1
|
Ortabozkoyun H, Huang PY, Gonzalez-Buendia E, Cho H, Kim SY, Tsirigos A, Mazzoni EO, Reinberg D. Members of an array of zinc-finger proteins specify distinct Hox chromatin boundaries. Mol Cell 2024; 84:3406-3422.e6. [PMID: 39173638 DOI: 10.1016/j.molcel.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type-specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CCCTC-binding factor (CTCF), is unchanged at the developmentally important Hox clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and Myc-associated zinc-finger protein (MAZ), and identified a family of zinc-finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the Hox clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.
Collapse
Affiliation(s)
- Havva Ortabozkoyun
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA.
| | - Pin-Yao Huang
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA
| | - Edgar Gonzalez-Buendia
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA
| | - Hyein Cho
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA; Department of Medicine, Division of Precision Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Sang Y Kim
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA; Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Esteban O Mazzoni
- Department of Cell Biology, NYU Langone Health, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
2
|
Kc R, López de Boer R, Lin M, Vagnozzi AN, Jeannotte L, Philippidou P. Multimodal Hox5 activity generates motor neuron diversity. Commun Biol 2024; 7:1166. [PMID: 39289460 PMCID: PMC11408534 DOI: 10.1038/s42003-024-06835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Motor neurons (MNs) are the final output of circuits driving fundamental behaviors, such as respiration and locomotion. Hox proteins are essential in generating the MN diversity required for accomplishing these functions, but the transcriptional mechanisms that enable Hox paralogs to assign distinct MN subtype identities despite their promiscuous DNA binding motif are not well understood. Here we show that Hoxa5 modifies chromatin accessibility in all mouse spinal cervical MN subtypes and engages TALE co-factors to directly bind and regulate subtype-specific genes. We identify a paralog-specific interaction of Hoxa5 with the phrenic MN-specific transcription factor Scip and show that heterologous expression of Hoxa5 and Scip is sufficient to suppress limb-innervating MN identity. We also demonstrate that phrenic MN identity is stable after Hoxa5 downregulation and identify Klf proteins as potential regulators of phrenic MN maintenance. Our data identify multiple modes of Hoxa5 action that converge to induce and maintain MN identity.
Collapse
Affiliation(s)
- Ritesh Kc
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Raquel López de Boer
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Minshan Lin
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alicia N Vagnozzi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Centre Recherche sur le Cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology), Québec, Canada
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Ortabozkoyun H, Huang PY, Gonzalez-Buendia E, Cho H, Kim SY, Tsirigos A, Mazzoni EO, Reinberg D. Members of an array of zinc finger proteins specify distinct Hox chromatin boundaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.25.538167. [PMID: 37162865 PMCID: PMC10168243 DOI: 10.1101/2023.04.25.538167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CTCF, is unchanged at the developmentally important Hox clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and MAZ, and identified a family of zinc finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the Hox clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.
Collapse
|
4
|
Ritesh KC, de Boer RL, Lin M, Jeannotte L, Philippidou P. Multimodal Hox5 activity generates motor neuron diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579338. [PMID: 38370781 PMCID: PMC10871347 DOI: 10.1101/2024.02.08.579338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Motor neurons (MNs) are the final output of circuits driving fundamental behaviors, such as respiration and locomotion. Hox proteins are essential in generating the MN diversity required for accomplishing these functions, but the transcriptional mechanisms that enable Hox paralogs to assign distinct MN subtype identities despite their promiscuous DNA binding motif are not well understood. Here we show that Hoxa5 controls chromatin accessibility in all mouse spinal cervical MN subtypes and engages TALE co-factors to directly bind and regulate subtype-specific genes. We identify a paralog-specific interaction of Hoxa5 with the phrenic MN-specific transcription factor Scip and show that heterologous expression of Hoxa5 and Scip is sufficient to suppress limb-innervating MN identity. We also demonstrate that phrenic MN identity is stable after Hoxa5 downregulation and identify Klf proteins as potential regulators of phrenic MN maintenance. Our data identify multiple modes of Hoxa5 action that converge to induce and maintain MN identity.
Collapse
Affiliation(s)
- K C Ritesh
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Raquel López de Boer
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Minshan Lin
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Centre Recherche sur le Cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology), Québec, Canada
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
6
|
Honzel E, Hernandez-Morato I, Joshi A, Pennington-Fitzgerald W, Moayedi Y, Pitman MJ. Temporal Expression of Hox Genes and Phox2b in the Rat Nucleus Ambiguus During Development: Implications on Laryngeal Innervation. Laryngoscope 2023; 133:3462-3471. [PMID: 37350386 PMCID: PMC10907063 DOI: 10.1002/lary.30826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVES Recurrent laryngeal nerve (RLN) injury results in synkinetic reinnervation and vocal fold paralysis. Investigation of cues expressed in the developing brainstem that influence correct selective targeting of intrinsic laryngeal muscles may elucidate post-injury abnormalities contributing to non-functional reinnervation. Primary targets of interest were Hoxb1 and Hoxb2, members of the Hox family that create overlapping gradients in the developing brain, and their target Phox2b, a transcription factor necessary for cranial nerve branchio- and visceromotoneuron survival. METHODS Rat embryos at developmental days E14, E16, E18, and E20 (4 animals/age) were sectioned for RNA in situ hybridization to detect Hoxb1, Hoxb2, and Phox2b mRNA within the brainstem. Slides were costained with Islet1 antibody for identification of the nucleus ambiguus. Results were confirmed using immunohistochemistry. Sections were imaged on a confocal microscope. RNA and protein expressions were quantified using QuPath. Statistical analyses were performed using R. RESULTS Hoxb1, Hoxb2, and Phox2b expressions varied according to embryologic age. Hoxb1 and Hoxb2 expression peaked at E16, with significant decreases at E18 and E20 (one-way ANOVA p = 0.001 for both). Phox2b expression was highest at E14 and trended downward with increased embryologic age (one-way ANOVA p = 0.005). CONCLUSION Peak expression of Hoxb1 and Hoxb2 is observed at time points when the RLN arrives at the larynx and begins to branch toward individual muscles, positioning these gene products to be involved in cueing laryngeal motoneuron identity and target identification. Higher expression of Phox2b earlier in development suggests a role in laryngeal motoneuron formation. LEVEL OF EVIDENCE NA Laryngoscope, 133:3462-3471, 2023.
Collapse
Affiliation(s)
- Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - Abhinav Joshi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - William Pennington-Fitzgerald
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - Yalda Moayedi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
- Department of Neurology, Columbia University, New York, New York, U.S.A
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
- Department of Neurology, Columbia University, New York, New York, U.S.A
| |
Collapse
|
7
|
Abstract
Hox genes encode evolutionarily conserved transcription factors that are essential for the proper development of bilaterian organisms. Hox genes are unique because they are spatially and temporally regulated during development in a manner that is dictated by their tightly linked genomic organization. Although their genetic function during embryonic development has been interrogated, less is known about how these transcription factors regulate downstream genes to direct morphogenetic events. Moreover, the continued expression and function of Hox genes at postnatal and adult stages highlights crucial roles for these genes throughout the life of an organism. Here, we provide an overview of Hox genes, highlighting their evolutionary history, their unique genomic organization and how this impacts the regulation of their expression, what is known about their protein structure, and their deployment in development and beyond.
