1
|
Zhao W, Ma L, Deng D, Han L, Xu F, Zhang T, Wang Y, Huang S, Ding Y, Shu S, Chen X. BDNF-VGF Pathway Aggravates Incision Induced Acute Postoperative Pain via Upregulating the Neuroinflammation in Dorsal Root Ganglia. Mol Neurobiol 2025; 62:169-183. [PMID: 38829513 DOI: 10.1007/s12035-024-04249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Approximately one-third of postoperative patients are troubled by postoperative pain. Effective treatments are still lacking. The aim of this study is to investigate the role of brain-derived neurotrophic factor (BDNF)-VGF (non-acronymic) in dorsal root ganglia (DRG) in postoperative pain. Pain behaviors were assessed through measurements of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). Transcriptome analysis was conducted to identify potential targets associated with postoperative pain. Western blotting, immunofluorescence, and ELISA were employed to further detect macrophage activation as well as the expression of BDNF, VGF, TNF-α, IL-1β, and IL-6. Results showed that plantar incision induced both mechanical and thermal hyperalgesia. Transcriptome analysis suggested that plantar incision caused upregulation of BDNF and VGF. The expressions of BDNF and VGF were upregulated in isolectin B4-positive (IB4+) and calcitonin gene-related peptide-positive (CGRP+) neurons, rather than neurofilament 200-positive (NF200+) neurons. The activation of BDNF-VGF pathway upregulated expression of IL-6, TNF-α, and IL-1β and promoted the activation of macrophages. In conclusion, BDNF-VGF pathway aggravates acute postoperative pain by promoting macrophage activation and pro-inflammatory cytokine production, which may provide a new target for the treatment of postoperative pain.
Collapse
Affiliation(s)
- Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Shaofang Shu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
2
|
MacDonald DI, Jayabalan M, Seaman J, Balaji R, Nickolls A, Chesler A. Pain persists in mice lacking both Substance P and CGRPα signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.567208. [PMID: 38076807 PMCID: PMC10705526 DOI: 10.1101/2023.11.15.567208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The neuropeptides Substance P and CGRPα have long been thought important for pain sensation. Both peptides and their receptors are expressed at high levels in pain-responsive neurons from the periphery to the brain making them attractive therapeutic targets. However, drugs targeting these pathways individually did not relieve pain in clinical trials. Since Substance P and CGRPα are extensively co-expressed we hypothesized that their simultaneous inhibition would be required for effective analgesia. We therefore generated Tac1 and Calca double knockout (DKO) mice and assessed their behavior using a wide range of pain-relevant assays. As expected, Substance P and CGRPα peptides were undetectable throughout the nervous system of DKO mice. To our surprise, these animals displayed largely intact responses to mechanical, thermal, chemical, and visceral pain stimuli, as well as itch. Moreover, chronic inflammatory pain and neurogenic inflammation were unaffected by loss of the two peptides. Finally, neuropathic pain evoked by nerve injury or chemotherapy treatment was also preserved in peptide-deficient mice. Thus, our results demonstrate that even in combination, Substance P and CGRPα are not required for the transmission of acute and chronic pain.
Collapse
Affiliation(s)
- Donald Iain MacDonald
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Monessha Jayabalan
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Jonathan Seaman
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Rakshita Balaji
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Alec Nickolls
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Alexander Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
3
|
Xu C, Wang Y, Ni C, Xu M, Yin C, He Q, Ma B, Fu J, Zhao B, Chen L, Zhi T, Wei S, Cheng L, Xu H, Xiao J, Yang L, Xu Q, Kuang J, Liu B, Zhou Q, Lin X, Yao M, Ni H. Histone modifications and Sp1 promote GPR160 expression in bone cancer pain within rodent models. EMBO Rep 2024; 25:5429-5455. [PMID: 39448865 PMCID: PMC11624276 DOI: 10.1038/s44319-024-00292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Bone cancer pain (BCP) affects ~70% of patients in advanced stages, primarily due to bone metastasis, presenting a substantial therapeutic challenge. Here, we profile orphan G protein-coupled receptors in the dorsal root ganglia (DRG) following tumor infiltration, and observe a notable increase in GPR160 expression. Elevated Gpr160 mRNA and protein levels persist from postoperative day 6 for over 18 days in the affected DRG, predominantly in small-diameter C-fiber type neurons specific to the tibia. Targeted interventions, including DRG microinjection of siRNA or AAV delivery, mitigate mechanical allodynia, cold, and heat hyperalgesia induced by the tumor. Tumor infiltration increases DRG neuron excitability in wild-type mice, but not in Gpr160 gene knockout mice. Tumor infiltration results in reduced H3K27me3 and increased H3K27ac modifications, enhanced binding of the transcription activator Sp1 to the Gpr160 gene promoter region, and induction of GPR160 expression. Modulating histone-modifying enzymes effectively alleviated pain behavior. Our study delineates a novel mechanism wherein elevated Sp1 levels facilitate Gpr160 gene transcription in nociceptive DRG neurons during BCP in rodents.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Yahui Wang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Chengyu Yin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Bing Ma
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Jie Fu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Baoxia Zhao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Liping Chen
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Tong Zhi
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Shirong Wei
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Hui Xu
- Department of Anesthesiology, The First People's Hospital of Bengbu, 233000, Bengbu, China
| | - Jiajun Xiao
- Bengbu Hospital of Traditional Chinese Medicine, 4339 Huai-Shang Road, 233000, Bengbu, China
| | - Lei Yang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Qingqing Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Jiao Kuang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Qinghe Zhou
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Xuewu Lin
- Department of Pain Medicine, The First Affiliated Hospital of Bengbu Medical University, 233000, Bengbu, China.
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China.
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China.
| |
Collapse
|
4
|
Cooper AH, Barry AM, Chrysostomidou P, Lolignier R, Wang J, Redondo Canales M, Titterton HF, Bennett DL, Weir GA. Peripheral nerve injury results in a biased loss of sensory neuron subpopulations. Pain 2024; 165:2863-2876. [PMID: 39158319 PMCID: PMC11562755 DOI: 10.1097/j.pain.0000000000003321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 08/20/2024]
Abstract
ABSTRACT There is a rich literature describing the loss of dorsal root ganglion (DRG) neurons following peripheral axotomy, but the vulnerability of discrete subpopulations has not yet been characterised. Furthermore, the extent or even presence of neuron loss following injury has recently been challenged. In this study, we have used a range of transgenic recombinase driver mouse lines to genetically label molecularly defined subpopulations of DRG neurons and track their survival following traumatic nerve injury. We find that spared nerve injury leads to a marked loss of cells containing DRG volume and a concomitant loss of small-diameter DRG neurons. Neuron loss occurs unequally across subpopulations and is particularly prevalent in nonpeptidergic nociceptors, marked by expression of Mrgprd. We show that this subpopulation is almost entirely lost following spared nerve injury and severely depleted (by roughly 50%) following sciatic nerve crush. Finally, we used an in vitro model of DRG neuron survival to demonstrate that nonpeptidergic nociceptor loss is likely dependent on the absence of neurotrophic support. Together, these results profile the extent to which DRG neuron subpopulations can survive axotomy, with implications for our understanding of nerve injury-induced plasticity and pain.
