1
|
Collins RL, Talkowski ME. Diversity and consequences of structural variation in the human genome. Nat Rev Genet 2025:10.1038/s41576-024-00808-9. [PMID: 39838028 DOI: 10.1038/s41576-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/23/2025]
Abstract
The biomedical community is increasingly invested in capturing all genetic variants across human genomes, interpreting their functional consequences and translating these findings to the clinic. A crucial component of this endeavour is the discovery and characterization of structural variants (SVs), which are ubiquitous in the human population, heterogeneous in their mutational processes, key substrates for evolution and adaptation, and profound drivers of human disease. The recent emergence of new technologies and the remarkable scale of sequence-based population studies have begun to crystalize our understanding of SVs as a mutational class and their widespread influence across phenotypes. In this Review, we summarize recent discoveries and new insights into SVs in the human genome in terms of their mutational patterns, population genetics, functional consequences, and impact on human traits and disease. We conclude by outlining three frontiers to be explored by the field over the next decade.
Collapse
Affiliation(s)
- Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Hurtado EC, Wotton JM, Gulka A, Burke C, Ng JK, Bah I, Manuel J, Heins H, Murray SA, Gorkin DU, White JK, Peterson KA, Turner TN. Generation and Characterization of a Knockout Mouse of an Enhancer of EBF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631762. [PMID: 39829799 PMCID: PMC11741297 DOI: 10.1101/2025.01.09.631762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Genomic studies of autism and other neurodevelopmental disorders have identified several relevant protein-coding and noncoding variants. One gene with an excess of protein-coding de novo variants is EBF3 that also is the gene underlying the Hypotonia, Ataxia, and Delayed Development Syndrome (HADDS). In previous work, we have identified noncoding de novo variants in an enhancer of EBF3 called hs737 and further showed that there was an enrichment of deletions of this enhancer in individuals with neurodevelopmental disorders. In this present study, we generated a novel mouse line that deletes the highly conserved, orthologous mouse region of hs737 within the Rr169617 regulatory region, and characterized the molecular and phenotypic aspects of this mouse model. This line contains a 1,160 bp deletion within Rr169617 and through heterozygous crosses we found a deviation from Mendelian expectation (p = 0.02) with a significant depletion of the deletion allele (p = 5.8 × 10-4). Rr169617 +/- mice had a reduction of Ebf3 expression by 10% and Rr169617 -/- mice had a reduction of Ebf3 expression by 20%. Differential expression analyses in E12.5 forebrain, midbrain, and hindbrain in Rr169617 +/+ versus Rr169617 -/- mice identified dysregulated genes including histone genes (i.e., Hist1h1e, Hist1h2bk, Hist1h3i, Hist1h2ao) and other brain development related genes (e.g., Chd5, Ntng1). A priori phenotyping analysis (open field, hole board and light/dark transition) identified sex-specific differences in behavioral traits when comparing Rr169617 -/- males versus females; whereby, males were observed to be less mobile, move slower, and spend more time in the dark. Furthermore, both sexes when homozygous for the enhancer deletion displayed body composition differences when compared to wild-type mice. Overall, we show that deletion within Rr169617 reduces the expression of Ebf3 and results in phenotypic outcomes consistent with potential sex specific behavioral differences. This enhancer deletion line provides a valuable resource for others interested in noncoding regions in neurodevelopmental disorders and/or those interested in the gene regulatory network downstream of Ebf3.
Collapse
Affiliation(s)
- Emily Cordova Hurtado
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Alexander Gulka
- Department of Biology, Emory University. Atlanta, GA 30322, USA
| | | | - Jeffrey K. Ng
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ibrahim Bah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Juana Manuel
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hillary Heins
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - David U. Gorkin
- Department of Biology, Emory University. Atlanta, GA 30322, USA
| | | | | | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Gillani R, Collins RL, Crowdis J, Garza A, Jones JK, Walker M, Sanchis-Juan A, Whelan CW, Pierce-Hoffman E, Talkowski ME, Brand H, Haigis K, LoPiccolo J, AlDubayan SH, Gusev A, Crompton BD, Janeway KA, Van Allen EM. Rare germline structural variants increase risk for pediatric solid tumors. Science 2025; 387:eadq0071. [PMID: 39745975 DOI: 10.1126/science.adq0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
Pediatric solid tumors are a leading cause of childhood disease mortality. In this work, we examined germline structural variants (SVs) as risk factors for pediatric extracranial solid tumors using germline genome sequencing of 1765 affected children, their 943 unaffected parents, and 6665 adult controls. We discovered a sex-biased association between very large (>1 megabase) germline chromosomal abnormalities and increased risk of solid tumors in male children. The overall impact of germline SVs was greatest in neuroblastoma, where we uncovered burdens of ultrarare SVs that cause loss of function of highly expressed, mutationally constrained genes, as well as noncoding SVs predicted to disrupt chromatin domain boundaries. Collectively, we estimate that rare germline SVs explain 1.1 to 5.6% of pediatric cancer liability, establishing them as an important component of disease predisposition.
Collapse
Affiliation(s)
- Riaz Gillani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Ryan L Collins
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Amanda Garza
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jill K Jones
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Mark Walker
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher W Whelan
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma Pierce-Hoffman
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael E Talkowski
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Haigis
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jaclyn LoPiccolo
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Saud H AlDubayan
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- College of Medicine, King Saudi bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alexander Gusev
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brian D Crompton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Katherine A Janeway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Eliezer M Van Allen
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
4
|
D'Amico A, Sung H, Arbona-Lampaya A, Freifeld A, Hosey K, Garcia J, Lacbawan L, Besançon E, Kassem L, Akula N, Knowles EEM, Dickinson D, McMahon FJ. Independent inheritance of cognition and bipolar disorder in a family sample. Am J Med Genet B Neuropsychiatr Genet 2025; 198:e33001. [PMID: 39011872 DOI: 10.1002/ajmg.b.33001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Cognitive deficits in people with bipolar disorder (BD) may be the result of the illness or its treatment, but they could also reflect genetic risk factors shared between BD and cognition. We investigated this question using empirical genetic relationships within a sample of patients with BD and their unaffected relatives. Participants with bipolar I, II, or schizoaffective disorder ("narrow" BD, n = 69), related mood disorders ("broad" BD, n = 135), and their clinically unaffected relatives (n = 227) completed five cognitive tests. General cognitive function (g) was quantified via principal components analysis (PCA). Heritability and genetic correlations were estimated with SOLAR-Eclipse. Participants with "narrow" or "broad" diagnoses showed deficits in g, although affect recognition was unimpaired. Cognitive performance was significantly heritable (h2 = 0.322 for g, p < 0.005). Coheritability between psychopathology and g was small (0.0184 for narrow and 0.0327 for broad) and healthy relatives of those with BD were cognitively unimpaired. In this family sample, cognitive deficits were present in participants with BD but were not explained by substantial overlaps in genetic determinants of mood and cognition. These findings support the view that cognitive deficits in BD are largely the result of the illness or its treatment.
Collapse
Affiliation(s)
- Alexander D'Amico
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Heejong Sung
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Alejandro Arbona-Lampaya
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Ally Freifeld
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Katie Hosey
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Joshua Garcia
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Ley Lacbawan
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Emily Besançon
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | | | - Dwight Dickinson
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Namgung JY, Mun J, Park Y, Kim J, Park BY. Sex differences in autism spectrum disorder using class imbalance adjusted functional connectivity. Neuroimage 2024; 304:120956. [PMID: 39603483 DOI: 10.1016/j.neuroimage.2024.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is an atypical neurodevelopmental condition with a diagnostic ratio largely differing between male and female participants. Due to the sex imbalance in participants with ASD, we lack an understanding of the differences in connectome organization of the brain between male and female participants with ASD. In this study, we matched the sex ratio using a Gaussian mixture model-based oversampling technique and investigated the differences in functional connectivity between male and female participants with ASD using low-dimensional principal gradients. Between-group comparisons of the gradient values revealed significant interaction effects of sex in the sensorimotor, attention, and default mode networks. The sex-related differences in the gradients were highly associated with higher-order cognitive control processes. Transcriptomic association analysis provided potential biological underpinnings, specifying gene enrichment in the cortex, thalamus, and striatum during development. Finally, the principal gradients were differentially associated with symptom severity of ASD between sexes, highlighting significant effects in female participants with ASD. Our work proposed an oversampling method to mitigate sex imbalance in ASD and observed significant sex-related differences in functional connectome organization. The findings may advance our knowledge about the sex heterogeneity in large-scale brain networks in ASD.
Collapse
Affiliation(s)
| | - Jongmin Mun
- Data Sciences and Operations Department, Marshall School of Business, University of Southern California, Los Angeles, United States
| | - Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jaeoh Kim
- Department of Data Science, Inha University, Incheon, Republic of Korea.
| | - Bo-Yong Park
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
| |
Collapse
|
6
|
Huguet G, Renne T, Poulain C, Dubuc A, Kumar K, Kazem S, Engchuan W, Shanta O, Douard E, Proulx C, Jean-Louis M, Saci Z, Mollon J, Schultz LM, Knowles EEM, Cox SR, Porteous D, Davies G, Redmond P, Harris SE, Schumann G, Dumas G, Labbe A, Pausova Z, Paus T, Scherer SW, Sebat J, Almasy L, Glahn DC, Jacquemont S. Effects of gene dosage on cognitive ability: A function-based association study across brain and non-brain processes. CELL GENOMICS 2024; 4:100721. [PMID: 39667348 PMCID: PMC11701252 DOI: 10.1016/j.xgen.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Copy-number variants (CNVs) that increase the risk for neurodevelopmental disorders also affect cognitive ability. However, such CNVs remain challenging to study due to their scarcity, limiting our understanding of gene-dosage-sensitive biological processes linked to cognitive ability. We performed a genome-wide association study (GWAS) in 258,292 individuals, which identified-for the first time-a duplication at 2q12.3 associated with higher cognitive performance. We developed a functional-burden analysis, which tested the association between cognition and CNVs disrupting 6,502 gene sets biologically defined across tissues, cell types, and ontologies. Among those, 864 gene sets were associated with cognition, and effect sizes of deletion and duplication were negatively correlated. The latter suggested that functions across all biological processes were sensitive to either deletions (e.g., subcortical regions, postsynaptic) or duplications (e.g., cerebral cortex, presynaptic). Associations between non-brain tissues and cognition were driven partly by constrained genes, which may shed light on medical comorbidities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Guillaume Huguet
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada.
