-resistant NSCLC (CR-NSCLC) cells were treated with high-dose cisplatin (50 μg/ml) and low-dose midazolam (10 μg/ml), and the results showed that midazolam suppressed cell proliferation and viability, and promoted cell apoptosis in cisplatin-treated CR-NSCLC cells. In addition, midazolam enhanced cisplatin-sensitivity in CR-NSCLC cell via modulating the miR-194-5p/hook microtubule-tethering protein 3 (HOOK3) axis. Specifically, midazolam upregulated miR-194-5p, but downregulated HOOK3 in the CR-NSCLC cells, and further results validated that miR-194-5p bound to the 3’ untranslated region (3’UTR) of HOOK3 mRNA for its inhibition. Also, midazolam downregulated HOOK3 in CR-NSCLC cells by upregulating miR-194-5p. Functional experiments validated that both miR-194-5p downregulation and HOOK3 upregulation abrogated the promoting effects of midazolam on cisplatin-sensitivity in CR-NSCLC cells. Conclusions Taken together, this study found that midazolam anesthesia reduced cisplatin-resistance in CR-NSCLC cells by regulating the miR-194-5p/HOOK3 axis, implying that midazolam could be used as adjuvant drug for NSCLC treatment in clinical practices. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02104-6.
Collapse
|
18
|
Wortzel I, Maik-Rachline G, Yadav SS, Hanoch T, Seger R. Mitotic HOOK3 phosphorylation by ERK1c drives microtubule-dependent Golgi destabilization and fragmentation. iScience 2021; 24:102670. [PMID: 34189435 PMCID: PMC8215223 DOI: 10.1016/j.isci.2021.102670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/07/2020] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
ERK1c is an alternatively spliced isoform of ERK1 that specifically regulates mitotic Golgi fragmentation, which allows division of the Golgi during mitosis. We have previously shown that ERK1c translocates to the Golgi during mitosis where it is activated by a resident MEK1b to induce Golgi fragmentation. However, the mechanism of ERK1c functions in the Golgi remained obscure. Here, we searched for ERK1c substrates and identified HOOK3 as a mediator of ERK1c-induced mitotic Golgi fragmentation, which requires a second phosphorylation by AuroraA for its function. In cycling cells, HOOK3 interacts with microtubules (MTs) and links them to the Golgi. Early in mitosis, HOOK3 is phosphorylated by ERK1c and later by AuroraA, resulting in HOOK3 detachment from the MTs, and elevated interaction with GM130. This detachment modulates Golgi stability and allows fragmentation of the Golgi. This study demonstrates a novel mechanism of Golgi apparatus destabilization early in mitosis to allow mitotic progression.
Collapse
Affiliation(s)
- Inbal Wortzel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Galia Maik-Rachline
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Suresh Singh Yadav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
19
|
Odabasi E, Batman U, Firat-Karalar EN. Unraveling the mysteries of centriolar satellites: time to rewrite the textbooks about the centrosome/cilium complex. Mol Biol Cell 2021; 31:866-872. [PMID: 32286929 PMCID: PMC7185976 DOI: 10.1091/mbc.e19-07-0402] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Centriolar satellites are membraneless granules that localize and move around centrosomes and cilia. Once referred to as structures with no obvious function, research in the past decade has identified satellites as key regulators of a wide range of cellular and organismal processes. Importantly, these studies have revealed a substantial overlap between functions, proteomes, and disease links of satellites with centrosomes and cilia. Therefore, satellites are now accepted as the “third component” of the vertebrate centrosome/cilium complex, which profoundly changes the way we think about the assembly, maintenance, and remodeling of the complex at the cellular and organismal levels. In this perspective, we first provide an overview of the cellular and structural complexities of centriolar satellites. We then describe the progress in the identification of the satellite interactome, which have paved the way to a molecular understanding of their mechanism of action and assembly mechanisms. After exploring current insights into their functions as recently described by loss-of-function studies and comparative evolutionary approaches, we discuss major unanswered questions regarding their functional and compositional diversity and their functions outside centrosomes and cilia.
Collapse
Affiliation(s)
- Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Umut Batman
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | | |
Collapse
|
20
|
Clark BS, Miesfeld JB, Flinn MA, Collery RF, Link BA. Dynamic Polarization of Rab11a Modulates Crb2a Localization and Impacts Signaling to Regulate Retinal Neurogenesis. Front Cell Dev Biol 2021; 8:608112. [PMID: 33634099 PMCID: PMC7900515 DOI: 10.3389/fcell.2020.608112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023] Open
Abstract
Interkinetic nuclear migration (IKNM) is the process in which pseudostratified epithelial nuclei oscillate from the apical to basal surface and in phase with the mitotic cycle. In the zebrafish retina, neuroepithelial retinal progenitor cells (RPCs) increase Notch activity with apical movement of the nuclei, and the depth of nuclear migration correlates with the probability that the next cell division will be neurogenic. This study focuses on the mechanisms underlying the relationships between IKNM, cell signaling, and neurogenesis. In particular, we have explored the role IKNM has on endosome biology within RPCs. Through genetic manipulation and live imaging in zebrafish, we find that early (Rab5-positive) and recycling (Rab11a-positive) endosomes polarize in a dynamic fashion within RPCs and with reference to nuclear position. Functional analyses suggest that dynamic polarization of recycling endosomes and their activity within the neuroepithelia modulates the subcellular localization of Crb2a, consequently affecting multiple signaling pathways that impact neurogenesis including Notch, Hippo, and Wnt activities. As nuclear migration is heterogenous and asynchronous among RPCs, Rab11a-affected signaling within the neuroepithelia is modulated in a differential manner, providing mechanistic insight to the correlation of IKNM and selection of RPCs to undergo neurogenesis.