Collapse
Affiliation(s)
- Andrew H. Cooper
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Allison M. Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Romane Lolignier
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Jinyi Wang
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Heather F. Titterton
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Greg A. Weir
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Sankina P, Lal R, Khare P, von Hörsten S, Fester L, Aggarwal V, Zimmermann K, Bishnoi M. Topical menthol, a pharmacological cold mimic, induces cold sensitivity, adaptive thermogenesis and brown adipose tissue activation in mice. Diabetes Obes Metab 2024; 26:4329-4345. [PMID: 39044311 DOI: 10.1111/dom.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
AIM Brown adipose tissue (BAT) thermogenesis has profound energy-expanding potential, which makes it an attractive target tissue to combat ever-increasing obesity and its other associated metabolic complications. Although it is fairly accepted that cold is a potent inducer of BAT activation and function, there are limited studies on the mechanisms of pharmacological cold-mimicking agents, such as the TRPM8 agonist, menthol, on BAT thermogenesis and activation. METHODS Herein, we sought to determine the effect of topical application of menthol (10% w/v [4 g/kg] cream formulation/day for 15 days) on temperature sensitivity behaviour (thermal gradient assay, nesting behaviour), adaptive thermogenesis (infrared thermography, core body temperature), BAT sympathetic innervation (tyrosine hydroxylase immunohistochemistry) and activation (18F-FDG PET-CT analysis, Uncoupling Protein 1 immunohistochemistry and BAT gene expression), whole-body energy expenditure (indirect calorimetry) and other metabolic variables in male C57BL/6N mice. RESULTS We show that male C57BL/6N mice: (a) develop a warm-seeking and cold-avoiding thermal preference phenotype; (b) display increased locomotor activity and adaptive thermogenesis; (c) show augmented sympathetic innervation in BAT and its activation; (d) exhibit enhanced gluconeogenic capacity (increased glucose excursion in response to pyruvate) and insulin sensitivity; and (e) show enhanced whole-body energy expenditure and induced lipid-utilizing phenotype after topical menthol application. CONCLUSIONS Taken together, our findings highlight that pharmacological cold mimicking using topical menthol application presents a potential therapeutic strategy to counter weight gain and related complications.
Collapse
Affiliation(s)
- Polina Sankina
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
| | - Roshan Lal
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Nagar, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Pragyanshu Khare
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Fester
- Department of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Katharina Zimmermann
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
| | - Mahendra Bishnoi
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Nagar, India
| |
Collapse
|
6
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Bhattacharya T, Gupta A, Gupta S, Saha S, Ghosh S, Shireen Z, Dey S, Sinha S. Benzofuran Iboga-Analogs Modulate Nociception and Inflammation in an Acute Mouse Pain Model. Chembiochem 2024; 25:e202400162. [PMID: 38874536 DOI: 10.1002/cbic.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Pain management following acute injury or post-operative procedures is highly necessary for proper recovery and quality of life. Opioids and non-steroidal anti-inflammatory drugs (NSAIDS) have been used for this purpose, but opioids cause addiction and withdrawal symptoms whereas NSAIDS have several systemic toxicities. Derivatives of the naturally occurring iboga alkaloids have previously shown promising behavior in anti-addiction of morphine by virtue of their interaction with opioid receptors. On this frontier, four benzofuran analogs of the iboga family have been synthesized and their analgesic effects have been studied in formalin induced acute pain model in male Swiss albino mice at 30 mg/kg of body weight dose administered intraperitoneally. The antioxidant, anti-inflammatory and neuro-modulatory effects of the analogs were analyzed. Reversal of tail flick latency, restricted locomotion and anxiogenic behavior were observed in iboga alcohol, primary amide and secondary amide. Local neuroinflammatory mediators' substance P, calcitonin gene related peptide, cyclooxygenase-2 and p65 were significantly decreased whereas the depletion of brain derived neurotrophic factor and glia derived neurotrophic factor was overturned on iboga analog treatment. Behavioral patterns after oral administration of the best analog were also analyzed. Taken together, these results show that the iboga family of alkaloid has huge potential in pain management.
Collapse
Affiliation(s)
- Tuhin Bhattacharya
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Abhishek Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| | - Samrat Saha
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Shatabdi Ghosh
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Zofa Shireen
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| |
Collapse
|
8
|
Aubert N, Purcarea M, Novarino J, Schopp J, Audibert A, Li W, Fornier M, Cagnet L, Naturel M, Casrouge A, Dieu-Nosjean MC, Blanchard N, Dietrich G, Peirs C, Marodon G. Enkephalin-mediated modulation of basal somatic sensitivity by regulatory T cells in mice. eLife 2024; 13:RP91359. [PMID: 39110619 PMCID: PMC11305673 DOI: 10.7554/elife.91359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then present various evidence suggesting that Penk is regulated in part by members of the Tumor Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in mice through the production of analgesic opioid peptides.
Collapse
Affiliation(s)
- Nicolas Aubert
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Madeleine Purcarea
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Julien Novarino
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Julien Schopp
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Neuro-DolClermont FerrandFrance
| | - Alexis Audibert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM, CNRS, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Wangtianrui Li
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie Fornier
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Léonie Cagnet
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie Naturel
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Armanda Casrouge
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie-Caroline Dieu-Nosjean
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM, CNRS, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Gilles Dietrich
- Institut de Recherche sur la Santé Digestive (IRSD), Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Cedric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Neuro-DolClermont FerrandFrance
| | - Gilles Marodon
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| |
Collapse
|
9
|
Ge S, Khachemoune A. Neuroanatomy of the Cutaneous Nervous System Regarding Wound Healing. INT J LOW EXTR WOUND 2024; 23:191-204. [PMID: 34779294 DOI: 10.1177/15347346211054598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wound healing is an important topic in modern medicine across many disciplines. Healing of all cutaneous wounds, whether accidentally sustained or intentionally created, requires the common yet complex set of interactions between the immune, circulatory, nervous, endocrine, and integumentary systems. Deficits in any of these systems or the molecular factors that mediate their communications can contribute to impaired healing of cutaneous wounds. While the stages of wound repair, angiogenesis, growth factors, and cytokines involved have been extensively studied, the role of the cutaneous nervous system in wound healing has not been well outlined. We have provided a basic overview of cutaneous innervation and wound repair for the dermatologic surgeon by outlining the normal cutaneous nervous anatomy and function and discussing the most important neuropeptides that mediate the wound healing process.
Collapse
Affiliation(s)
| | - Amor Khachemoune
- Veterans Affairs Medical Center, Brooklyn, NY, USA
- SUNY Downstate, Brooklyn, NY USA
| |
Collapse
|
10
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu IM, Ginty DD, Sharma N. A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes. Cell 2024; 187:1508-1526.e16. [PMID: 38442711 PMCID: PMC10947841 DOI: 10.1016/j.cell.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Pawlak
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
11
|
Tian T, Li H, Zhang S, Yang M. Characterization of sensory and motor dysfunction and morphological alterations in late stages of type 2 diabetic mice. Front Endocrinol (Lausanne) 2024; 15:1374689. [PMID: 38532899 PMCID: PMC10964478 DOI: 10.3389/fendo.2024.1374689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Diabetic neuropathy is the most common complication of diabetes and lacks effective treatments. Although sensory dysfunction during the early stages of diabetes has been extensively studied in various animal models, the functional and morphological alterations in sensory and motor systems during late stages of diabetes remain largely unexplored. In the current work, we examined the influence of diabetes on sensory and motor function as well as morphological changes in late stages of diabetes. The obese diabetic Leprdb/db mice (db/db) were used for behavioral assessments and subsequent morphological examinations. The db/db mice exhibited severe sensory and motor behavioral defects at the age of 32 weeks, including significantly higher mechanical withdrawal threshold and thermal latency of hindpaws compared with age-matched nondiabetic control animals. The impaired response to noxious stimuli was mainly associated with the remarkable loss of epidermal sensory fibers, particularly CGRP-positive nociceptive fibers. Unexpectedly, the area of CGRP-positive terminals in the spinal dorsal horn was dramatically increased in diabetic mice, which was presumably associated with microglial activation. In addition, the db/db mice showed significantly more foot slips and took longer time during the beam-walking examination compared with controls. Meanwhile, the running duration in the rotarod test was markedly reduced in db/db mice. The observed sensorimotor deficits and motor dysfunction were largely attributed to abnormal sensory feedback and muscle atrophy as well as attenuated neuromuscular transmission in aged diabetic mice. Morphological analysis of neuromuscular junctions (NMJs) demonstrated partial denervation of NMJs and obvious fragmentation of acetylcholine receptors (AChRs). Intrafusal muscle atrophy and abnormal muscle spindle innervation were also detected in db/db mice. Additionally, the number of VGLUT1-positive excitatory boutons on motor neurons was profoundly increased in aged diabetic mice as compared to controls. Nevertheless, inhibitory synaptic inputs onto motor neurons were similar between the two groups. This excitation-inhibition imbalance in synaptic transmission might be implicated in the disturbed locomotion. Collectively, these results suggest that severe sensory and motor deficits are present in late stages of diabetes. This study contributes to our understanding of mechanisms underlying neurological dysfunction during diabetes progression and helps to identify novel therapeutic interventions for patients with diabetic neuropathy.