Collapse
Affiliation(s)
- Katharine A. Hubert
- Program in Genetics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
8
|
The pioneering function of the hox transcription factors. Semin Cell Dev Biol 2022:S1084-9521(22)00354-8. [PMID: 36517345 DOI: 10.1016/j.semcdb.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Ever since the discovery that the Hox family of transcription factors establish morphological diversity in the developing embryo, major efforts have been directed towards understanding Hox-dependent patterning. This has led to important discoveries, notably on the mechanisms underlying the collinear expression of Hox genes and Hox binding specificity. More recently, several studies have provided evidence that Hox factors have the capacity to bind their targets in an inaccessible chromatin context and trigger the switch to an accessible, transcriptional permissive, chromatin state. In this review, we provide an overview of the evidences supporting that Hox factors behave as pioneer factors and discuss the potential mechanisms implicated in Hox pioneer activity as well as the significance of this functional property in Hox-dependent patterning.
Collapse
|
9
|
Yoo D, Park J, Lee C, Song I, Lee YH, Yun T, Lee H, Heguy A, Han JY, Dasen JS, Kim H, Baek M. Little skate genome provides insights into genetic programs essential for limb-based locomotion. eLife 2022; 11:e78345. [PMID: 36288084 PMCID: PMC9605692 DOI: 10.7554/elife.78345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The little skate Leucoraja erinacea, a cartilaginous fish, displays pelvic fin driven walking-like behavior using genetic programs and neuronal subtypes similar to those of land vertebrates. However, mechanistic studies on little skate motor circuit development have been limited, due to a lack of high-quality reference genome. Here, we generated an assembly of the little skate genome, with precise gene annotation and structures, which allowed post-genome analysis of spinal motor neurons (MNs) essential for locomotion. Through interspecies comparison of mouse, skate and chicken MN transcriptomes, shared and divergent gene expression profiles were identified. Comparison of accessible chromatin regions between mouse and skate MNs predicted shared transcription factor (TF) motifs with divergent ones, which could be used for achieving differential regulation of MN-expressed genes. A greater number of TF motif predictions were observed in MN-expressed genes in mouse than in little skate. These findings suggest conserved and divergent molecular mechanisms controlling MN development of vertebrates during evolution, which might contribute to intricate gene regulatory networks in the emergence of a more sophisticated motor system in tetrapods.
Collapse
Affiliation(s)
- DongAhn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Junhee Park
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Injun Song
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Young Ho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Tery Yun
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Hyemin Lee
- Department of Biology, Graduate School of Arts and Science, NYUNew YorkUnited States
| | - Adriana Heguy
- Genome Technology Center, Division for Advanced Research Technologies, and Department of Pathology, NYU School of MedicineNew YorkUnited States
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Seoul National UniversitySeoulRepublic of Korea
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoulRepublic of Korea
- eGnome, IncSeoulRepublic of Korea
| | - Myungin Baek
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| |
Collapse
|
10
|
Sefton EM, Gallardo M, Tobin CE, Collins BC, Colasanto MP, Merrell AJ, Kardon G. Fibroblast-derived Hgf controls recruitment and expansion of muscle during morphogenesis of the mammalian diaphragm. eLife 2022; 11:e74592. [PMID: 36154712 PMCID: PMC9514848 DOI: 10.7554/elife.74592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The diaphragm is a domed muscle between the thorax and abdomen essential for breathing in mammals. Diaphragm development requires the coordinated development of muscle, connective tissue, and nerve, which are derived from different embryonic sources. Defects in diaphragm development cause the common and often lethal birth defect, congenital diaphragmatic hernias (CDH). HGF/MET signaling is required for diaphragm muscularization, but the source of HGF and the specific functions of this pathway in muscle progenitors and effects on phrenic nerve have not been explicitly tested. Using conditional mutagenesis in mice and pharmacological inhibition of MET, we demonstrate that the pleuroperitoneal folds (PPFs), transient embryonic structures that give rise to the connective tissue in the diaphragm, are the source of HGF critical for diaphragm muscularization. PPF-derived HGF is directly required for recruitment of MET+ muscle progenitors to the diaphragm and indirectly (via its effect on muscle development) required for phrenic nerve primary branching. In addition, HGF is continuously required for maintenance and motility of the pool of progenitors to enable full muscularization. Localization of HGF at the diaphragm's leading edges directs dorsal and ventral expansion of muscle and regulates its overall size and shape. Surprisingly, large muscleless regions in HGF and Met mutants do not lead to hernias. While these regions are likely more susceptible to CDH, muscle loss is not sufficient to cause CDH.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Mirialys Gallardo
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Claire E Tobin
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Brittany C Collins
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Mary P Colasanto
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | | | - Gabrielle Kardon
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| |
Collapse
|
11
|
Ye B. The molecular mechanisms that underlie neural network assembly. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:244-250. [PMID: 37724189 PMCID: PMC10388759 DOI: 10.1515/mr-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/05/2022] [Indexed: 09/20/2023]
Abstract
Neural networks are groups of interconnected neurons, which collectively give rise to emergent neural activities and functions that cannot be explained by the activity of single neurons. How neural networks are assembled is poorly understood. While all aspects of neuronal development are essential for the assembly of a functional neural network, we know little about high-level principles that govern neural network assembly beyond the basic steps of neuronal development. In this review, I use vertebrate spinal motor columns, Drosophila larval motor circuit, and the lamination in the vertebrate inner retina to highlight the spatial codes, temporal codes, and cell adhesion codes for neural network assembly. Nevertheless, these examples only show preliminary connections between neural network development and their functions. Much needs to be done to understand the molecular mechanisms that underlie the assembly of functional neural networks.
Collapse
Affiliation(s)
- Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
LaForce GR, Farr JS, Liu J, Akesson C, Gumus E, Pinkard O, Miranda HC, Johnson K, Sweet TJ, Ji P, Lin A, Coller J, Philippidou P, Wagner EJ, Schaffer AE. Suppression of premature transcription termination leads to reduced mRNA isoform diversity and neurodegeneration. Neuron 2022; 110:1340-1357.e7. [PMID: 35139363 PMCID: PMC9035109 DOI: 10.1016/j.neuron.2022.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/26/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Tight regulation of mRNA isoform expression is essential for neuronal development, maintenance, and function; however, the repertoire of proteins that govern isoform composition and abundance remains incomplete. Here, we show that the RNA kinase CLP1 regulates mRNA isoform expression through suppression of proximal cleavage and polyadenylation. We found that human stem-cell-derived motor neurons without CLP1 or with the disease-associated CLP1 p.R140H variant had distinct patterns of RNA-polymerase-II-associated cleavage and polyadenylation complex proteins that correlated with polyadenylation site usage. These changes resulted in imbalanced mRNA isoform expression of long genes important for neuronal function that were recapitulated in vivo. Strikingly, we observed the same pattern of reduced mRNA isoform diversity in 3' end sequencing data from brain tissues of patients with neurodegenerative disease. Together, our results identify a previously uncharacterized role for CLP1 in mRNA 3' end formation and reveal an mRNA misprocessing signature in neurodegeneration that may suggest a common mechanism of disease.