Collapse
Affiliation(s)
- Brian S Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael A Flinn
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
21
|
Wang J, Li T, Wang JL, Xu Z, Meng W, Wu QF. Talpid3-Mediated Centrosome Integrity Restrains Neural Progenitor Delamination to Sustain Neurogenesis by Stabilizing Adherens Junctions. Cell Rep 2020; 33:108495. [DOI: 10.1016/j.celrep.2020.108495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/03/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
|
22
|
Monroe TO, Garrett ME, Kousi M, Rodriguiz RM, Moon S, Bai Y, Brodar SC, Soldano KL, Savage J, Hansen TF, Muzny DM, Gibbs RA, Barak L, Sullivan PF, Ashley-Koch AE, Sawa A, Wetsel WC, Werge T, Katsanis N. PCM1 is necessary for focal ciliary integrity and is a candidate for severe schizophrenia. Nat Commun 2020; 11:5903. [PMID: 33214552 PMCID: PMC7677393 DOI: 10.1038/s41467-020-19637-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 10/13/2020] [Indexed: 12/30/2022] Open
Abstract
The neuronal primary cilium and centriolar satellites have functions in neurogenesis, but little is known about their roles in the postnatal brain. We show that ablation of pericentriolar material 1 in the mouse leads to progressive ciliary, anatomical, psychomotor, and cognitive abnormalities. RNAseq reveals changes in amine- and G-protein coupled receptor pathways. The physiological relevance of this phenotype is supported by decreased available dopamine D2 receptor (D2R) levels and the failure of antipsychotic drugs to rescue adult behavioral defects. Immunoprecipitations show an association with Pcm1 and D2Rs. Finally, we sequence PCM1 in two human cohorts with severe schizophrenia. Systematic modeling of all discovered rare alleles by zebrafish in vivo complementation reveals an enrichment for pathogenic alleles. Our data emphasize a role for the pericentriolar material in the postnatal brain, with progressive degenerative ciliary and behavioral phenotypes; and they support a contributory role for PCM1 in some individuals diagnosed with schizophrenia. The role of ciliary/centriolar components in the postnatal brain is unclear. Here, the authors show via ablation of Pcm1 in mice that degenerative ciliary/centriolar phenotypes induce neuroanatomical and behavioral changes. Sequencing of PCM1 in human cohorts and zebrafish in vivo complementation suggests PCM1 mutations can contribute to schizophrenia.
Collapse
Affiliation(s)
- Tanner O Monroe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Maria Kousi
- MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA.,Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yushi Bai
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven C Brodar
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Karen L Soldano
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Jeremiah Savage
- Center for Translational Data Science, The University of Chicago, Chicago, IL, 60615, USA
| | - Thomas F Hansen
- Department of Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services, Copenhagen, Denmark
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lawrence Barak
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Mental Health, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA.,Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Thomas Werge
- Department of Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services, Copenhagen, Denmark.,iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.,Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Katsanis
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
| |
Collapse
|
23
|
Douanne T, André-Grégoire G, Thys A, Trillet K, Gavard J, Bidère N. CYLD Regulates Centriolar Satellites Proteostasis by Counteracting the E3 Ligase MIB1. Cell Rep 2020; 27:1657-1665.e4. [PMID: 31067453 DOI: 10.1016/j.celrep.2019.04.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor CYLD is a deubiquitinating enzyme that removes non-degradative ubiquitin linkages bound to a variety of signal transduction adaptors. CYLD participates in the formation of primary cilia, a microtubule-based structure that protrudes from the cell body to act as a "sensing antenna." Yet, how exactly CYLD regulates ciliogenesis is not fully understood. Here, we conducted an unbiased proteomic screen of CYLD binding partners and identified components of the centriolar satellites. These small granular structures, tethered to the scaffold protein pericentriolar matrix protein 1 (PCM1), gravitate toward the centrosome and orchestrate ciliogenesis. CYLD knockdown promotes PCM1 degradation and the subsequent dismantling of the centriolar satellites. We found that CYLD marshals the centriolar satellites by deubiquitinating and preventing the E3 ligase Mindbomb 1 (MIB1) from marking PCM1 for proteasomal degradation. These results link CYLD to the regulation of centriolar satellites proteostasis and provide insight into how reversible ubiquitination finely tunes ciliogenesis.
Collapse
Affiliation(s)
- Tiphaine Douanne
- CRCINA, Team SOAP, INSERM, CNRS, Université de Nantes, Université d'Angers, IRS-UN blg, Room 405, 8 quai Moncousu, 44007 Nantes, France
| | - Gwennan André-Grégoire
- CRCINA, Team SOAP, INSERM, CNRS, Université de Nantes, Université d'Angers, IRS-UN blg, Room 405, 8 quai Moncousu, 44007 Nantes, France; Institut de Cancérologie de l'Ouest, Site René Gauducheau, Saint-Herblain, France
| | - An Thys
- CRCINA, Team SOAP, INSERM, CNRS, Université de Nantes, Université d'Angers, IRS-UN blg, Room 405, 8 quai Moncousu, 44007 Nantes, France
| | - Kilian Trillet
- CRCINA, Team SOAP, INSERM, CNRS, Université de Nantes, Université d'Angers, IRS-UN blg, Room 405, 8 quai Moncousu, 44007 Nantes, France
| | - Julie Gavard
- CRCINA, Team SOAP, INSERM, CNRS, Université de Nantes, Université d'Angers, IRS-UN blg, Room 405, 8 quai Moncousu, 44007 Nantes, France; Institut de Cancérologie de l'Ouest, Site René Gauducheau, Saint-Herblain, France
| | - Nicolas Bidère
- CRCINA, Team SOAP, INSERM, CNRS, Université de Nantes, Université d'Angers, IRS-UN blg, Room 405, 8 quai Moncousu, 44007 Nantes, France.
| |
Collapse
|
24
|
Frasca A, Spiombi E, Palmieri M, Albizzati E, Valente MM, Bergo A, Leva B, Kilstrup‐Nielsen C, Bianchi F, Di Carlo V, Di Cunto F, Landsberger N. MECP2 mutations affect ciliogenesis: a novel perspective for Rett syndrome and related disorders. EMBO Mol Med 2020; 12:e10270. [PMID: 32383329 PMCID: PMC7278541 DOI: 10.15252/emmm.201910270] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in MECP2 cause several neurological disorders of which Rett syndrome (RTT) represents the best-defined condition. Although mainly working as a transcriptional repressor, MeCP2 is a multifunctional protein revealing several activities, the involvement of which in RTT remains obscure. Besides being mainly localized in the nucleus, MeCP2 associates with the centrosome, an organelle from which primary cilia originate. Primary cilia function as "sensory antennae" protruding from most cells, and a link between primary cilia and mental illness has recently been reported. We herein demonstrate that MeCP2 deficiency affects ciliogenesis in cultured cells, including neurons and RTT fibroblasts, and in the mouse brain. Consequently, the cilium-related Sonic Hedgehog pathway, which is essential for brain development and functioning, is impaired. Microtubule instability participates in these phenotypes that can be rescued by HDAC6 inhibition together with the recovery of RTT-related neuronal defects. Our data indicate defects of primary cilium as a novel pathogenic mechanism that by contributing to the clinical features of RTT might impact on proper cerebellum/brain development and functioning, thus providing a novel therapeutic target.