Collapse
Affiliation(s)
- Ting Tian
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haofeng Li
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Lopez JA, Romero LO, Kaung WL, Maddox JW, Vásquez V, Lee A. Caldendrin Is a Repressor of PIEZO2 Channels and Touch Sensation in Mice. J Neurosci 2024; 44:e1402232023. [PMID: 38262725 PMCID: PMC10919251 DOI: 10.1523/jneurosci.1402-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
The sense of touch is crucial for cognitive, emotional, and social development and relies on mechanically activated (MA) ion channels that transduce force into an electrical signal. Despite advances in the molecular characterization of these channels, the physiological factors that control their activity are poorly understood. Here, we used behavioral assays, electrophysiological recordings, and various mouse strains (males and females analyzed separately) to investigate the role of the calmodulin-like Ca2+ sensor, caldendrin, as a key regulator of MA channels and their roles in touch sensation. In mice lacking caldendrin (Cabp1 KO), heightened responses to tactile stimuli correlate with enlarged MA currents with lower mechanical thresholds in dorsal root ganglion neurons (DRGNs). The expression pattern of caldendrin in the DRG parallels that of the major MA channel required for touch sensation, PIEZO2. In transfected cells, caldendrin interacts with and inhibits the activity of PIEZO2 in a manner that requires an alternatively spliced sequence in the N-terminal domain of caldendrin. Moreover, targeted genetic deletion of caldendrin in Piezo2-expressing DRGNs phenocopies the tactile hypersensitivity of complete Cabp1 KO mice. We conclude that caldendrin is an endogenous repressor of PIEZO2 channels and their contributions to touch sensation in DRGNs.
Collapse
Affiliation(s)
- Josue A Lopez
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - Luis O Romero
- Department of Physiology, The University of Tennessee Health Science Center, Memphis 38163, Tennessee
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis 38163, Tennessee
| | - Wai-Lin Kaung
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - J Wesley Maddox
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - Valeria Vásquez
- Department of Physiology, The University of Tennessee Health Science Center, Memphis 38163, Tennessee
| | - Amy Lee
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| |
Collapse
|
13
|
Li J, Gao P, Zhang S, Lin X, Chen J, Zhang S, Jiao Y, Yu W, Xia X, Yang L. The G protein-coupled estrogen receptor of the trigeminal ganglion regulates acute and chronic itch in mice. CNS Neurosci Ther 2024; 30:e14367. [PMID: 37452499 PMCID: PMC10848076 DOI: 10.1111/cns.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
AIMS Itch is an unpleasant sensation that severely impacts the patient's quality of life. Recent studies revealed that the G protein-coupled estrogen receptor (GPER) may play a crucial role in the regulation of pain and itch perception. However, the contribution of the GPER in primary sensory neurons to the regulation of itch perception remains elusive. This study aimed to investigate whether and how the GPER participates in the regulation of itch perception in the trigeminal ganglion (TG). METHODS AND RESULTS Immunofluorescence staining results showed that GPER-positive (GPER+ ) neurons of the TG were activated in both acute and chronic itch. Behavioral data indicated that the chemogenetic activation of GPER+ neurons of the TG of Gper-Cre mice abrogated scratching behaviors evoked by acute and chronic itch. Conversely, the chemogenetic inhibition of GPER+ neurons resulted in increased itch responses. Furthermore, the GPER expression and function were both upregulated in the TG of the dry skin-induced chronic itch mouse model. Pharmacological inhibition of GPER (or Gper deficiency) markedly increased acute and chronic itch-related scratching behaviors in mouse. Calcium imaging assays further revealed that Gper deficiency in TG neurons led to a marked increase in the calcium responses evoked by agonists of the transient receptor potential ankyrin A1 (TRPA1) and transient receptor potential vanilloid V1 (TRPV1). CONCLUSION Our findings demonstrated that the GPER of TG neurons is involved in the regulation of acute and chronic itch perception, by modulating the function of TRPA1 and TRPV1. This study provides new insights into peripheral itch sensory signal processing mechanisms and offers new targets for future clinical antipruritic therapy.
Collapse
Affiliation(s)
- Jun Li
- Department of Anesthesiology, Chaohu Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Siyu Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Xiaoqi Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Junhui Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xiaoqiong Xia
- Department of Anesthesiology, Chaohu Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
14
|
Erdogan O, Michot B, Xia J, Alabdulaaly L, Yesares Rubi P, Ha V, Chiu IM, Gibbs JL. Neuronal-immune axis alters pain and sensory afferent damage during dental pulp injury. Pain 2024; 165:392-403. [PMID: 37903298 DOI: 10.1097/j.pain.0000000000003029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 11/01/2023]
Abstract
ABSTRACT Dental pulp tissue is densely innervated by afferent fibers of the trigeminal ganglion. When bacteria cause dental decay near the pulpal tissue, a strong neuronal and immune response occurs, creating pulpitis, which is associated with severe pain and pulp tissue damage. Neuroimmune interactions have the potential to modulate both the pain and pathological outcome of pulpitis. We first investigated the role of the neuropeptide calcitonin gene-related peptide (CGRP), released from peptidergic sensory afferents, in dental pain and immune responses by using Calca knockout (Calca -/- ) and wild-type (Calca +/+ ) mice, in a model of pulpitis by creating a mechanical exposure of the dental pulp horn. We found that the neuropeptide CGRP, facilitated the recruitment of myeloid cells into the pulp while also increasing spontaneous pain-like behavior 20% to 25% at an early time point. Moreover, when we depleted neutrophils and monocytes, we found that there was 20% to 30% more sensory afferent loss and increased presence of bacteria in deeper parts of the tissue, whereas there was a significant reduction in mechanical pain response scores compared with the control group at a later time point. Overall, we showed that there is a crosstalk between peptidergic neurons and neutrophils in the pulp, modulating the pain and inflammatory outcomes of the disease.
Collapse
Affiliation(s)
- Ozge Erdogan
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, United States
| | - Benoit Michot
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, United States
| | - Jinya Xia
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Lama Alabdulaaly
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
- Division of Oral Medicine and Dentistry, Brigham and Women's Hospital, Boston, MA, United States
| | - Pilar Yesares Rubi
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, United States
| | - Vivian Ha
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, United States
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Jennifer L Gibbs
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
15
|
Middleton SJ, Hu H, Perez-Sanchez J, Zuberi S, McGrath Williams J, Weir GA, Bennett DL. GluCl.Cre ON enables selective inhibition of molecularly defined pain circuits. Pain 2023; 164:2780-2791. [PMID: 37366588 PMCID: PMC10652717 DOI: 10.1097/j.pain.0000000000002976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT Insight into nociceptive circuits will ultimately build our understanding of pain processing and aid the development of analgesic strategies. Neural circuit analysis has been advanced greatly by the development of optogenetic and chemogenetic tools, which have allowed function to be ascribed to discrete neuronal populations. Neurons of the dorsal root ganglion, which include nociceptors, have proved challenging targets for chemogenetic manipulation given specific confounds with commonly used DREADD technology. We have developed a cre/lox dependant version of the engineered glutamate-gated chloride channel (GluCl) to restrict and direct its expression to molecularly defined neuronal populations. We have generated GluCl.Cre ON that selectively renders neurons expressing cre-recombinase susceptible to agonist-induced silencing. We have functionally validated our tool in multiple systems in vitro, and subsequently generated viral vectors and tested its applicability in vivo. Using Nav1.8 Cre mice to restrict AAV-GluCl.Cre ON to nociceptors, we demonstrate effective silencing of electrical activity in vivo and concomitant hyposensitivity to noxious thermal and noxious mechanical pain, whereas light touch and motor function remained intact. We also demonstrated that our strategy can effectively silence inflammatory-like pain in a chemical pain model. Collectively, we have generated a novel tool that can be used to selectively silence defined neuronal circuits in vitro and in vivo. We believe that this addition to the chemogenetic tool box will facilitate further understanding of pain circuits and guide future therapeutic development.