| | - Thomas Renne
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cécile Poulain
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Alma Dubuc
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Kuldeep Kumar
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Sayeh Kazem
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Worrawat Engchuan
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, ON, Canada; The Hospital for Sick Children, The Centre for Applied Genomics, Toronto, ON, Canada
| | - Omar Shanta
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Elise Douard
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Catherine Proulx
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Martineau Jean-Louis
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Zohra Saci
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Schultz
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - David Porteous
- Lothian Birth Cohorts, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK; Medical Genetics Section, Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Gunter Schumann
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Guillaume Dumas
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Aurélie Labbe
- Département de Sciences de la Décision, HEC Montreal, Montreal, QC, Canada
| | - Zdenka Pausova
- Research Institute of the Hospital for Sick Children, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada; ECOGENE-21, Chicoutimi, QC, Canada
| | - Tomas Paus
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Department of Psychiatry and Addictology, Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Stephen W Scherer
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, ON, Canada; The Hospital for Sick Children, The Centre for Applied Genomics, Toronto, ON, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jonathan Sebat
- University of California, San Diego, Department of Psychiatry, Department of Cellular & Molecular Medicine, Beyster Center of Psychiatric Genomics, San Diego, CA, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Sébastien Jacquemont
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
7
|
Brandner DD, Mashal MA, Grissom NM, Rothwell PE. Sex differences in morphine sensitivity of neuroligin-3 knockout mice. Psychopharmacology (Berl) 2024; 241:2431-2440. [PMID: 39083079 DOI: 10.1007/s00213-024-06660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Sex has a strong influence on the prevalence and course of brain conditions, including autism spectrum disorders. The mechanistic basis for these sex differences remains poorly understood, due in part to historical bias in biomedical research favoring analysis of male subjects, and the exclusion of female subjects. For example, studies of male mice carrying autism-associated mutations in neuroligin-3 are over-represented in the literature, including our own prior work showing diminished responses to chronic morphine exposure in male neuroligin-3 knockout mice. We therefore studied how constitutive and conditional genetic knockout of neuroligin-3 affects morphine sensitivity of female mice, using locomotor activity as a proxy for differences in opioid sensitivity that may be related to the pathophysiology and treatment of autism spectrum disorders. In contrast to male mice, female neuroligin-3 knockout mice showed normal psychomotor sensitization after chronic morphine exposure. However, in the absence of neuroligin-3 expression, both female and male mice show a similar change in the topography of locomotor stimulation produced by morphine. Conditional genetic deletion of neuroligin-3 from dopamine neurons increased the locomotor response of female mice to high doses of morphine, contrasting with the decrease in psychomotor sensitization caused by the same manipulation in male mice. Together, our data reveal that knockout of neuroligin-3 has both common and distinct effects on morphine sensitivity in female and male mice. These results also support the notion that female sex can confer resilience against the impact of autism-associated gene variants.
Collapse
Affiliation(s)
- Dieter D Brandner
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, USA
| | - Mohammed A Mashal
- Department of Neuroscience, University of Minnesota, 4-142 Wallin Medical Biosciences Building, 2101 6 Street SE, Minneapolis, MN, 55455, USA
| | - Nicola M Grissom
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Patrick E Rothwell
- Department of Neuroscience, University of Minnesota, 4-142 Wallin Medical Biosciences Building, 2101 6 Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Petersen M, Reyes-Vigil F, Campo M, Brusés JL. Classical cadherins evolutionary constraints in primates is associated with their expression in the central nervous system. PLoS One 2024; 19:e0313428. [PMID: 39570883 PMCID: PMC11581309 DOI: 10.1371/journal.pone.0313428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Classical cadherins (CDH) comprise a family of single-pass transmembrane glycoproteins that contribute to tissue morphogenesis by regulating cell-cell adhesion, cytoskeletal dynamics, and cell signaling. CDH are grouped into type I (CDH 1, 2, 3, 4 and 15) and type II (CDH 5, 6, 7, 8, 9, 10, 11, 12, 18, 20, 22 and 24), based on the folding of the cadherin binding domain involved in trans-dimer formation. CDH are exclusively found in metazoans, and the origin and expansion of the gene family coincide with the emergence of multicellularity and vertebrates respectively. This study examined the evolutionary changes of CDH orthologs in primates and the factors that influence selective pressure to investigate the varying constraints exerted among CDH. Pairwise comparisons of the number of amino acid substitutions and of the ratio of non-synonymous substitutions per non-synonymous sites (dN) over synonymous substitutions per synonymous sites (dS), show that CDH2, CDH4, and most type II CDH have been under significantly higher negative selective pressure as compared to CDH1, CDH3, CDH5 and CDH19. Evaluation of gene essentiality as determined by the effect of germline deletion on animal viability, morphogenic phenotype, and reproductive fitness, show no correlation with the with extent of negative selection observed on CDH. Spearman's correlation analysis shows a positive correlation between CDH expression levels (E) in mouse and human tissues and their rate of evolution (R), as observed in most proteins expressed on the cell surface. However, CDH expression in the CNS show a significant E-R negative correlation, indicating that the strong negative selection exerted on CDH2, CDH4, and most type II CDH is associated with their expression in the CNS. CDH participate in a variety of cellular processes in the CNS including neuronal migration and functional assembly of neural circuits, which could profoundly influence animal fitness. Therefore, our findings suggest that the unusually high negative selective pressure exerted on CDH2, CDH4 and most type II CDH is due to their role in CNS formation and function and may have contributed to shape the evolution of the CNS in primates.
Collapse
Affiliation(s)
- Max Petersen
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Fredy Reyes-Vigil
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Marc Campo
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Juan L. Brusés
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| |
Collapse
|
9
|
Altas B, Tuffy LP, Patrizi A, Dimova K, Soykan T, Brandenburg C, Romanowski AJ, Whitten JR, Robertson CD, Khim SN, Crutcher GW, Ambrozkiewicz MC, Yagensky O, Krueger-Burg D, Hammer M, Hsiao HH, Laskowski PR, Dyck L, Puche AC, Sassoè-Pognetto M, Chua JJE, Urlaub H, Jahn O, Brose N, Poulopoulos A. Region-Specific Phosphorylation Determines Neuroligin-3 Localization to Excitatory Versus Inhibitory Synapses. Biol Psychiatry 2024; 96:815-828. [PMID: 38154503 PMCID: PMC11209832 DOI: 10.1016/j.biopsych.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown. METHODS We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types. RESULTS Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses. CONCLUSIONS These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Bekir Altas
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Liam P Tuffy
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Annarita Patrizi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Kalina Dimova
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tolga Soykan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Cheryl Brandenburg
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea J Romanowski
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Julia R Whitten
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Colin D Robertson
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Saovleak N Khim
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Garrett W Crutcher
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mateusz C Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oleksandr Yagensky
- Research Group Protein Trafficking in Synaptic Development and Function, Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Matthieu Hammer
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - He-Hsuan Hsiao
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Pawel R Laskowski
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lydia Dyck
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Adam C Puche
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - John J E Chua
- Research Group Protein Trafficking in Synaptic Development and Function, Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandros Poulopoulos
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
10
|
Scorrano G, Di Francesco L, Di Ludovico A, Chiarelli F, Matricardi S. Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. Int J Mol Sci 2024; 25:11982. [PMID: 39596051 PMCID: PMC11593774 DOI: 10.3390/ijms252211982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of conditions affecting brain development, with variable degrees of severity and heterogeneous clinical features. They include intellectual disability (ID), autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), often coexisting with epilepsy, extra-neurological comorbidities, and multisystemic involvement. In recent years, next-generation sequencing (NGS) technologies allowed the identification of several gene pathogenic variants etiologically related to these disorders in a large cohort of affected children. These genes encode proteins involved in synaptic homeostasis, such as SNARE proteins, implicated in calcium-triggered pre-synaptic release of neurotransmitters, or channel subunit proteins, such as post-synaptic ionotropic glutamate receptors involved in the brain's fast excitatory neurotransmission. In this narrative review, we dissected emerged molecular mechanisms related to NDDs and epilepsy due to defects in pre- and post-synaptic transmission. We focused on the most recently discovered SNAREopathies and AMPA-related synaptopathies.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Ludovica Di Francesco
- Department of Neonatology, University of L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| |
Collapse
|
11
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024; 111:2309-2346. [PMID: 39332410 PMCID: PMC11568765 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Gelmez P, Karakoc TE, Ulucan O. Autism Spectrum Disorder and Atypical Brain Connectivity: Novel Insights from Brain Connectivity-Associated Genes by Combining Random Forest and Support Vector Machine Algorithm. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:563-572. [PMID: 39417279 DOI: 10.1089/omi.2024.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
It is estimated that approximately one in every 100 children is diagnosed with autism spectrum disorder (ASD) around the globe. Currently, there are no curative pharmacological treatments for ASD. Discoveries on key molecular mechanisms of ASD are essential for precision medicine strategies. Considering that atypical brain connectivity patterns have been observed in individuals with ASD, this study examined the brain connectivity-associated genes and their putatively distinct expression patterns in brain samples from individuals diagnosed with ASD and using an iterative strategy based on random forest and support vector machine algorithms. We discovered a potential gene signature capable of differentiating ASD from control samples with a 92% accuracy. This gene signature comprised 14 brain connectivity-associated genes exhibiting enrichment in synapse-related terms. Of these genes, 11 were previously associated with ASD in varying degrees of evidence. Notably, NFKBIA, WNT10B, and IFT22 genes were identified as ASD-related for the first time in this study. Subsequent clustering analysis revealed the existence of two distinct ASD subtypes based on our gene signature. The expression levels of signature genes have the potential to influence brain connectivity patterns, potentially contributing to the manifestation of ASD. Further studies on the omics of ASD are called for so as to elucidate the molecular basis of ASD and for diagnostic and therapeutic innovations. Finally, we underscore that advances in ASD research can benefit from integrative bioinformatics and data science approaches.
Collapse
Affiliation(s)
- Pelin Gelmez
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Eyupsultan, Turkey
| | - Talha Emir Karakoc
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Eyupsultan, Turkey
| | - Ozlem Ulucan
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Eyupsultan, Turkey
| |
Collapse
|
13
|
Schultz LM, Knighton A, Huguet G, Saci Z, Jean-Louis M, Mollon J, Knowles EEM, Glahn DC, Jacquemont S, Almasy L. Copy-number variants differ in frequency across genetic ancestry groups. HGG ADVANCES 2024; 5:100340. [PMID: 39138864 PMCID: PMC11401192 DOI: 10.1016/j.xhgg.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Copy-number variants (CNVs) have been implicated in a variety of neuropsychiatric and cognitive phenotypes. We found that deleterious CNVs are less prevalent in non-European ancestry groups than they are in European ancestry groups of both the UK Biobank (UKBB) and a US replication cohort (SPARK). We also identified specific recurrent CNVs that consistently differ in frequency across ancestry groups in both the UKBB and SPARK. These ancestry-related differences in CNV prevalence present in both an unselected community population and a family cohort enriched with individuals diagnosed with autism spectrum disorder (ASD) strongly suggest that genetic ancestry should be considered when probing associations between CNVs and health outcomes.