Collapse
Affiliation(s)
- Angelisa Frasca
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Eleonora Spiombi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Michela Palmieri
- Neuroscience DivisionIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Elena Albizzati
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Maria Maddalena Valente
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Anna Bergo
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Barbara Leva
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Charlotte Kilstrup‐Nielsen
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | | | - Valerio Di Carlo
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri OttolenghiOrbassanoItaly
- Department of NeuroscienceUniversity of TorinoTorinoItaly
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
- Neuroscience DivisionIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
25
|
So C, Seres KB, Steyer AM, Mönnich E, Clift D, Pejkovska A, Möbius W, Schuh M. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 2020; 364:364/6447/eaat9557. [PMID: 31249032 DOI: 10.1126/science.aat9557] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Mammalian oocytes segregate chromosomes with a microtubule spindle that lacks centrosomes, but the mechanisms by which acentrosomal spindles are organized and function are largely unclear. In this study, we identify a conserved subcellular structure in mammalian oocytes that forms by phase separation. This structure, which we term the liquid-like meiotic spindle domain (LISD), permeates the spindle poles and forms dynamic protrusions that extend well beyond the spindle. The LISD selectively concentrates multiple microtubule regulatory factors and allows them to diffuse rapidly within the spindle volume. Disruption of the LISD via different means disperses these factors and leads to severe spindle assembly defects. Our data suggest a model whereby the LISD promotes meiotic spindle assembly by serving as a reservoir that sequesters and mobilizes microtubule regulatory factors in proximity to spindle microtubules.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.,Bourn Hall Clinic, Cambridge CB23 2TN, UK
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Eike Mönnich
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anastasija Pejkovska
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
26
|
Meka DP, Scharrenberg R, Calderon de Anda F. Emerging roles of the centrosome in neuronal development. Cytoskeleton (Hoboken) 2020; 77:84-96. [DOI: 10.1002/cm.21593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/16/2019] [Accepted: 01/04/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Durga Praveen Meka
- RG Neuronal Development, Center for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Robin Scharrenberg
- RG Neuronal Development, Center for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Froylan Calderon de Anda
- RG Neuronal Development, Center for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐Eppendorf Hamburg Germany
| |
Collapse
|
27
|
Prosser SL, Pelletier L. Centriolar satellite biogenesis and function in vertebrate cells. J Cell Sci 2020; 133:133/1/jcs239566. [PMID: 31896603 DOI: 10.1242/jcs.239566] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Centriolar satellites are non-membranous cytoplasmic granules that concentrate in the vicinity of the centrosome, the major microtubule-organizing centre (MTOC) in animal cells. Originally assigned as conduits for the transport of proteins towards the centrosome and primary cilium, the complexity of satellites is starting to become apparent. Recent studies defined the satellite proteome and interactomes, placing hundreds of proteins from diverse pathways in association with satellites. In addition, studies on cells lacking satellites have revealed that the centrosome can assemble in their absence, whereas studies on acentriolar cells have demonstrated that satellite assembly is independent from an intact MTOC. A role for satellites in ciliogenesis is well established; however, their contribution to other cellular functions is poorly understood. In this Review, we discuss the developments in our understanding of centriolar satellite assembly and function, and why satellites are rapidly becoming established as governors of multiple cellular processes. We highlight the composition and biogenesis of satellites and what is known about the regulation of these aspects. Furthermore, we discuss the evolution from thinking of satellites as mere facilitators of protein trafficking to the centrosome to thinking of them being key regulators of protein localization and cellular proteostasis for a diverse set of pathways, making them of broader interest to fields beyond those focused on centrosomes and ciliogenesis.
Collapse
Affiliation(s)
- Suzanna L Prosser
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
28
|
Meka DP, Scharrenberg R, Zhao B, Kobler O, König T, Schaefer I, Schwanke B, Klykov S, Richter M, Eggert D, Windhorst S, Dotti CG, Kreutz MR, Mikhaylova M, Calderon de Anda F. Radial somatic F-actin organization affects growth cone dynamics during early neuronal development. EMBO Rep 2019; 20:e47743. [PMID: 31650708 PMCID: PMC6893363 DOI: 10.15252/embr.201947743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022] Open
Abstract
The centrosome is thought to be the major neuronal microtubule-organizing center (MTOC) in early neuronal development, producing microtubules with a radial organization. In addition, albeit in vitro, recent work showed that isolated centrosomes could serve as an actin-organizing center, raising the possibility that neuronal development may, in addition, require a centrosome-based actin radial organization. Here, we report, using super-resolution microscopy and live-cell imaging of cultured rodent neurons, F-actin organization around the centrosome with dynamic F-actin aster-like structures with F-actin fibers extending and retracting actively. Photoactivation/photoconversion experiments and molecular manipulations of F-actin stability reveal a robust flux of somatic F-actin toward the cell periphery. Finally, we show that somatic F-actin intermingles with centrosomal PCM-1 (pericentriolar material 1 protein) satellites. Knockdown of PCM-1 and disruption of centrosomal activity not only affect F-actin dynamics near the centrosome but also in distal growth cones. Collectively, the data show a radial F-actin organization during early neuronal development, which might be a cellular mechanism for providing peripheral regions with a fast and continuous source of actin polymers, hence sustaining initial neuronal development.