Collapse
Affiliation(s)
- Steven J. Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Huimin Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jimena Perez-Sanchez
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Sana Zuberi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Greg A. Weir
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Münzberg H, Berthoud HR, Neuhuber WL. Sensory spinal interoceptive pathways and energy balance regulation. Mol Metab 2023; 78:101817. [PMID: 37806487 PMCID: PMC10590858 DOI: 10.1016/j.molmet.2023.101817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
17
|
Shao Y, Wang D, Zhu Y, Xiao Z, Jin T, Peng L, Shen Y, Tang H. Molecular mechanisms of pruritus in prurigo nodularis. Front Immunol 2023; 14:1301817. [PMID: 38077377 PMCID: PMC10701428 DOI: 10.3389/fimmu.2023.1301817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Pruritus is the most common symptom of dermatological disorders, and prurigo nodularis (PN) is notorious for intractable and severe itching. Conventional treatments often yield disappointing outcomes, significantly affecting patients' quality of life and psychological well-being. The pathogenesis of PN is associated with a self-sustained "itch-scratch" vicious cycle. Recent investigations of PN-related itch have partially revealed the intricate interactions within the cutaneous neuroimmune network; however, the underlying mechanism remains undetermined. Itch mediators play a key role in pruritus amplification in PN and understanding their action mechanism will undoubtedly lead to the development of novel targeted antipruritic agents. In this review, we describe a series of pruritogens and receptors involved in mediating itching in PN, including cytokines, neuropeptides, extracellular matrix proteins, vasculogenic substances, ion channels, and intracellular signaling pathways. Moreover, we provide a prospective outlook on potential therapies based on existing findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Kim HW, Shim SW, Zhao AM, Roh D, Han HM, Middleton SJ, Kim W, Chung S, Johnson E, Prentice J, Tacon M, Koel-Simmelink MJ, Wieske L, Teunissen CE, Bae YC, Bennett DL, Rinaldi S, Davies AJ, Oh SB. Long-term tactile hypersensitivity after nerve crush injury in mice is characterized by the persistence of intact sensory axons. Pain 2023; 164:2327-2342. [PMID: 37366595 PMCID: PMC10502897 DOI: 10.1097/j.pain.0000000000002937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT Traumatic peripheral nerve injuries are at high risk of neuropathic pain for which novel effective therapies are urgently needed. Preclinical models of neuropathic pain typically involve irreversible ligation and/or nerve transection (neurotmesis). However, translation of findings to the clinic has so far been unsuccessful, raising questions on injury model validity and clinically relevance. Traumatic nerve injuries seen in the clinic commonly result in axonotmesis (ie, crush), yet the neuropathic phenotype of "painful" nerve crush injuries remains poorly understood. We report the neuropathology and sensory symptoms of a focal nerve crush injury using custom-modified hemostats resulting in either complete ("full") or incomplete ("partial") axonotmesis in adult mice. Assays of thermal and mechanically evoked pain-like behavior were paralleled by transmission electron microscopy, immunohistochemistry, and anatomical tracing of the peripheral nerve. In both crush models, motor function was equally affected early after injury; by contrast, partial crush of the nerve resulted in the early return of pinprick sensitivity, followed by a transient thermal and chronic tactile hypersensitivity of the affected hind paw, which was not observed after a full crush injury. The partially crushed nerve was characterized by the sparing of small-diameter myelinated axons and intraepidermal nerve fibers, fewer dorsal root ganglia expressing the injury marker activating transcription factor 3, and lower serum levels of neurofilament light chain. By day 30, axons showed signs of reduced myelin thickness. In summary, the escape of small-diameter axons from Wallerian degeneration is likely a determinant of chronic pain pathophysiology distinct from the general response to complete nerve injury.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sang Wook Shim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Anna Mae Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dahee Roh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hye Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Steven J. Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Wheedong Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sena Chung
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - John Prentice
- Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford, United Kingdom
| | - Mike Tacon
- Department of Physics, Denys Wilkinson Building, University of Oxford, Oxford, United Kingdom
| | - Marleen J.A. Koel-Simmelink
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam UMC, Academisch Medisch Centrum, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - David L.H. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander J. Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:496-508. [PMID: 37517892 DOI: 10.1016/j.joim.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE This work explores the impact of electroacupuncture (EA) on acute postoperative pain (APP) and the role of stimulator of interferon genes/type-1 interferon (STING/IFN-1) signaling pathway modulation in the analgesic effect of EA in APP rats. METHODS The APP rat model was initiated through abdominal surgery and the animals received two 30 min sessions of EA at bilateral ST36 (Zusanli) and SP6 (Sanyinjiao) acupoints. Mechanical, thermal and cold sensitivity tests were performed to measure the pain threshold, and electroencephalograms were recorded in the primary somatosensory cortex to identify the effects of EA treatment on APP. Western blotting and immunofluorescence were used to examine the expression and distribution of proteins in the STING/IFN-1 pathway as well as neuroinflammation. A STING inhibitor (C-176) was administered intrathecally to verify its role in EA. RESULTS APP rats displayed mechanical and thermal hypersensitivities compared to the control group (P < 0.05). APP significantly reduced the amplitude of θ, α and γ oscillations compared to their baseline values (P < 0.05). Interestingly, expression levels of proteins in the STING/IFN-1 pathway were downregulated after inducing APP (P < 0.05). Further, APP increased pro-inflammatory factors, including interleukin-6, tumor necrosis factor-α and inducible nitric oxide synthase, and downregulated anti-inflammatory factors, including interleukin-10 and arginase-1 (P < 0.05). EA effectively attenuated APP-induced painful hypersensitivities (P < 0.05) and restored the θ, α and γ power in APP rats (P < 0.05). Meanwhile, EA distinctly activated the STING/IFN-1 pathway and mitigated the neuroinflammatory response (P < 0.05). Furthermore, STING/IFN-1 was predominantly expressed in isolectin-B4- or calcitonin-gene-related-peptide-labeled dorsal root ganglion neurons and superficial laminae of the spinal dorsal horn. Inhibition of the STING/IFN-1 pathway by intrathecal injection of C-176 weakened the analgesic and anti-inflammatory effects of EA on APP (P < 0.05). CONCLUSION EA can generate robust analgesic and anti-inflammatory effects on APP, and these effects may be linked to activating the STING/IFN-1 pathway, suggesting that STING/IFN-1 may be a target for relieving APP. Please cite this article as: Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. J Integr Med. 2023; 21(5): 496-508.
Collapse
Affiliation(s)
- Yuan-Yuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ya-Feng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lin-Lin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shi-Qian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lu-Lin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Tian-Hao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wen-Jing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xiang-Dong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
20
|
Feuillet V, Ugolini S, Reynders A. Differential regulation of cutaneous immunity by sensory neuron subsets. Trends Neurosci 2023:S0166-2236(23)00128-5. [PMID: 37277277 DOI: 10.1016/j.tins.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
The nervous and immune systems have classically been studied as separate entities, but there is now mounting evidence for bidirectional communication between them in various organs, including the skin. The skin is an epithelial tissue with important sensory and immune functions. The skin is highly innervated with specialized subclasses of primary sensory neurons (PSNs) that can be in contact with skin-resident innate and adaptive immune cells. Neuroimmune crosstalk in the skin, through interactions of PSNs with the immune system, has been shown to regulate host cutaneous defense, inflammation, and tissue repair. Here, we review current knowledge about the cellular and molecular mechanisms involved in this crosstalk, as depicted via mouse model studies. We highlight the ways in which different immune challenges engage specialized subsets of PSNs to produce mediators acting on immune cell subsets and modulating their function.