Collapse
Affiliation(s)
- Laura M Schultz
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Alexys Knighton
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Zohra Saci
- CHU Sainte-Justine, Montréal, QC, Canada
| | | | - Josephine Mollon
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emma E M Knowles
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David C Glahn
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sébastien Jacquemont
- CHU Sainte-Justine, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Casella R, Miniello A, Buta F, Yacoub MR, Nettis E, Pioggia G, Gangemi S. Atopic Dermatitis and Autism Spectrum Disorders: Common Role of Environmental and Clinical Co-Factors in the Onset and Severity of Their Clinical Course. Int J Mol Sci 2024; 25:8936. [PMID: 39201625 PMCID: PMC11354676 DOI: 10.3390/ijms25168936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Increasing evidence suggests an association between atopic dermatitis, the most chronic inflammatory disease of the skin, and autism spectrum disorders, which are a group of neurodevelopmental diseases. Inflammation and immune dysregulation associated with genetic and environmental factors seem to characterize the pathophysiological mechanisms of both conditions. We conducted a literature review of the PubMed database aimed at identifying the clinical features and alleged risk factors that could be used in clinical practice to predict the onset of ASD and/or AD or worsen their prognosis in the context of comorbidities.
Collapse
Affiliation(s)
- Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Federica Buta
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (F.B.)
| | - Mona-Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Hospital San Raffaele, 20132 Milan, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (F.B.)
| |
Collapse
|
15
|
Dias C, Mo A, Cai C, Sun L, Cabral K, Brownstein CA, Rockowitz S, Walsh CA. Cell-type-specific effects of autism-associated 15q duplication syndrome in the human brain. Am J Hum Genet 2024; 111:1544-1558. [PMID: 39079538 PMCID: PMC11339625 DOI: 10.1016/j.ajhg.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024] Open
Abstract
Recurrent copy-number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder. Duplication of 15q11-q13 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of autism more than 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown. To identify the cell-type-specific transcriptional and epigenetic effects of dup15q in the human frontal cortex, we conducted single-nucleus RNA sequencing and multi-omic sequencing on dup15q-affected individuals (n = 6) as well as individuals with non-dup15q autism (n = 7) and neurotypical control individuals (n = 7). Cell-type-specific differential expression analysis identified significantly regulated genes, critical biological pathways, and differentially accessible genomic regions. Although there was overall increased gene expression across the duplicated genomic region, cellular identity represented an important factor mediating gene-expression changes. As compared to other cell types, neuronal subtypes showed greater upregulation of gene expression across a critical region within the duplication. Genes that fell within the duplicated region and had high baseline expression in control individuals showed only modest changes in dup15q, regardless of cell type. Of note, dup15q and autism had largely distinct signatures of chromatin accessibility but shared the majority of transcriptional regulatory motifs, suggesting convergent biological pathways. However, the transcriptional binding-factor motifs implicated in each condition implicated distinct biological mechanisms: neuronal JUN and FOS networks in autism vs. an inflammatory transcriptional network in dup15q microglia. This work provides a cell-type-specific analysis of how dup15q changes gene expression and chromatin accessibility in the human brain, and it finds evidence of marked cell-type-specific effects of this genetic driver. These findings have implications for guiding therapeutic development in dup15q syndrome, as well as understanding the functional effects of copy-number variants more broadly in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Caroline Dias
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Alisa Mo
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chunhui Cai
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kristen Cabral
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Shira Rockowitz
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Bourque VR, Schmilovich Z, Huguet G, England J, Okewole A, Poulain C, Renne T, Jean-Louis M, Saci Z, Zhang X, Rolland T, Labbé A, Vorstman J, Rouleau GA, Baron-Cohen S, Mottron L, Bethlehem RAI, Warrier V, Jacquemont S. Integrating genomic variants and developmental milestones to predict cognitive and adaptive outcomes in autistic children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.31.24311250. [PMID: 39211846 PMCID: PMC11361213 DOI: 10.1101/2024.07.31.24311250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although the first signs of autism are often observed as early as 18-36 months of age, there is a broad uncertainty regarding future development, and clinicians lack predictive tools to identify those who will later be diagnosed with co-occurring intellectual disability (ID). Here, we developed predictive models of ID in autistic children (n=5,633 from three cohorts), integrating different classes of genetic variants alongside developmental milestones. The integrated model yielded an AUC ROC=0.65, with this predictive performance cross-validated and generalised across cohorts. Positive predictive values reached up to 55%, accurately identifying 10% of ID cases. The ability to stratify the probabilities of ID using genetic variants was up to twofold greater in individuals with delayed milestones compared to those with typical development. These findings underscore the potential of models in neurodevelopmental medicine that integrate genomics and clinical observations to predict outcomes and target interventions.
Collapse
|
17
|
Sarwal V, Lee S, Yang J, Sankararaman S, Chaisson M, Eskin E, Mangul S. VISTA: an integrated framework for structural variant discovery. Brief Bioinform 2024; 25:bbae462. [PMID: 39297879 PMCID: PMC11411772 DOI: 10.1093/bib/bbae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
Structural variation (SV) refers to insertions, deletions, inversions, and duplications in human genomes. SVs are present in approximately 1.5% of the human genome. Still, this small subset of genetic variation has been implicated in the pathogenesis of psoriasis, Crohn's disease and other autoimmune disorders, autism spectrum and other neurodevelopmental disorders, and schizophrenia. Since identifying structural variants is an important problem in genetics, several specialized computational techniques have been developed to detect structural variants directly from sequencing data. With advances in whole-genome sequencing (WGS) technologies, a plethora of SV detection methods have been developed. However, dissecting SVs from WGS data remains a challenge, with the majority of SV detection methods prone to a high false-positive rate, and no existing method able to precisely detect a full range of SVs present in a sample. Previous studies have shown that none of the existing SV callers can maintain high accuracy across various SV lengths and genomic coverages. Here, we report an integrated structural variant calling framework, Variant Identification and Structural Variant Analysis (VISTA), that leverages the results of individual callers using a novel and robust filtering and merging algorithm. In contrast to existing consensus-based tools which ignore the length and coverage, VISTA overcomes this limitation by executing various combinations of top-performing callers based on variant length and genomic coverage to generate SV events with high accuracy. We evaluated the performance of VISTA on comprehensive gold-standard datasets across varying organisms and coverage. We benchmarked VISTA using the Genome-in-a-Bottle gold standard SV set, haplotype-resolved de novo assemblies from the Human Pangenome Reference Consortium, along with an in-house polymerase chain reaction (PCR)-validated mouse gold standard set. VISTA maintained the highest F1 score among top consensus-based tools measured using a comprehensive gold standard across both mouse and human genomes. VISTA also has an optimized mode, where the calls can be optimized for precision or recall. VISTA-optimized can attain 100% precision and the highest sensitivity among other variant callers. In conclusion, VISTA represents a significant advancement in structural variant calling, offering a robust and accurate framework that outperforms existing consensus-based tools and sets a new standard for SV detection in genomic research.
Collapse
Affiliation(s)
- Varuni Sarwal
- Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, United States
| | - Seungmo Lee
- Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, United States
| | - Jianzhi Yang
- Department of Quantitative and Computational Biology, Dana and David Dornsife College of Letters, Arts and Sciences University of Southern California, 3540 S Figueroa St, Los Angeles, California 90089, United States
| | - Sriram Sankararaman
- Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, United States
| | - Mark Chaisson
- Department of Quantitative and Computational Biology, Dana and David Dornsife College of Letters, Arts and Sciences University of Southern California, 3540 S Figueroa St, Los Angeles, California 90089, United States
| | - Eleazar Eskin
- Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, United States
| | - Serghei Mangul
- Department of Quantitative and Computational Biology, Dana and David Dornsife College of Letters, Arts and Sciences University of Southern California, 3540 S Figueroa St, Los Angeles, California 90089, United States
- Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy, University of Southern California, 1540 Alcazar Street, Los Angeles, CA 90033, United States
| |
Collapse
|
18
|
Alhazmi S, Alharthi M, Alzahrani M, Alrofaidi A, Basingab F, Almuhammadi A, Alkhatabi H, Ashi A, Chaudhary A, Elaimi A. Copy number variations in autistic children. Biomed Rep 2024; 21:107. [PMID: 38868529 PMCID: PMC11168027 DOI: 10.3892/br.2024.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Autism spectrum disorder (ASD) manifests as a neurodevelopmental condition marked by challenges in social communication, interaction and the performing of repetitive behaviors. The prevalence of autism increases markedly on an annual basis; however, the etiology remains incompletely understood. Cytogenetically visible chromosomal abnormalities, including copy number variations (CNVs), have been shown to contribute to the pathogenesis of ASD. More than 1% of ASD conditions can be explained based on a known genetic locus, whereas CNVs account for 5-10% of cases. However, there are no studies on the Saudi Arabian population for the detection of CNVs linked to ASD, to the best of our knowledge. Therefore, the aim of the present study was to explore the prevalence of CNVs in autistic Saudi Arabian children. Genomic DNA was extracted from the peripheral blood of 14 autistic children along with four healthy control children and then array-based comparative genomic hybridization (aCGH) was used to detect CNVs. Bioinformatics analysis of the aCGH results showed the presence of recurrent and non-recurrent deletion/duplication CNVs in several regions of the genome of autistic children. The most frequent CNVs were 1q21.2, 3p26.3, 4q13.2, 6p25.3, 6q24.2, 7p21.1, 7q34, 7q11.1, 8p23.2, 13q32.3, 14q11.1-q11.2 and 15q11.1-q11.2. In the present study, CNVs in autistic Saudi Arabian children were identified to improve the understanding of the etiology of autism and facilitate its diagnosis. Additionally, the present study identified certain possible pathogenic genes in the CNV region associated with several developmental and neurogenetic diseases.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Central Laboratory of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maram Alharthi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aisha Alrofaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Abrar Ashi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Adeel Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Aisha Elaimi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
19
|
Xu S, Wang J, Mao K, Jiao D, Li Z, Zhao H, Sun Y, Feng J, Lai Y, Peng R, Fu Y, Gan R, Chen S, Zhao HY, Wei HJ, Cheng Y. Generation and transcriptomic characterization of MIR137 knockout miniature pig model for neurodevelopmental disorders. Cell Biosci 2024; 14:86. [PMID: 38937838 PMCID: PMC11212353 DOI: 10.1186/s13578-024-01268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDD), such as autism spectrum disorders (ASD) and intellectual disorders (ID), are highly debilitating childhood psychiatric conditions. Genetic factors are recognized as playing a major role in NDD, with a multitude of genes and genomic regions implicated. While the functional validation of NDD-associated genes has predominantly been carried out using mouse models, the significant differences in brain structure and gene function between mice and humans have limited the effectiveness of mouse models in exploring the underlying mechanisms of NDD. Therefore, it is important to establish alternative animal models that are more evolutionarily aligned with humans. RESULTS In this study, we employed CRISPR/Cas9 and somatic cell nuclear transplantation technologies to successfully generate a knockout miniature pig model of the MIR137 gene, which encodes the neuropsychiatric disorder-associated microRNA miR-137. The homozygous knockout of MIR137 (MIR137-/-) effectively suppressed the expression of mature miR-137 and led to the birth of stillborn or short-lived piglets. Transcriptomic analysis revealed significant changes in genes associated with neurodevelopment and synaptic signaling in the brains of MIR137-/- miniature pig, mirroring findings from human ASD transcriptomic data. In comparison to miR-137-deficient mouse and human induced pluripotent stem cell (hiPSC)-derived neuron models, the miniature pig model exhibited more consistent changes in critical neuronal genes relevant to humans following the loss of miR-137. Furthermore, a comparative analysis identified differentially expressed genes associated with ASD and ID risk genes in both miniature pig and hiPSC-derived neurons. Notably, human-specific miR-137 targets, such as CAMK2A, known to be linked to cognitive impairments and NDD, exhibited dysregulation in MIR137-/- miniature pigs. These findings suggest that the loss of miR-137 in miniature pigs affects genes crucial for neurodevelopment, potentially contributing to the development of NDD. CONCLUSIONS Our study highlights the impact of miR-137 loss on critical genes involved in neurodevelopment and related disorders in MIR137-/- miniature pigs. It establishes the miniature pig model as a valuable tool for investigating neurodevelopmental disorders, providing valuable insights for potential applications in human research.
