1
|
Warm D, Bassetti D, Gellèrt L, Yang JW, Luhmann HJ, Sinning A. Spontaneous mesoscale calcium dynamics reflect the development of the modular functional architecture of the mouse cerebral cortex. Neuroimage 2025:121088. [PMID: 39954874 DOI: 10.1016/j.neuroimage.2025.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
The mature cerebral cortex operates through the segregation and integration of specialized functions to generate complex cognitive states. In the mouse, the anatomical and functional correlates of this organization arise during the perinatal period and are critically shaped by neural activity. Understanding how early activity patterns distribute, interact, and generate large-scale cortical dynamics is essential to elucidate the proper development of the cortex. Here, we investigate spontaneous mesoscale cortical dynamics during the first two postnatal weeks by performing wide-field calcium imaging in GCaMP6s transgenic mice. Our results demonstrate a marked change in the spatiotemporal features of spontaneous cortical activity across fine stages of postnatal development. Already after birth, the cortical hemisphere presents a primordial macroscopic organization, which undergoes a steady refinement based on the parcellation of the cortex. As calcium activity transitions from large, widespread events to swift waves between the first and second postnatal week, significant topographic differences emerge across different cortical regions. Functional connectivity profiles of the cortex gradually segregate into main subnetworks and give rise to a highly modular network topology at the end of the second postnatal week. Overall, spontaneous mesoscale activity reflects the maturation of cortical networks, and reveals critical breakpoints in the development of the functional architecture of the cortex.
Collapse
Affiliation(s)
- Davide Warm
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Levente Gellèrt
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Lakhera S, Herbert E, Gjorgjieva J. Modeling the Emergence of Circuit Organization and Function during Development. Cold Spring Harb Perspect Biol 2025; 17:a041511. [PMID: 38858072 DOI: 10.1101/cshperspect.a041511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Developing neural circuits show unique patterns of spontaneous activity and structured network connectivity shaped by diverse activity-dependent plasticity mechanisms. Based on extensive experimental work characterizing patterns of spontaneous activity in different brain regions over development, theoretical and computational models have played an important role in delineating the generation and function of individual features of spontaneous activity and their role in the plasticity-driven formation of circuit connectivity. Here, we review recent modeling efforts that explore how the developing cortex and hippocampus generate spontaneous activity, focusing on specific connectivity profiles and the gradual strengthening of inhibition as the key drivers behind the observed developmental changes in spontaneous activity. We then discuss computational models that mechanistically explore how different plasticity mechanisms use this spontaneous activity to instruct the formation and refinement of circuit connectivity, from the formation of single neuron receptive fields to sensory feature maps and recurrent architectures. We end by highlighting several open challenges regarding the functional implications of the discussed circuit changes, wherein models could provide the missing step linking immature developmental and mature adult information processing capabilities.
Collapse
Affiliation(s)
- Shreya Lakhera
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Elizabeth Herbert
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Julijana Gjorgjieva
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
3
|
Tanbakuchi M, Routier L, Saadatmehr B, Safaie J, Kongolo G, Ghostine G, Wallois F, Moghimi S. Automatic detection and characterization of maturational neurobiomarkers identified as nested oscillations in premature newborns using high-density electroencephalography. Comput Biol Med 2025; 185:109477. [PMID: 39642699 DOI: 10.1016/j.compbiomed.2024.109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Neural development leads to the evolution of electroencephalographic (EEG) characteristics during the third trimester of gestation. Theta activity in coalescence with slow waves (TA-SW) and delta brushes (DB) are key clinical neurobiomarkers in the evaluation of neurodevelopment in infants prior to full-term gestation. Both neurobiomarkers exhibit nested oscillations, a key feature of intrinsic spontaneous oscillatory activity, allowing the investigation of neural interaction development in the underlying circuits. In the present study, we propose an automatic approach for the detection and characterization of neurobiomarkers that (1) leverages high-density EEG (HD-EEG), (2) incorporates temporal dynamics and spatial distributions, and (3) evaluates the characteristics of nested oscillations. This method evaluates both slow and rapid neural activity, along with their cross-frequency coupling. Our results are in good agreement with those of clinical experts, achieving ROC performances and overall accuracies of 91 %/84 % and 83 %/75 % for TA-SW/DB events, respectively. Following detection and validation, we characterized and compared these two neurobiomarkers. Correlation-based spatial clustering showed that DB patterns were more symmetric and diffuse, whereas TA-SW patterns were more localized in the right and left temporal areas. Comparisons revealed (1) greater variability in spatial patterns for DB than for TA-SW, and that (2) while slow-wave coupling to fast oscillations showed similar characteristics for both neurobiomarkers, differences emerged in the amplitude and descending slope of the underlying slow waves. These findings suggested potential differences in the mechanisms underlying their generation, particularly in the modulation of slow oscillations. This approach represents a promising avenue for the quantitative evaluation of EEG signatures pertinent to early neural development in premature neonates.
Collapse
Affiliation(s)
- Mahdi Tanbakuchi
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France; Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Laura Routier
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France; Inserm (UMR1105), Groupe de Recherches sur LlAnalyse Multimodale de la Fonction Cérébrale, Explorations Fonctionnelles du Système Nerveux Pédiatriques, Centre Hospitalier Universitaire d'Amiens, 80054 Amiens, France
| | - Bahar Saadatmehr
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France
| | - Javad Safaie
- Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Guy Kongolo
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France
| | - Ghida Ghostine
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France
| | - Fabrice Wallois
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France; Inserm (UMR1105), Groupe de Recherches sur LlAnalyse Multimodale de la Fonction Cérébrale, Explorations Fonctionnelles du Système Nerveux Pédiatriques, Centre Hospitalier Universitaire d'Amiens, 80054 Amiens, France
| | - Sahar Moghimi
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France.
| |
Collapse
|
4
|
Whitehead K. Co-developing sleep-wake and sensory foundations for cognition in the human fetus and newborn. Dev Cogn Neurosci 2025; 71:101487. [PMID: 39675060 PMCID: PMC11699341 DOI: 10.1016/j.dcn.2024.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/07/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
In older children and adults, cognition builds upon waking sensory experience which is consolidated during sleep. In the fetus and newborn, sensory input is instead largely experienced during sleep. The nature of these sensory inputs differs within sleep, between active and quiet sleep, as well as versus wakefulness. Here, sleep-wake organisation in the fetus and newborn is reviewed, and then its interaction with sensory inputs discussed with a focus on somatosensory and auditory modalities. Next, these ideas are applied to how neurological insults affect early development, using fetal growth restriction as a test case. Finally, the argument is made that taking account of sleep-wake state during perinatal functional neuroimaging can better index sensorimotor, language, and cognitive brain activities, potentially improving its diagnostic and prognostic value. To sum up, sensory and sleep-wake functions go hand in hand during early human development. Perturbation of these twinned functions by neurological insults may mediate later neurodevelopmental deficits. Perinatal neuroimaging has the potential to track these trajectories, feasibly identifying opportunities to therapeutically intervene.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Research Division of Digital Health and Applied Technology Assessment (DHATA), Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King's College London, James Clerk Maxwell Building, 57 Waterloo Rd, London SE1 8WA, UK.
| |
Collapse
|
5
|
Sobierajski E, Czubay K, Beemelmans C, Beemelmans C, Meschkat M, Uhlenkamp D, Meyer G, Wahle P. Vascular Development of Fetal and Postnatal Neocortex of the Pig, the European Wild Boar Sus scrofa. J Comp Neurol 2024; 532:e70011. [PMID: 39660539 PMCID: PMC11632654 DOI: 10.1002/cne.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024]
Abstract
The development of the brain's vascular system is a predominantly prenatal process in mammalian species and is required for neurogenesis and further brain development. Our recent work on fetal pig has revealed that many neurodevelopmental processes start well before birth and proceed rapidly reaching near-mature status already around birth. Here, we analyzed the development of neocortical vasculature from embryonic day (E) 45 onward (gestation in pig lasts 114 days) using qualitative and quantitative image analyses and protein blots. In all cortical layers, vessel volume from total brain volume at E100 resembled that of a postnatal day (P) 30 piglet. Endothelial cells expressed the tight junction protein claudin-5 from E45 onward. GFAP+ and AQP4+ astrocytes, PDGFRβ+ pericytes, and α-SMA+ smooth muscle cells are detectable near vessels at E60 suggesting an early assembly of blood-brain barrier components. The vascular system in the visual cortex is advanced before birth with an almost mature pattern at E100. Findings were confirmed by blots that showed a steady increase of expression of tight junction and angiogenesis-related proteins (claudin-5, occludin, VE-cadherin, PECAM-1/CD31) from E65 onward until P90. The expression profile was similar in visual and somatosensory cortex. Together, we report a rapid maturation of the vascular system in pig cortex.
Collapse
Affiliation(s)
- Eric Sobierajski
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| | - Katrin Czubay
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| | | | | | | | | | - Gundela Meyer
- Department of Basic Medical Science, Faculty of MedicineUniversity of La LagunaSanta Cruz de TenerifeTenerifeSpain
| | - Petra Wahle
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
6
|
Dooley JC, van der Heijden ME. More Than a Small Brain: The Importance of Studying Neural Function during Development. J Neurosci 2024; 44:e1367242024. [PMID: 39603806 PMCID: PMC11604142 DOI: 10.1523/jneurosci.1367-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
The nervous system contains complex circuits comprising thousands of cell types and trillions of connections. Here, we discuss how the field of "developmental systems neuroscience" combines the molecular and genetic perspectives of developmental neuroscience with the (typically adult-focused) functional perspective of systems neuroscience. This combination of approaches is critical to understanding how a handful of cells eventually produce the wide range of behaviors necessary for survival. Functional circuit development typically lags behind neural connectivity, leading to intermediate stages of neural activity that are either not seen in adults or, if present, are considered pathophysiological. Developmental systems neuroscience examines these intermediate stages of neural activity, mapping out the critical phases and inflection points of neural circuit function to understand how neural activity and behavior emerge across development. Beyond understanding typical development, this approach provides invaluable insight into the pathophysiology of neurodevelopmental disorders by identifying when and how functional development diverges between health and disease. We argue that developmental systems neuroscience will identify important periods of neural development, reveal novel therapeutic windows for treatment, and set the stage to answer fundamental questions about the brain in health and disease.