Collapse
Affiliation(s)
- Vincent Feuillet
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Ugolini
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Ana Reynders
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Marseille, France
| |
Collapse
|
21
|
Kupari J, Ernfors P. Molecular taxonomy of nociceptors and pruriceptors. Pain 2023; 164:1245-1257. [PMID: 36718807 PMCID: PMC10184562 DOI: 10.1097/j.pain.0000000000002831] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Shang L, Zhao S, Shi H, Xing X, Zhang J, He Y. Nerve growth factor mediates activation of transient receptor potential vanilloid 1 in neurogenic pruritus of psoriasis. Int Immunopharmacol 2023; 118:110063. [PMID: 37004343 DOI: 10.1016/j.intimp.2023.110063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Pruritus is a common and painful symptom in psoriasis with profoundly negative impacts on quality of life. The underlying mechanisms of pruritus are complex and multifactorial, and accumulating evidence suggests that pruritus induced by neurogenic inflammation predominates in psoriasis. Nerve growth factor (NGF) -mediated transient receptor potential vanilloid receptor 1(TRPV1) pathway has emerged as a crucial node in the regulation of neurogenic pruritus. TRPV1 appears coupled to most pruritus-specific molecules via the neuro-immune axis. While the modes of regulation differ for each axis, TRPV1 is involved in substantial biochemical crosstalk-causing feedback loops with significant effects on neurogenic pruritus. Therefore, TRPV1 has emerged as a target molecular in drug development for pruritus in psoriasis. However, no significant clinical progress occurred in the development of systemic TRPV1 antagonists due to elevated core temperature. Thus, topical application of TRPV1 antagonists and interference with mediators linked to the TRPV1 activation pathway may be promising therapeutic options to ameliorate pruritus. This Review focuses on recent advances in complicated regulation of NGF-mediated TRPV1 pathway in psoriatic neurogenic pruritus, as well as the therapeutic options that arise from the dissection of the pathway.
Collapse
|
23
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu I, Ginty DD, Sharma N. A DRG genetic toolkit reveals molecular, morphological, and functional diversity of somatosensory neuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537932. [PMID: 37131664 PMCID: PMC10153270 DOI: 10.1101/2023.04.22.537932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| |
Collapse
|
24
|
Pinho-Ribeiro FA, Deng L, Neel DV, Erdogan O, Basu H, Yang D, Choi S, Walker AJ, Carneiro-Nascimento S, He K, Wu G, Stevens B, Doran KS, Levy D, Chiu IM. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature 2023; 615:472-481. [PMID: 36859544 PMCID: PMC10593113 DOI: 10.1038/s41586-023-05753-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dylan V Neel
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ozge Erdogan
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, USA
| | - Himanish Basu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daping Yang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Samantha Choi
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Alec J Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Simone Carneiro-Nascimento
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kathleen He
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Glendon Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Levy
- Harvard Medical School, Boston, MA, USA
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Okano M, Hirahara K, Kiuchi M, Onoue M, Iwamura C, Kokubo K, Hishiya T, Morimoto Y, Ikehara Y, Murakami A, Ebihara N, Nakayama T. Interleukin-33-activated neuropeptide CGRP-producing memory Th2 cells cooperate with somatosensory neurons to induce conjunctival itch. Immunity 2022; 55:2352-2368.e7. [PMID: 36272417 DOI: 10.1016/j.immuni.2022.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Allergic conjunctivitis is a chronic inflammatory disease that is characterized by severe itch in the conjunctiva, but how neuro-immune interactions shape the pathogenesis of severe itch remains unclear. We identified a subset of memory-type pathogenic Th2 cells that preferentially expressed Il1rl1-encoding ST2 and Calca-encoding calcitonin-gene-related peptide (CGRP) in the inflammatory conjunctiva using a single-cell analysis. The IL-33-ST2 axis in memory Th2 cells controlled the axonal elongation of the peripheral sensory C-fiber and the induction of severe itch. Pharmacological blockade and genetic deletion of CGRP signaling in vivo attenuated scratching behavior. The analysis of giant papillae from patients with severe allergic conjunctivitis revealed ectopic lymphoid structure formation with the accumulation of IL-33-producing epithelial cells and CGRP-producing pathogenic CD4+ T cells accompanied by peripheral nerve elongation. Thus, the IL-33-ST2-CGRP axis directs severe itch with neuro-reconstruction in the inflammatory conjunctiva and is a potential therapeutic target for severe itch in allergic conjunctivitis.
Collapse
Affiliation(s)
- Mikiko Okano
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; AMED-PRIME, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Miki Onoue
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Ophthalmology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
| | - Chiaki Iwamura
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takahisa Hishiya
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yuki Morimoto
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yuzuru Ikehara
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
| | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
26
|
Tmem45b is essential for inflammation- and tissue injury-induced mechanical pain hypersensitivity. Proc Natl Acad Sci U S A 2022; 119:e2121989119. [PMID: 36322717 PMCID: PMC9659417 DOI: 10.1073/pnas.2121989119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Persistent mechanical pain hypersensitivity associated with peripheral inflammation, surgery, trauma, and nerve injury impairs patients' quality of life and daily activity. However, the molecular mechanism and treatment are not yet fully understood. Herein, we show that chemical ablation of isolectin B4-binding (IB4+) afferents by IB4-saporin injection into sciatic nerves completely and selectively inhibited inflammation- and tissue injury-induced mechanical pain hypersensitivity while thermal and mechanical pain hypersensitivities were normal following nerve injury. To determine the molecular mechanism involving the specific types of mechanical pain hypersensitivity, we compared gene expression profiles between IB4+ neuron-ablated and control dorsal root ganglion (DRG) neurons. We identified Tmem45b as one of 12 candidate genes that were specific to somatosensory ganglia and down-regulated by IB4+ neuronal ablation. Indeed, Tmem45b was expressed predominantly in IB4+ DRG neurons, where it was selectively localized in the trans Golgi apparatus of DRG neurons but not detectable in the peripheral and central branches of DRG axons. Tmem45b expression was barely detected in the spinal cord and brain. Although Tmem45b-knockout mice showed normal responses to noxious heat and noxious mechanical stimuli under normal conditions, mechanical pain hypersensitivity was selectively impaired after inflammation and tissue incision, reproducing the pain phenotype of IB4+ sensory neuron-ablated mice. Furthermore, acute knockdown by intrathecal injection of Tmem45b small interfering RNA, either before or after inflammation induction, successfully reduced mechanical pain hypersensitivity. Thus, our study demonstrates that Tmem45b is essential for inflammation- and tissue injury-induced mechanical pain hypersensitivity and highlights Tmem45b as a therapeutic target for future treatment.
Collapse
|
27
|
Yang D, Jacobson A, Meerschaert KA, Sifakis JJ, Wu M, Chen X, Yang T, Zhou Y, Anekal PV, Rucker RA, Sharma D, Sontheimer-Phelps A, Wu GS, Deng L, Anderson MD, Choi S, Neel D, Lee N, Kasper DL, Jabri B, Huh JR, Johansson M, Thiagarajah JR, Riesenfeld SJ, Chiu IM. Nociceptor neurons direct goblet cells via a CGRP-RAMP1 axis to drive mucus production and gut barrier protection. Cell 2022; 185:4190-4205.e25. [PMID: 36243004 PMCID: PMC9617795 DOI: 10.1016/j.cell.2022.09.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Neuroepithelial crosstalk is critical for gut physiology. However, the mechanisms by which sensory neurons communicate with epithelial cells to mediate gut barrier protection at homeostasis and during inflammation are not well understood. Here, we find that Nav1.8+CGRP+ nociceptor neurons are juxtaposed with and signal to intestinal goblet cells to drive mucus secretion and gut protection. Nociceptor ablation led to decreased mucus thickness and dysbiosis, while chemogenetic nociceptor activation or capsaicin treatment induced mucus growth. Mouse and human goblet cells expressed Ramp1, receptor for the neuropeptide CGRP. Nociceptors signal via the CGRP-Ramp1 pathway to induce rapid goblet cell emptying and mucus secretion. Notably, commensal microbes activated nociceptors to control homeostatic CGRP release. In the absence of nociceptors or epithelial Ramp1, mice showed increased epithelial stress and susceptibility to colitis. Conversely, CGRP administration protected nociceptor-ablated mice against colitis. Our findings demonstrate a neuron-goblet cell axis that orchestrates gut mucosal barrier protection.