Collapse
Affiliation(s)
- Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jordan S Farr
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jingyi Liu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cydni Akesson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Evren Gumus
- Department of Medical Genetics, Faculty of Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; Department of Medical Genetics, Faculty of Medicine, University of Harran, Sanliurfa 63000, Turkey
| | - Otis Pinkard
- Department of Molecular Biology and Genetics, Johns Hopkins, Baltimore, MD 21205, USA
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katherine Johnson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas J Sweet
- Department of Molecular Biology and Genetics, Johns Hopkins, Baltimore, MD 21205, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ai Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, WC67+HC Dongcheng, Beijing, China
| | - Jeff Coller
- Department of Molecular Biology and Genetics, Johns Hopkins, Baltimore, MD 21205, USA
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Gillis JA, Bennett S, Criswell KE, Rees J, Sleight VA, Hirschberger C, Calzarette D, Kerr S, Dasen J. Big insight from the little skate: Leucoraja erinacea as a developmental model system. Curr Top Dev Biol 2022; 147:595-630. [PMID: 35337464 DOI: 10.1016/bs.ctdb.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The vast majority of extant vertebrate diversity lies within the bony and cartilaginous fish lineages of jawed vertebrates. There is a long history of elegant experimental investigation of development in bony vertebrate model systems (e.g., mouse, chick, frog and zebrafish). However, studies on the development of cartilaginous fishes (sharks, skates and rays) have, until recently, been largely descriptive, owing to the challenges of embryonic manipulation and culture in this group. This, in turn, has hindered understanding of the evolution of developmental mechanisms within cartilaginous fishes and, more broadly, within jawed vertebrates. The little skate (Leucoraja erinacea) is an oviparous cartilaginous fish and has emerged as a powerful and experimentally tractable developmental model system. Here, we discuss the collection, husbandry and management of little skate brood stock and eggs, and we present an overview of key stages of skate embryonic development. We also discuss methods for the manipulation and culture of skate embryos and illustrate the range of tools and approaches available for studying this system. Finally, we summarize a selection of recent studies on skate development that highlight the utility of this system for inferring ancestral anatomical and developmental conditions for jawed vertebrates, as well as unique aspects of cartilaginous fish biology.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; Marine Biological Laboratory, Woods Hole, MA, United States.
| | - Scott Bennett
- Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Jenaid Rees
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Dan Calzarette
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Sarah Kerr
- Wesleyan University, Middletown, CT, United States
| | - Jeremy Dasen
- Department of Neuroscience and Physiology, NYU School of Medicine, Neuroscience Institute, NY, United States
| |
Collapse
|
14
|
Needham J, Metzis V. Heads or tails: Making the spinal cord. Dev Biol 2022; 485:80-92. [DOI: 10.1016/j.ydbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
15
|
Wang W, Cho H, Lee JW, Lee SK. The histone demethylase Kdm6b regulates subtype diversification of mouse spinal motor neurons during development. Nat Commun 2022; 13:958. [PMID: 35177643 PMCID: PMC8854633 DOI: 10.1038/s41467-022-28636-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
How a single neuronal population diversifies into subtypes with distinct synaptic targets is a fundamental topic in neuroscience whose underlying mechanisms are unclear. Here, we show that the histone H3-lysine 27 demethylase Kdm6b regulates the diversification of motor neurons to distinct subtypes innervating different muscle targets during spinal cord development. In mouse embryonic motor neurons, Kdm6b promotes the medial motor column (MMC) and hypaxial motor column (HMC) fates while inhibiting the lateral motor column (LMC) and preganglionic motor column (PGC) identities. Our single-cell RNA-sequencing analyses reveal the heterogeneity of PGC, LMC, and MMC motor neurons. Further, our single-cell RNA-sequencing data, combined with mouse model studies, demonstrates that Kdm6b acquires cell fate specificity together with the transcription factor complex Isl1-Lhx3. Our study provides mechanistic insight into the gene regulatory network regulating neuronal cell-type diversification and defines a regulatory role of Kdm6b in the generation of motor neuron subtypes in the mouse spinal cord.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Hyeyoung Cho
- Computational Biology Program, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jae W Lee
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Soo-Kyung Lee
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA.
| |
Collapse
|
16
|
Sawai A, Pfennig S, Bulajić M, Miller A, Khodadadi-Jamayran A, Mazzoni EO, Dasen JS. PRC1 sustains the integrity of neural fate in the absence of PRC2 function. eLife 2022; 11:e72769. [PMID: 34994686 PMCID: PMC8765755 DOI: 10.7554/elife.72769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.
Collapse
Affiliation(s)
- Ayana Sawai
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Sarah Pfennig
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Milica Bulajić
- Department of Biology, New York UniversityNew YorkUnited States
| | - Alexander Miller
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, NYU School of MedcineNew YorkUnited States
| | | | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
17
|
Dasen JS. Establishing the Molecular and Functional Diversity of Spinal Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:3-44. [PMID: 36066819 DOI: 10.1007/978-3-031-07167-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.
Collapse
Affiliation(s)
- Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
OUP accepted manuscript. Stem Cells 2022; 40:175-189. [DOI: 10.1093/stmcls/sxab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/28/2021] [Indexed: 11/14/2022]
|
19
|
Poliacikova G, Maurel-Zaffran C, Graba Y, Saurin AJ. Hox Proteins in the Regulation of Muscle Development. Front Cell Dev Biol 2021; 9:731996. [PMID: 34733846 PMCID: PMC8558437 DOI: 10.3389/fcell.2021.731996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes encode evolutionary conserved transcription factors that specify the anterior-posterior axis in all bilaterians. Being well known for their role in patterning ectoderm-derivatives, such as CNS and spinal cord, Hox protein function is also crucial in mesodermal patterning. While well described in the case of the vertebrate skeleton, much less is known about Hox functions in the development of different muscle types. In contrast to vertebrates however, studies in the fruit fly, Drosophila melanogaster, have provided precious insights into the requirement of Hox at multiple stages of the myogenic process. Here, we provide a comprehensive overview of Hox protein function in Drosophila and vertebrate muscle development, with a focus on the molecular mechanisms underlying target gene regulation in this process. Emphasizing a tight ectoderm/mesoderm cross talk for proper locomotion, we discuss shared principles between CNS and muscle lineage specification and the emerging role of Hox in neuromuscular circuit establishment.
Collapse
Affiliation(s)
| | | | - Yacine Graba
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
20
|
Sahni V, Shnider SJ, Jabaudon D, Song JHT, Itoh Y, Greig LC, Macklis JD. Corticospinal neuron subpopulation-specific developmental genes prospectively indicate mature segmentally specific axon projection targeting. Cell Rep 2021; 37:109843. [PMID: 34686320 PMCID: PMC8653526 DOI: 10.1016/j.celrep.2021.109843] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/27/2021] [Accepted: 09/26/2021] [Indexed: 11/11/2022] Open
Abstract
For precise motor control, distinct subpopulations of corticospinal neurons (CSN) must extend axons to distinct spinal segments, from proximal targets in the brainstem and cervical cord to distal targets in thoracic and lumbar spinal segments. We find that developing CSN subpopulations exhibit striking axon targeting specificity in spinal white matter, which establishes the foundation for durable specificity of adult corticospinal circuitry. Employing developmental retrograde and anterograde labeling, and their distinct neocortical locations, we purified developing CSN subpopulations using fluorescence-activated cell sorting to identify genes differentially expressed between bulbar-cervical and thoracolumbar-projecting CSN subpopulations at critical developmental times. These segmentally distinct CSN subpopulations are molecularly distinct from the earliest stages of axon extension, enabling prospective identification even before eventual axon targeting decisions are evident in the spinal cord. This molecular delineation extends beyond simple spatial separation of these subpopulations in the cortex. Together, these results identify candidate molecular controls over segmentally specific corticospinal axon projection targeting.