Collapse
Affiliation(s)
- Shengyun Xu
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Jiaoxiang Wang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Kexin Mao
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Deling Jiao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhu Li
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Heng Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Yifei Sun
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Jin Feng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Yuanhao Lai
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Ruiqi Peng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Yu Fu
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Ruoyi Gan
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Shuhan Chen
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Ye Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong-Jiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Ying Cheng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
20
|
Ahumada-Marchant C, Ancatén-Gonzalez C, Haensgen H, Brauer B, Merino-Veliz N, Droste R, Arancibia F, Horvitz HR, Constantine-Paton M, Arriagada G, Chávez AE, Bustos FJ. Deletion of VPS50 protein in mouse brain impairs synaptic function and behavior. BMC Biol 2024; 22:142. [PMID: 38926759 PMCID: PMC11210182 DOI: 10.1186/s12915-024-01940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The VPS50 protein functions in synaptic and dense core vesicle acidification, and perturbations of VPS50 function produce behavioral changes in Caenorhabditis elegans. Patients with mutations in VPS50 show severe developmental delay and intellectual disability, characteristics that have been associated with autism spectrum disorders (ASDs). The mechanisms that link VPS50 mutations to ASD are unknown. RESULTS To examine the role of VPS50 in mammalian brain function and behavior, we used the CRISPR/Cas9 system to generate knockouts of VPS50 in both cultured murine cortical neurons and living mice. In cultured neurons, KO of VPS50 did not affect the number of synaptic vesicles but did cause mislocalization of the V-ATPase V1 domain pump and impaired synaptic activity, likely as a consequence of defects in vesicle acidification and vesicle content. In mice, mosaic KO of VPS50 in the hippocampus altered synaptic transmission and plasticity and generated robust cognitive impairments. CONCLUSIONS We propose that VPS50 functions as an accessory protein to aid the recruitment of the V-ATPase V1 domain to synaptic vesicles and in that way plays a crucial role in controlling synaptic vesicle acidification. Understanding the mechanisms controlling behaviors and synaptic function in ASD-associated mutations is pivotal for the development of targeted interventions, which may open new avenues for therapeutic strategies aimed at ASD and related conditions.
Collapse
Affiliation(s)
- Constanza Ahumada-Marchant
- Constantine-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Carlos Ancatén-Gonzalez
- Programa de Doctorado en Ciencias, Universidad de Valparaíso, Mención Neurociencia, Valparaíso, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Henny Haensgen
- Constantine-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Bastian Brauer
- Constantine-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Nicolas Merino-Veliz
- Constantine-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rita Droste
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
| | - Felipe Arancibia
- Constantine-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - H Robert Horvitz
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
| | - Martha Constantine-Paton
- Department of Biology, Massachusetts Institute of Technology, McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
| | - Gloria Arriagada
- Constantine-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Andrés E Chávez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando J Bustos
- Constantine-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| |
Collapse
|
21
|
Nautiyal H, Jaiswar A, Jha PK, Dwivedi S. Exploring key genes and pathways associated with sex differences in autism spectrum disorder: integrated bioinformatic analysis. Mamm Genome 2024; 35:280-295. [PMID: 38594551 DOI: 10.1007/s00335-024-10036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder marked by functional abnormalities in brain that causes social and linguistic difficulties. The incidence of ASD is more prevalent in males compared to females, but the underlying mechanism, as well as molecular indications for identifying sex-specific differences in ASD symptoms remain unknown. Thus, impacting the development of personalized strategy towards pharmacotherapy of ASD. The current study employs an integrated bioinformatic approach to investigate the genes and pathways uniquely associated with sex specific differences in autistic individuals. Based on microarray dataset (GSE6575) extracted from the gene expression omnibus, the dysregulated genes between the autistic and the neurotypical individuals for both sexes were identified. Gene set enrichment analysis was performed to ascertain biological activities linked to the dysregulated genes. Protein-protein interaction network analysis was carried out to identify hub genes. The identified hub genes were examined to determine their functions and involvement in the associated pathways using Enrichr. Additionally, hub genes were validated from autism-associated databases and the potential small molecules targeting the hub genes were identified. The present study utilized whole blood transcriptomic gene expression analysis data and identified 2211 and 958 differentially expressed unique genes in males and females respectively. The functional enrichment analysis revealed that male hub genes were functionally associated with RNA polymerase II mediated transcriptional regulation whereas female hub genes were involved in intracellular signal transduction and cell migration. The top male hub genes exhibited functional enrichment in tyrosine kinase signalling pathway. The pathway enrichment analysis of male hub genes indicates the enrichment of papillomavirus infection. Female hub genes were enriched in androgen receptor signalling pathway and functionally enriched in focal adhesion specific excision repair. Identified drug like candidates targeting these genes may serve as a potential sex specific therapeutics. Wortmannin for males, 5-Fluorouracil for females had the highest scores. Targeted and sex-specific pharmacotherapies may be created for the management of ASD. The current investigation identifies sex-specific molecular signatures derived from whole blood which may serve as a potential peripheral sex-specific biomarkers for ASD. The study also uncovers the possible pharmacological interventions against the selected genes/pathway, providing support in development of therapeutic strategies to mitigate ASD. However, experimental proofs on biological systems are warranted.
Collapse
Affiliation(s)
- Himani Nautiyal
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India
| | - Akanksha Jaiswar
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shubham Dwivedi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India.
| |
Collapse
|
22
|
Brandner DD, Mashal MA, Grissom NM, Rothwell PE. Sex Differences in Morphine Sensitivity of Neuroligin-3 Knockout Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596965. [PMID: 38854153 PMCID: PMC11160712 DOI: 10.1101/2024.06.01.596965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Sex has a strong influence on the prevalence and course of brain conditions, including autism spectrum disorders. The mechanistic basis for these sex differences remains poorly understood, due in part to historical bias in biomedical research favoring analysis of male subjects, and the exclusion of female subjects. For example, studies of male mice carrying autism-associated mutations in neuroligin-3 are over-represented in the literature, including our own prior work showing diminished responses to chronic morphine exposure in male neuroligin-3 knockout mice. We therefore studied how constitutive and conditional genetic knockout of neuroligin-3 affects morphine sensitivity of female mice. In contrast to male mice, female neuroligin-3 knockout mice showed normal psychomotor sensitization after chronic morphine exposure. However, in the absence of neuroligin-3 expression, both female and male mice show a similar change in the topography of locomotor stimulation produced by morphine. Conditional genetic deletion of neuroligin-3 from dopamine neurons increased the locomotor response of female mice to high doses of morphine, contrasting with the decrease in psychomotor sensitization caused by the same manipulation in male mice. Together, our data reveal that knockout of neuroligin-3 has both common and distinct effects on morphine sensitivity in female and male mice. These results also support the notion that female sex can confer resilience against the impact of autism-associated gene variants.
Collapse
|
23
|
Lü Y, Cho T, Mukherjee S, Suarez CF, Gonzalez-Foutel NS, Malik A, Martinez S, Dervovic D, Oh RH, Langille E, Al-Zahrani KN, Hoeg L, Lin ZY, Tsai R, Mbamalu G, Rotter V, Ashton-Prolla P, Moffat J, Chemes LB, Gingras AC, Oren M, Durocher D, Schramek D. Genome-wide CRISPR screens identify novel regulators of wild-type and mutant p53 stability. Mol Syst Biol 2024; 20:719-740. [PMID: 38580884 PMCID: PMC11148184 DOI: 10.1038/s44320-024-00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.
Collapse
Affiliation(s)
- YiQing Lü
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Department of Biology, Suffolk University, Boston, MA, 02108, USA
| | - Tiffany Cho
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Carmen Florencia Suarez
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Nicolas S Gonzalez-Foutel
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Sebastien Martinez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Dzana Dervovic
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Robin Hyunseo Oh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ellen Langille
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Khalid N Al-Zahrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Lisa Hoeg
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Zhen Yuan Lin
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Geraldine Mbamalu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Patricia Ashton-Prolla
- Departamento de Genética, Universidade Federal do Rio Grande do Sul and Serviço de Genetica Médica HCPA, Porto Alegre, Brasil
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S3G9, Canada
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Lucia Beatriz Chemes
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Anne-Claude Gingras
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Durocher
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
24
|
Nóbrega IDS, Teles e Silva AL, Yokota-Moreno BY, Sertié AL. The Importance of Large-Scale Genomic Studies to Unravel Genetic Risk Factors for Autism. Int J Mol Sci 2024; 25:5816. [PMID: 38892002 PMCID: PMC11172008 DOI: 10.3390/ijms25115816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common and highly heritable neurodevelopmental disorder. During the last 15 years, advances in genomic technologies and the availability of increasingly large patient cohorts have greatly expanded our knowledge of the genetic architecture of ASD and its neurobiological mechanisms. Over two hundred risk regions and genes carrying rare de novo and transmitted high-impact variants have been identified. Additionally, common variants with small individual effect size are also important, and a number of loci are now being uncovered. At the same time, these new insights have highlighted ongoing challenges. In this perspective article, we summarize developments in ASD genetic research and address the enormous impact of large-scale genomic initiatives on ASD gene discovery.
Collapse
Affiliation(s)
| | | | | | - Andréa Laurato Sertié
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, Rua Comendador Elias Jafet, 755. Morumbi, São Paulo 05653-000, Brazil; (I.d.S.N.); (A.L.T.e.S.); (B.Y.Y.-M.)
| |
Collapse
|
25
|
Primak A, Bozov K, Rubina K, Dzhauari S, Neyfeld E, Illarionova M, Semina E, Sheleg D, Tkachuk V, Karagyaur M. Morphogenetic theory of mental and cognitive disorders: the role of neurotrophic and guidance molecules. Front Mol Neurosci 2024; 17:1361764. [PMID: 38646100 PMCID: PMC11027769 DOI: 10.3389/fnmol.2024.1361764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
Mental illness and cognitive disorders represent a serious problem for the modern society. Many studies indicate that mental disorders are polygenic and that impaired brain development may lay the ground for their manifestation. Neural tissue development is a complex and multistage process that involves a large number of distant and contact molecules. In this review, we have considered the key steps of brain morphogenesis, and the major molecule families involved in these process. The review provides many indications of the important contribution of the brain development process and correct functioning of certain genes to human mental health. To our knowledge, this comprehensive review is one of the first in this field. We suppose that this review may be useful to novice researchers and clinicians wishing to navigate the field.