Collapse
Affiliation(s)
- Durga Praveen Meka
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robin Scharrenberg
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bing Zhao
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Oliver Kobler
- Combinatorial Neuroimaging Core Facility (CNI)Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Theresa König
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Irina Schaefer
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Birgit Schwanke
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sergei Klykov
- Emmy‐Noether Group “Neuronal Protein Transport”Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Melanie Richter
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dennis Eggert
- Max Planck Institute for the Structure and Dynamics of MatterHamburgGermany
- Heinrich Pette Institute—Leibniz Institute for Experimental VirologyHamburgGermany
| | - Sabine Windhorst
- Department of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Carlos G Dotti
- Centro de Biología Molecular “Severo Ochoa”CSIC‐UAMMadridSpain
| | - Michael R Kreutz
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Leibniz Guest Group “Dendritic Organelles and Synaptic Function”Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marina Mikhaylova
- Emmy‐Noether Group “Neuronal Protein Transport”Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Froylan Calderon de Anda
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
29
|
Breen MS, Dobbyn A, Li Q, Roussos P, Hoffman GE, Stahl E, Chess A, Sklar P, Li JB, Devlin B, Buxbaum JD. Global landscape and genetic regulation of RNA editing in cortical samples from individuals with schizophrenia. Nat Neurosci 2019; 22:1402-1412. [PMID: 31455887 PMCID: PMC6791127 DOI: 10.1038/s41593-019-0463-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
RNA editing critically regulates neurodevelopment and normal neuronal function. The global landscape of RNA editing was surveyed across 364 schizophrenia cases and 383 control postmortem brain samples from the CommonMind Consortium, comprising two regions: dorsolateral prefrontal cortex and anterior cingulate cortex. In schizophrenia, RNA editing sites in genes encoding AMPA-type glutamate receptors and postsynaptic density proteins were less edited, whereas those encoding translation initiation machinery were edited more. These sites replicate between brain regions, map to 3'-untranslated regions and intronic regions, share common sequence motifs and overlap with binding sites for RNA-binding proteins crucial for neurodevelopment. These findings cross-validate in hundreds of non-overlapping dorsolateral prefrontal cortex samples. Furthermore, ~30% of RNA editing sites associate with cis-regulatory variants (editing quantitative trait loci or edQTLs). Fine-mapping edQTLs with schizophrenia risk loci revealed co-localization of eleven edQTLs with six loci. The findings demonstrate widespread altered RNA editing in schizophrenia and its genetic regulation, and suggest a causal and mechanistic role of RNA editing in schizophrenia neuropathology.
Collapse
Affiliation(s)
- Michael S Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Amanda Dobbyn
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technologies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eli Stahl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technologies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew Chess
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technologies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Sklar
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technologies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Ko HR, Jin EJ, Lee SB, Kim CK, Yun T, Cho SW, Park KW, Ahn JY. SIAH1 ubiquitin ligase mediates ubiquitination and degradation of Akt3 in neural development. J Biol Chem 2019; 294:15435-15445. [PMID: 31471318 DOI: 10.1074/jbc.ra119.009618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Indexed: 01/17/2023] Open
Abstract
Akt signaling is an important regulator of neural development, but the distinctive function of Akt isoforms in brain development presents a challenge. Here we show Siah1 as an ubiquitin ligase that preferentially interacts with Akt3 and facilitates ubiquitination and degradation of Akt3. Akt3 is enriched in the axonal shaft and branches but not growth cone tips, where Siah1 is prominently present. Depletion of Siah1 enhanced Akt3 levels in the soma and axonal tips, eliciting multiple branching. Brain-specific somatic mutation in Akt3-E17K escapes from Siah1-mediated degradation and causes improper neural development with dysmorphic neurons. Remarkably, coexpression of Siah1 with Akt3-WT restricted disorganization of neural development is caused by Akt3 overexpression, whereas forced expression of Siah1 with the Akt3-E17K mutant fails to cope with malformation of neural development. These findings demonstrate that Siah1 limits Akt3 turnover during brain development and that this event is essential for normal organization of the neural network.
Collapse
Affiliation(s)
- Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Sang Bae Lee
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032
| | - Chung Kwon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Taegwan Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul 05505, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
31
|
Jin Y, Ni S. miR‐496 remedies hypoxia reoxygenation–induced H9c2 cardiomyocyte apoptosis via Hook3‐targeted PI3k/Akt/mTOR signaling pathway activation. J Cell Biochem 2019; 121:698-712. [PMID: 31436348 DOI: 10.1002/jcb.29316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yongping Jin
- Department of General Practice The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1, Shangcheng Road Yiwu City Zhejiang Province Peoples R China
| | - Shimao Ni
- Department of Cardiology Yiwu Central Hospital, N519, Nanmen Road Yiwu City Zhejiang Province Peoples R China
| |
Collapse
|
32
|
Odabasi E, Gul S, Kavakli IH, Firat-Karalar EN. Centriolar satellites are required for efficient ciliogenesis and ciliary content regulation. EMBO Rep 2019; 20:embr.201947723. [PMID: 31023719 PMCID: PMC6549029 DOI: 10.15252/embr.201947723] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Centriolar satellites are ubiquitous in vertebrate cells. They have recently emerged as key regulators of centrosome/cilium biogenesis, and their mutations are linked to ciliopathies. However, their precise functions and mechanisms of action remain poorly understood. Here, we generated a kidney epithelial cell line (IMCD3) lacking satellites by CRISPR/Cas9-mediated PCM1 deletion and investigated the cellular and molecular consequences of satellite loss. Cells lacking satellites still formed full-length cilia but at significantly lower numbers, with changes in the centrosomal and cellular levels of key ciliogenesis factors. Using these cells, we identified new ciliary functions of satellites such as regulation of ciliary content, Hedgehog signaling, and epithelial cell organization in three-dimensional cultures. However, other functions of satellites, namely proliferation, cell cycle progression, and centriole duplication, were unaffected in these cells. Quantitative transcriptomic and proteomic profiling revealed that loss of satellites affects transcription scarcely, but significantly alters the proteome. Importantly, the centrosome proteome mostly remains unaltered in the cells lacking satellites. Together, our findings identify centriolar satellites as regulators of efficient cilium assembly and function and provide insight into disease mechanisms of ciliopathies.