Collapse
Affiliation(s)
- James C Dooley
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
| | - Meike E van der Heijden
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Center for Neurobiology Research, Roanoke, Virginia 24016
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24016
| |
Collapse
|
7
|
Wallois F, Moghimi S. Revisiting the functional monitoring of brain development in premature neonates. A new direction in clinical care and research. Semin Fetal Neonatal Med 2024; 29:101556. [PMID: 39528364 DOI: 10.1016/j.siny.2024.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The first 1000 days of life are of paramount importance for neonatal development. Premature newborns are exposed early to the external environment, modifying the fetal exposome and leading to overexposure in some sensory domains and deprivation in others. The resulting neurodevelopmental effects may persist throughout the individual's lifetime. Several neonatal neuromonitoring techniques can be used to investigate neural mechanisms in early postnatal development. EEG is the most widely used, as it is easy to perform, even at the patient's bedside. It is not expensive and provides information with a high temporal resolution and relatively good spatial resolution when performed in high-density mode. Functional near-infrared spectroscopy (fNIRS), a technique for monitoring vascular network dynamics, can also be used at the patient's bedside. It is not expensive and has a good spatial resolution at the cortical surface. These two techniques can be combined for simultaneous monitoring of the neuronal and vascular networks in premature newborns, providing insight into neurodevelopment before term. However, the extent to which more general conclusions about fetal development can be drawn from findings for premature neonates remains unclear due to considerable differences in environmental and medical situations. Fetal MEG (fMEG, as an alternative to EEG for preterm infants) and fMRI (as an alternative to fNIRS for preterm infants) can also be used to investigate fetal neurodevelopment on a trimester-specific basis. These techniques should be used for validation purposes as they are the only tools available for evaluating neuronal dysfunction in the fetus at the time of the gene-environment interactions influencing transient neuronal progenitor populations in brain structures. But what do these techniques tell us about early neurodevelopment? We address this question here, from two points of view. We first discuss spontaneous neural activity and its electromagnetic and hemodynamic correlates. We then explore the effects of stimulating the immature developing brain with information from exogenous sources, reviewing the available evidence concerning the characteristics of electromagnetic and hemodynamic responses. Once the characteristics of the correlates of neural dynamics have been determined, it will be essential to evaluate their possible modulation in the context of disease and in at-risk populations. Evidence can be collected with various neuroimaging techniques targeting both spontaneous and exogenously driven neural activity. A multimodal approach combining the neuromonitoring of different functional compartments (neuronal and vascular) is required to improve our understanding of the normal functioning and dysfunction of the brain and to identify neurobiomarkers for predicting the neurodevelopmental outcome of premature neonate and fetus. Such an approach would provide a framework for exploring early neurodevelopment, paving the way for the development of tools for earlier diagnosis in these vulnerable populations, thereby facilitating preventive, rescue and reparative neurotherapeutic interventions.
Collapse
Affiliation(s)
- Fabrice Wallois
- Inserm U 1105, Department of Pediatric Clinical Neurophysiology, University Hospital, Amiens, France; Inserm U 1105, Multimodal Analysis of Brain Function Research Group (GRAMFC), Université de Picardie, Amiens, France.
| | - Sahar Moghimi
- Inserm U 1105, Multimodal Analysis of Brain Function Research Group (GRAMFC), Université de Picardie, Amiens, France
| |
Collapse
|
8
|
Faust TE, Devlin BA, Farhy-Tselnicker I, Ferro A, Postolache M, Xin W. Glial Control of Cortical Neuronal Circuit Maturation and Plasticity. J Neurosci 2024; 44:e1208242024. [PMID: 39358028 PMCID: PMC11450532 DOI: 10.1523/jneurosci.1208-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024] Open
Abstract
The brain is a highly adaptable organ that is molded by experience throughout life. Although the field of neuroscience has historically focused on intrinsic neuronal mechanisms of plasticity, there is growing evidence that multiple glial populations regulate the timing and extent of neuronal plasticity, particularly over the course of development. This review highlights recent discoveries on the role of glial cells in the establishment of cortical circuits and the regulation of experience-dependent neuronal plasticity during critical periods of neurodevelopment. These studies provide strong evidence that neuronal circuit maturation and plasticity are non-cell autonomous processes that require both glial-neuronal and glial-glial cross talk to proceed. We conclude by discussing open questions that will continue to guide research in this nascent field.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
| | | | - Austin Ferro
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Maggie Postolache
- Brain Immunology & Glia Center, Washington University School of Medicine, St. Louis, Missouri 63110
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Wendy Xin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
9
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 PMCID: PMC11825063 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Nwabudike I, Che A. Early-life maturation of the somatosensory cortex: sensory experience and beyond. Front Neural Circuits 2024; 18:1430783. [PMID: 39040685 PMCID: PMC11260818 DOI: 10.3389/fncir.2024.1430783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Early life experiences shape physical and behavioral outcomes throughout lifetime. Sensory circuits are especially susceptible to environmental and physiological changes during development. However, the impact of different types of early life experience are often evaluated in isolation. In this mini review, we discuss the specific effects of postnatal sensory experience, sleep, social isolation, and substance exposure on barrel cortex development. Considering these concurrent factors will improve understanding of the etiology of atypical sensory perception in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ijeoma Nwabudike
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Ansari A, Pillay K, Arasteh E, Dereymaeker A, Mellado GS, Jansen K, Winkler AM, Naulaers G, Bhatt A, Huffel SV, Hartley C, Vos MD, Slater R, Baxter L. Resting state electroencephalographic brain activity in neonates can predict age and is indicative of neurodevelopmental outcome. Clin Neurophysiol 2024; 163:226-235. [PMID: 38797002 PMCID: PMC11250083 DOI: 10.1016/j.clinph.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Electroencephalography (EEG) can be used to estimate neonates' biological brain age. Discrepancies between postmenstrual age and brain age, termed the brain age gap, can potentially quantify maturational deviation. Existing brain age EEG models are not well suited to clinical cot-side use for estimating neonates' brain age gap due to their dependency on relatively large data and pre-processing requirements. METHODS We trained a deep learning model on resting state EEG data from preterm neonates with normal neurodevelopmental Bayley Scale of Infant and Toddler Development (BSID) outcomes, using substantially reduced data requirements. We subsequently tested this model in two independent datasets from two clinical sites. RESULTS In both test datasets, using only 20 min of resting-state EEG activity from a single channel, the model generated accurate age predictions: mean absolute error = 1.03 weeks (p-value = 0.0001) and 0.98 weeks (p-value = 0.0001). In one test dataset, where 9-month follow-up BSID outcomes were available, the average neonatal brain age gap in the severe abnormal outcome group was significantly larger than that of the normal outcome group: difference in mean brain age gap = 0.50 weeks (p-value = 0.04). CONCLUSIONS These findings demonstrate that the deep learning model generalises to independent datasets from two clinical sites, and that the model's brain age gap magnitudes differ between neonates with normal and severe abnormal follow-up neurodevelopmental outcomes. SIGNIFICANCE The magnitude of neonates' brain age gap, estimated using only 20 min of resting state EEG data from a single channel, can encode information of clinical neurodevelopmental value.
Collapse
Affiliation(s)
- Amir Ansari
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Kirubin Pillay
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Emad Arasteh
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium; Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anneleen Dereymaeker
- Department of Development and Regeneration, University Hospitals Leuven, Neonatal Intensive Care Unit, KU Leuven, Leuven, Belgium
| | | | - Katrien Jansen
- Department of Development and Regeneration, University Hospitals Leuven, Neonatal Intensive Care Unit, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, University Hospitals Leuven, Child Neurology, KU Leuven, Leuven, Belgium
| | - Anderson M Winkler
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Gunnar Naulaers
- Department of Development and Regeneration, University Hospitals Leuven, Neonatal Intensive Care Unit, KU Leuven, Leuven, Belgium
| | - Aomesh Bhatt
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | | | - Maarten De Vos
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, University Hospitals Leuven, Child Neurology, KU Leuven, Leuven, Belgium
| | | | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Chini M, Hnida M, Kostka JK, Chen YN, Hanganu-Opatz IL. Preconfigured architecture of the developing mouse brain. Cell Rep 2024; 43:114267. [PMID: 38795344 DOI: 10.1016/j.celrep.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024] Open
Abstract
In the adult brain, structural and functional parameters, such as synaptic sizes and neuronal firing rates, follow right-skewed and heavy-tailed distributions. While this organization is thought to have significant implications, its development is still largely unknown. Here, we address this knowledge gap by investigating a large-scale dataset recorded from the prefrontal cortex and the olfactory bulb of mice aged 4-60 postnatal days. We show that firing rates and spike train interactions have a largely stable distribution shape throughout the first 60 postnatal days and that the prefrontal cortex displays a functional small-world architecture. Moreover, early brain activity exhibits an oligarchical organization, where high-firing neurons have hub-like properties. In a neural network model, we show that analogously right-skewed and heavy-tailed synaptic parameters are instrumental to consistently recapitulate the experimental data. Thus, functional and structural parameters in the developing brain are already extremely distributed, suggesting that this organization is preconfigured and not experience dependent.