Collapse
Affiliation(s)
- Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill Bozov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Neyfeld
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Sheleg
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
26
|
Cooper JN, Mittal J, Sangadi A, Klassen DL, King AM, Zalta M, Mittal R, Eshraghi AA. Landscape of NRXN1 Gene Variants in Phenotypic Manifestations of Autism Spectrum Disorder: A Systematic Review. J Clin Med 2024; 13:2067. [PMID: 38610832 PMCID: PMC11012327 DOI: 10.3390/jcm13072067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Recent research has increasingly focused on the genetic underpinnings of ASD, with the Neurexin 1 (NRXN1) gene emerging as a key player. This comprehensive systematic review elucidates the contribution of NRXN1 gene variants in the pathophysiology of ASD. Methods: The protocol for this systematic review was designed a priori and was registered in the PROSPERO database (CRD42023450418). A risk of bias analysis was conducted using the Joanna Briggs Institute (JBI) critical appraisal tool. We examined various studies that link NRXN1 gene disruptions with ASD, discussing both the genotypic variability and the resulting phenotypic expressions. Results: Within this review, there was marked heterogeneity observed in ASD genotypic and phenotypic manifestations among individuals with NRXN1 mutations. The presence of NRXN1 mutations in this population emphasizes the gene's role in synaptic function and neural connectivity. Conclusion: This review not only highlights the role of NRXN1 in the pathophysiology of ASD but also highlights the need for further research to unravel the complex genetic underpinnings of the disorder. A better knowledge about the multifaceted role of NRXN1 in ASD can provide crucial insights into the neurobiological foundations of autism and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jaimee N. Cooper
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Akhila Sangadi
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Delany L. Klassen
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Ava M. King
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Max Zalta
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
27
|
Sánchez RM, Bermeo Losada JF, Marín Martínez JA. The research landscape concerning environmental factors in neurodevelopmental disorders: Endocrine disrupters and pesticides-A review. Front Neuroendocrinol 2024; 73:101132. [PMID: 38561126 DOI: 10.1016/j.yfrne.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.
Collapse
Affiliation(s)
- Rebeca Mira Sánchez
- Universidad de Murcia, Spain; Instituto de Ciencias Medioambientales y Neurodesarrollo ICMYN, Murcia, Spain.
| | | | | |
Collapse
|
28
|
Al-Sarraj Y, Taha RZ, Al-Dous E, Ahram D, Abbasi S, Abuazab E, Shaath H, Habbab W, Errafii K, Bejaoui Y, AlMotawa M, Khattab N, Aqel YA, Shalaby KE, Al-Ansari A, Kambouris M, Abouzohri A, Ghazal I, Tolfat M, Alshaban F, El-Shanti H, Albagha OME. The genetic landscape of autism spectrum disorder in the Middle Eastern population. Front Genet 2024; 15:1363849. [PMID: 38572415 PMCID: PMC10987745 DOI: 10.3389/fgene.2024.1363849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States
| | - Somayyeh Abbasi
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Abuazab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hibah Shaath
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Wesal Habbab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Khaoula Errafii
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Maryam AlMotawa
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Namat Khattab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yasmin Abu Aqel
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Karim E. Shalaby
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Amina Al-Ansari
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Marios Kambouris
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Pathology & Laboratory Medicine Department, Genetics Division, Sidra Medicine, Doha, Qatar
| | - Adel Abouzohri
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Iman Ghazal
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha, Qatar
| | - Fouad Alshaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
29
|
Ma JY, Xia TJ, Li S, Yin S, Luo SM, Li G. Germline cell de novo mutations and potential effects of inflammation on germline cell genome stability. Semin Cell Dev Biol 2024; 154:316-327. [PMID: 36376195 DOI: 10.1016/j.semcdb.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Uncontrolled pathogenic genome mutations in germline cells might impair adult fertility, lead to birth defects or even affect the adaptability of a species. Understanding the sources of DNA damage, as well as the features of damage response in germline cells are the overarching tasks to reduce the mutations in germline cells. With the accumulation of human genome data and genetic reports, genome variants formed in germline cells are being extensively explored. However, the sources of DNA damage, the damage repair mechanisms, and the effects of DNA damage or mutations on the development of germline cells are still unclear. Besides exogenous triggers of DNA damage such as irradiation and genotoxic chemicals, endogenous exposure to inflammation may also contribute to the genome instability of germline cells. In this review, we summarized the features of de novo mutations and the specific DNA damage responses in germline cells and explored the possible roles of inflammation on the genome stability of germline cells.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tian-Jin Xia
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Shi-Ming Luo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
30
|
Huang YH, Wu SI, Lee MJ, Chen YL, Yang YH, Kuo TY, Hung TH, Dewey ME, Stewart R, Chen VCH. Excess Mortality in Individuals with Autism Spectrum Disorder: A Population-Based Cohort Study. Neuropsychiatr Dis Treat 2024; 20:247-255. [PMID: 38348059 PMCID: PMC10860845 DOI: 10.2147/ndt.s437766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose Autism spectrum disorder (ASD) may be associated with increased mortality, but relevant findings have been inconsistent. The modifying effects of gender and intellectual disability on excess mortality in individuals with ASD are underexplored. Patients and Methods Using Taiwan's National Health Insurance Research Database and the National Death Registry, this population-based cohort study selected the data of 75,946 patients with ASD (ASD cohort) and 75,946 age group-, gender-, and income-matched (1:1) patients without ASD (non-ASD cohort). Cox proportional hazards models were used to compare mortality rates between the cohorts, and stratified analyses were used to evaluate the influence of gender and intellectual disability on mortality risk. Results The ASD cohort had higher mortality rates for all causes of death than did the non-ASD cohort (adjusted hazard ratio 1.64, 95% confidence interval 1.54-1.75). Comorbid intellectual disability was associated with an increased risk of mortality, and this association was stronger in female patients than in male patients. Moreover, when focusing on deaths from natural causes, we found a significantly higher odds ratio for mortality in the ASD population with ID compared to those without ID. Conclusion ASD is associated with increased mortality, especially among female individuals and those with intellectual disability.
Collapse
Affiliation(s)
- Yu-Hsin Huang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Psychiatry, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Shu-I Wu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Psychiatry, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Min-Jing Lee
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Lung Chen
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yao-Hsu Yang
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
| | - Ting-Yu Kuo
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
| | - Tai-Hsin Hung
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Michael E Dewey
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Robert Stewart
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- South London and Maudsley National Health Services Foundation Trust, London, UK
| | - Vincent Chin-Hung Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
31
|
Ng JK, Chen Y, Akinwe TM, Heins HB, Mehinovic E, Chang Y, Payne ZL, Manuel JG, Karchin R, Turner TN. Proteome-Wide Assessment of Clustering of Missense Variants in Neurodevelopmental Disorders Versus Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24302238. [PMID: 38352539 PMCID: PMC10863034 DOI: 10.1101/2024.02.02.24302238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Missense de novo variants (DNVs) and missense somatic variants contribute to neurodevelopmental disorders (NDDs) and cancer, respectively. Proteins with statistical enrichment based on analyses of these variants exhibit convergence in the differing NDD and cancer phenotypes. Herein, the question of why some of the same proteins are identified in both phenotypes is examined through investigation of clustering of missense variation at the protein level. Our hypothesis is that missense variation is present in different protein locations in the two phenotypes leading to the distinct phenotypic outcomes. We tested this hypothesis in 1D protein space using our software CLUMP. Furthermore, we newly developed 3D-CLUMP that uses 3D protein structures to spatially test clustering of missense variation for proteome-wide significance. We examined missense DNVs in 39,883 parent-child sequenced trios with NDDs and missense somatic variants from 10,543 sequenced tumors covering five TCGA cancer types and two COSMIC pan-cancer aggregates of tissue types. There were 57 proteins with proteome-wide significant missense variation clustering in NDDs when compared to cancers and 79 proteins with proteome-wide significant missense clustering in cancers compared to NDDs. While our main objective was to identify differences in patterns of missense variation, we also identified a novel NDD protein BLTP2. Overall, our study is innovative, provides new insights into differential missense variation in NDDs and cancer at the protein-level, and contributes necessary information toward building a framework for thinking about prognostic and therapeutic aspects of these proteins.
Collapse
Affiliation(s)
- Jeffrey K. Ng
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yilin Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Titilope M. Akinwe
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Molecular Genetics & Genomics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hillary B. Heins
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elvisa Mehinovic
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoonhoo Chang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Human & Statistical Genetics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zachary L. Payne
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Molecular Genetics & Genomics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Juana G. Manuel
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel Karchin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
32
|
McClellan JM, Zoghbi AW, Buxbaum JD, Cappi C, Crowley JJ, Flint J, Grice DE, Gulsuner S, Iyegbe C, Jain S, Kuo PH, Lattig MC, Passos-Bueno MR, Purushottam M, Stein DJ, Sunshine AB, Susser ES, Walsh CA, Wootton O, King MC. An evolutionary perspective on complex neuropsychiatric disease. Neuron 2024; 112:7-24. [PMID: 38016473 PMCID: PMC10842497 DOI: 10.1016/j.neuron.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
The forces of evolution-mutation, selection, migration, and genetic drift-shape the genetic architecture of human traits, including the genetic architecture of complex neuropsychiatric illnesses. Studying these illnesses in populations that are diverse in genetic ancestry, historical demography, and cultural history can reveal how evolutionary forces have guided adaptation over time and place. A fundamental truth of shared human biology is that an allele responsible for a disease in anyone, anywhere, reveals a gene critical to the normal biology underlying that condition in everyone, everywhere. Understanding the genetic causes of neuropsychiatric disease in the widest possible range of human populations thus yields the greatest possible range of insight into genes critical to human brain development. In this perspective, we explore some of the relationships between genes, adaptation, and history that can be illuminated by an evolutionary perspective on studies of complex neuropsychiatric disease in diverse populations.