Collapse
Affiliation(s)
- Daping Yang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Jacobson
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Meng Wu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Xi Chen
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tiandi Yang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Youlian Zhou
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rachel A Rucker
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Deepika Sharma
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | - Glendon S Wu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Anderson
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha Choi
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan Neel
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Lee
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis L Kasper
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology and Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jun R Huh
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Malin Johansson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg 40530, Sweden
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha J Riesenfeld
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Critical Players and Therapeutic Targets in Chronic Itch. Int J Mol Sci 2022; 23:ijms23179935. [PMID: 36077340 PMCID: PMC9456029 DOI: 10.3390/ijms23179935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic itch is one of the most prominent clinical characteristics of diverse systematic diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic dermatitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have opened new avenues for therapeutic development. Proof-of-principle studies have been successfully performed on antagonists against these proteins and their receptors in itch treatment in animal models. Their translational interventions in humans need to be evaluated. It is of great importance to summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote the development of novel anti-itch therapeutics. The goal of this review is to analyze the different physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets and discussing future therapeutic development.
Collapse
|
29
|
Wang H, Chen W, Dong Z, Xing G, Cui W, Yao L, Zou WJ, Robinson HL, Bian Y, Liu Z, Zhao K, Luo B, Gao N, Zhang H, Ren X, Yu Z, Meixiong J, Xiong WC, Mei L. A novel spinal neuron connection for heat sensation. Neuron 2022; 110:2315-2333.e6. [PMID: 35561677 DOI: 10.1016/j.neuron.2022.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 12/30/2022]
Abstract
Heat perception enables acute avoidance responses to prevent tissue damage and maintain body thermal homeostasis. Unlike other modalities, how heat signals are processed in the spinal cord remains unclear. By single-cell gene profiling, we identified ErbB4, a transmembrane tyrosine kinase, as a novel marker of heat-sensitive spinal neurons in mice. Ablating spinal ErbB4+ neurons attenuates heat sensation. These neurons receive monosynaptic inputs from TRPV1+ nociceptors and form excitatory synapses onto target neurons. Activation of ErbB4+ neurons enhances the heat response, while inhibition reduces the heat response. We showed that heat sensation is regulated by NRG1, an activator of ErbB4, and it involves dynamic activity of the tyrosine kinase that promotes glutamatergic transmission. Evidence indicates that the NRG1-ErbB4 signaling is also engaged in hypersensitivity of pathological pain. Together, these results identify a spinal neuron connection consisting of ErbB4+ neurons for heat sensation and reveal a regulatory mechanism by the NRG1-ErbB4 signaling.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenbing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Lingling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Jun Zou
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heath L Robinson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Yaoyao Bian
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhipeng Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - James Meixiong
- Solomon H. Snyder Department of Neuroscience and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
30
|
Kanehisa K, Koga K, Maejima S, Shiraishi Y, Asai K, Shiratori-Hayashi M, Xiao MF, Sakamoto H, Worley PF, Tsuda M. Neuronal pentraxin 2 is required for facilitating excitatory synaptic inputs onto spinal neurons involved in pruriceptive transmission in a model of chronic itch. Nat Commun 2022; 13:2367. [PMID: 35501343 PMCID: PMC9061767 DOI: 10.1038/s41467-022-30089-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 04/14/2022] [Indexed: 11/08/2022] Open
Abstract
An excitatory neuron subset in the spinal dorsal horn (SDH) that expresses gastrin-releasing peptide receptors (GRPR) is critical for pruriceptive transmission. Here, we show that glutamatergic excitatory inputs onto GRPR+ neurons are facilitated in mouse models of chronic itch. In these models, neuronal pentraxin 2 (NPTX2), an activity-dependent immediate early gene product, is upregulated in the dorsal root ganglion (DRG) neurons. Electron microscopy reveals that NPTX2 is present at presynaptic terminals connected onto postsynaptic GRPR+ neurons. NPTX2-knockout prevents the facilitation of synaptic inputs to GRPR+ neurons, and repetitive scratching behavior. DRG-specific NPTX2 expression rescues the impaired behavioral phenotype in NPTX2-knockout mice. Moreover, ectopic expression of a dominant-negative form of NPTX2 in DRG neurons reduces chronic itch-like behavior in mice. Our findings indicate that the upregulation of NPTX2 expression in DRG neurons contributes to the facilitation of glutamatergic inputs onto GRPR+ neurons under chronic itch-like conditions, providing a potential therapeutic target.
Collapse
Affiliation(s)
- Kensho Kanehisa
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keisuke Koga
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Sho Maejima
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, 130-17 Kashino, Ushimado, Setouchi, 701-4303, Japan
| | - Yuto Shiraishi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Konatsu Asai
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miho Shiratori-Hayashi
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mei-Fang Xiao
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, 130-17 Kashino, Ushimado, Setouchi, 701-4303, Japan
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
31
|
Xie YK, Luo H, Zhang SX, Chen XY, Guo R, Qiu XY, Liu S, Wu H, Chen WB, Zhen XH, Ma Q, Tian JL, Li S, Chen X, Han Q, Duan S, Shen C, Yang F, Xu ZZ. GPR177 in A-fiber sensory neurons drives diabetic neuropathic pain via WNT-mediated TRPV1 activation. Sci Transl Med 2022; 14:eabh2557. [PMID: 35385340 DOI: 10.1126/scitranslmed.abh2557] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic neuropathic pain (DNP) is a common and devastating complication in patients with diabetes. The mechanisms mediating DNP are not completely elucidated, and effective treatments are lacking. A-fiber sensory neurons have been shown to mediate the development of mechanical allodynia in neuropathic pain, yet the molecular basis underlying the contribution of A-fiber neurons is still unclear. Here, we report that the orphan G protein-coupled receptor 177 (GPR177) in A-fiber neurons drives DNP via WNT5a-mediated activation of transient receptor potential vanilloid receptor-1 (TRPV1) ion channel. GPR177 is mainly expressed in large-diameter A-fiber dorsal root ganglion (DRG) neurons and required for the development of DNP in mice. Mechanistically, we found that GPR177 mediated the secretion of WNT5a from A-fiber DRG neurons into cerebrospinal fluid (CSF), which was necessary for the maintenance of DNP. Extracellular perfusion of WNT5a induced rapid currents in both TRPV1-expressing heterologous cells and nociceptive DRG neurons. Computer simulations revealed that WNT5a has the potential to bind the residues at the extracellular S5-S6 loop of TRPV1. Using a peptide able to disrupt the predicted WNT5a/TRPV1 interaction suppressed DNP- and WNT5a-induced neuropathic pain symptoms in rodents. We confirmed GPR177/WNT5A coexpression in human DRG neurons and WNT5A secretion in CSF from patients with DNP. Thus, our results reveal a role for WNT5a as an endogenous and potent TRPV1 agonist, and the GPR177-WNT5a-TRPV1 axis as a driver of DNP pathogenesis in rodents. Our findings identified a potential analgesic target that might relieve neuropathic pain in patients with diabetes.
Collapse
Affiliation(s)
- Ya-Kai Xie
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Luo
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shan-Xin Zhang
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Ying Chen
- Department of Biophysics, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ran Guo
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiao-Yun Qiu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wen-Bo Chen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xing-Hua Zhen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Ma
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin-Lan Tian
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shun Li
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Shumin Duan
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chengyong Shen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhen-Zhong Xu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
32
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
33
|
Chen HK, Li YZ, Ge AN, Zhu YB, Wu SJ, Bai X, Bai HH, Liu YN. Cbl-b modulated TrkA ubiquitination and function in the dorsal root ganglion of mice. Eur J Pharmacol 2022; 921:174876. [DOI: 10.1016/j.ejphar.2022.174876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
|
34
|
Cui H, Liu F, Fang Y, Wang T, Yuan B, Ma C. Neuronal FcεRIα directly mediates ocular itch via IgE-immune complex in a mouse model of allergic conjunctivitis. J Neuroinflammation 2022; 19:55. [PMID: 35197064 PMCID: PMC8867756 DOI: 10.1186/s12974-022-02417-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Classical understanding of allergic conjunctivitis (ACJ) suggests that ocular itch results from a mast cell-dependent inflammatory process. However, treatments that target inflammatory mediators or immune cells are often unsatisfying in relieving the stubborn itch symptom. This suggests that additional mechanisms are responsible for ocular itch in ACJ. In this study, we aim to determine the role of neuronal FcεRIa in allergic ocular itch. Methods Calcium imaging was applied to observe the effect of IgE-immune complex in trigeminal neurons. Genomic FcεRIa knockout mice and adeno-associated virus (AAV) mediated sensory neuron FcεRIa knockdown mice were used in conjunction with behavioral tests to determine ocular itch. In addition, immunohistochemistry, Western blot and quantitative RT-PCR were used for in vitro experiments. Results We found that FcεRIα was expressed in a subpopulation of conjunctiva sensory neurons. IgE-IC directly activated trigeminal neurons and evoked acute ocular itch without detectible conjunctival inflammation. These effects were attenuated in both a global FcεRIa-knockout mice and after sensory neuronal-specific FcεRIa-knockdown in the mouse trigeminal ganglion. In an ovalbumin (OVA) induced murine ACJ model, FcεRIα was found upregulated in conjunctiva-innervating CGRP+ sensory neurons. Sensory neuronal-specific knockdown of FcεRIa significantly alleviated ocular itch in the ACJ mice without affecting the immune cell infiltration and mast cell activation in conjunctiva. Although FcεRIα mRNA expression was not increased by IgE in dissociated trigeminal ganglion neurons, FcεRIα protein level was enhanced by IgE in a cycloheximide-resistance manner, with concordant enhancement of neuronal responses to IgE-IC. In addition, incremental sensitization gradually enhanced the expression of FcεRIα in small-sized trigeminal neurons and aggravated OVA induced ocular itch. Conclusions Our study demonstrates that FcεRIα in pruriceptive neurons directly mediates IgE-IC evoked itch and plays an important role in ocular itch in a mouse model of ACJ. These findings reveal another axis of neuroimmune interaction in allergic itch condition independent to the classical IgE-mast cell pathway, and might suggest novel therapeutic strategies for the treatment of pruritus in ACJ and other immune-related disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02417-x.