Collapse
Affiliation(s)
- Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Marilena Hnida
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna K Kostka
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu-Nan Chen
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Logashkin A, Silaeva V, Mamleev A, Shumkova V, Sitdikova V, Popova Y, Suchkov D, Minlebaev M. Dexmedetomidine as a Short-Use Analgesia for the Immature Nervous System. Int J Mol Sci 2024; 25:6385. [PMID: 38928091 PMCID: PMC11204225 DOI: 10.3390/ijms25126385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Pain management in neonates continues to be a challenge. Diverse therapies are available that cause loss of pain sensitivity. However, because of side effects, the search for better options remains open. Dexmedetomidine is a promising drug; it has shown high efficacy with a good safety profile in sedation and analgesia in the immature nervous system. Though dexmedetomidine is already in use for pain control in neonates (including premature neonates) and infants as an adjunct to other anesthetics, the question remains whether it affects the neuronal activity patterning that is critical for development of the immature nervous system. In this study, using the neonatal rat as a model, the pharmacodynamic effects of dexmedetomidine on the nervous and cardiorespiratory systems were studied. Our results showed that dexmedetomidine has pronounced analgesic effects in the neonatal rat pups, and also weakly modified both the immature network patterns of cortical and hippocampal activity and the physiology of sleep cycles. Though the respiration and heart rates were slightly reduced after dexmedetomidine administration, it might be considered as the preferential independent short-term therapy for pain management in the immature and developing brain.
Collapse
Affiliation(s)
- Anatoliy Logashkin
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Valentina Silaeva
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Arsen Mamleev
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Viktoria Shumkova
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Violetta Sitdikova
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Yaroslavna Popova
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Dmitrii Suchkov
- Institut de Neurobiologie de la Méditerranée (INMED U1249), Aix-Marseille University, 13273 Marseille, France
| | - Marat Minlebaev
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
- Institut de Neurobiologie de la Méditerranée (INMED U1249), Aix-Marseille University, 13273 Marseille, France
| |
Collapse
|
14
|
Hamad MIK, Rabaya O, Jbara A, Daoud S, Petrova P, Ali BR, Allouh MZ, Herz J, Förster E. Reelin Regulates Developmental Desynchronization Transition of Neocortical Network Activity. Biomolecules 2024; 14:593. [PMID: 38786001 PMCID: PMC11118507 DOI: 10.3390/biom14050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
During the first and second stages of postnatal development, neocortical neurons exhibit a wide range of spontaneous synchronous activity (SSA). Towards the end of the second postnatal week, the SSA is replaced by a more sparse and desynchronized firing pattern. The developmental desynchronization of neocortical spontaneous neuronal activity is thought to be intrinsically generated, since sensory deprivation from the periphery does not affect the time course of this transition. The extracellular protein reelin controls various aspects of neuronal development through multimodular signaling. However, so far it is unclear whether reelin contributes to the developmental desynchronization transition of neocortical neurons. The present study aims to investigate the role of reelin in postnatal cortical developmental desynchronization using a conditional reelin knockout (RelncKO) mouse model. Conditional reelin deficiency was induced during early postnatal development, and Ca2+ recordings were conducted from organotypic cultures (OTCs) of the somatosensory cortex. Our results show that both wild type (wt) and RelncKO exhibited an SSA pattern during the early postnatal week. However, at the end of the second postnatal week, wt OTCs underwent a transition to a desynchronized network activity pattern, while RelncKO activity remained synchronous. This changing activity pattern suggests that reelin is involved in regulating the developmental desynchronization of cortical neuronal network activity. Moreover, the developmental desynchronization impairment observed in RelncKO was rescued when RelncKO OTCs were co-cultured with wt OTCs. Finally, we show that the developmental transition to a desynchronized state at the end of the second postnatal week is not dependent on glutamatergic signaling. Instead, the transition is dependent on GABAAR and GABABR signaling. The results suggest that reelin controls developmental desynchronization through GABAAR and GABABR signaling.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Obada Rabaya
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Abdalrahim Jbara
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Solieman Daoud
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Petya Petrova
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Mohammed Z. Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 5323, USA
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; (O.R.); (S.D.); (P.P.); (E.F.)
| |
Collapse
|
15
|
Fitzgerald M. The Bayliss-Starling Prize Lecture: The developmental physiology of spinal cord and cortical nociceptive circuits. J Physiol 2024; 602:1003-1016. [PMID: 38426221 DOI: 10.1113/jp283994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
When do we first experience pain? To address this question, we need to know how the developing nervous system processes potential or real tissue-damaging stimuli in early life. In the newborn, nociception preserves life through reflex avoidance of tissue damage and engagement of parental help. Importantly, nociception also forms the starting point for experiencing and learning about pain and for setting the level of adult pain sensitivity. This review, which arose from the Bayliss-Starling Prize Lecture, focuses on the basic developmental neurophysiology of early nociceptive circuits in the spinal cord, brainstem and cortex that form the building blocks of our first pain experience.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|
16
|
Huang S, Wu SJ, Sansone G, Ibrahim LA, Fishell G. Layer 1 neocortex: Gating and integrating multidimensional signals. Neuron 2024; 112:184-200. [PMID: 37913772 PMCID: PMC11180419 DOI: 10.1016/j.neuron.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Layer 1 (L1) of the neocortex acts as a nexus for the collection and processing of widespread information. By integrating ascending inputs with extensive top-down activity, this layer likely provides critical information regulating how the perception of sensory inputs is reconciled with expectation. This is accomplished by sorting, directing, and integrating the complex network of excitatory inputs that converge onto L1. These signals are combined with neuromodulatory afferents and gated by the wealth of inhibitory interneurons that either are embedded within L1 or send axons from other cortical layers. Together, these interactions dynamically calibrate information flow throughout the neocortex. This review will primarily focus on L1 within the primary sensory cortex and will use these insights to understand L1 in other cortical areas.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giulia Sansone
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Luu P, Tucker DM. Continuity and change in neural plasticity through embryonic morphogenesis, fetal activity-dependent synaptogenesis, and infant memory consolidation. Dev Psychobiol 2023; 65:e22439. [PMID: 38010309 DOI: 10.1002/dev.22439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
There is an apparent continuity in human neural development that can be traced to venerable themes of vertebrate morphogenesis that have shaped the evolution of the reptilian telencephalon (including both primitive three-layered cortex and basal ganglia) and then the subsequent evolution of the mammalian six-layered neocortex. In this theoretical analysis, we propose that an evolutionary-developmental analysis of these general morphogenetic themes can help to explain the embryonic development of the dual divisions of the limbic system that control the dorsal and ventral networks of the human neocortex. These include the archicortical (dorsal limbic) Papez circuits regulated by the hippocampus that organize spatial, contextual memory, as well as the paleocortical (ventral limbic) circuits that organize object memory. We review evidence that these dorsal and ventral limbic divisions are controlled by the differential actions of brainstem lemnothalamic and midbrain collothalamic arousal control systems, respectively, thereby traversing the vertebrate subcortical neuraxis. These dual control systems are first seen shaping the phyletic morphogenesis of the archicortical and paleocortical foundations of the forebrain in embryogenesis. They then provide dual modes of activity-dependent synaptic organization in the active (lemnothalamic) and quiet (collothalamic) stages of fetal sleep. Finally, these regulatory systems mature to form the major systems of memory consolidation of postnatal development, including the rapid eye movement (lemnothalamic) consolidation of implicit memory and social attachment in the first year, and then-in a subsequent stage-the non-REM (collothalamic) consolidation of explicit memory that is integral to the autonomy and individuation of the second year of life.
Collapse
Affiliation(s)
- Phan Luu
- Brain Electrophysiology Laboratory Company, Eugene, Oregon, USA
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Eugene, Oregon, USA
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
18
|
Maier JX, Zhang Z. Early development of olfactory circuit function. Front Cell Neurosci 2023; 17:1225186. [PMID: 37565031 PMCID: PMC10410114 DOI: 10.3389/fncel.2023.1225186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
During early development, brains undergo profound changes in structure at the molecular, synaptic, cellular and circuit level. At the same time, brains need to perform adaptive function. How do structurally immature brains process information? How do brains perform stable and reliable function despite massive changes in structure? The rodent olfactory system presents an ideal model for approaching these poorly understood questions. Rodents are born deaf and blind, and rely completely on their sense of smell to acquire resources essential for survival during the first 2 weeks of life, such as food and warmth. Here, we review decades of work mapping structural changes in olfactory circuits during early development, as well as more recent studies performing in vivo electrophysiological recordings to characterize functional activity patterns generated by these circuits. The findings demonstrate that neonatal olfactory processing relies on an interacting network of brain areas including the olfactory bulb and piriform cortex. Circuits in these brain regions exhibit varying degrees of structural maturity in neonatal animals. However, despite substantial ongoing structural maturation of circuit elements, the neonatal olfactory system produces dynamic network-level activity patterns that are highly stable over protracted periods during development. We discuss how these findings inform future work aimed at elucidating the circuit-level mechanisms underlying information processing in the neonatal olfactory system, how they support unique neonatal behaviors, and how they transition between developmental stages.
Collapse
Affiliation(s)
- Joost X. Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
19
|
Pompeiano M, Colonnese MT. cFOS as a biomarker of activity maturation in the hippocampal formation. Front Neurosci 2023; 17:929461. [PMID: 37521697 PMCID: PMC10374841 DOI: 10.3389/fnins.2023.929461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
We explored the potential for cFOS expression as a marker of functional development of "resting-state" waking activity in the extended network of the hippocampus and entorhinal cortex. We examined sleeping and awake mice at (P)ostnatal days 5, 9, 13, and 17 as well as in adulthood. We find that cFOS expression is state-dependent even at 5 days old, with reliable staining occurring only in the awake mice. Even during waking, cFOS expression was rare and weak at P5. The septal nuclei, entorhinal cortex layer (L)2, and anterodorsal thalamus were exceptional in that they had robust cFOS expression at P5 that was similar to or greater than in adulthood. Significant P5 expression was also observed in the dentate gyrus, entorhinal cortex L6, postsubiculum L4-6, ventral subiculum, supramammillary nucleus, and posterior hypothalamic nucleus. The expression in these regions grew stronger with age, and the expression in new regions was added progressively at P9 and P13 by which point the overall expression pattern in many regions was qualitatively similar to the adult. Six regions-CA1, dorsal subiculum, postsubiculum L2-3, reuniens nucleus, and perirhinal and postrhinal cortices-were very late developing, mostly achieving adult levels only after P17. Our findings support a number of developmental principles. First, early spontaneous activity patterns induced by muscle twitches during sleep do not induce robust cFOS expression in the extended hippocampal network. Second, the development of cFOS expression follows the progressive activation along the trisynaptic circuit, rather than birth date or cellular maturation. Third, we reveal components of the egocentric head-direction and theta-rhythm circuits as the earliest cFOS active circuits in the forebrain. Our results suggest that cFOS staining may provide a reliable and sensitive biomarker for hippocampal formation activity development, particularly in regard to the attainment of a normal waking state and synchronizing rhythms such as theta and gamma.