Collapse
Affiliation(s)
- Vibhu Sahni
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Denis Jabaudon
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Janet H T Song
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Luciano C Greig
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
21
|
Wind M, Tsakiridis A. In Vitro Generation of Posterior Motor Neurons from Human Pluripotent Stem Cells. Curr Protoc 2021; 1:e244. [PMID: 34547185 DOI: 10.1002/cpz1.244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to generate spinal cord motor neurons from human pluripotent stem cells (hPSCs) is of great use for modelling motor neuron-based diseases and cell-replacement therapies. A key step in the design of hPSC differentiation strategies aiming to produce motor neurons involves induction of the appropriate anteroposterior (A-P) axial identity, an important factor influencing motor neuron subtype specification, functionality, and disease vulnerability. Most current protocols for induction of motor neurons from hPSCs produce predominantly cells of a mixed hindbrain/cervical axial identity marked by expression of Hox paralogous group (PG) members 1-5, but are inefficient in generating high numbers of more posterior thoracic/lumbosacral Hox PG(8-13)+ spinal cord motor neurons. Here, we describe a protocol for efficient generation of thoracic spinal cord cells and motor neurons from hPSCs. This step-wise protocol relies on the initial generation of a neuromesodermal-potent axial progenitor population, which is differentiated first to produce posterior ventral spinal cord progenitors and subsequently to produce posterior motor neurons exhibiting a predominantly thoracic axial identity. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Differentiation of neuromesodermal progenitors Basic Protocol 2: Posterior ventral spinal cord progenitor differentiation Basic Protocol 3: Posterior motor neuron differentiation.
Collapse
Affiliation(s)
- Matt Wind
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
22
|
Imai F, Adam M, Potter SS, Yoshida Y. HoxD transcription factors define monosynaptic sensory-motor specificity in the developing spinal cord. Development 2021; 148:269156. [PMID: 34128984 DOI: 10.1242/dev.191122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
The specificity of monosynaptic connections between proprioceptive sensory neurons and their recipient spinal motor neurons depends on multiple factors, including motor neuron positioning and dendrite morphology, axon projection patterns of proprioceptive sensory neurons in the spinal cord, and the ligand-receptor molecules involved in cell-to-cell recognition. However, with few exceptions, the transcription factors engaged in this process are poorly characterized. Here, we show that members of the HoxD family of transcription factors play a crucial role in the specificity of monosynaptic sensory-motor connections. Mice lacking Hoxd9, Hoxd10 and Hoxd11 exhibit defects in locomotion but have no obvious defects in motor neuron positioning or dendrite morphology through the medio-lateral and rostro-caudal axes. However, we found that quadriceps motor neurons in these mice show aberrant axon development and receive inappropriate inputs from proprioceptive sensory axons innervating the obturator muscle. These genetic studies demonstrate that the HoxD transcription factors play an integral role in the synaptic specificity of monosynaptic sensory-motor connections in the developing spinal cord.
Collapse
Affiliation(s)
- Fumiyasu Imai
- Neural Connectivity Development in Physiology and Disease Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yutaka Yoshida
- Neural Connectivity Development in Physiology and Disease Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
23
|
Wind M, Gogolou A, Manipur I, Granata I, Butler L, Andrews PW, Barbaric I, Ning K, Guarracino MR, Placzek M, Tsakiridis A. Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal progenitor derivatives. Development 2021; 148:dev194415. [PMID: 33658223 PMCID: PMC8015249 DOI: 10.1242/dev.194415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The anteroposterior axial identity of motor neurons (MNs) determines their functionality and vulnerability to neurodegeneration. Thus, it is a crucial parameter in the design of strategies aiming to produce MNs from human pluripotent stem cells (hPSCs) for regenerative medicine/disease modelling applications. However, the in vitro generation of posterior MNs corresponding to the thoracic/lumbosacral spinal cord has been challenging. Although the induction of cells resembling neuromesodermal progenitors (NMPs), the bona fide precursors of the spinal cord, offers a promising solution, the progressive specification of posterior MNs from these cells is not well defined. Here, we determine the signals guiding the transition of human NMP-like cells toward thoracic ventral spinal cord neurectoderm. We show that combined WNT-FGF activities drive a posterior dorsal pre-/early neural state, whereas suppression of TGFβ-BMP signalling pathways promotes a ventral identity and neural commitment. Based on these results, we define an optimised protocol for the generation of thoracic MNs that can efficiently integrate within the neural tube of chick embryos. We expect that our findings will facilitate the comparison of hPSC-derived spinal cord cells of distinct axial identities.
Collapse
Affiliation(s)
- Matthew Wind
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Antigoni Gogolou
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ichcha Manipur
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli 80131, Italy
| | - Ilaria Granata
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli 80131, Italy
| | - Larissa Butler
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Ke Ning
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | | | - Marysia Placzek
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
24
|
Chen Y, Ding X, Wang S, Ding P, Xu Z, Li J, Wang M, Xiang R, Wang X, Wang H, Feng Q, Qiu J, Wang F, Huang Z, Zhang X, Tang G, Tang S. A single-cell atlas of mouse olfactory bulb chromatin accessibility. J Genet Genomics 2021; 48:147-162. [PMID: 33926839 DOI: 10.1016/j.jgg.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
Olfaction, the sense of smell, is a fundamental trait crucial to many species. The olfactory bulb (OB) plays pivotal roles in processing and transmitting odor information from the environment to the brain. The cellular heterogeneity of the mouse OB has been studied using single-cell RNA sequencing. However, the epigenetic landscape of the mOB remains mostly unexplored. Herein, we apply single-cell assay for transposase-accessible chromatin sequencing to profile the genome-wide chromatin accessibility of 9,549 single cells from the mOB. Based on single-cell epigenetic signatures, mOB cells are classified into 21 clusters corresponding to 11 cell types. We identify distinct sets of putative regulatory elements specific to each cell cluster from which putative target genes and enriched potential functions are inferred. In addition, the transcription factor motifs enriched in each cell cluster are determined to indicate the developmental fate of each cell lineage. Our study provides a valuable epigenetic data set for the mOB at single-cell resolution, and the results can enhance our understanding of regulatory circuits and the therapeutic capacity of the OB at the single-cell level.