Collapse
Affiliation(s)
- Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seref Gul
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | - Ibrahim H Kavakli
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | | |
Collapse
|
33
|
Dwivedi D, Chawla P, Sharma M. Incorporating Motility in the Motor: Role of the Hook Protein Family in Regulating Dynein Motility. Biochemistry 2019; 58:1026-1031. [PMID: 30702276 DOI: 10.1021/acs.biochem.8b01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytoplasmic dynein is a retrograde microtubule-based motor transporting cellular cargo, including organelles, vesicular intermediates, RNA granules, and proteins, thus regulating their subcellular distribution and function. Mammalian dynein associates with dynactin, a multisubunit protein complex that is necessary for the processive motility of dynein along the microtubule tracks. Recent studies have shown that the interaction between dynein and dynactin is enhanced in the presence of a coiled-coil activating adaptor protein, which performs dual functions of recruiting dynein and dynactin to their cargoes and inducing the superprocessive motility of the motor complex. One such family of coiled-coil activating adaptor proteins is the Hook family of proteins that are conserved across evolution with three paralogs in the case of mammals, namely, HOOK1-HOOK3. This Perspective aims to provide an overview of the Hook protein structure and the cellular functions of Hook proteins, with an emphasis on the recent developments in understanding their role as activating dynein adaptors.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali , Punjab 140306 , India
| | - Prateek Chawla
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali , Punjab 140306 , India
| | - Mahak Sharma
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali , Punjab 140306 , India
| |
Collapse
|
34
|
Saade M, Blanco-Ameijeiras J, Gonzalez-Gobartt E, Martí E. A centrosomal view of CNS growth. Development 2018; 145:145/21/dev170613. [DOI: 10.1242/dev.170613] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Embryonic development of the central nervous system (CNS) requires the proliferation of neural progenitor cells to be tightly regulated, allowing the formation of an organ with the right size and shape. This includes regulation of both the spatial distribution of mitosis and the mode of cell division. The centrosome, which is the main microtubule-organizing centre of animal cells, contributes to both of these processes. Here, we discuss the impact that centrosome-mediated control of cell division has on the shape of the overall growing CNS. We also review the intrinsic properties of the centrosome, both in terms of its molecular composition and its signalling capabilities, and discuss the fascinating notion that intrinsic centrosomal asymmetries in dividing neural progenitor cells are instructive for neurogenesis. Finally, we discuss the genetic links between centrosome dysfunction during development and the aetiology of microcephaly.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Jose Blanco-Ameijeiras
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elena Gonzalez-Gobartt
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
35
|
McKenzie CW, Preston CC, Finn R, Eyster KM, Faustino RS, Lee L. Strain-specific differences in brain gene expression in a hydrocephalic mouse model with motile cilia dysfunction. Sci Rep 2018; 8:13370. [PMID: 30190587 PMCID: PMC6127338 DOI: 10.1038/s41598-018-31743-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023] Open
Abstract
Congenital hydrocephalus results from cerebrospinal fluid accumulation in the ventricles of the brain and causes severe neurological damage, but the underlying causes are not well understood. It is associated with several syndromes, including primary ciliary dyskinesia (PCD), which is caused by dysfunction of motile cilia. We previously demonstrated that mouse models of PCD lacking ciliary proteins CFAP221, CFAP54 and SPEF2 all have hydrocephalus with a strain-dependent severity. While morphological defects are more severe on the C57BL/6J (B6) background than 129S6/SvEvTac (129), cerebrospinal fluid flow is perturbed on both backgrounds, suggesting that abnormal cilia-driven flow is not the only factor underlying the hydrocephalus phenotype. Here, we performed a microarray analysis on brains from wild type and nm1054 mice lacking CFAP221 on the B6 and 129 backgrounds. Expression differences were observed for a number of genes that cluster into distinct groups based on expression pattern and biological function, many of them implicated in cellular and biochemical processes essential for proper brain development. These include genes known to be functionally relevant to congenital hydrocephalus, as well as formation and function of both motile and sensory cilia. Identification of these genes provides important clues to mechanisms underlying congenital hydrocephalus severity.
Collapse
Affiliation(s)
- Casey W McKenzie
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Rozzy Finn
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Kathleen M Eyster
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, 57069, USA
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD, 57105, USA
| | - Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
36
|
Abstract
Cytoplasmic dynein 1 is an important microtubule-based motor in many eukaryotic cells. Dynein has critical roles both in interphase and during cell division. Here, we focus on interphase cargoes of dynein, which include membrane-bound organelles, RNAs, protein complexes and viruses. A central challenge in the field is to understand how a single motor can transport such a diverse array of cargoes and how this process is regulated. The molecular basis by which each cargo is linked to dynein and its cofactor dynactin has started to emerge. Of particular importance for this process is a set of coiled-coil proteins - activating adaptors - that both recruit dynein-dynactin to their cargoes and activate dynein motility.
Collapse
|
37
|
Liu Q, Zhang L, Li H. New Insights: MicroRNA Function in CNS Development and Psychiatric Diseases. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40495-018-0129-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Sun D, Zhou X, Yu HL, He XX, Guo WX, Xiong WC, Zhu XJ. Regulation of neural stem cell proliferation and differentiation by Kinesin family member 2a. PLoS One 2017; 12:e0179047. [PMID: 28591194 PMCID: PMC5462413 DOI: 10.1371/journal.pone.0179047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/23/2017] [Indexed: 12/03/2022] Open
Abstract
In the developing neocortex, cells in the ventricular/subventricular zone are largely multipotent neural stem cells and neural progenitor cells. These cells undergo self-renewal at the early stage of embryonic development to amplify the progenitor pool and subsequently differentiate into neurons. It is thus of considerable interest to investigate mechanisms controlling the switch from neural stem cells or neural progenitor cells to neurons. Here, we present evidence that Kif2a, a member of the Kinesin-13 family, plays a role in regulating the proliferation and differentiation of neural stem cells or neural progenitor cells at embryonic day 13.5. Silencing Kif2a by use of in utero electroporation of Kif2a shRNA reduced neural stem cells proliferation or self-renewal but increased neuronal differentiation. We further found that knockdown of Kif2a decreased the protein level of β-catenin, which is a critical molecule for neocortical neurogenesis. Together, these results reveal an important function of Kif2a in embryonic neocortical neurogenesis.