Collapse
Affiliation(s)
- Maria Pompeiano
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | - Matthew T. Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| |
Collapse
|
20
|
Worley A, Pillay K, Cobo MM, Mellado GS, van der Vaart M, Bhatt A, Hartley C. The PiNe box: Development and validation of an electronic device to time-lock multimodal responses to sensory stimuli in hospitalised infants. PLoS One 2023; 18:e0288488. [PMID: 37440586 DOI: 10.1371/journal.pone.0288488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Recording multimodal responses to sensory stimuli in infants provides an integrative approach to investigate the developing nervous system. Accurate time-locking across modalities is essential to ensure that responses are interpreted correctly, and could also improve clinical care, for example, by facilitating automatic and objective multimodal pain assessment. Here we develop and assess a system to time-lock stimuli (including clinically-required heel lances and experimental visual, auditory and tactile stimuli) to electrophysiological research recordings and data recorded directly from a hospitalised infant's vital signs monitor. The electronic device presented here (that we have called 'the PiNe box') integrates a previously developed system to time-lock stimuli to electrophysiological recordings and can simultaneously time-lock the stimuli to recordings from hospital vital signs monitors with an average precision of 105 ms (standard deviation: 19 ms), which is sufficient for the analysis of changes in vital signs. Our method permits reliable and precise synchronisation of data recordings from equipment with legacy ports such as TTL (transistor-transistor logic) and RS-232, and patient-connected networkable devices, is easy to implement, flexible and inexpensive. Unlike current all-in-one systems, it enables existing hospital equipment to be easily used and could be used for patients of any age. We demonstrate the utility of the system in infants using visual and noxious (clinically-required heel lance) stimuli as representative examples.
Collapse
Affiliation(s)
- Alan Worley
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kirubin Pillay
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Maria M Cobo
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | | | - Aomesh Bhatt
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Caroline Hartley
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Suárez R, Bluett T, McCullough MH, Avitan L, Black DA, Paolino A, Fenlon LR, Goodhill GJ, Richards LJ. Cortical activity emerges in region-specific patterns during early brain development. Proc Natl Acad Sci U S A 2023; 120:e2208654120. [PMID: 37216522 PMCID: PMC10235933 DOI: 10.1073/pnas.2208654120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The development of precise neural circuits in the brain requires spontaneous patterns of neural activity prior to functional maturation. In the rodent cerebral cortex, patchwork and wave patterns of activity develop in somatosensory and visual regions, respectively, and are present at birth. However, whether such activity patterns occur in noneutherian mammals, as well as when and how they arise during development, remain open questions relevant for understanding brain formation in health and disease. Since the onset of patterned cortical activity is challenging to study prenatally in eutherians, here we offer an approach in a minimally invasive manner using marsupial dunnarts, whose cortex forms postnatally. We discovered similar patchwork and travelling waves in the dunnart somatosensory and visual cortices at stage 27 (equivalent to newborn mice) and examined earlier stages of development to determine the onset of these patterns and how they first emerge. We observed that these patterns of activity emerge in a region-specific and sequential manner, becoming evident as early as stage 24 in somatosensory and stage 25 in visual cortices (equivalent to embryonic day 16 and 17, respectively, in mice), as cortical layers establish and thalamic axons innervate the cortex. In addition to sculpting synaptic connections of existing circuits, evolutionarily conserved patterns of neural activity could therefore help regulate other early events in cortical development.
Collapse
Affiliation(s)
- Rodrigo Suárez
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Tobias Bluett
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
| | - Michael H. McCullough
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
| | - Lilach Avitan
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
| | - Dylan A. Black
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Annalisa Paolino
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Laura R. Fenlon
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Geoffrey J. Goodhill
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Mathematics and Physics, BrisbaneQLD4072, Australia
| | - Linda J. Richards
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| |
Collapse
|
22
|
Witteveen IF, McCoy E, Holsworth TD, Shen CZ, Chang W, Nance MG, Belkowitz AR, Dougald A, Puglia MH, Ribic A. Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex. Front Integr Neurosci 2023; 17:1149159. [PMID: 37255843 PMCID: PMC10225509 DOI: 10.3389/fnint.2023.1149159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Prematurity is among the leading risks for poor neurocognitive outcomes. The brains of preterm infants show alterations in structure and electrical activity, but the underlying circuit mechanisms are unclear. To address this, we performed a cross-species study of the electrophysiological activity in the visual cortices of prematurely born infants and mice. Using electroencephalography (EEG) in a sample of healthy preterm (N = 29) and term (N = 28) infants, we found that the maturation of the aperiodic EEG component was accelerated in the preterm cohort, with a significantly flatter 1/f slope when compared to the term infants. The flatter slope was a result of decreased spectral power in the theta and alpha bands and was correlated with the degree of prematurity. To determine the circuit and cellular changes that potentially mediate the changes in 1/f slope after preterm birth, we used in vivo electrophysiology in preterm mice and found that, similar to infants, preterm birth results in a flattened 1/f slope. We analyzed neuronal activity in the visual cortex of preterm (N = 6) and term (N = 9) mice and found suppressed spontaneous firing of neurons. Using immunohistochemistry, we further found an accelerated maturation of inhibitory circuits. In both preterm mice and infants, the functional maturation of the cortex was accelerated, underscoring birth as a critical checkpoint in cortical maturation. Our study points to a potential mechanism of preterm birth-related changes in resting neural activity, highlighting the utility of a cross-species approach in studying the neural circuit mechanisms of preterm birth-related neurodevelopmental conditions.
Collapse
Affiliation(s)
- Isabelle F. Witteveen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Emily McCoy
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Troy D. Holsworth
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Catherine Z. Shen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Winnie Chang
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Madelyn G. Nance
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Allison R. Belkowitz
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Avery Dougald
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Meghan H. Puglia
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
23
|
Gainutdinov A, Shipkov D, Sintsov M, Fabrizi L, Nasretdinov A, Khazipov R, Valeeva G. Somatosensory-Evoked Early Sharp Waves in the Neonatal Rat Hippocampus. Int J Mol Sci 2023; 24:8721. [PMID: 37240066 PMCID: PMC10217913 DOI: 10.3390/ijms24108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The developing entorhinal-hippocampal system is embedded within a large-scale bottom-up network, where spontaneous myoclonic movements, presumably via somatosensory feedback, trigger hippocampal early sharp waves (eSPWs). The hypothesis, that somatosensory feedback links myoclonic movements with eSPWs, implies that direct somatosensory stimulation should also be capable of evoking eSPWs. In this study, we examined hippocampal responses to electrical stimulation of the somatosensory periphery in urethane-anesthetized, immobilized neonatal rat pups using silicone probe recordings. We found that somatosensory stimulation in ~33% of the trials evoked local field potential (LFP) and multiple unit activity (MUA) responses identical to spontaneous eSPWs. The somatosensory-evoked eSPWs were delayed from the stimulus, on average, by 188 ms. Both spontaneous and somatosensory-evoked eSPWs (i) had similar amplitude of ~0.5 mV and half-duration of ~40 ms, (ii) had similar current-source density (CSD) profiles, with current sinks in CA1 strata radiatum, lacunosum-moleculare and DG molecular layer and (iii) were associated with MUA increase in CA1 and DG. Our results indicate that eSPWs can be triggered by direct somatosensory stimulations and support the hypothesis that sensory feedback from movements is involved in the association of eSPWs with myoclonic movements in neonatal rats.
Collapse
Affiliation(s)
- Azat Gainutdinov
- Institut de Neurobiologie de la Méditerranée (INMED U1249), Aix-Marseille University, 13273 Marseille, France;
| | - Dmitrii Shipkov
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
| | - Mikhail Sintsov
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
| | - Lorenzo Fabrizi
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
| | - Roustem Khazipov
- Institut de Neurobiologie de la Méditerranée (INMED U1249), Aix-Marseille University, 13273 Marseille, France;
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
| | - Guzel Valeeva
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
| |
Collapse
|
24
|
Witteveen IF, McCoy E, Holsworth TD, Shen CZ, Chang W, Nance MG, Belkowitz AR, Dougald A, Puglia MH, Ribic A. Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524993. [PMID: 36711801 PMCID: PMC9882279 DOI: 10.1101/2023.01.20.524993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prematurity is among the leading risks for poor neurocognitive outcomes. The brains of preterm infants show alterations in structure and electrical activity, but the underlying circuit mechanisms are unclear. To address this, we performed a cross-species study of the electrophysiological activity in the visual cortices of prematurely born infants and mice. Using electroencephalography (EEG) in a sample of healthy preterm (N=29) and term (N=28) infants, we found that the maturation of the aperiodic EEG component was accelerated in the preterm cohort, with a significantly flatter 1/f slope when compared to the term infants. The flatter slope was a result of decreased spectral power in the theta and alpha bands and was correlated with the degree of prematurity. To determine the circuit and cellular changes that potentially mediate the changes in 1/f slope after preterm birth, we used in vivo electrophysiology in preterm mice and found that, similar to infants, preterm birth results in a flattened 1/f slope. We analyzed neuronal activity in the visual cortex of preterm mice (N=6 preterm and 9 term mice) and found suppressed spontaneous firing of neurons. Using immunohistochemistry, we further found an accelerated maturation of inhibitory circuits. In both preterm mice and infants, the functional maturation of the cortex was accelerated, underscoring birth as a critical checkpoint in cortical maturation. Our study points to a potential mechanism of preterm birth-related changes in resting neural activity, highlighting the utility of a cross-species approach in studying the neural circuit mechanisms of preterm birth-related neurodevelopmental conditions.