Collapse
Affiliation(s)
- Jon M McClellan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anthony W Zoghbi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan Flint
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Suleyman Gulsuner
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Conrad Iyegbe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | | | | | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Anna B Sunshine
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ezra S Susser
- Department of Epidemiology, Mailman School of Public Health, and New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA
| | - Christopher A Walsh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Wootton
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Abreu NJ, Chiujdea M, Liu S, Zhang B, Spence SJ. Factors Associated With Underutilization of Genetic Testing in Autism Spectrum Disorders. Pediatr Neurol 2024; 150:17-23. [PMID: 37939453 DOI: 10.1016/j.pediatrneurol.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND We sought to identify patient and provider factors associated with low completion of genetic testing, specifically chromosomal microarray (CMA), for autism spectrum disorder (ASD). METHODS Medical record review was conducted of children newly diagnosed with ASD without prior genetic testing at a single academic medical center from February 2015 through January 2016. RESULTS Only 41.9% of individuals with ASD completed CMA testing over at least 18 months from diagnosis (n = 140 of 334). Time to CMA completion varied, with a median of 86.5 days (interquartile range 2 to 214.5 days). Provider recommendation of genetic testing at the diagnostic visit and greater number of follow-up visits were associated with CMA completion. On multivariate regression, CMA completion was inversely associated with age (odds ratio [OR] = 0.8 for each year older, 95% confidence interval [CI] 0.7, 0.9; P = 0.001) and directly associated with intellectual disability or global developmental delay (OR = 2.2, 95% CI 1.3, 3.8; P = 0.004), first-degree relative with ASD (OR = 2.5, 95% CI 1.0, 6.0; P = 0.044), and public insurance (OR = 1.7, 95% CI 1.0, 2.9; P = 0.037). Parental concern and cost/insurance coverage were the most frequently documented barriers. CONCLUSIONS Workflows to support early genetic testing recommendation and ordering soon after diagnosis may increase utilization, incorporating both family and provider perspectives. Genetic counseling highlighting the utility of genetic testing across the life span, phenotypic variability of genetic disorders, and possibility of de novo variants in ASD may also improve utilization.
Collapse
Affiliation(s)
- Nicolas J Abreu
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Madeline Chiujdea
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shanshan Liu
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarah J Spence
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Nir Sade A, Levy G, Schokoroy Trangle S, Elad Sfadia G, Bar E, Ophir O, Fischer I, Rokach M, Atzmon A, Parnas H, Rosenberg T, Marco A, Elroy Stein O, Barak B. Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Commun Biol 2023; 6:1269. [PMID: 38097729 PMCID: PMC10721858 DOI: 10.1038/s42003-023-05612-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.
Collapse
Affiliation(s)
- Ariel Nir Sade
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Elroy Stein
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
35
|
Wang S, Wang B, Drury V, Drake S, Sun N, Alkhairo H, Arbelaez J, Duhn C, Bal VH, Langley K, Martin J, Hoekstra PJ, Dietrich A, Xing J, Heiman GA, Tischfield JA, Fernandez TV, Owen MJ, O'Donovan MC, Thapar A, State MW, Willsey AJ. Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD. Nat Commun 2023; 14:8077. [PMID: 38057346 PMCID: PMC10700338 DOI: 10.1038/s41467-023-43776-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
Autism spectrum disorder (ASD), Tourette syndrome (TS), and attention-deficit/hyperactivity disorder (ADHD) display strong male sex bias, due to a combination of genetic and biological factors, as well as selective ascertainment. While the hemizygous nature of chromosome X (Chr X) in males has long been postulated as a key point of "male vulnerability", rare genetic variation on this chromosome has not been systematically characterized in large-scale whole exome sequencing studies of "idiopathic" ASD, TS, and ADHD. Here, we take advantage of informative recombinations in simplex ASD families to pinpoint risk-enriched regions on Chr X, within which rare maternally-inherited damaging variants carry substantial risk in males with ASD. We then apply a modified transmission disequilibrium test to 13,052 ASD probands and identify a novel high confidence ASD risk gene at exome-wide significance (MAGEC3). Finally, we observe that rare damaging variants within these risk regions carry similar effect sizes in males with TS or ADHD, further clarifying genetic mechanisms underlying male vulnerability in multiple neurodevelopmental disorders that can be exploited for systematic gene discovery.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vanessa Drury
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sam Drake
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Hasan Alkhairo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Juan Arbelaez
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Clif Duhn
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vanessa H Bal
- Graduate School of Applied and Professional Psychology, Rutgers University, New Brunswick, NJ, USA
| | - Kate Langley
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
- School of Psychology, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Joanna Martin
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Andrea Dietrich
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Jinchuan Xing
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Thomas V Fernandez
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Anita Thapar
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
36
|
López-Tobón A, Shyti R, Villa CE, Cheroni C, Fuentes-Bravo P, Trattaro S, Caporale N, Troglio F, Tenderini E, Mihailovich M, Skaros A, Gibson WT, Cuomo A, Bonaldi T, Mercurio C, Varasi M, Osborne L, Testa G. GTF2I dosage regulates neuronal differentiation and social behavior in 7q11.23 neurodevelopmental disorders. SCIENCE ADVANCES 2023; 9:eadh2726. [PMID: 38019906 PMCID: PMC10686562 DOI: 10.1126/sciadv.adh2726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Copy number variations at 7q11.23 cause neurodevelopmental disorders with shared and opposite manifestations. Deletion causes Williams-Beuren syndrome featuring hypersociability, while duplication causes 7q11.23 microduplication syndrome (7Dup), frequently exhibiting autism spectrum disorder (ASD). Converging evidence indicates GTF2I as key mediator of the cognitive-behavioral phenotypes, yet its role in cortical development and behavioral hallmarks remains largely unknown. We integrated proteomic and transcriptomic profiling of patient-derived cortical organoids, including longitudinally at single-cell resolution, to dissect 7q11.23 dosage-dependent and GTF2I-specific disease mechanisms. We observed dosage-dependent impaired dynamics of neural progenitor proliferation, transcriptional imbalances, and highly specific alterations in neuronal output, leading to precocious excitatory neuron production in 7Dup, which was rescued by restoring physiological GTF2I levels. Transgenic mice with Gtf2i duplication recapitulated progenitor proliferation and neuronal differentiation defects alongside ASD-like behaviors. Consistently, inhibition of lysine demethylase 1 (LSD1), a GTF2I effector, was sufficient to rescue ASD-like phenotypes in transgenic mice, establishing GTF2I-LSD1 axis as a molecular pathway amenable to therapeutic intervention in ASD.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Carlo Emanuele Villa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Cristina Cheroni
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Patricio Fuentes-Bravo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Sebastiano Trattaro
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicolò Caporale
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Flavia Troglio
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Erika Tenderini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Adrianos Skaros
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - William T. Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Lucy Osborne
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Wright DC, Baluyot ML, Carmichael J, Darmanian A, Jose N, Ngo C, Heaps LS, Yendle A, Holman K, Ziso S, Khan F, Masi A, Silove N, Eapen V. Saliva DNA: An alternative biospecimen for single nucleotide polymorphism chromosomal microarray analysis in autism. Am J Med Genet A 2023; 191:2913-2920. [PMID: 37715344 DOI: 10.1002/ajmg.a.63400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Chromosomal microarray analysis (CMA) is typically performed for investigation of autism using blood DNA. However, blood collection poses significant challenges for autistic children with repetitive behaviors and sensory and communication issues, often necessitating physical restraint or sedation. Noninvasive saliva collection offers an alternative, however, no published studies to date have evaluated saliva DNA for CMA in autism. Furthermore, previous reports suggest that saliva is suboptimal for detecting copy number variation. We therefore aimed to evaluate saliva DNA for single nucleotide polymorphism (SNP) CMA in autistic children. Saliva DNA from 48 probands and parents (n = 133) was obtained with a mean concentration of 141.7 ng/μL. SNP CMA was successful in 131/133 (98.5%) patients from which we correlated the size and accuracy of a copy number variant(s) called between a proband and carrier parent, and for a subgroup (n = 17 probands) who had a previous CMA using blood sample. There were no discordant copy number variant results between the proband and carrier parent, or the subgroup, however, there was an acceptable mean size difference of 0.009 and 0.07 Mb, respectively. Our findings demonstrate that saliva DNA can be an alternative for SNP CMA in autism, which avoids blood collection with significant implications for clinical practice guidelines.
Collapse
Affiliation(s)
- Dale Cameron Wright
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Maria Lourdes Baluyot
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Johanna Carmichael
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Artur Darmanian
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Ngaire Jose
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Con Ngo
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luke St Heaps
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Amber Yendle
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Katherine Holman
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Sylvia Ziso
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Feroza Khan
- Academic Unit of Infant Child & Adolescent Psychiatry Services (AUCS), South Western Sydney Local Health District, Ingham Institute, Liverpool, Australia
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Anne Masi
- Academic Unit of Infant Child & Adolescent Psychiatry Services (AUCS), South Western Sydney Local Health District, Ingham Institute, Liverpool, Australia
| | - Natalie Silove
- Child Development Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Valsa Eapen
- Academic Unit of Infant Child & Adolescent Psychiatry Services (AUCS), South Western Sydney Local Health District, Ingham Institute, Liverpool, Australia
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| |
Collapse
|
38
|
Kereszturi É. Diversity and Classification of Genetic Variations in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:16768. [PMID: 38069091 PMCID: PMC10706722 DOI: 10.3390/ijms242316768] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with symptoms that affect the whole personality and all aspects of life. Although there is a high degree of heterogeneity in both its etiology and its characteristic behavioral patterns, the disorder is well-captured along the autistic triad. Currently, ASD status can be confirmed following an assessment of behavioral features, but there is a growing emphasis on conceptualizing autism as a spectrum, which allows for establishing a diagnosis based on the level of support need, free of discrete categories. Since ASD has a high genetic predominance, the number of genetic variations identified in the background of the condition is increasing exponentially as genetic testing methods are rapidly evolving. However, due to the huge amount of data to be analyzed, grouping the different DNA variations is still challenging. Therefore, in the present review, a multidimensional classification scheme was developed to accommodate most of the currently known genetic variants associated with autism. Genetic variations have been grouped according to six criteria (extent, time of onset, information content, frequency, number of genes involved, inheritance pattern), which are themselves not discrete categories, but form a coherent continuum in line with the autism spectrum approach.
Collapse
Affiliation(s)
- Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
39
|
Fernandez-Fuente G, Overmyer KA, Lawton AJ, Kasza I, Shapiro SL, Gallego-Muñoz P, Coon JJ, Denu JM, Alexander CM, Puglielli L. The citrate transporters SLC13A5 and SLC25A1 elicit different metabolic responses and phenotypes in the mouse. Commun Biol 2023; 6:926. [PMID: 37689798 PMCID: PMC10492862 DOI: 10.1038/s42003-023-05311-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Cytosolic citrate is imported from the mitochondria by SLC25A1, and from the extracellular milieu by SLC13A5. In the cytosol, citrate is used by ACLY to generate acetyl-CoA, which can then be exported to the endoplasmic reticulum (ER) by SLC33A1. Here, we report the generation of mice with systemic overexpression (sTg) of SLC25A1 or SLC13A5. Both animals displayed increased cytosolic levels of citrate and acetyl-CoA; however, SLC13A5 sTg mice developed a progeria-like phenotype with premature death, while SLC25A1 sTg mice did not. Analysis of the metabolic profile revealed widespread differences. Furthermore, SLC13A5 sTg mice displayed increased engagement of the ER acetylation machinery through SLC33A1, while SLC25A1 sTg mice did not. In conclusion, our findings point to different biological responses to SLC13A5- or SLC25A1-mediated import of citrate and suggest that the directionality of the citrate/acetyl-CoA pathway can transduce different signals.
Collapse
Affiliation(s)
- Gonzalo Fernandez-Fuente
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Alexis J Lawton
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha L Shapiro
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia Gallego-Muñoz
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA.