Collapse
Affiliation(s)
- Dong Sun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, Georgia, United States of America
| | - Xue Zhou
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, Georgia, United States of America
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Wei-Xiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, Georgia, United States of America
- * E-mail: (X-JZ); (W-CX)
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
- * E-mail: (X-JZ); (W-CX)
| |
Collapse
|
39
|
Ozdian T, Holub D, Maceckova Z, Varanasi L, Rylova G, Rehulka J, Vaclavkova J, Slavik H, Moudry P, Znojek P, Stankova J, de Sanctis JB, Hajduch M, Dzubak P. Proteomic profiling reveals DNA damage, nucleolar and ribosomal stress are the main responses to oxaliplatin treatment in cancer cells. J Proteomics 2017; 162:73-85. [DOI: 10.1016/j.jprot.2017.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
|
40
|
Norden C. Pseudostratified epithelia - cell biology, diversity and roles in organ formation at a glance. J Cell Sci 2017; 130:1859-1863. [PMID: 28455413 DOI: 10.1242/jcs.192997] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pseudostratified epithelia (PSE) are widespread and diverse tissue arrangements, and many PSE are organ precursors in a variety of organisms. While cells in PSE, like other epithelial cells, feature apico-basal polarity, they generally are more elongated and their nuclei are more densely packed within the tissue. In addition, nuclei in PSE undergo interkinetic nuclear migration (IKNM, also referred to as INM), whereby all mitotic events occur at the apical surface of the elongated epithelium. Previous reviews have focused on the links between IKNM and the cell cycle, as well as the relationship between IKNM and neurogenesis, which will not be elaborated on here. Instead, in this Cell Science at a Glance article and the accompanying poster, I will discuss the cell biology of PSEs, highlighting how differences in PSE architecture could influence cellular behaviour, especially IKNM. Furthermore, I will summarize what we know about the links between apical mitosis in PSE and tissue integrity and maturation.
Collapse
Affiliation(s)
- Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| |
Collapse
|
41
|
Zheng W. Probing the Energetics of Dynactin Filament Assembly and the Binding of Cargo Adaptor Proteins Using Molecular Dynamics Simulation and Electrostatics-Based Structural Modeling. Biochemistry 2016; 56:313-323. [PMID: 27976861 DOI: 10.1021/acs.biochem.6b01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dynactin, a large multiprotein complex, binds with the cytoplasmic dynein-1 motor and various adaptor proteins to allow recruitment and transportation of cellular cargoes toward the minus end of microtubules. The structure of the dynactin complex is built around an actin-like minifilament with a defined length, which has been visualized in a high-resolution structure of the dynactin filament determined by cryo-electron microscopy (cryo-EM). To understand the energetic basis of dynactin filament assembly, we used molecular dynamics simulation to probe the intersubunit interactions among the actin-like proteins, various capping proteins, and four extended regions of the dynactin shoulder. Our simulations revealed stronger intersubunit interactions at the barbed and pointed ends of the filament and involving the extended regions (compared with the interactions within the filament), which may energetically drive filament termination by the capping proteins and recruitment of the actin-like proteins by the extended regions, two key features of the dynactin filament assembly process. Next, we modeled the unknown binding configuration among dynactin, dynein tails, and a number of coiled-coil adaptor proteins (including several Bicaudal-D and related proteins and three HOOK proteins), and predicted a key set of charged residues involved in their electrostatic interactions. Our modeling is consistent with previous findings of conserved regions, functional sites, and disease mutations in the adaptor proteins and will provide a structural framework for future functional and mutational studies of these adaptor proteins. In sum, this study yielded rich structural and energetic information about dynactin and associated adaptor proteins that cannot be directly obtained from the cryo-EM structures with limited resolutions.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo , Buffalo, New York 14260, United States
| |
Collapse
|
42
|
Shorbagi S, Brown IR. Dynamics of the association of heat shock protein HSPA6 (Hsp70B') and HSPA1A (Hsp70-1) with stress-sensitive cytoplasmic and nuclear structures in differentiated human neuronal cells. Cell Stress Chaperones 2016; 21:993-1003. [PMID: 27527722 PMCID: PMC5083669 DOI: 10.1007/s12192-016-0724-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/11/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins (Hsps) are cellular repair agents that counter the effects of protein misfolding that is a characteristic feature of neurodegenerative diseases. HSPA1A (Hsp70-1) is a widely studied member of the HSPA (Hsp70) family. The little-studied HSPA6 (Hsp70B') is present in the human genome and absent in mouse and rat; hence, it is missing in current animal models of neurodegenerative diseases. Differentiated human neuronal SH-SY5Y cells were employed to compare the dynamics of the association of YFP-tagged HSPA6 and HSPA1A with stress-sensitive cytoplasmic and nuclear structures. Following thermal stress, live-imaging confocal microscopy and Fluorescence Recovery After Photobleaching (FRAP) demonstrated that HSPA6 displayed a prolonged and more dynamic association, compared to HSPA1A, with centrioles that play critical roles in neuronal polarity and migration. HSPA6 and HSPA1A also targeted nuclear speckles, rich in RNA splicing factors, and the granular component of the nucleolus that is involved in rRNA processing and ribosomal subunit assembly. HSPA6 and HSPA1A displayed similar FRAP kinetics in their interaction with nuclear speckles and the nucleolus. Subsequently, during the recovery from neuronal stress, HSPA6, but not HSPA1A, localized with the periphery of nuclear speckles (perispeckles) that have been characterized as transcription sites. The stress-induced association of HSPA6 with perispeckles displayed the greatest dynamism compared to the interaction of HSPA6 or HSPA1A with other stress-sensitive cytoplasmic and nuclear structures. This suggests involvement of HSPA6 in transcriptional recovery of human neurons from cellular stress that is not apparent for HSPA1A.
Collapse
Affiliation(s)
- Sadek Shorbagi
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
43
|
Pallesi-Pocachard E, Bazellieres E, Viallat-Lieutaud A, Delgrossi MH, Barthelemy-Requin M, Le Bivic A, Massey-Harroche D. Hook2, a microtubule-binding protein, interacts with Par6α and controls centrosome orientation during polarized cell migration. Sci Rep 2016; 6:33259. [PMID: 27624926 PMCID: PMC5021942 DOI: 10.1038/srep33259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Polarity protein complexes function during polarized cell migration and a subset of these proteins localizes to the reoriented centrosome during this process. Despite these observations, the mechanisms behind the recruitment of these polarity complexes such as the aPKC/PAR6α complex to the centrosome are not well understood. Here we identify Hook2 as an interactor for the aPKC/PAR6α complex that functions to localize this complex at the centrosome. We first demonstrate that Hook2 is essential for the polarized Golgi re-orientation towards the migration front. Depletion of Hook2 results in a decrease of PAR6α at the centrosome during cell migration, while overexpression of Hook2 in cells induced the formation of aggresomes with the recruitment of PAR6α, aPKC and PAR3. In addition, we demonstrate that the interaction between the C-terminal domain of Hook2 and the aPKC-binding domain of PAR6α localizes PAR6α to the centrosome during cell migration. Our data suggests that Hook2, a microtubule binding protein, plays an important role in the regulation of PAR6α recruitment to the centrosome to bridge microtubules and the aPKC/PAR complex. This data reveals how some of the polarity protein complexes are recruited to the centrosome and might regulate pericentriolar and microtubule organization and potentially impact on polarized migration.