Collapse
Affiliation(s)
- Isabelle F. Witteveen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Emily McCoy
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Troy D. Holsworth
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Catherine Z. Shen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Winnie Chang
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Madelyn G. Nance
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Allison R. Belkowitz
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Avery Dougald
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Meghan H. Puglia
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
25
|
Suárez R, Bluett T, McCullough MH, Avitan L, Black DA, Paolino A, Fenlon LR, Goodhill GJ, Richards LJ. Cortical activity emerges in region-specific patterns during early brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529078. [PMID: 36824827 PMCID: PMC9949140 DOI: 10.1101/2023.02.18.529078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The development of precise neural circuits in the brain requires spontaneous patterns of neural activity prior to functional maturation. In the rodent cerebral cortex patchwork and wave patterns of activity develop in somatosensory and visual regions, respectively, and are present at birth. However, whether such activity patterns occur in non-eutherian mammals, as well as when and how they arise during development remain open questions relevant to understand brain formation in health and disease. Since the onset of patterned cortical activity is challenging to study prenatally in eutherians, here we offer a new approach in a minimally invasive manner using marsupial dunnarts, whose cortex forms postnatally. We discovered similar patchwork and travelling waves in the dunnart somatosensory and visual cortices at stage 27 (equivalent to newborn mice), and examined progressively earlier stages of development to determine their onset and how they first emerge. We observed that these patterns of activity emerge in a region-specific and sequential manner, becoming evident as early as stage 24 in somatosensory and stage 25 in visual cortices (equivalent to embryonic day 16 and 17, respectively, in mice), as cortical layers establish and thalamic axons innervate the cortex. In addition to sculpting synaptic connections of existing circuits, evolutionarily conserved patterns of neural activity could therefore help regulate early events in cortical development. Significance Statement Region-specific patterns of neural activity are present at birth in rodents and are thought to refine synaptic connections during critical periods of cerebral cortex development. Marsupials are born much more immature than rodents, allowing the investigation of how these patterns arise in vivo. We discovered that cortical activity patterns are remarkably similar in marsupial dunnarts and rodents, and that they emerge very early, before cortical neurogenesis is complete. Moreover, they arise from the outset in different patterns specific to somatosensory and visual areas (i.e., patchworks and waves) indicating they may also play evolutionarily conserved roles in cortical regionalization during development.
Collapse
Affiliation(s)
- Rodrigo Suárez
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Tobias Bluett
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
| | | | - Lilach Avitan
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
| | - Dylan A. Black
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Annalisa Paolino
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Laura R. Fenlon
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Geoffrey J. Goodhill
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Mathematics and Physics; Brisbane, Australia
| | - Linda J. Richards
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| |
Collapse
|
26
|
Gainutdinov A, Juzekaeva E, Mukhtarov M, Khazipov R. Anoxic spreading depolarization in the neonatal rat cortex in vitro. Front Cell Neurosci 2023; 17:1106268. [PMID: 36970422 PMCID: PMC10034194 DOI: 10.3389/fncel.2023.1106268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Anoxic spreading depolarization (aSD) is a hallmark of ischemic injury in the cerebral cortex. In adults, aSD is associated with rapid and nearly complete neuronal depolarization and loss of neuronal functions. While ischemia also evokes aSD in the immature cortex, developmental aspects of neuronal behavior during aSD remain largely unknown. Here, using oxygen-glucose deprivation (OGD) ischemia model in slices of the postnatal rat somatosensory cortex, we found that immature neurons displayed much more complex behaviors: they initially moderately depolarized during aSD, then transiently repolarised (for up to tens of minutes), and only then passed to terminal depolarization. The ability to fire action potentials was maintained in neurons mildly depolarized during aSD without reaching the level of depolarization block, and these functions were regained in the majority of immature neurons during post-aSD transient repolarization. The amplitude of depolarization and the probability of depolarization block during aSD increased, whereas transient post-SD repolarization levels and duration, and associated recovery in neuronal firing decreased with age. By the end of the first postnatal month, aSD acquired an adult-like phenotype, where depolarization during aSD merged with terminal depolarization and the phase of transient recovery was lost. Thus, changes in neuronal function during aSD undergo remarkable developmental changes that may contribute to lower susceptibility of the immature neurons to ischemia.
Collapse
Affiliation(s)
- Azat Gainutdinov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- INMED—INSERM, Aix-Marseille University, Marseille, France
| | - Elvira Juzekaeva
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Marat Mukhtarov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- INMED—INSERM, Aix-Marseille University, Marseille, France
- *Correspondence: Roustem Khazipov
| |
Collapse
|
27
|
Huerga-Gómez I, Martini FJ, López-Bendito G. Building thalamic neuronal networks during mouse development. Front Neural Circuits 2023; 17:1098913. [PMID: 36817644 PMCID: PMC9936079 DOI: 10.3389/fncir.2023.1098913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus. Like excitatory thalamic neurons, these inhibitory neurons are derived from progenitors residing in the developing thalamus. The assembly of these circuits follows fine-tuned genetic programs and it is coordinated by extrinsic factors that help the cells find their location, associate with thalamic partners, and establish connections with their corresponding extra-thalamic inputs and outputs. In this review, we bring together what is currently known about the development of the excitatory and inhibitory components of the thalamocortical sensory system, in particular focusing on the visual pathway and thalamic interneurons in mice.
Collapse
Affiliation(s)
- Irene Huerga-Gómez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | |
Collapse
|
28
|
Mukherjee D, Kanold PO. Changing subplate circuits: Early activity dependent circuit plasticity. Front Cell Neurosci 2023; 16:1067365. [PMID: 36713777 PMCID: PMC9874351 DOI: 10.3389/fncel.2022.1067365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Early neural activity in the developing sensory system comprises spontaneous bursts of patterned activity, which is fundamental for sculpting and refinement of immature cortical connections. The crude early connections that are initially refined by spontaneous activity, are further elaborated by sensory-driven activity from the periphery such that orderly and mature connections are established for the proper functioning of the cortices. Subplate neurons (SPNs) are one of the first-born mature neurons that are transiently present during early development, the period of heightened activity-dependent plasticity. SPNs are well integrated within the developing sensory cortices. Their structural and functional properties such as relative mature intrinsic membrane properties, heightened connectivity via chemical and electrical synapses, robust activation by neuromodulatory inputs-place them in an ideal position to serve as crucial elements in monitoring and regulating spontaneous endogenous network activity. Moreover, SPNs are the earliest substrates to receive early sensory-driven activity from the periphery and are involved in its modulation, amplification, and transmission before the maturation of the direct adult-like thalamocortical connectivity. Consequently, SPNs are vulnerable to sensory manipulations in the periphery. A broad range of early sensory deprivations alters SPN circuit organization and functions that might be associated with long term neurodevelopmental and psychiatric disorders. Here we provide a comprehensive overview of SPN function in activity-dependent development during early life and integrate recent findings on the impact of early sensory deprivation on SPNs that could eventually lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Patrick O. Kanold ✉
| |
Collapse
|
29
|
Thill B. The fetal pain paradox. FRONTIERS IN PAIN RESEARCH 2023; 4:1128530. [PMID: 37025166 PMCID: PMC10072285 DOI: 10.3389/fpain.2023.1128530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Controversy exists as to when conscious pain perception in the fetus may begin. According to the hypothesis of cortical necessity, thalamocortical connections, which do not form until after 24-28 weeks gestation, are necessary for conscious pain perception. However, anesthesiologists and neonatologists treat age-matched neonates as both conscious and pain-capable due to observable and measurable behavioral, hormonal, and physiologic indicators of pain. In preterm infants, these multimodal indicators of pain are uncontroversial, and their presence, despite occurring prior to functional thalamocortical connections, has guided the use of analgesics in neonatology and fetal surgery for decades. However, some medical groups state that below 24 weeks gestation, there is no pain capacity. Thus, a paradox exists in the disparate acknowledgment of pain capability in overlapping patient populations. Brain networks vary by age. During the first and second trimesters, the cortical subplate, a unique structure that is present only during fetal and early neonatal development, forms the first cortical network. In the third trimester, the cortical plate assumes this function. According to the subplate modulation hypothesis, a network of connections to the subplate and subcortical structures is sufficient to facilitate conscious pain perception in the fetus and the preterm neonate prior to 24 weeks gestation. Therefore, similar to other fetal and neonatal systems that have a transitional phase (i.e., circulatory system), there is now strong evidence for transitional developmental phases of fetal and neonatal pain circuitry.
Collapse
|
30
|
Saadatmehr B, Edalati M, Routier L, Mahmoudzadeh M, Safaie J, Kongolo G, Ghostine G, Wallois F, Moghimi S. Evolution of cross-frequency coupling between endogenous oscillations over the temporal cortex in very premature neonates. Cereb Cortex 2022; 33:278-289. [PMID: 35235654 PMCID: PMC10103643 DOI: 10.1093/cercor/bhac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/17/2023] Open
Abstract
Temporal theta activity in coalescence with slow-wave (TTA-SW) is one of the first neurobiomarkers of the neurodevelopment of perisylvian networks in the electroencephalography (EEG). Dynamic changes in the microstructure and activity within neural networks are reflected in the EEG. Slow oscillation slope can reflect synaptic strength, and cross-frequency coupling (CFC), associated with several putative functions in adults, can reflect neural communication. Here, we investigated the evolution of CFC, in terms of SW theta phase-amplitude coupling (PAC), during the course of very early development between 25 and 32 weeks of gestational age in 23 premature neonates. We used high-resolution EEG and dipole models as spatial filters to extract the source waveforms corresponding to TTA-SW. We also carried out nonlinear phase-dependent correlation measurements to examine whether the characteristics of the SW slopes are associated with TTA-SW coupling. We show that neurodevelopment leads to temporal accumulation of the SW theta PAC toward the trough of SW. Steepness of the negative going slope of SW determined the degree of this coupling. Systematic modulation of SW-TTA CFC during development is a signature of the complex development of local cortico-cortical perisylvian networks and distant thalamo-cortical neural circuits driving this nested activity over the perisylvian networks.