Collapse
Affiliation(s)
- Yin Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangning Ding
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Shiyou Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Peiwen Ding
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Zaoxu Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiankang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Mingyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Rong Xiang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoling Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Haoyu Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Qikai Feng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiaying Qiu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Feiyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhen Huang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xingliang Zhang
- Shenzhen Children's Hospital, Shenzhen 518083, China; Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Gen Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China.
| | - Shengping Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China; Zunyi Medical University, Zunyi, Guizhou 563099, China; China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
25
|
de Leeuw VC, Pennings JLA, Hessel EVS, Piersma AH. Exploring the biological domain of the neural embryonic stem cell test (ESTn): Morphogenetic regulators, Hox genes and cell types, and their usefulness as biomarkers for embryotoxicity screening. Toxicology 2021; 454:152735. [PMID: 33636252 DOI: 10.1016/j.tox.2021.152735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 02/20/2021] [Indexed: 11/25/2022]
Abstract
Animal-free assessment of compound-induced developmental neurotoxicity will most likely be based on batteries of multiple in vitro tests. The optimal battery is built by combining tests with complementary biological domains that together ideally cover all relevant toxicity pathways. Thus, biological domain definition, i.e. which biological processes and cell types are represented, is an important assay characteristic for determining the place of assays in testing strategies. The murine neural embryonic stem cell test (ESTn) is employed to predict the developmental neurotoxicity of compounds. The aim of this study was to explore the biological domain of ESTn according to three groups of biomarker genes of early (neuro)development: morphogenetic regulators, Hox genes and cell type markers for the ectodermal and neural lineages. These biomarker groups were selected based on their crucial regulatory role in (neuro)development. Analysis of these genes in a series of previously generated whole transcriptome datasets of ESTn showed that at day 7 in culture cell differentiation resembled hindbrain/branchial/thoracic development between E6.5-E12.5 in vivo, with subsequent development into a mixed cell culture containing different neural subtypes, astrocytes and oligodendrocytes by day 13. In addition, the selected biomarkers showed common and distinct responses to compound exposure. Monitoring the biological domain of ESTn through gene expression patterns of morphogenetic regulators, Hox genes and cell type markers proved instrumental in providing mechanistic understanding of compound effects on neural differentiation in ESTn, and can aid in positioning of the test in a battery of complementary in vitro tests in integrated approaches to testing and assessment.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
26
|
Wilmerding A, Rinaldi L, Caruso N, Lo Re L, Bonzom E, Saurin AJ, Graba Y, Delfini MC. HoxB genes regulate neuronal delamination in the trunk neural tube by controlling the expression of Lzts1. Development 2021; 148:dev.195404. [PMID: 33472847 DOI: 10.1242/dev.195404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
Differential Hox gene expression is central for specification of axial neuronal diversity in the spinal cord. Here, we uncover an additional function of Hox proteins in the developing spinal cord, restricted to B cluster Hox genes. We found that members of the HoxB cluster are expressed in the trunk neural tube of chicken embryo earlier than Hox from the other clusters, with poor antero-posterior axial specificity and with overlapping expression in the intermediate zone (IZ). Gain-of-function experiments of HoxB4, HoxB8 and HoxB9, respectively, representative of anterior, central and posterior HoxB genes, resulted in ectopic progenitor cells in the mantle zone. The search for HoxB8 downstream targets in the early neural tube identified the leucine zipper tumor suppressor 1 gene (Lzts1), the expression of which is also activated by HoxB4 and HoxB9. Gain- and loss-of-function experiments showed that Lzts1, which is expressed endogenously in the IZ, controls neuronal delamination. These data collectively indicate that HoxB genes have a generic function in the developing spinal cord, controlling the expression of Lzts1 and neuronal delamination.
Collapse
Affiliation(s)
| | | | - Nathalie Caruso
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Laure Lo Re
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Emilie Bonzom
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Andrew J Saurin
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | - Yacine Graba
- Aix Marseille University, CNRS, IBDM, 13288 Marseille, France
| | | |
Collapse
|
27
|
Sun XJ, Li MX, Gong CZ, Chen J, Nasb M, Shah SZA, Rehan M, Li YJ, Chen H. Temporal expression profiles of lncRNA and mRNA in human embryonic stem cell-derived motor neurons during differentiation. PeerJ 2020; 8:e10075. [PMID: 33240592 PMCID: PMC7668206 DOI: 10.7717/peerj.10075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 09/10/2020] [Indexed: 11/20/2022] Open
Abstract
Background Human embryonic stem cells (hESC) have been an invaluable research tool to study motor neuron development and disorders. However, transcriptional regulation of multiple temporal stages from ESCs to spinal motor neurons (MNs) has not yet been fully elucidated. Thus, the goals of this study were to profile the time-course expression patterns of lncRNAs during MN differentiation of ESCs and to clarify the potential mechanisms of the lncRNAs that are related to MN differentiation. Methods We utilized our previous protocol which can harvest motor neuron in more than 90% purity from hESCs. Then, differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) during MN differentiation were identified through RNA sequencing. Bioinformatic analyses were performed to assess potential biological functions of genes. We also performed qRT-PCR to validate the DElncRNAs and DEmRNAs. Results A total of 441 lncRNAs and 1,068 mRNAs at day 6, 443 and 1,175 at day 12, and 338 lncRNAs and 68 mRNAs at day 18 were differentially expressed compared with day 0. Bioinformatic analyses identified that several key regulatory genes including POU5F1, TDGF1, SOX17, LEFTY2 and ZSCAN10, which involved in the regulation of embryonic development. We also predicted 283 target genes of DElncRNAs, in which 6 mRNAs were differentially expressed. Significant fold changes in lncRNAs (NCAM1-AS) and mRNAs (HOXA3) were confirmed by qRT-PCR. Then, through predicted overlapped miRNA verification, we constructed a lncRNA NCAM1-AS-miRNA-HOXA3 network.
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Xing Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Zi Gong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mohammad Nasb
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sayed Zulfiqar Ali Shah
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Rehan
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jie Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Bulajić M, Srivastava D, Dasen JS, Wichterle H, Mahony S, Mazzoni EO. Differential abilities to engage inaccessible chromatin diversify vertebrate Hox binding patterns. Development 2020; 147:dev194761. [PMID: 33028607 PMCID: PMC7710020 DOI: 10.1242/dev.194761] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Although Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aimed to address how similar Hox TFs diverge to induce different positional identities. We studied Hox TF DNA-binding and regulatory activity during an in vitro motor neuron differentiation system that recapitulates embryonic development. We found diversity in the genomic binding profiles of different Hox TFs, even among the posterior group paralogs that share similar DNA-binding domains. These differences in genomic binding were explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 had a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior Hox TFs to bind to previously inaccessible chromatin drive patterning diversification.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
29
|
Gonçalves CS, Le Boiteux E, Arnaud P, Costa BM. HOX gene cluster (de)regulation in brain: from neurodevelopment to malignant glial tumours. Cell Mol Life Sci 2020; 77:3797-3821. [PMID: 32239260 PMCID: PMC11105007 DOI: 10.1007/s00018-020-03508-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
HOX genes encode a family of evolutionarily conserved homeodomain transcription factors that are crucial both during development and adult life. In humans, 39 HOX genes are arranged in four clusters (HOXA, B, C, and D) in chromosomes 7, 17, 12, and 2, respectively. During embryonic development, particular epigenetic states accompany their expression along the anterior-posterior body axis. This tightly regulated temporal-spatial expression pattern reflects their relative chromosomal localization, and is critical for normal embryonic brain development when HOX genes are mainly expressed in the hindbrain and mostly absent in the forebrain region. Epigenetic marks, mostly polycomb-associated, are dynamically regulated at HOX loci and regulatory regions to ensure the finely tuned HOX activation and repression, highlighting a crucial epigenetic plasticity necessary for homeostatic development. HOX genes are essentially absent in healthy adult brain, whereas they are detected in malignant brain tumours, namely gliomas, where HOX genes display critical roles by regulating several hallmarks of cancer. Here, we review the major mechanisms involved in HOX genes (de)regulation in the brain, from embryonic to adult stages, in physiological and oncologic conditions. We focus particularly on the emerging causes of HOX gene deregulation in glioma, as well as on their functional and clinical implications.