Collapse
Affiliation(s)
- Emilie Pallesi-Pocachard
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - Elsa Bazellieres
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - Annelise Viallat-Lieutaud
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - Marie-Hélène Delgrossi
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - Magali Barthelemy-Requin
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - André Le Bivic
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - Dominique Massey-Harroche
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| |
Collapse
|
44
|
Hori A, Toda T. Regulation of centriolar satellite integrity and its physiology. Cell Mol Life Sci 2016; 74:213-229. [PMID: 27484406 PMCID: PMC5219025 DOI: 10.1007/s00018-016-2315-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
Centriolar satellites comprise cytoplasmic granules that are located around the centrosome. Their molecular identification was first reported more than a quarter of a century ago. These particles are not static in the cell but instead constantly move around the centrosome. Over the last decade, significant advances in their molecular compositions and biological functions have been achieved due to comprehensive proteomics and genomics, super-resolution microscopy analyses and elegant genetic manipulations. Centriolar satellites play pivotal roles in centrosome assembly and primary cilium formation through the delivery of centriolar/centrosomal components from the cytoplasm to the centrosome. Their importance is further underscored by the fact that mutations in genes encoding satellite components and regulators lead to various human disorders such as ciliopathies. Moreover, the most recent findings highlight dynamic structural remodelling in response to internal and external cues and unexpected positive feedback control that is exerted from the centrosome for centriolar satellite integrity.
Collapse
Affiliation(s)
- Akiko Hori
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.,Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takashi Toda
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK. .,Department of Molecular Biotechnology, Hiroshima Research Center for Healthy Aging (HiHA), Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| |
Collapse
|
45
|
Pylro VS, Oliveira FS, Morais DK, Cuadros-Orellana S, Pais FSM, Medeiros JD, Geraldo JA, Gilbert J, Volpini AC, Fernandes GR. ZIKV - CDB: A Collaborative Database to Guide Research Linking SncRNAs and ZIKA Virus Disease Symptoms. PLoS Negl Trop Dis 2016; 10:e0004817. [PMID: 27332714 PMCID: PMC4917180 DOI: 10.1371/journal.pntd.0004817] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In early 2015, a ZIKA Virus (ZIKV) infection outbreak was recognized in northeast Brazil, where concerns over its possible links with infant microcephaly have been discussed. Providing a causal link between ZIKV infection and birth defects is still a challenge. MicroRNAs (miRNAs) are small noncoding RNAs (sncRNAs) that regulate post-transcriptional gene expression by translational repression, and play important roles in viral pathogenesis and brain development. The potential for flavivirus-mediated miRNA signalling dysfunction in brain-tissue development provides a compelling hypothesis to test the perceived link between ZIKV and microcephaly. METHODOLOGY/PRINCIPAL FINDINGS Here, we applied in silico analyses to provide novel insights to understand how Congenital ZIKA Syndrome symptoms may be related to an imbalance in miRNAs function. Moreover, following World Health Organization (WHO) recommendations, we have assembled a database to help target investigations of the possible relationship between ZIKV symptoms and miRNA-mediated human gene expression. CONCLUSIONS/SIGNIFICANCE We have computationally predicted both miRNAs encoded by ZIKV able to target genes in the human genome and cellular (human) miRNAs capable of interacting with ZIKV genomes. Our results represent a step forward in the ZIKV studies, providing new insights to support research in this field and identify potential targets for therapy.
Collapse
Affiliation(s)
- Victor Satler Pylro
- Biosystems Informatics and Genomics Group, René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Francislon Silva Oliveira
- Biosystems Informatics and Genomics Group, René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Kumazawa Morais
- Biosystems Informatics and Genomics Group, René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Sara Cuadros-Orellana
- Biosystems Informatics and Genomics Group, René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Fabiano Sviatopolk-Mirsky Pais
- Biosystems Informatics and Genomics Group, René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Julliane Dutra Medeiros
- Biosystems Informatics and Genomics Group, René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Assis Geraldo
- Biosystems Informatics and Genomics Group, René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Jack Gilbert
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Argonne, Illinois, United States of America
- Department of Surgery, The University of Chicago, Chicago, Illinois, United States of America
| | - Angela Cristina Volpini
- Biosystems Informatics and Genomics Group, René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Rocha Fernandes
- Biosystems Informatics and Genomics Group, René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
46
|
Dantas TJ, Carabalona A, Hu DJK, Vallee RB. Emerging roles for motor proteins in progenitor cell behavior and neuronal migration during brain development. Cytoskeleton (Hoboken) 2016; 73:566-576. [PMID: 26994401 DOI: 10.1002/cm.21293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/21/2022]
Abstract
Over the past two decades, substantial progress has been made in visualizing and understanding neuronal cell migration and morphogenesis during brain development. Distinct mechanisms have evolved to support migration of the various cell types that compose the developing neocortex. A specific subset of molecular motors, so far consisting of cytoplasmic dynein 1, Kif1a and myosin II, are responsible for cytoskeletal and nuclear transport in these cells. This review focuses on the emerging roles for each of these motor proteins in the migratory mechanisms of neocortical cell types. We discuss how migration can be cell cycle regulated and how coordination of motor activity is required to ensure migratory direction. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University, New York, NY.
| | - Aurelie Carabalona
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Daniel Jun Kit Hu
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY.