Collapse
Affiliation(s)
- Bahar Saadatmehr
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France
| | - Mohammadreza Edalati
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France
| | - Laura Routier
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| | - Mahdi Mahmoudzadeh
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| | - Javad Safaie
- Electrical Engineering Department, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Guy Kongolo
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, NICU, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| | - Ghida Ghostine
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, NICU, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| | - Fabrice Wallois
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| | - Sahar Moghimi
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| |
Collapse
|
31
|
Günther A, Hanganu-Opatz IL. Neuronal oscillations: early biomarkers of psychiatric disease? Front Behav Neurosci 2022; 16:1038981. [PMID: 36600993 PMCID: PMC9806131 DOI: 10.3389/fnbeh.2022.1038981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of the environmental and genetic factors contributing to the wide spectrum of neuropsychiatric disorders has significantly increased in recent years. Impairment of neuronal network activity during early development has been suggested as a contributor to the emergence of neuropsychiatric pathologies later in life. Still, the neurobiological substrates underlying these disorders remain yet to be fully understood and the lack of biomarkers for early diagnosis has impeded research into curative treatment options. Here, we briefly review current knowledge on potential biomarkers for emerging neuropsychiatric disease. Moreover, we summarize recent findings on aberrant activity patterns in the context of psychiatric disease, with a particular focus on their potential as early biomarkers of neuropathologies, an essential step towards pre-symptomatic diagnosis and, thus, early intervention.
Collapse
|
32
|
Graf J, Rahmati V, Majoros M, Witte OW, Geis C, Kiebel SJ, Holthoff K, Kirmse K. Network instability dynamics drive a transient bursting period in the developing hippocampus in vivo. eLife 2022; 11:e82756. [PMID: 36534089 PMCID: PMC9762703 DOI: 10.7554/elife.82756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Spontaneous correlated activity is a universal hallmark of immature neural circuits. However, the cellular dynamics and intrinsic mechanisms underlying network burstiness in the intact developing brain are largely unknown. Here, we use two-photon Ca2+ imaging to comprehensively map the developmental trajectories of spontaneous network activity in the hippocampal area CA1 of mice in vivo. We unexpectedly find that network burstiness peaks after the developmental emergence of effective synaptic inhibition in the second postnatal week. We demonstrate that the enhanced network burstiness reflects an increased functional coupling of individual neurons to local population activity. However, pairwise neuronal correlations are low, and network bursts (NBs) recruit CA1 pyramidal cells in a virtually random manner. Using a dynamic systems modeling approach, we reconcile these experimental findings and identify network bi-stability as a potential regime underlying network burstiness at this age. Our analyses reveal an important role of synaptic input characteristics and network instability dynamics for NB generation. Collectively, our data suggest a mechanism, whereby developing CA1 performs extensive input-discrimination learning prior to the onset of environmental exploration.
Collapse
Affiliation(s)
- Jürgen Graf
- Department of Neurology, Jena University HospitalJenaGermany
| | - Vahid Rahmati
- Department of Neurology, Jena University HospitalJenaGermany
- Section Translational Neuroimmunology, Jena University HospitalJenaGermany
- Department of Psychology, Technical University DresdenDresdenGermany
| | - Myrtill Majoros
- Department of Neurology, Jena University HospitalJenaGermany
| | - Otto W Witte
- Department of Neurology, Jena University HospitalJenaGermany
| | - Christian Geis
- Department of Neurology, Jena University HospitalJenaGermany
- Section Translational Neuroimmunology, Jena University HospitalJenaGermany
| | - Stefan J Kiebel
- Department of Psychology, Technical University DresdenDresdenGermany
| | - Knut Holthoff
- Department of Neurology, Jena University HospitalJenaGermany
| | - Knut Kirmse
- Department of Neurology, Jena University HospitalJenaGermany
- Department of Neurophysiology, Institute of Physiology, University of WürzburgWürzburgGermany
| |
Collapse
|
33
|
Neuromonitoring in neonatal critical care part II: extremely premature infants and critically ill neonates. Pediatr Res 2022:10.1038/s41390-022-02392-2. [PMID: 36434203 DOI: 10.1038/s41390-022-02392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Neonatal intensive care has expanded from cardiorespiratory care to a holistic approach emphasizing brain health. To best understand and monitor brain function and physiology in the neonatal intensive care unit (NICU), the most commonly used tools are amplitude-integrated EEG, full multichannel continuous EEG, and near-infrared spectroscopy. Each of these modalities has unique characteristics and functions. While some of these tools have been the subject of expert consensus statements or guidelines, there is no overarching agreement on the optimal approach to neuromonitoring in the NICU. This work reviews current evidence to assist decision making for the best utilization of these neuromonitoring tools to promote neuroprotective care in extremely premature infants and in critically ill neonates. Neuromonitoring approaches in neonatal encephalopathy and neonates with possible seizures are discussed separately in the companion paper. IMPACT: For extremely premature infants, NIRS monitoring has a potential role in individualized brain-oriented care, and selective use of aEEG and cEEG can assist in seizure detection and prognostication. For critically ill neonates, NIRS can monitor cerebral perfusion, oxygen delivery, and extraction associated with disease processes as well as respiratory and hypodynamic management. Selective use of aEEG and cEEG is important in those with a high risk of seizures and brain injury. Continuous multimodal monitoring as well as monitoring of sleep, sleep-wake cycling, and autonomic nervous system have a promising role in neonatal neurocritical care.
Collapse
|
34
|
Routier L, Mahmoudzadeh M, Panzani M, Saadatmehr B, Gondry J, Bourel-Ponchel E, Moghimi S, Wallois F. The frontal sharp transient in newborns: An endogenous neurobiomarker concomitant to the physiological and critical transitional period around delivery? Cereb Cortex 2022; 33:4026-4039. [PMID: 36066405 PMCID: PMC10068298 DOI: 10.1093/cercor/bhac324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The frontal sharp transient (FST) consists of transient electrical activity recorded around the transitional period from the in to ex utero environment. Although its positive predictive value is assumed, nothing is known about its functionality or origin. The objectives were (i) to define its characteristics and (ii) to develop functional hypothesis. The 128-channels high-resolution electroencephalograms of 20 healthy newborns (37.1-41.6 weeks) were studied. The morphological and time-frequency characteristics of 418 FSTs were analyzed. The source localization of the FSTs was obtained using a finite element head model (5 layers and fontanels) and various source localization methods (distributed and dipolar). The characteristics (duration, slopes, and amplitude) and the localization of FSTs were not modulated by the huge developmental neuronal processes that occur during the very last period of gestation. The sources were located beneath the ventral median part of the frontal lobe around the interhemispheric fissure, suggesting that the olfactory bulbs and orbitofrontal cortex, essential in olfaction and the mother-infant attachment relationship, are likely candidates for the generation of FSTs. FSTs may contribute to the implementation of the functionalities of brain structures involved in the higher-order processing necessary for survival ahead of delivery, with a genetic fingerprint.
Collapse
Affiliation(s)
- Laura Routier
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France.,Pediatric Clinical Neurophysiology Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054 Amiens, France
| | - Mahdi Mahmoudzadeh
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France
| | - Marine Panzani
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France
| | - Bahar Saadatmehr
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France
| | - Jean Gondry
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France.,Maternity Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054 Amiens, France
| | - Emilie Bourel-Ponchel
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France.,Pediatric Clinical Neurophysiology Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054 Amiens, France
| | - Sahar Moghimi
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France
| | - Fabrice Wallois
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France.,Pediatric Clinical Neurophysiology Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054 Amiens, France
| |
Collapse
|
35
|
Polese D, Riccio ML, Fagioli M, Mazzetta A, Fagioli F, Parisi P, Fagioli M. The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth. Front Integr Neurosci 2022; 16:933426. [PMID: 36118115 PMCID: PMC9478760 DOI: 10.3389/fnint.2022.933426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This ‘hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry.
Collapse
Affiliation(s)
- Daniela Polese
- PhD Program on Sensorineural Plasticity, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Daniela Polese
| | | | - Marcella Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Alessandro Mazzetta
- PhD Program on Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
36
|
Warm D, Bassetti D, Schroer J, Luhmann HJ, Sinning A. Spontaneous Activity Predicts Survival of Developing Cortical Neurons. Front Cell Dev Biol 2022; 10:937761. [PMID: 36035995 PMCID: PMC9399774 DOI: 10.3389/fcell.2022.937761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity plays a crucial role in brain development by coordinating the integration of immature neurons into emerging cortical networks. High levels and complex patterns of spontaneous activity are generally associated with low rates of apoptosis in the cortex. However, whether spontaneous activity patterns directly encode for survival of individual cortical neurons during development remains an open question. Here, we longitudinally investigated spontaneous activity and apoptosis in developing cortical cultures, combining extracellular electrophysiology with calcium imaging. These experiments demonstrated that the early occurrence of calcium transients was strongly linked to neuronal survival. Silent neurons exhibited a higher probability of cell death, whereas high frequency spiking and burst behavior were almost exclusively detected in surviving neurons. In local neuronal clusters, activity of neighboring neurons exerted a pro-survival effect, whereas on the functional level, networks with a high modular topology were associated with lower cell death rates. Using machine learning algorithms, cell fate of individual neurons was predictable through the integration of spontaneous activity features. Our results indicate that high frequency spiking activity constrains apoptosis in single neurons through sustained calcium rises and thereby consolidates networks in which a high modular topology is reached during early development.