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
40
|
Lowther C, Valkanas E, Giordano JL, Wang HZ, Currall BB, O'Keefe K, Pierce-Hoffman E, Kurtas NE, Whelan CW, Hao SP, Weisburd B, Jalili V, Fu J, Wong I, Collins RL, Zhao X, Austin-Tse CA, Evangelista E, Lemire G, Aggarwal VS, Lucente D, Gauthier LD, Tolonen C, Sahakian N, Stevens C, An JY, Dong S, Norton ME, MacKenzie TC, Devlin B, Gilmore K, Powell BC, Brandt A, Vetrini F, DiVito M, Sanders SJ, MacArthur DG, Hodge JC, O'Donnell-Luria A, Rehm HL, Vora NL, Levy B, Brand H, Wapner RJ, Talkowski ME. Systematic evaluation of genome sequencing for the diagnostic assessment of autism spectrum disorder and fetal structural anomalies. Am J Hum Genet 2023; 110:1454-1469. [PMID: 37595579 PMCID: PMC10502737 DOI: 10.1016/j.ajhg.2023.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
Short-read genome sequencing (GS) holds the promise of becoming the primary diagnostic approach for the assessment of autism spectrum disorder (ASD) and fetal structural anomalies (FSAs). However, few studies have comprehensively evaluated its performance against current standard-of-care diagnostic tests: karyotype, chromosomal microarray (CMA), and exome sequencing (ES). To assess the clinical utility of GS, we compared its diagnostic yield against these three tests in 1,612 quartet families including an individual with ASD and in 295 prenatal families. Our GS analytic framework identified a diagnostic variant in 7.8% of ASD probands, almost 2-fold more than CMA (4.3%) and 3-fold more than ES (2.7%). However, when we systematically captured copy-number variants (CNVs) from the exome data, the diagnostic yield of ES (7.4%) was brought much closer to, but did not surpass, GS. Similarly, we estimated that GS could achieve an overall diagnostic yield of 46.1% in unselected FSAs, representing a 17.2% increased yield over karyotype, 14.1% over CMA, and 4.1% over ES with CNV calling or 36.1% increase without CNV discovery. Overall, GS provided an added diagnostic yield of 0.4% and 0.8% beyond the combination of all three standard-of-care tests in ASD and FSAs, respectively. This corresponded to nine GS unique diagnostic variants, including sequence variants in exons not captured by ES, structural variants (SVs) inaccessible to existing standard-of-care tests, and SVs where the resolution of GS changed variant classification. Overall, this large-scale evaluation demonstrated that GS significantly outperforms each individual standard-of-care test while also outperforming the combination of all three tests, thus warranting consideration as the first-tier diagnostic approach for the assessment of ASD and FSAs.
Collapse
Affiliation(s)
- Chelsea Lowther
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Elise Valkanas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Jessica L Giordano
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Harold Z Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin B Currall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kathryn O'Keefe
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma Pierce-Hoffman
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nehir E Kurtas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher W Whelan
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie P Hao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ben Weisburd
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vahid Jalili
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christina A Austin-Tse
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Emily Evangelista
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vimla S Aggarwal
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laura D Gauthier
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlotte Tolonen
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nareh Sahakian
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christine Stevens
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joon-Yong An
- School of Biosystem and Biomedical Science, Korea University, Seoul, South Korea
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mary E Norton
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kelly Gilmore
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bradford C Powell
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alicia Brandt
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michelle DiVito
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel G MacArthur
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Centre for Population Genomics, Garvan Institute of Medical Research, and University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jennelle C Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anne O'Donnell-Luria
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Heidi L Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ronald J Wapner
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Verrillo L, Di Palma R, de Bellis A, Drongitis D, Miano MG. Suberoylanilide Hydroxamic Acid (SAHA) Is a Driver Molecule of Neuroplasticity: Implication for Neurological Diseases. Biomolecules 2023; 13:1301. [PMID: 37759701 PMCID: PMC10526795 DOI: 10.3390/biom13091301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroplasticity is a crucial property of the central nervous system to change its activity in response to intrinsic or extrinsic stimuli. This is mainly achieved through the promotion of changes in the epigenome. One of the epi-drivers priming this process is suberoylanilide hydroxamic acid (SAHA or Vorinostat), a pan-histone deacetylase inhibitor that modulates and promotes neuroplasticity in healthy and disease conditions. Knowledge of the specific molecular changes induced by this epidrug is an important area of neuro-epigenetics for the identification of new compounds to treat cognition impairment and/or epilepsy. In this review, we summarize the findings obtained in cellular and animal models of various brain disorders, highlighting the multiple mechanisms activated by SAHA, such as improvement of memory, learning and behavior, and correction of faulty neuronal functioning. Supporting this evidence, in vitro and in vivo data underline how SAHA positively regulates the expression of neuronal genes and microtubule dynamics, induces neurite outgrowth and spine density, and enhances synaptic transmission and potentiation. In particular, we outline studies regarding neurodevelopmental disorders with pharmaco-resistant seizures and/or severe cognitive impairment that to date lack effective drug treatments in which SAHA could ameliorate defective neuroplasticity.
Collapse
Affiliation(s)
- Lucia Verrillo
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy; (L.V.); (R.D.P.)
| | - Rosita Di Palma
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy; (L.V.); (R.D.P.)
| | - Alberto de Bellis
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Neurosurgery, 81100 Caserta, Italy;
- Maria Rosaria Maglione Foundation Onlus, 80122 Naples, Italy
| | - Denise Drongitis
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy; (L.V.); (R.D.P.)
- Maria Rosaria Maglione Foundation Onlus, 80122 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy; (L.V.); (R.D.P.)
| |
Collapse
|
42
|
Dawes P, Murray LF, Olson MN, Barton NJ, Smullen M, Suresh M, Yan G, Zhang Y, Fernandez-Fontaine A, English J, Uddin M, Pak C, Church GM, Chan Y, Lim ET. oFlowSeq: a quantitative approach to identify protein coding mutations affecting cell type enrichment using mosaic CRISPR-Cas9 edited cerebral organoids. Hum Genet 2023; 142:1281-1291. [PMID: 36877372 PMCID: PMC10807401 DOI: 10.1007/s00439-023-02534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/19/2023] [Indexed: 03/07/2023]
Abstract
Cerebral organoids are comprised of diverse cell types found in the developing human brain, and can be leveraged in the identification of critical cell types perturbed by genetic risk variants in common, neuropsychiatric disorders. There is great interest in developing high-throughput technologies to associate genetic variants with cell types. Here, we describe a high-throughput, quantitative approach (oFlowSeq) by utilizing CRISPR-Cas9, FACS sorting, and next-generation sequencing. Using oFlowSeq, we found that deleterious mutations in autism-associated gene KCTD13 resulted in increased proportions of Nestin+ cells and decreased proportions of TRA-1-60+ cells within mosaic cerebral organoids. We further identified that a locus-wide CRISPR-Cas9 survey of another 18 genes in the 16p11.2 locus resulted in most genes with > 2% maximum editing efficiencies for short and long indels, suggesting a high feasibility for an unbiased, locus-wide experiment using oFlowSeq. Our approach presents a novel method to identify genotype-to-cell type imbalances in an unbiased, high-throughput, quantitative manner.
Collapse
Affiliation(s)
- Pepper Dawes
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Liam F Murray
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Meagan N Olson
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nathaniel J Barton
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Molly Smullen
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Madhusoodhanan Suresh
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guang Yan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yucheng Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Aria Fernandez-Fontaine
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jay English
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Yingleong Chan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Elaine T Lim
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
43
|
Hussein Y, Tripathi U, Choudhary A, Nayak R, Peles D, Rosh I, Rabinski T, Djamus J, Vatine GD, Spiegel R, Garin-Shkolnik T, Stern S. Early maturation and hyperexcitability is a shared phenotype of cortical neurons derived from different ASD-associated mutations. Transl Psychiatry 2023; 13:246. [PMID: 37414777 PMCID: PMC10326262 DOI: 10.1038/s41398-023-02535-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized mainly by social and sensory-motor abnormal and repetitive behavior patterns. Over hundreds of genes and thousands of genetic variants were reported to be highly penetrant and causative of ASD. Many of these mutations cause comorbidities such as epilepsy and intellectual disabilities (ID). In this study, we measured cortical neurons derived from induced pluripotent stem cells (iPSCs) of patients with four mutations in the genes GRIN2B, SHANK3, UBTF, as well as chromosomal duplication in the 7q11.23 region and compared them to neurons derived from a first-degree relative without the mutation. Using a whole-cell patch-clamp, we observed that the mutant cortical neurons demonstrated hyperexcitability and early maturation compared to control lines. These changes were characterized by increased sodium currents, increased amplitude and rate of excitatory postsynaptic currents (EPSCs), and more evoked action potentials in response to current stimulation in early-stage cell development (3-5 weeks post differentiation). These changes that appeared in all the different mutant lines, together with previously reported data, indicate that an early maturation and hyperexcitability may be a convergent phenotype of ASD cortical neurons.
Collapse
Affiliation(s)
- Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Tatiana Rabinski
- The Department of Physiology and Cell Biology, Faculty of Health Sciences and the Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jose Djamus
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gad David Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences and the Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ronen Spiegel
- Center for Rare Diseases, Emek Medical Center, Afula, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
44
|
Ahumada-Marchant C, Ancatén-Gonzalez C, Haensgen H, Arancibia F, Brauer B, Droste R, Horvitz HR, Constantine-Paton M, Arriagada G, Chávez AE, Bustos FJ. Deletion of VPS50 protein in mice brain impairs synaptic function and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547745. [PMID: 37461727 PMCID: PMC10349947 DOI: 10.1101/2023.07.04.547745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
VPS50, is an accessory protein, involved in the synaptic and dense core vesicle acidification and its alterations produce behavioral changes in C.elegans. Here, we produce the mosaic knock out (mKO) of VPS50 using CRISPR/Cas9 system in both cortical cultured neurons and whole animals to evaluate the effect of VPS50 in regulating mammalian brain function and behavior. While mKO of VPS50 does not change the number of synaptic vesicles, it produces a mislocalization of the V-ATPase pump that likely impact in vesicle acidification and vesicle content to impair synaptic and neuronal activity in cultured neurons. In mice, mKO of VPS50 in the hippocampus, alter synaptic transmission and plasticity, and generated robust cognitive impairments associate to memory formation. We propose that VPS50 is an accessory protein that aids the correct recruitment of the V-ATPase pump to synaptic vesicles, thus having a crucial role controlling synaptic vesicle acidification and hence synaptic transmission.