Collapse
Affiliation(s)
- Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elisa Le Boiteux
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
30
|
Shin MM, Catela C, Dasen J. Intrinsic control of neuronal diversity and synaptic specificity in a proprioceptive circuit. eLife 2020; 9:56374. [PMID: 32808924 PMCID: PMC7467731 DOI: 10.7554/elife.56374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Relay of muscle-derived sensory information to the CNS is essential for the execution of motor behavior, but how proprioceptive sensory neurons (pSNs) establish functionally appropriate connections is poorly understood. A prevailing model of sensory-motor circuit assembly is that peripheral, target-derived, cues instruct pSN identities and patterns of intraspinal connectivity. To date no known intrinsic determinants of muscle-specific pSN fates have been described in vertebrates. We show that expression of Hox transcription factors defines pSN subtypes, and these profiles are established independently of limb muscle. The Hoxc8 gene is expressed by pSNs and motor neurons (MNs) targeting distal forelimb muscles, and sensory-specific depletion of Hoxc8 in mice disrupts sensory-motor synaptic matching, without affecting pSN survival or muscle targeting. These results indicate that the diversity and central specificity of pSNs and MNs are regulated by a common set of determinants, thus linking early rostrocaudal patterning to the assembly of limb control circuits.
Collapse
Affiliation(s)
- Maggie M Shin
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
| | - Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Jeremy Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
| |
Collapse
|
31
|
Baek M, Menon V, Jessell TM, Hantman AW, Dasen JS. Molecular Logic of Spinocerebellar Tract Neuron Diversity and Connectivity. Cell Rep 2020; 27:2620-2635.e4. [PMID: 31141687 PMCID: PMC6555431 DOI: 10.1016/j.celrep.2019.04.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 01/07/2023] Open
Abstract
Coordinated motor behaviors depend on feedback communication between peripheral sensory systems and central circuits in the brain and spinal cord. Relay of muscle- and tendon-derived sensory information to the CNS is facilitated by functionally and anatomically diverse groups of spinocerebellar tract neurons (SCTNs), but the molecular logic by which SCTN diversity and connectivity is achieved is poorly understood. We used single-cell RNA sequencing and genetic manipulations to define the mechanisms governing the molecular profile and organization of SCTN subtypes. We found that SCTNs relaying proprioceptive sensory information from limb and axial muscles are generated through segmentally restricted actions of specific Hox genes. Loss of Hox function disrupts SCTN-subtype-specific transcriptional programs, leading to defects in the connections between proprioceptive sensory neurons, SCTNs, and the cerebellum. These results indicate that Hox-dependent genetic programs play essential roles in the assembly of neural circuits necessary for communication between the brain and spinal cord. Baek et al. show that Hox-transcription factor-dependent programs govern the specification and connectivity of spinal interneurons that relay muscle-derived sensory information to the cerebellum. These findings shed light on the development of neural circuits required for proprioception—the perception of body position.
Collapse
Affiliation(s)
- Myungin Baek
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA; Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Vilas Menon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Thomas M Jessell
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
32
|
Generating ventral spinal organoids from human induced pluripotent stem cells. Methods Cell Biol 2020; 159:257-277. [DOI: 10.1016/bs.mcb.2020.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
33
|
Yu J, Wang L, Pei P, Li X, Wu J, Qiu Z, Zhang J, Ao R, Wang S, Zhang T, Xie J. Reduced H3K27me3 leads to abnormal Hox gene expression in neural tube defects. Epigenetics Chromatin 2019; 12:76. [PMID: 31856916 PMCID: PMC6921514 DOI: 10.1186/s13072-019-0318-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background Neural tube defects (NTDs) are severe, common birth defects that result from failure of normal neural tube closure during early embryogenesis. Accumulating strong evidence indicates that genetic factors contribute to NTDs etiology, among them, HOX genes play a key role in neural tube closure. Although abnormal HOX gene expression can lead to NTDs, the underlying pathological mechanisms have not fully been understood. Method We detected that H3K27me3 and expression of the Hox genes in a retinoic acid (RA) induced mouse NTDs model on E8.5, E9.5 and E10.5 using RNA-sequencing and chromatin immunoprecipitation sequencing assays. Furthermore, we quantified 10 Hox genes using NanoString nCounter in brain tissue of fetuses with 39 NTDs patients including anencephaly, spina bifida, hydrocephaly and encephalocele. Results Here, our results showed differential expression in 26 genes with a > 20-fold change in the level of expression, including 10 upregulated Hox genes. RT-qPCR revealed that these 10 Hox genes were all upregulated in RA-induced mouse NTDs as well as RA-treated embryonic stem cells (ESCs). Using ChIP-seq assays, we demonstrate that a decrease in H3K27me3 level upregulates the expression of Hox cluster A–D in RA-induced mouse NTDs model on E10.5. Interestingly, RA treatment led to attenuation of H3K27me3 due to cooperate between UTX and Suz12, affecting Hox gene regulation. Further analysis, in human anencephaly cases, upregulation of 10 HOX genes was observed, along with aberrant levels of H3K27me3. Notably, HOXB4, HOXC4 and HOXD1 expression was negatively correlated with H3K27me3 levels. Conclusion Our results indicate that abnormal HOX gene expression induced by aberrant H3K27me3 levels may be a risk factor for NTDs and highlight the need for further analysis of genome-wide epigenetic modification in NTDs.
Collapse
Affiliation(s)
- Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xue Li
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jianxin Wu
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
34
|
Sagner A, Briscoe J. Establishing neuronal diversity in the spinal cord: a time and a place. Development 2019; 146:146/22/dev182154. [DOI: 10.1242/dev.182154] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
The vertebrate spinal cord comprises multiple functionally distinct neuronal cell types arranged in characteristic positions. During development, these different types of neurons differentiate from transcriptionally distinct neural progenitors that are arrayed in discrete domains along the dorsal-ventral and anterior-posterior axes of the embryonic spinal cord. This organization arises in response to morphogen gradients acting upstream of a gene regulatory network, the architecture of which determines the spatial and temporal pattern of gene expression. In recent years, substantial progress has been made in deciphering the regulatory network that underlies the specification of distinct progenitor and neuronal cell identities. In this Review, we outline how distinct neuronal cell identities are established in response to spatial and temporal patterning systems, and outline novel experimental approaches to study the emergence and function of neuronal diversity in the spinal cord.
Collapse
|
35
|
Chen TH, Chen JA. Multifaceted roles of microRNAs: From motor neuron generation in embryos to degeneration in spinal muscular atrophy. eLife 2019; 8:50848. [PMID: 31738166 PMCID: PMC6861003 DOI: 10.7554/elife.50848] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Two crucial questions in neuroscience are how neurons establish individual identity in the developing nervous system and why only specific neuron subtypes are vulnerable to neurodegenerative diseases. In the central nervous system, spinal motor neurons serve as one of the best-characterized cell types for addressing these two questions. In this review, we dissect these questions by evaluating the emerging role of regulatory microRNAs in motor neuron generation in developing embryos and their potential contributions to neurodegenerative diseases such as spinal muscular atrophy (SMA). Given recent promising results from novel microRNA-based medicines, we discuss the potential applications of microRNAs for clinical assessments of SMA disease progression and treatment.