Collapse
|
37
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
38
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
39
|
Ferrer C, De Marco García NV. The Role of Inhibitory Interneurons in Circuit Assembly and Refinement Across Sensory Cortices. Front Neural Circuits 2022; 16:866999. [PMID: 35463203 PMCID: PMC9021723 DOI: 10.3389/fncir.2022.866999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory information is transduced into electrical signals in the periphery by specialized sensory organs, which relay this information to the thalamus and subsequently to cortical primary sensory areas. In the cortex, microcircuits constituted by interconnected pyramidal cells and inhibitory interneurons, distributed throughout the cortical column, form the basic processing units of sensory information underlying sensation. In the mouse, these circuits mature shortly after birth. In the first postnatal week cortical activity is characterized by highly synchronized spontaneous activity. While by the second postnatal week, spontaneous activity desynchronizes and sensory influx increases drastically upon eye opening, as well as with the onset of hearing and active whisking. This influx of sensory stimuli is fundamental for the maturation of functional properties and connectivity in neurons allocated to sensory cortices. In the subsequent developmental period, spanning the first five postnatal weeks, sensory circuits are malleable in response to sensory stimulation in the so-called critical periods. During these critical periods, which vary in timing and duration across sensory areas, perturbations in sensory experience can alter cortical connectivity, leading to long-lasting modifications in sensory processing. The recent advent of intersectional genetics, in vivo calcium imaging and single cell transcriptomics has aided the identification of circuit components in emergent networks. Multiple studies in recent years have sought a better understanding of how genetically-defined neuronal subtypes regulate circuit plasticity and maturation during development. In this review, we discuss the current literature focused on postnatal development and critical periods in the primary auditory (A1), visual (V1), and somatosensory (S1) cortices. We compare the developmental trajectory among the three sensory areas with a particular emphasis on interneuron function and the role of inhibitory circuits in cortical development and function.
Collapse
|
40
|
Kirmse K, Zhang C. Principles of GABAergic signaling in developing cortical network dynamics. Cell Rep 2022; 38:110568. [PMID: 35354036 DOI: 10.1016/j.celrep.2022.110568] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
GABAergic signaling provides inhibitory stabilization and spatiotemporally coordinates the firing of recurrently connected excitatory neurons in mature cortical circuits. Inhibition thus enables self-generated neuronal activity patterns that underlie various aspects of sensation and cognition. In this review, we aim to provide a conceptual framework describing how and when GABA-releasing interneurons acquire their network functions during development. Focusing on the developing visual neocortex and hippocampus in mice and rats in vivo, we hypothesize that at the onset of patterned activity, glutamatergic neurons are stable by themselves and inhibitory stabilization is not yet functional. We review important milestones in the development of GABAergic signaling and illustrate how the cell-type-specific strengthening of synaptic inhibition toward eye opening shapes cortical network dynamics and allows the developing cortex to progressively disengage from extra-cortical synaptic drive. We translate this framework to human cortical development and discuss clinical implications for the treatment of neonatal seizures.
Collapse
Affiliation(s)
- Knut Kirmse
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.
| | - Chuanqiang Zhang
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
41
|
Tokariev A, Oberlander VC, Videman M, Vanhatalo S. Cortical Cross-Frequency Coupling Is Affected by in utero Exposure to Antidepressant Medication. Front Neurosci 2022; 16:803708. [PMID: 35310093 PMCID: PMC8927083 DOI: 10.3389/fnins.2022.803708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Up to five percent of human infants are exposed to maternal antidepressant medication by serotonin reuptake inhibitors (SRI) during pregnancy, yet the SRI effects on infants’ early neurodevelopment are not fully understood. Here, we studied how maternal SRI medication affects cortical frequency-specific and cross-frequency interactions estimated, respectively, by phase-phase correlations (PPC) and phase-amplitude coupling (PAC) in electroencephalographic (EEG) recordings. We examined the cortical activity in infants after fetal exposure to SRIs relative to a control group of infants without medical history of any kind. Our findings show that the sleep-related dynamics of PPC networks are selectively affected by in utero SRI exposure, however, those alterations do not correlate to later neurocognitive development as tested by neuropsychological evaluation at two years of age. In turn, phase-amplitude coupling was found to be suppressed in SRI infants across multiple distributed cortical regions and these effects were linked to their neurocognitive outcomes. Our results are compatible with the overall notion that in utero drug exposures may cause subtle, yet measurable changes in the brain structure and function. Our present findings are based on the measures of local and inter-areal neuronal interactions in the cortex which can be readily used across species, as well as between different scales of inspection: from the whole animals to in vitro preparations. Therefore, this work opens a framework to explore the cellular and molecular mechanisms underlying neurodevelopmental SRI effects at all translational levels.
Collapse
Affiliation(s)
- Anton Tokariev
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- *Correspondence: Anton Tokariev,
| | - Victoria C. Oberlander
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Mari Videman
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Pediatric Neurology, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, BABA Center, New Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
- Sampsa Vanhatalo,
| |
Collapse
|
42
|
Leighton AH, Victoria Fernández Busch M, Coppens JE, Heimel JA, Lohmann C. Lightweight, wireless LED implant for chronic manipulation in vivo of spontaneous activity in neonatal mice. J Neurosci Methods 2022; 373:109548. [DOI: 10.1016/j.jneumeth.2022.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
|
43
|
Warm D, Schroer J, Sinning A. Gabaergic Interneurons in Early Brain Development: Conducting and Orchestrated by Cortical Network Activity. Front Mol Neurosci 2022; 14:807969. [PMID: 35046773 PMCID: PMC8763242 DOI: 10.3389/fnmol.2021.807969] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/22/2023] Open
Abstract
Throughout early phases of brain development, the two main neural signaling mechanisms—excitation and inhibition—are dynamically sculpted in the neocortex to establish primary functions. Despite its relatively late formation and persistent developmental changes, the GABAergic system promotes the ordered shaping of neuronal circuits at the structural and functional levels. Within this frame, interneurons participate first in spontaneous and later in sensory-evoked activity patterns that precede cortical functions of the mature brain. Upon their subcortical generation, interneurons in the embryonic brain must first orderly migrate to and settle in respective target layers before they can actively engage in cortical network activity. During this process, changes at the molecular and synaptic level of interneurons allow not only their coordinated formation but also the pruning of connections as well as excitatory and inhibitory synapses. At the postsynaptic site, the shift of GABAergic signaling from an excitatory towards an inhibitory response is required to enable synchronization within cortical networks. Concomitantly, the progressive specification of different interneuron subtypes endows the neocortex with distinct local cortical circuits and region-specific modulation of neuronal firing. Finally, the apoptotic process further refines neuronal populations by constantly maintaining a controlled ratio of inhibitory and excitatory neurons. Interestingly, many of these fundamental and complex processes are influenced—if not directly controlled—by electrical activity. Interneurons on the subcellular, cellular, and network level are affected by high frequency patterns, such as spindle burst and gamma oscillations in rodents and delta brushes in humans. Conversely, the maturation of interneuron structure and function on each of these scales feeds back and contributes to the generation of cortical activity patterns that are essential for the proper peri- and postnatal development. Overall, a more precise description of the conducting role of interneurons in terms of how they contribute to specific activity patterns—as well as how specific activity patterns impinge on their maturation as orchestra members—will lead to a better understanding of the physiological and pathophysiological development and function of the nervous system.
Collapse
|
44
|
Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022; 15:814012. [PMID: 35046777 PMCID: PMC8761895 DOI: 10.3389/fncel.2021.814012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
This review article aims to give a brief summary on the novel technologies, the challenges, our current understanding, and the open questions in the field of the neurophysiology of the developing cerebral cortex in rodents. In the past, in vitro electrophysiological and calcium imaging studies on single neurons provided important insights into the function of cellular and subcellular mechanism during early postnatal development. In the past decade, neuronal activity in large cortical networks was recorded in pre- and neonatal rodents in vivo by the use of novel high-density multi-electrode arrays and genetically encoded calcium indicators. These studies demonstrated a surprisingly rich repertoire of spontaneous cortical and subcortical activity patterns, which are currently not completely understood in their functional roles in early development and their impact on cortical maturation. Technological progress in targeted genetic manipulations, optogenetics, and chemogenetics now allow the experimental manipulation of specific neuronal cell types to elucidate the function of early (transient) cortical circuits and their role in the generation of spontaneous and sensory evoked cortical activity patterns. Large-scale interactions between different cortical areas and subcortical regions, characterization of developmental shifts from synchronized to desynchronized activity patterns, identification of transient circuits and hub neurons, role of electrical activity in the control of glial cell differentiation and function are future key tasks to gain further insights into the neurophysiology of the developing cerebral cortex.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
45
|
Schmidt Mellado G, Pillay K, Adams E, Alarcon A, Andritsou F, Cobo MM, Evans Fry R, Fitzgibbon S, Moultrie F, Baxter L, Slater R. The impact of premature extrauterine exposure on infants' stimulus-evoked brain activity across multiple sensory systems. Neuroimage Clin 2021; 33:102914. [PMID: 34915328 PMCID: PMC8683775 DOI: 10.1016/j.nicl.2021.102914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022]
Abstract
Prematurity can result in widespread neurodevelopmental impairment, with the impact of premature extrauterine exposure on brain function detectable in infancy. A range of neurodynamic and haemodynamic functional brain measures have previously been employed to study the neurodevelopmental impact of prematurity, with methodological and analytical heterogeneity across studies obscuring how multiple sensory systems are affected. Here, we outline a standardised template analysis approach to measure evoked response magnitudes for visual, tactile, and noxious stimulation in individual infants (n = 15) using EEG. By applying these templates longitudinally to an independent cohort of very preterm infants (n = 10), we observe that the evoked response template magnitudes are significantly associated with age-related maturation. Finally, in a cross-sectional study we show that the visual and tactile response template magnitudes differ between a cohort of infants who are age-matched at the time of study but who differ according to whether they are born during the very preterm or late preterm period (n = 10 and 8 respectively). These findings demonstrate the significant impact of premature extrauterine exposure on brain function and suggest that prematurity can accelerate maturation of the visual and tactile sensory system in infants born very prematurely. This study highlights the value of using a standardised multi-modal evoked-activity analysis approach to assess premature neurodevelopment, and will likely complement resting-state EEG and behavioural assessments in the study of the functional impact of developmental care interventions.