Collapse
Affiliation(s)
- Huan Cui
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Liu
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yehong Fang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yuan
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China. .,National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
35
|
Wistrom E, Chase R, Smith PR, Campbell ZT. A compendium of validated pain genes. WIREs Mech Dis 2022; 14:e1570. [PMID: 35760453 PMCID: PMC9787016 DOI: 10.1002/wsbm.1570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022]
Abstract
The development of novel pain therapeutics hinges on the identification and rigorous validation of potential targets. Model organisms provide a means to test the involvement of specific genes and regulatory elements in pain. Here we provide a list of genes linked to pain-associated behaviors. We capitalize on results spanning over three decades to identify a set of 242 genes. They support a remarkable diversity of functions spanning action potential propagation, immune response, GPCR signaling, enzymatic catalysis, nucleic acid regulation, and intercellular signaling. Making use of existing tissue and single-cell high-throughput RNA sequencing datasets, we examine their patterns of expression. For each gene class, we discuss archetypal members, with an emphasis on opportunities for additional experimentation. Finally, we discuss how powerful and increasingly ubiquitous forward genetic screening approaches could be used to improve our ability to identify pain genes. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Eric Wistrom
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Rebecca Chase
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Patrick R. Smith
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Zachary T. Campbell
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA,Center for Advanced Pain StudiesUniversity of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
36
|
Zhang WW, Cao H, Li Y, Fu XJ, Zhang YQ. Peripheral ablation of type Ⅲ adenylyl cyclase induces hyperalgesia and eliminates KOR-mediated analgesia in mice. JCI Insight 2021; 7:153191. [PMID: 34914639 PMCID: PMC8855833 DOI: 10.1172/jci.insight.153191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ca2+/calmodulin-stimulated group Ⅰ adenylyl cyclase (AC) isoforms AC1 and AC8 have been involved in nociceptive processing and morphine responses. However, whether AC3, another member of group I ACs, is involved in nociceptive transmission and regulates opioid receptor signaling remain elusive. Here we report that conditional knockout of AC3 (AC3CKO) in L3 and L4 DRGs robustly facilitates the mouse nociceptive responses, decreases voltage-gated potassium (Kv) channel currents and increases neuronal excitability. Also, AC3CKO eliminates the analgesic effect of κ opioid receptor (KOR) agonist and its inhibition on Kv channel by classical Gαi/o signaling or nonclassical direct interaction of KOR and AC3 proteins. Interestingly, significantly upregulated AC1 level and cAMP concentration are detected in AC3 deficient DRGs. Inhibition of AC1 completely reversed cAMP upregulation, neuronal excitability enhancement and nociceptive behavioral hypersensitivity in AC3CKO mice. Our findings suggest a crucial role of peripheral AC3 in nociceptive modulation and KOR opioid analgesia.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Department of Translational Neurosciences, Fudan University, Shanghai, China
| | - Hong Cao
- Department of Translational Neurosciences, Fudan University, Shanghai, China
| | - Yang Li
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xian-Jun Fu
- Qingdao Academy of Chinese Medical Science, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Yu-Qiu Zhang
- Department of Translational Neurosciences, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Dalmasso C, Leachman JR, Ghuneim S, Ahmed N, Schneider ER, Thibault O, Osborn JL, Loria AS. Epididymal Fat-Derived Sympathoexcitatory Signals Exacerbate Neurogenic Hypertension in Obese Male Mice Exposed to Early Life Stress. Hypertension 2021; 78:1434-1449. [PMID: 34601958 PMCID: PMC8516729 DOI: 10.1161/hypertensionaha.121.17298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Jacqueline R. Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Sundus Ghuneim
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Eve R. Schneider
- Department of Biology, College of Arts and Sciences (E.R.S., J.L.O.), University of Kentucky, Lexington
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Jeffrey L. Osborn
- Department of Biology, College of Arts and Sciences (E.R.S., J.L.O.), University of Kentucky, Lexington
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| |
Collapse
|
38
|
Páez O, Segura-Chama P, Almanza A, Pellicer F, Mercado F. Properties and Differential Expression of H + Receptors in Dorsal Root Ganglia: Is a Labeled-Line Coding for Acid Nociception Possible? Front Physiol 2021; 12:733267. [PMID: 34764880 PMCID: PMC8576393 DOI: 10.3389/fphys.2021.733267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pain by chemical irritants is one of the less well-described aspects of nociception. The acidic substance is the paradigm of the chemical noxious compound. An acidic insult on cutaneous, subcutaneous and muscle tissue results in pain sensation. Acid (or H+) has at least two main receptor channels in dorsal root ganglia (DRG) nociceptors: the heat receptor transient receptor potential vanilloid 1 (TRPV1) and the acid-sensing ionic channels (ASICs). TRPV1 is a low-sensitivity H+ receptor, whereas ASIC channels display a higher H+ sensitivity of at least one order of magnitude. In this review, we first describe the functional and structural characteristics of these and other H+-receptor candidates and the biophysics of their responses to low pH. Additionally, we compile reports of the expression of these H+-receptors (and other possible complementary proteins) within the DRG and compare these data with mRNA expression profiles from single-cell sequencing datasets for ASIC3, ASIC1, transient receptor potential Ankiryn subtype 1 (TRPA1) and TRPV1. We show that few nociceptor subpopulations (discriminated by unbiased classifications) combine acid-sensitive channels. This comparative review is presented in light of the accumulating evidence for labeled-line coding for most noxious sensory stimuli.
Collapse
Affiliation(s)
- Omar Páez
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Pedro Segura-Chama
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
- Cátedras CONACyT, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Angélica Almanza
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Francisco Pellicer
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Francisco Mercado
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Nuerociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| |
Collapse
|
39
|
Inhibiting endocytosis in CGRP + nociceptors attenuates inflammatory pain-like behavior. Nat Commun 2021; 12:5812. [PMID: 34608164 PMCID: PMC8490418 DOI: 10.1038/s41467-021-26100-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
The advantage of locally applied anesthetics is that they are not associated with the many adverse effects, including addiction liability, of systemically administered analgesics. This therapeutic approach has two inherent pitfalls: specificity and a short duration of action. Here, we identified nociceptor endocytosis as a promising target for local, specific, and long-lasting treatment of inflammatory pain. We observed preferential expression of AP2α2, an α-subunit isoform of the AP2 complex, within CGRP+/IB4- nociceptors in rodents and in CGRP+ dorsal root ganglion neurons from a human donor. We utilized genetic and pharmacological approaches to inhibit nociceptor endocytosis demonstrating its role in the development and maintenance of acute and chronic inflammatory pain. One-time injection of an AP2 inhibitor peptide significantly reduced acute and chronic pain-like behaviors and provided prolonged analgesia. We evidenced sexually dimorphic recovery responses to this pharmacological approach highlighting the importance of sex differences in pain development and response to analgesics. The authors show the endocytotic adaptor subunit called AP2A2 is differentially expressed in CGRP+ nociceptors. Locally inhibiting nociceptor endocytosis with a lipidated AP2 inhibitor peptide reduces acute and chronic pain-like behaviour in mice and rats, indicating prolonged analgesia.