Collapse
Affiliation(s)
- Tai-Heng Chen
- PhD Program in Translational Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Academia Sinica, Kaohsiung, Taiwan.,Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jun-An Chen
- PhD Program in Translational Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Academia Sinica, Kaohsiung, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
36
|
Coughlan E, Garside VC, Wong SFL, Liang H, Kraus D, Karmakar K, Maheshwari U, Rijli FM, Bourne J, McGlinn E. A Hox Code Defines Spinocerebellar Neuron Subtype Regionalization. Cell Rep 2019; 29:2408-2421.e4. [DOI: 10.1016/j.celrep.2019.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 11/25/2022] Open
|
37
|
Catela C, Kratsios P. Transcriptional mechanisms of motor neuron development in vertebrates and invertebrates. Dev Biol 2019; 475:193-204. [PMID: 31479648 DOI: 10.1016/j.ydbio.2019.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/04/2023]
Abstract
Across phylogeny, motor neurons (MNs) represent a single but often remarkably diverse neuronal class composed of a multitude of subtypes required for vital behaviors, such as eating and locomotion. Over the past decades, seminal studies in multiple model organisms have advanced our molecular understanding of the early steps of MN development, such as progenitor specification and acquisition of MN subtype identity, by revealing key roles for several evolutionarily conserved transcription factors. However, very little is known about the molecular strategies that allow distinct MN subtypes to maintain their identity- and function-defining features during the late steps of development and postnatal life. Here, we provide an overview of invertebrate and vertebrate studies on transcription factor-based strategies that control early and late steps of MN development, aiming to highlight evolutionarily conserved gene regulatory principles necessary for establishment and maintenance of neuronal identity.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
38
|
Nam H, Jeon S, An H, Yoo J, Lee HJ, Lee SK, Lee S. Critical roles of ARHGAP36 as a signal transduction mediator of Shh pathway in lateral motor columnar specification. eLife 2019; 8:46683. [PMID: 31305241 PMCID: PMC6658197 DOI: 10.7554/elife.46683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/14/2019] [Indexed: 01/20/2023] Open
Abstract
During spinal cord development, Sonic hedgehog (Shh), secreted from the floor plate, plays an important role in the production of motor neurons by patterning the ventral neural tube, which establishes MN progenitor identity. It remains unknown, however, if Shh signaling plays a role in generating columnar diversity of MNs that connect distinct target muscles. Here, we report that Shh, expressed in MNs, is essential for the formation of lateral motor column (LMC) neurons in vertebrate spinal cord. This novel activity of Shh is mediated by its downstream effector ARHGAP36, whose expression is directly induced by the MN-specific transcription factor complex Isl1-Lhx3. Furthermore, we found that AKT stimulates the Shh activity to induce LMC MNs through the stabilization of ARHGAP36 proteins. Taken together, our data reveal that Shh, secreted from MNs, plays a crucial role in generating MN diversity via a regulatory axis of Shh-AKT-ARHGAP36 in the developing mouse spinal cord.
Collapse
Affiliation(s)
- Heejin Nam
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Shin Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.,Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science Uiversity, Portland, United States
| | - Hyejin An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaeyoung Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyo-Jong Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gyungnam, Republic of Korea
| | - Soo-Kyung Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science Uiversity, Portland, United States.,Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Machado CB, Pluchon P, Harley P, Rigby M, Gonzalez Sabater V, Stevenson DC, Hynes S, Lowe A, Burrone J, Viasnoff V, Lieberam I. In Vitro Modelling of Nerve-Muscle Connectivity in a Compartmentalised Tissue Culture Device. ADVANCED BIOSYSTEMS 2019; 3:1800307. [PMID: 31428672 PMCID: PMC6699992 DOI: 10.1002/adbi.201800307] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Indexed: 01/02/2023]
Abstract
Motor neurons project axons from the hindbrain and spinal cord to muscle, where they induce myofibre contractions through neurotransmitter release at neuromuscular junctions. Studies of neuromuscular junction formation and homeostasis have been largely confined to in vivo models. In this study we have merged three powerful tools - pluripotent stem cells, optogenetics and microfabrication - and designed an open microdevice in which motor axons grow from a neural compartment containing embryonic stem cell-derived motor neurons and astrocytes through microchannels to form functional neuromuscular junctions with contractile myofibers in a separate compartment. Optogenetic entrainment of motor neurons in this reductionist neuromuscular circuit enhanced neuromuscular junction formation more than two-fold, mirroring the activity-dependence of synapse development in vivo. We incorporated an established motor neuron disease model into our system and found that coculture of motor neurons with SOD1G93A astrocytes resulted in denervation of the central compartment and diminished myofiber contractions, a phenotype which was rescued by the Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) inhibitor Necrostatin. This coculture system replicates key aspects of nerve-muscle connectivity in vivo and represents a rapid and scalable alternative to animal models of neuromuscular function and disease.
Collapse
Affiliation(s)
- Carolina Barcellos Machado
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK
| | - Perrine Pluchon
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK; Mechanobiology Institute, National
University of Singapore, Singapore 117411
| | - Peter Harley
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK; Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | | | - Victoria Gonzalez Sabater
- Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | | | - Stephanie Hynes
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London SE1 9RT, UK; Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Andrew Lowe
- Centre for Developmental Neurobiology, King’s College London, London SE1 1UL, UK
| | - Juan Burrone
- Centre for Developmental Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore,
Singapore 117411
| | - Ivo Lieberam
- Centre for Stem Cells and Regenerative Medicine, King’s
College London, London SE1 9RT, UK; Centre for Developmental
Neurobiology/MRC Centre for Neurodevelopmental Disorders, King’s
College London, London SE1 1UL, UK
| |
Collapse
|
40
|
Ernsberger U, Rohrer H. Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies. Neural Dev 2018; 13:20. [PMID: 30213267 PMCID: PMC6137933 DOI: 10.1186/s13064-018-0117-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Institute for Clinical Neuroanatomy, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| |
Collapse
|
41
|
Baek M, Pivetta C, Liu JP, Arber S, Dasen JS. Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits. Cell Rep 2018; 21:867-877. [PMID: 29069594 DOI: 10.1016/j.celrep.2017.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/14/2017] [Accepted: 10/01/2017] [Indexed: 01/06/2023] Open
Abstract
Control of movement relies on the ability of circuits within the spinal cord to establish connections with specific subtypes of motor neuron (MN). Although the pattern of output from locomotor networks can be influenced by MN position and identity, whether MNs exert an instructive role in shaping synaptic specificity within the spinal cord is unclear. We show that Hox transcription-factor-dependent programs in MNs are essential in establishing the central pattern of connectivity within the ventral spinal cord. Transformation of axially projecting MNs to a limb-level lateral motor column (LMC) fate, through mutation of the Hoxc9 gene, causes the central afferents of limb proprioceptive sensory neurons to target MNs connected to functionally inappropriate muscles. MN columnar identity also determines the pattern and distribution of inputs from multiple classes of premotor interneurons, indicating that MNs broadly influence circuit connectivity. These findings indicate that MN-intrinsic programs contribute to the initial architecture of locomotor circuits.