Collapse
Affiliation(s)
- Constanza Ahumada-Marchant
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carlos Ancatén-Gonzalez
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Henny Haensgen
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Felipe Arancibia
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Bastian Brauer
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Rita Droste
- Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | | | | | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés E Chávez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando J Bustos
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
45
|
Martin Lorenzo S, Muniz Moreno MDM, Atas H, Pellen M, Nalesso V, Raffelsberger W, Prevost G, Lindner L, Birling MC, Menoret S, Tesson L, Negroni L, Concordet JP, Anegon I, Herault Y. Changes in social behavior with MAPK2 and KCTD13/CUL3 pathways alterations in two new outbred rat models for the 16p11.2 syndromes with autism spectrum disorders. Front Neurosci 2023; 17:1148683. [PMID: 37465586 PMCID: PMC10350633 DOI: 10.3389/fnins.2023.1148683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 07/20/2023] Open
Abstract
Copy number variations (CNVs) of the human 16p11.2 locus are associated with several developmental/neurocognitive syndromes. Particularly, deletion and duplication of this genetic interval are found in patients with autism spectrum disorders, intellectual disability and other psychiatric traits. The high gene density associated with the region and the strong phenotypic variability of incomplete penetrance, make the study of the 16p11.2 syndromes extremely complex. To systematically study the effect of 16p11.2 CNVs and identify candidate genes and molecular mechanisms involved in the pathophysiology, mouse models were generated previously and showed learning and memory, and to some extent social deficits. To go further in understanding the social deficits caused by 16p11.2 syndromes, we engineered deletion and duplication of the homologous region to the human 16p11.2 genetic interval in two rat outbred strains, Sprague Dawley (SD) and Long Evans (LE). The 16p11.2 rat models displayed convergent defects in social behavior and in the novel object test in male carriers from both genetic backgrounds. Interestingly major pathways affecting MAPK1 and CUL3 were found altered in the rat 16p11.2 models with additional changes in males compared to females. Altogether, the consequences of the 16p11.2 genetic region dosage on social behavior are now found in three different species: humans, mice and rats. In addition, the rat models pointed to sexual dimorphism with lower severity of phenotypes in rat females compared to male mutants. This phenomenon is also observed in humans. We are convinced that the two rat models will be key to further investigating social behavior and understanding the brain mechanisms and specific brain regions that are key to controlling social behavior.
Collapse
Affiliation(s)
- Sandra Martin Lorenzo
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Maria Del Mar Muniz Moreno
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Helin Atas
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marion Pellen
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Valérie Nalesso
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Wolfgang Raffelsberger
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Geraldine Prevost
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA-PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Loic Lindner
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA-PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA-PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Séverine Menoret
- Nantes Université, CHU Nantes, INSERM, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, Nantes, France
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laurent Tesson
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Luc Negroni
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | - Ignacio Anegon
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Yann Herault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA-PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| |
Collapse
|
46
|
Herath M, Cho E, Marklund U, Franks AE, Bornstein JC, Hill-Yardin EL. Quantitative Spatial Analysis of Neuroligin-3 mRNA Expression in the Enteric Nervous System Reveals a Potential Role in Neuronal-Glial Synapses and Reduced Expression in Nlgn3R451C Mice. Biomolecules 2023; 13:1063. [PMID: 37509099 PMCID: PMC10377306 DOI: 10.3390/biom13071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Mutations in the Neuroligin-3 (Nlgn3) gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular Nlgn3 expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure Nlgn3 mRNA expression in cholinergic and VIP-expressing submucosal neurons, nitrergic and calretinin-containing myenteric neurons and glial cells in both WT and Nlgn3R451C mutant mice. We measured Nlgn3 mRNA neuronal and glial expression via quantitative three-dimensional image analysis. To validate dual RNAScope/immunofluorescence data, we interrogated available single-cell RNA sequencing (scRNASeq) data to assess for Nlgn3, Nlgn1, Nlgn2 and their binding partners, Nrxn1-3, MGDA1 and MGDA2, in enteric neural subsets. Most submucosal and myenteric neurons expressed Nlgn3 mRNA. In contrast to other Nlgns and binding partners, Nlgn3 was strongly expressed in enteric glia, suggesting a role for neuroligin-3 in mediating enteric neuron-glia interactions. The autism-associated R451C mutation reduces Nlgn3 mRNA expression in cholinergic but not in VIPergic submucosal neurons. In the myenteric plexus, Nlgn3 mRNA levels are reduced in calretinin, nNOS-labelled neurons and S100 β -labelled glia. We provide a comprehensive cellular profile for neuroligin-3 expression in ileal neuronal subpopulations of mice expressing the R451C autism-associated mutation in Nlgn3, which may contribute to the understanding of the pathophysiology of GI dysfunction in ASD.
Collapse
Affiliation(s)
- Madushani Herath
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ulrika Marklund
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Ashley E Franks
- Department of Microbiology, Anatomy Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joel C Bornstein
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
47
|
Wroten M, Yoon S, Andrews P, Yamrom B, Ronemus M, Buja A, Krieger AM, Levy D, Ye K, Wigler M, Iossifov I. Sharing parental genomes by siblings concordant or discordant for autism. CELL GENOMICS 2023; 3:100319. [PMID: 37388917 PMCID: PMC10300587 DOI: 10.1016/j.xgen.2023.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/30/2022] [Accepted: 04/12/2023] [Indexed: 07/01/2023]
Abstract
Studying thousands of families, we find siblings concordant for autism share more of their parental genomes than expected by chance, and discordant siblings share less, consistent with a role of transmission in autism incidence. The excess sharing of the father is highly significant (p value of 0.0014), with less significance for the mother (p value of 0.31). To compare parental sharing, we adjust for differences in meiotic recombination to obtain a p value of 0.15 that they are shared equally. These observations are contrary to certain models in which the mother carries a greater load than the father. Nevertheless, we present models in which greater sharing of the father is observed even though the mother carries a greater load. More generally, our observations of sharing establish quantitative constraints that any complete genetic model of autism must satisfy, and our methods may be applicable to other complex disorders.
Collapse
Affiliation(s)
- Mathew Wroten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Seungtai Yoon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Boris Yamrom
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Andreas Buja
- Department of Statistics and Data Science, the Wharton School, University of Pennsylvania, Philadelphia, PA, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Abba M. Krieger
- Department of Statistics and Data Science, the Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan Levy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kenny Ye
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ivan Iossifov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- New York Genome Center, New York, NY, USA
| |
Collapse
|
48
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
49
|
Gonzales S, Zhao JZ, Choi NY, Acharya P, Jeong S, Lee MY. SOX7: Novel Autistic Gene Identified by Analysis of Multi-Omics Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542456. [PMID: 37292933 PMCID: PMC10245991 DOI: 10.1101/2023.05.26.542456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Genome-wide association studies and next generation sequencing data analyses based on DNA information have identified thousands of mutations associated with autism spectrum disorder (ASD). However, more than 99% of identified mutations are non-coding. Thus, it is unclear which of these mutations might be functional and thus potentially causal variants. Transcriptomic profiling using total RNA-sequencing has been one of the most utilized approaches to link protein levels to genetic information at the molecular level. The transcriptome captures molecular genomic complexity that the DNA sequence solely does not. Some mutations alter a gene's DNA sequence but do not necessarily change expression and/or protein function. To date, few common variants reliably associated with the diagnosis status of ASD despite consistently high estimates of heritability. In addition, reliable biomarkers used to diagnose ASD or molecular mechanisms to define the severity of ASD do not exist. Objectives It is necessary to integrate DNA and RNA testing together to identify true causal genes and propose useful biomarkers for ASD. Methods We performed gene-based association studies with adaptive test using genome-wide association studies (GWAS) summary statistics with two large GWAS datasets (ASD 2019 data: 18,382 ASD cases and 27,969 controls [discovery data]; ASD 2017 data: 6,197 ASD cases and 7,377 controls [replication data]) which were obtained from the Psychiatric Genomics Consortium (PGC). In addition, we investigated differential expression for genes identified in gene-based GWAS with a RNA-seq dataset (GSE30573: 3 cases and 3 controls) using the DESeq2 package. Results We identified 5 genes significantly associated with ASD in ASD 2019 data (KIZ-AS1, p=8.67×10-10; KIZ, p=1.16×10-9; XRN2, p=7.73×10-9; SOX7, p=2.22×10-7; PINX1-DT, p=2.14×10-6). Among these 5 genes, gene SOX7 (p=0.00087), LOC101929229 (p=0.009), and KIZ-AS1 (p=0.059) were replicated in ASD 2017 data. KIZ (p=0.06) was close to the boundary of replication in ASD 2017 data. Genes SOX7 (p=0.0017, adjusted p=0.0085), LOC101929229 (also known as PINX1-DT, p=5.83×10-7, adjusted p=1.18×10-5), and KIZ (p=0.00099, adjusted p=0.0055) indicated significant expression differences between cases and controls in the RNA-seq data. SOX7 encodes a member of the SOX (SRY-related HMG-box) family of transcription factors pivotally contributing to determining of the cell fate and identity in many lineages. The encoded protein may act as a transcriptional regulator after forming a protein complex with other proteins leading to autism. Conclusion Gene SOX7 in the transcription factor family could be associated with ASD. This finding may provide new diagnostic and therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Samantha Gonzales
- Department of Biostatistics, Florida International University, Miami, FL 33199
| | - Jane Zizhen Zhao
- Miami Dade College Kendall Campus and School for Advanced Studies, Miami, FL 33176
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207
| | - Sehoon Jeong
- Department of Healthcare Information Technology Inje University, Gimhae, South Korea, 50834
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207
| |
Collapse
|
50
|
Guo Q, Wu S, Geschwind DH. Characterization of Gene Regulatory Elements in Human Fetal Cortical Development: Enhancing Our Understanding of Neurodevelopmental Disorders and Evolution. Dev Neurosci 2023; 46:69-83. [PMID: 37231806 DOI: 10.1159/000530929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The neocortex is the region that most distinguishes human brain from other mammals and primates [Annu Rev Genet. 2021 Nov;55(1):555-81]. Studying the development of human cortex is important in understanding the evolutionary changes occurring in humans relative to other primates, as well as in elucidating mechanisms underlying neurodevelopmental disorders. Cortical development is a highly regulated process, spatially and temporally coordinated by expression of essential transcriptional factors in response to signaling pathways [Neuron. 2019 Sep;103(6):980-1004]. Enhancers are the most well-understood cis-acting, non-protein-coding regulatory elements that regulate gene expression [Nat Rev Genet. 2014 Apr;15(4):272-86]. Importantly, given the conservation of both DNA sequence and molecular function of the majority of proteins across mammals [Genome Res. 2003 Dec;13(12):2507-18], enhancers [Science. 2015 Mar;347(6226):1155-9], which are far more divergent at the sequence level, likely account for the phenotypes that distinguish the human brain by changing the regulation of gene expression. In this review, we will revisit the conceptual framework of gene regulation during human brain development, as well as the evolution of technologies to study transcriptional regulation, with recent advances in genome biology that open a window allowing us to systematically characterize cis-regulatory elements in developing human brain [Hum Mol Genet. 2022 Oct;31(R1):R84-96]. We provide an update on work to characterize the suite of all enhancers in the developing human brain and the implications for understanding neuropsychiatric disorders. Finally, we discuss emerging therapeutic ideas that utilize our emerging knowledge of enhancer function.
Collapse
Affiliation(s)
- Qiuyu Guo
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Sarah Wu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
| | - Daniel H Geschwind
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|