| |
Collapse
|
47
|
Zhang W, Kim PJ, Chen Z, Lokman H, Qiu L, Zhang K, Rozen SG, Tan EK, Je HS, Zeng L. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. eLife 2016; 5. [PMID: 26883496 PMCID: PMC4769165 DOI: 10.7554/elife.11324] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/22/2016] [Indexed: 12/18/2022] Open
Abstract
During the development, tight regulation of the expansion of neural progenitor cells (NPCs) and their differentiation into neurons is crucial for normal cortical formation and function. In this study, we demonstrate that microRNA (miR)-128 regulates the proliferation and differentiation of NPCs by repressing pericentriolar material 1 (PCM1). Specifically, overexpression of miR-128 reduced NPC proliferation but promoted NPC differentiation into neurons both in vivo and in vitro. In contrast, the reduction of endogenous miR-128 elicited the opposite effects. Overexpression of miR-128 suppressed the translation of PCM1, and knockdown of endogenous PCM1 phenocopied the observed effects of miR-128 overexpression. Furthermore, concomitant overexpression of PCM1 and miR-128 in NPCs rescued the phenotype associated with miR-128 overexpression, enhancing neurogenesis but inhibiting proliferation, both in vitro and in utero. Taken together, these results demonstrate a novel mechanism by which miR-128 regulates the proliferation and differentiation of NPCs in the developing neocortex. DOI:http://dx.doi.org/10.7554/eLife.11324.001 The neurons that transmit information around the brain develop from cells called neural progenitor cells. These cells can either divide to form more progenitor cells or to become specific types of neurons. If these carefully regulated processes go wrong – for example, if progenitors fail to stop dividing in order to mature – a range of neurodevelopmental conditions may develop, including autism spectrum disorders. Small RNA molecules called microRNAs control gene activity and protein formation by targeting certain other RNA molecules for destruction. One such microRNA, called miR-128, helps newly formed neurons to move to the correct region of the cortex – the outer layer of the brain, which is essential for many cognitive processes including thought and language. However, it was not clear whether miR-128 plays any other roles in the development of neurons. Zhang, Kim et al. have now analysed the role of miR-128 in the developing cortex of mice. The findings suggest that miR-128 prevents cortical neural progenitor cells from dividing and supports their development into more specialized cells. Causing miR-128 to be over-produced in the progenitor cells caused the cells to divide less often and encouraged them to mature into neurons. Conversely, removing miR-128 from the progenitor cells caused them to divide more and resulted in fewer neurons forming. Further investigation revealed that miR-128 works by causing less of a protein called PCM1 to be produced. Without this protein, cells cannot divide properly. Future studies could now investigate in more detail how miR-128 and PCM1 affect how the neurons in the cortex develop and work. DOI:http://dx.doi.org/10.7554/eLife.11324.002
Collapse
Affiliation(s)
- Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Paul Jong Kim
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Zhongcan Chen
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Hidayat Lokman
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Ke Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Steven George Rozen
- Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Neuroscience and Behavioral Disorders program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Hyunsoo Shawn Je
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore.,Neuroscience and Behavioral Disorders program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore.,Neuroscience and Behavioral Disorders program, Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
48
|
Ohtaka-Maruyama C, Okado H. Molecular Pathways Underlying Projection Neuron Production and Migration during Cerebral Cortical Development. Front Neurosci 2015; 9:447. [PMID: 26733777 PMCID: PMC4682034 DOI: 10.3389/fnins.2015.00447] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Glutamatergic neurons of the mammalian cerebral cortex originate from radial glia (RG) progenitors in the ventricular zone (VZ). During corticogenesis, neuroblasts migrate toward the pial surface using two different migration modes. One is multipolar (MP) migration with random directional movement, and the other is locomotion, which is a unidirectional movement guided by the RG fiber. After reaching their final destination, the neurons finalize their migration by terminal translocation, which is followed by maturation via dendrite extension to initiate synaptogenesis and thereby complete neural circuit formation. This switching of migration modes during cortical development is unique in mammals, which suggests that the RG-guided locomotion mode may contribute to the evolution of the mammalian neocortical 6-layer structure. Many factors have been reported to be involved in the regulation of this radial neuronal migration process. In general, the radial migration can be largely divided into four steps; (1) maintenance and departure from the VZ of neural progenitor cells, (2) MP migration and transition to bipolar cells, (3) RG-guided locomotion, and (4) terminal translocation and dendrite maturation. Among these, many different gene mutations or knockdown effects have resulted in failure of the MP to bipolar transition (step 2), suggesting that it is a critical step, particularly in radial migration. Moreover, this transition occurs at the subplate layer. In this review, we summarize recent advances in our understanding of the molecular mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects of neuronal migration in corticogenesis.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| | - Haruo Okado
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| |
Collapse
|
49
|
Melling N, Harutyunyan L, Hube-Magg C, Kluth M, Simon R, Lebok P, Minner S, Tsourlakis MC, Koop C, Graefen M, Adam M, Haese A, Wittmer C, Steurer S, Izbicki J, Sauter G, Wilczak W, Schlomm T, Krech T. High-Level HOOK3 Expression Is an Independent Predictor of Poor Prognosis Associated with Genomic Instability in Prostate Cancer. PLoS One 2015; 10:e0134614. [PMID: 26230842 PMCID: PMC4521853 DOI: 10.1371/journal.pone.0134614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/10/2015] [Indexed: 11/25/2022] Open
Abstract
Hook microtubule-tethering protein 3 (HOOK3) is an adaptor protein for microtubule-dependent intracellular vesicle and protein trafficking. In order to assess the role of HOOK3 in prostate cancer we analyzed HOOK3 expression by immunohistochemistry on a TMA containing more than 12,400 prostate cancers. Results were compared to tumor phenotype and PSA recurrence as well as aberrations possibly defining relevant molecular subtypes such as ERG status and deletions of 3p13, 5q21, 6q15 and PTEN. HOOK3 immunostaining was negative in normal luminal cells of prostate epithelium, whereas 53.3% of 10,572 interpretable cancers showed HOOK3 expression, which was considered low in 36.4% and high in 16.9% of cases. High-level HOOK3 expression was linked to advanced tumor stage, high Gleason score, high proliferation index, positive lymph node stage, and PSA recurrence (p<0.0001 each). The prognostic role of HOOK3 expression was independent of established clinico-pathological parameters both in preoperative and postoperative settings. Comparisons with molecular features were performed to draw conclusions on the potential function of HOOK3 in the prostate. A strong association with all examined deletions is consistent with a role of HOOK3 for maintaining genomic integrity by contributing to proper centrosome assembly. Finding HOOK3 expression in 74% of ERG positive but in only 38% of ERG negative cancers (p<0.0001) further suggests functional interactions between these genes. In conclusion, the results of our study identify HOOK3 as a strong candidate prognostic marker with a possible role in maintaining genomic integrity in prostate cancer, which may have potential for inclusion into clinical routine assays.
Collapse
Affiliation(s)
- Nathaniel Melling
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Levon Harutyunyan
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
- * E-mail:
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Christina Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Meike Adam
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
- Department of Urology, Section for translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
50
|
Higuchi Y, Steinberg G. Early endosomes motility in filamentous fungi: How and why they move. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|