Collapse
Affiliation(s)
- Myungin Baek
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Chiara Pivetta
- Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
42
|
D'Elia KP, Dasen JS. Development, functional organization, and evolution of vertebrate axial motor circuits. Neural Dev 2018; 13:10. [PMID: 29855378 PMCID: PMC5984435 DOI: 10.1186/s13064-018-0108-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Neuronal control of muscles associated with the central body axis is an ancient and essential function of the nervous systems of most animal species. Throughout the course of vertebrate evolution, motor circuits dedicated to control of axial muscle have undergone significant changes in their roles within the motor system. In most fish species, axial circuits are critical for coordinating muscle activation sequences essential for locomotion and play important roles in postural correction. In tetrapods, axial circuits have evolved unique functions essential to terrestrial life, including maintaining spinal alignment and breathing. Despite the diverse roles of axial neural circuits in motor behaviors, the genetic programs underlying their assembly are poorly understood. In this review, we describe recent studies that have shed light on the development of axial motor circuits and compare and contrast the strategies used to wire these neural networks in aquatic and terrestrial vertebrate species.
Collapse
Affiliation(s)
- Kristen P D'Elia
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
43
|
Jung H, Baek M, D'Elia KP, Boisvert C, Currie PD, Tay BH, Venkatesh B, Brown SM, Heguy A, Schoppik D, Dasen JS. The Ancient Origins of Neural Substrates for Land Walking. Cell 2018; 172:667-682.e15. [PMID: 29425489 PMCID: PMC5808577 DOI: 10.1016/j.cell.2018.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/18/2017] [Accepted: 01/05/2018] [Indexed: 01/30/2023]
Abstract
Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Heekyung Jung
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Myungin Baek
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Kristen P D'Elia
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Catherine Boisvert
- Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia; Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Melbourne Node, Monash University, Clayton, VIC 3800, Australia
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Stuart M Brown
- Applied Bioinformatics Laboratory, NYU School of Medicine, New York, NY 10016, USA
| | - Adriana Heguy
- Genome Technology Center, Division for Advanced Research Technologies, and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - David Schoppik
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA; Department of Otolaryngology, NYU School of Medicine, New York, NY 10016, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
44
|
Sweeney LB, Bikoff JB, Gabitto MI, Brenner-Morton S, Baek M, Yang JH, Tabak EG, Dasen JS, Kintner CR, Jessell TM. Origin and Segmental Diversity of Spinal Inhibitory Interneurons. Neuron 2018; 97:341-355.e3. [PMID: 29307712 PMCID: PMC5880537 DOI: 10.1016/j.neuron.2017.12.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/14/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.
Collapse
Affiliation(s)
- Lora B Sweeney
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Jay B Bikoff
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Mariano I Gabitto
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| | - Susan Brenner-Morton
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Myungin Baek
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jerry H Yang
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Esteban G Tabak
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Christopher R Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
45
|
Topoisomerase IIβ Selectively Regulates Motor Neuron Identity and Peripheral Connectivity through Hox/Pbx-Dependent Transcriptional Programs. eNeuro 2017; 4:eN-NWR-0404-17. [PMID: 29379870 PMCID: PMC5779120 DOI: 10.1523/eneuro.0404-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 11/23/2022] Open
Abstract
Vital motor functions, such as respiration and locomotion, rely on the ability of spinal motor neurons (MNs) to acquire stereotypical positions in the ventral spinal cord and to project with high precision to their peripheral targets. These key properties of MNs emerge during development through transcriptional programs that dictate their subtype identity and connectivity; however, the molecular mechanisms that establish the transcriptional landscape necessary for MN specification are not fully understood. Here, we show that the enzyme topoisomerase IIβ (Top2β) controls MN migration and connectivity. Surprisingly, Top2β is not required for MN generation or survival but has a selective role in columnar specification. In the absence of Top2β, phrenic MN identity is eroded, while other motor columns are partially preserved but fail to cluster to their proper position. In Top2β-/- mice, peripheral connectivity is impaired as MNs exhibit a profound deficit in terminal branching. These defects likely result from the insufficient activation of Hox/Pbx-dependent transcriptional programs as Hox and Pbx genes are downregulated in the absence of Top2β. Top2β mutants recapitulate many aspects of Pbx mutant mice, such as MN disorganization and defects in medial motor column (MMC) specification. Our findings indicate that Top2β, a gene implicated in neurodevelopmental diseases such as autism spectrum disorders, plays a critical, cell-specific role in the assembly of motor circuits.
Collapse
|
46
|
Mukaigasa K, Sakuma C, Okada T, Homma S, Shimada T, Nishiyama K, Sato N, Yaginuma H. Motor neurons with limb-innervating character in the cervical spinal cord are sculpted by apoptosis based on the Hox code in chick embryo. Development 2017; 144:4645-4657. [PMID: 29061638 DOI: 10.1242/dev.158873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
Abstract
In the developing chick embryo, a certain population of motor neurons (MNs) in the non-limb-innervating cervical spinal cord undergoes apoptosis between embryonic days 4 and 5. However, the characteristics of these apoptotic MNs remain undefined. Here, by examining the spatiotemporal profiles of apoptosis and MN subtype marker expression in normal or apoptosis-inhibited chick embryos, we found that this apoptotic population is distinguishable by Foxp1 expression. When apoptosis was inhibited, the Foxp1+ MNs survived and showed characteristics of lateral motor column (LMC) neurons, which are of a limb-innervating subtype, suggesting that cervical Foxp1+ MNs are the rostral continuation of the LMC. Knockdown and misexpression of Foxp1 did not affect apoptosis progression, but revealed the role of Foxp1 in conferring LMC identity on the cervical MNs. Furthermore, ectopic expression of Hox genes that are normally expressed in the brachial region prevented apoptosis, and directed Foxp1+ MNs to LMC neurons at the cervical level. These results indicate that apoptosis in the cervical spinal cord plays a role in sculpting Foxp1+ MNs committed to LMC neurons, depending on the Hox expression pattern.
Collapse
Affiliation(s)
- Katsuki Mukaigasa
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Chie Sakuma
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tomoaki Okada
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shunsaku Homma
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Takako Shimada
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Keiji Nishiyama
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
47
|
De Kumar B, Parker HJ, Paulson A, Parrish ME, Pushel I, Singh NP, Zhang Y, Slaughter BD, Unruh JR, Florens L, Zeitlinger J, Krumlauf R. HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets. Genome Res 2017; 27:1501-1512. [PMID: 28784834 PMCID: PMC5580710 DOI: 10.1101/gr.219386.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/24/2017] [Indexed: 01/02/2023]
Abstract
Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Mark E Parrish
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Pathology
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
48
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
49
|
Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression. Neuron 2017; 93:80-98. [PMID: 28056346 DOI: 10.1016/j.neuron.2016.11.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022]
Abstract
A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification.
Collapse
|
50
|
Kratsios P, Kerk SY, Catela C, Liang J, Vidal B, Bayer EA, Feng W, De La Cruz ED, Croci L, Consalez GG, Mizumoto K, Hobert O. An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons. eLife 2017; 6. [PMID: 28677525 PMCID: PMC5498135 DOI: 10.7554/elife.25751] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023] Open
Abstract
A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Sze Yen Kerk
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Joseph Liang
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Emily A Bayer
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Estanisla Daniel De La Cruz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Laura Croci
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| |
Collapse
|