Collapse
Affiliation(s)
| | - Kirubin Pillay
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eleri Adams
- Newborn Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ana Alarcon
- Newborn Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Department of Neonatology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Universitat de Barcelona, Barcelona, Spain
| | | | - Maria M Cobo
- Department of Paediatrics, University of Oxford, Oxford, UK; Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biologicas y Ambientales, Quito, Ecuador
| | - Ria Evans Fry
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Fiona Moultrie
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Sevetson JL, Theyel B, Hoffman-Kim D. Cortical spheroids display oscillatory network dynamics. LAB ON A CHIP 2021; 21:4586-4595. [PMID: 34734621 DOI: 10.1039/d1lc00737h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional brain cultures can facilitate the study of central nervous system function and disease, and one of the most important components that they present is neuronal activity on a network level. Here we demonstrate network activity in rodent cortical spheroids while maintaining the networks intact in their 3D state. Networks developed by nine days in culture and became more complex over time. To measure network activity, we imaged neurons in rat and mouse spheroids labelled with a calcium indicator dye, and in mouse spheroids expressing GCaMP. Network activity was evident when we electrically stimulated spheroids, was abolished with glutamatergic blockade, and was altered by GABAergic blockade or partial glutamatergic blockade. We quantified correlations and distances between somas with micron-scale spatial resolution. Spheroids seeded at as few as 4000 cells gave rise to emergent network events, including oscillations. These results are the first demonstration that self-assembled rat and mouse spheroids exhibit network activity consistent with in vivo network events. These results open the door to experiments on neuronal networks that require fewer animals and enable high throughput experiments on network-perturbing alterations in neurons and glia.
Collapse
Affiliation(s)
- Jessica L Sevetson
- Department of Neuroscience, Brown University, Providence, RI 02906, USA.
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
- Center for the Alternatives to Animals in Testing, Brown University, Providence, RI 02906, USA
| | - Brian Theyel
- Department of Neuroscience, Brown University, Providence, RI 02906, USA.
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
- Department of Psychiatry, Brown University, Providence, RI 02906, USA
| | - Diane Hoffman-Kim
- Department of Neuroscience, Brown University, Providence, RI 02906, USA.
- Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
- Center for the Alternatives to Animals in Testing, Brown University, Providence, RI 02906, USA
- Center for Biomedical Engineering, Brown University, Providence, RI 02906, USA
| |
Collapse
|
47
|
Ibrahim LA, Huang S, Fernandez-Otero M, Sherer M, Qiu Y, Vemuri S, Xu Q, Machold R, Pouchelon G, Rudy B, Fishell G. Bottom-up inputs are required for establishment of top-down connectivity onto cortical layer 1 neurogliaform cells. Neuron 2021; 109:3473-3485.e5. [PMID: 34478630 PMCID: PMC9316418 DOI: 10.1016/j.neuron.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
Higher-order projections to sensory cortical areas converge on layer 1 (L1), the primary site for integration of top-down information via the apical dendrites of pyramidal neurons and L1 GABAergic interneurons. Here we investigated the contribution of early thalamic inputs onto L1 interneurons for establishment of top-down connectivity in the primary visual cortex. We find that bottom-up thalamic inputs predominate during L1 development and preferentially target neurogliaform cells. We show that these projections are critical for the subsequent strengthening of top-down inputs from the anterior cingulate cortex onto L1 neurogliaform cells. Sensory deprivation or selective removal of thalamic afferents blocked this phenomenon. Although early activation of the anterior cingulate cortex resulted in premature strengthening of these top-down afferents, this was dependent on thalamic inputs. Our results demonstrate that proper establishment of top-down connectivity in the visual cortex depends critically on bottom-up inputs from the thalamus during postnatal development.
Collapse
Affiliation(s)
- Leena Ali Ibrahim
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA; King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Marian Fernandez-Otero
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Mia Sherer
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Northeastern University, Boston, MA, USA
| | - Yanjie Qiu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | | | - Qing Xu
- Center for Genomics & Systems Biology, New York University, Abu Dhabi, UAE
| | - Robert Machold
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Gabrielle Pouchelon
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA
| | - Bernardo Rudy
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
| |
Collapse
|
48
|
Dooley JC, Sokoloff G, Blumberg MS. Movements during sleep reveal the developmental emergence of a cerebellar-dependent internal model in motor thalamus. Curr Biol 2021; 31:5501-5511.e5. [PMID: 34727521 DOI: 10.1016/j.cub.2021.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023]
Abstract
With our eyes closed, we can track a limb's moment-to-moment location in space. If this capacity relied solely on sensory feedback from the limb, we would always be a step behind because sensory feedback takes time: for the execution of rapid and precise movements, such lags are not tolerable. Nervous systems solve this problem by computing representations-or internal models-that mimic movements as they are happening, with the associated neural activity occurring after the motor command but before sensory feedback. Research in adults indicates that the cerebellum is necessary to compute internal models. What is not known, however, is when-and under what conditions-this computational capacity develops. Here, taking advantage of the unique kinematic features of the discrete, spontaneous limb twitches that characterize active sleep, we captured the developmental emergence of a cerebellar-dependent internal model. Using rats at postnatal days (P) 12, P16, and P20, we compared neural activity in the ventral posterior (VP) and ventral lateral (VL) thalamic nuclei, both of which receive somatosensory input but only the latter of which receives cerebellar input. At all ages, twitch-related activity in VP lagged behind the movement, consistent with sensory processing; similar activity was observed in VL through P16. At P20, however, VL activity no longer lagged behind movement but instead precisely mimicked the movement itself; this activity depended on cerebellar input. In addition to demonstrating the emergence of internal models of movement, these findings implicate twitches in their development and calibration through, at least, the preweanling period.
Collapse
Affiliation(s)
- James C Dooley
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52245, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
49
|
Che A, De Marco García NV. An in vivo Calcium Imaging Approach for the Identification of Cell-Type Specific Patterns in the Developing Cortex. Front Neural Circuits 2021; 15:747724. [PMID: 34690708 PMCID: PMC8528153 DOI: 10.3389/fncir.2021.747724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Neuronal activity profoundly shapes the maturation of developing neurons. However, technical limitations have hampered the ability to capture the progression of activity patterns in genetically defined neuronal populations. This task is particularly daunting given the substantial diversity of pyramidal cells and interneurons in the neocortex. A hallmark in the development of this neuronal diversity is the participation in network activity that regulates circuit assembly. Here, we describe detailed methodology on imaging neuronal cohorts longitudinally throughout postnatal stages in the mouse somatosensory cortex. To capture neuronal activity, we expressed the genetically encoded calcium sensor GCaMP6s in three distinct interneuron populations, the 5HT3aR-expressing layer 1 (L1) interneurons, SST interneurons, and VIP interneurons. We performed cranial window surgeries as early as postnatal day (P) 5 and imaged the same cohort of neurons in un-anesthetized mice from P6 to P36. This Longitudinal two-photon imaging preparation allows the activity of single neurons to be tracked throughout development as well as plasticity induced by sensory experience and learning, opening up avenues of research to answer fundamental questions in neural development in vivo.
Collapse
Affiliation(s)
| | - Natalia V. De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
50
|
Domínguez S, Ma L, Yu H, Pouchelon G, Mayer C, Spyropoulos GD, Cea C, Buzsáki G, Fishell G, Khodagholy D, Gelinas JN. A transient postnatal quiescent period precedes emergence of mature cortical dynamics. eLife 2021; 10:69011. [PMID: 34296997 PMCID: PMC8357419 DOI: 10.7554/elife.69011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/26/2021] [Indexed: 01/25/2023] Open
Abstract
Mature neural networks synchronize and integrate spatiotemporal activity patterns to support cognition. Emergence of these activity patterns and functions is believed to be developmentally regulated, but the postnatal time course for neural networks to perform complex computations remains unknown. We investigate the progression of large-scale synaptic and cellular activity patterns across development using high spatiotemporal resolution in vivo electrophysiology in immature mice. We reveal that mature cortical processes emerge rapidly and simultaneously after a discrete but volatile transition period at the beginning of the second postnatal week of rodent development. The transition is characterized by relative neural quiescence, after which spatially distributed, temporally precise, and internally organized activity occurs. We demonstrate a similar developmental trajectory in humans, suggesting an evolutionarily conserved mechanism that could facilitate a transition in network operation. We hypothesize that this transient quiescent period is a requisite for the subsequent emergence of coordinated cortical networks. It can take several months, or even years, for the brain of a young animal to develop and refine the complex neural networks which underpin cognitive abilities such as memory, planning, and decision making. While the properties that support these functions have been well-documented, less is known about how they emerge during development. Domínguez, Ma, Yu et al. therefore set out to determine when exactly these properties began to take shape in mice, using lightweight nets of electrodes to record brain activity in sleeping newborn pups. The nets were designed to avoid disturbing the animals or damaging their fragile brains. The recordings showed that patterns of brain activity similar to those seen in adults emerged during the first couple of weeks after birth. Just before, however, the brains of the pups went through a brief period of reduced activity: this lull seemed to mark a transition from an immature to a more mature mode of operation. After this pause, neurons in the mouse brains showed coordinated patterns of firing reminiscent of those seen in adults. By monitoring the brains of human babies using scalp sensors, Domínguez, Ma, Yu et al. showed that a similar transition also occurs in infants during their first few months of life, suggesting that brains may mature via a process retained across species. Overall, the relative lull in activity before transition may mark when neural networks gain mature properties; in the future, it could therefore potentially be used to diagnose and monitor individuals with delayed cognitive development.
Collapse
Affiliation(s)
- Soledad Domínguez
- Institute for Genomic Medicine, Columbia University Medical Center, New York, United States
| | - Liang Ma
- Institute for Genomic Medicine, Columbia University Medical Center, New York, United States.,Department of Biomedical Engineering, Columbia University, New York, United States
| | - Han Yu
- Department of Electrical Engineering, Columbia University, New York, United States
| | | | | | - George D Spyropoulos
- Department of Electrical Engineering, Columbia University, New York, United States
| | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, United States
| | - György Buzsáki
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, United States.,Center for Neural Science, New York University, New York, United States
| | - Gordon Fishell
- The Stanley Center at the Broad, Cambridge, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, United States
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Medical Center, New York, United States.,Department of Biomedical Engineering, Columbia University, New York, United States.,Department of Neurology, Columbia University Medical Center, New York, United States
| |
Collapse
|