Collapse
|
40
|
Ran C, Kamalani GNA, Chen X. Modality-Specific Modulation of Temperature Representations in the Spinal Cord after Injury. J Neurosci 2021; 41:8210-8219. [PMID: 34408066 PMCID: PMC8482863 DOI: 10.1523/jneurosci.1104-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
Different types of tissue injury, such as inflammatory and neuropathic conditions, cause modality-specific alternations on temperature perception. There are profound changes in peripheral sensory neurons after injury, but how patterned neuronal activities in the CNS encode injury-induced sensitization to temperature stimuli is largely unknown. Using in vivo calcium imaging and mouse genetics, we show that formalin- and prostaglandin E2-induced inflammation dramatically increase spinal responses to heating and decrease responses to cooling in male and female mice. The reduction of cold response is largely eliminated on ablation of TRPV1-expressing primary sensory neurons, indicating a crossover inhibition of cold response from the hyperactive heat inputs in the spinal cord. Interestingly, chemotherapy medication oxaliplatin can rapidly increase spinal responses to cooling and suppress responses to heating. Together, our results suggest a push-pull mechanism in processing cold and heat inputs and reveal a synergic mechanism to shift thermosensation after injury.SIGNIFICANCE STATEMENT In this paper, we combine our novel in vivo spinal cord two-photon calcium imaging, mouse genetics, and persistent pain models to study how tissue injury alters the sensation of temperature. We discover modality-specific changes of spinal temperature responses in different models of injury. Chemotherapy medication oxaliplatin leads to cold hypersensitivity and heat hyposensitivity. By contrast, inflammation increases heat sensitivity and decreases cold sensitivity. This decrease in cold sensitivity results from the stronger crossover inhibition from the hyperactive heat inputs. Our work reveals the bidirectional change of thermosensitivity by injury and suggests that the crossover inhibitory circuit underlies the shifted thermosensation, providing a mechanism to the biased perception toward a unique thermal modality that was observed clinically in chronic pain patients.
Collapse
Affiliation(s)
- Chen Ran
- Department of Biology, Stanford University, Stanford, California 94305
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
41
|
Liu FD, Duan HM, Hao F, Zhao W, Gao YD, Hao P, Yang ZY, Li XG. Biomimetic chitosan scaffolds with long-term controlled release of nerve growth factor repairs 20-mm-long sciatic nerve defects in rats. Neural Regen Res 2021; 17:1146-1155. [PMID: 34558544 PMCID: PMC8552858 DOI: 10.4103/1673-5374.324860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although autogenous nerve transplantation is the gold standard for treating peripheral nerve defects of considerable length, it still has some shortcomings, such as insufficient donors and secondary injury. Composite chitosan scaffolds loaded with controlled release of nerve growth factor can promote neuronal survival and axonal regeneration after short-segment sciatic nerve defects. However, the effects on extended nerve defects remain poorly understood. In this study, we used chitosan scaffolds loaded with nerve growth factor for 8 weeks to repair long-segment (20 mm) sciatic nerve defects in adult rats. The results showed that treatment markedly promoted the recovery of motor and sensory functions. The regenerated sciatic nerve not only reconnected with neurons but neural circuits with the central nervous system were also reconstructed. In addition, the regenerated sciatic nerve reconnected the motor endplate with the target muscle. Therefore, this novel biomimetic scaffold can promote the regeneration of extended sciatic nerve defects and reconstruct functional circuits. This provides a promising method for the clinical treatment of extended peripheral nerve injury. This study was approved by the Animal Ethics Committee of Capital Medical University, China (approval No. AEEI-2017-033) on March 21, 2017.
Collapse
Affiliation(s)
- Fa-Dong Liu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hong-Mei Duan
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Yu-Dan Gao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zhao-Yang Yang
- Department of Neurobiology, Capital Medical University; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University; Department of Neurobiology, Capital Medical University; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
42
|
Middleton SJ, Perez-Sanchez J, Dawes JM. The structure of sensory afferent compartments in health and disease. J Anat 2021; 241:1186-1210. [PMID: 34528255 PMCID: PMC9558153 DOI: 10.1111/joa.13544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Maegawa H, Yoshikawa C, Usami N, Hanamoto H, Kudo C, Niwa H. Anti-calcitonin gene-related peptide antibody attenuates orofacial mechanical and heat hypersensitivities induced by infraorbital nerve injury. Biochem Biophys Res Commun 2021; 569:147-153. [PMID: 34245979 DOI: 10.1016/j.bbrc.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 01/06/2023]
Abstract
Currently, limited information regarding the role of calcitonin gene-related peptide (CGRP) in neuropathic pain is available. Intracerebroventricular administrations of an anti-CGRP antibody were performed in rats with infraorbital nerve ligation. Anti-CGRP antibody administration attenuated mechanical and heat hypersensitivities induced by nerve ligation and decreased the phosphorylated extracellular signal-regulated kinase expression levels in the trigeminal spinal subnucleus caudalis (Vc) following mechanical or heat stimulation. An increased CGRP immunoreactivity in the Vc appeared after nerve ligation. A decreased CGRP immunoreactivity resulted from anti-CGRP antibody administration. Our findings suggest that anti-CGRP antibody administration attenuates the symptoms of trigeminal neuropathic pain by acting on CGRP in the Vc.
Collapse
Affiliation(s)
- Hiroharu Maegawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Chiaki Yoshikawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Nayuka Usami
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Hanamoto
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Chiho Kudo
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
44
|
Liao C, Zhou H, Chen H, Yang X, Zhong W, Zhang W. Patterns of nerve fiber impairments and neuronal activation in male diabetic rats with and without mechanical allodynia: a comparative study. Can J Diabetes 2021; 46:157-164. [DOI: 10.1016/j.jcjd.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
|
45
|
Yoshida S, Funato H. Physical contact in parent-infant relationship and its effect on fostering a feeling of safety. iScience 2021; 24:102721. [PMID: 34235413 PMCID: PMC8250458 DOI: 10.1016/j.isci.2021.102721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The infant-caregiver relationship involves physical contact for feeding, moving, and other cares, and such contact also encourages the infant to form an attachment, an emotional bond with the caregivers. Physical contact always accompanies somatosensory perception, which is detected by mechanosensory neurons and processed in the brain. Physical contact triggers sensorimotor reflexes such as Transport Response in rodent infants, and calm human infants while being carried. Tactile sensation and deep pressure in physical interactions, such as hugging, can function as emotional communication between infant and caregiver, which can alter the behavior and mood of both the infant and caregiver. This review summarizes the findings related to physical contact between the infant and the caregiver in terms of pleasant, noxious, and neutral somatosensation and discusses how somatosensory perceptions foster a feeling of safety that is important for infant's psychosocial development.
Collapse
Affiliation(s)
- Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
46
|
Xia LP, Luo H, Ma Q, Xie YK, Li W, Hu H, Xu ZZ. GPR151 in nociceptors modulates neuropathic pain via regulating P2X3 function and microglial activation. Brain 2021; 144:3405-3420. [PMID: 34244727 DOI: 10.1093/brain/awab245] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
Neuropathic pain is a major health problem that affects up to 7-10% of the population worldwide. Currently, neuropathic pain is difficult to treat due to its elusive mechanisms. Here we report that orphan G protein-coupled receptor 151 (GPR151) in nociceptive sensory neurons controls neuropathic pain induced by nerve injury. GPR151 was mainly expressed in nonpeptidergic C-fiber dorsal root ganglion (DRG) neurons and highly upregulated after nerve injury. Importantly, conditional knockout of Gpr151 in adult nociceptive sensory neurons significantly alleviated chronic constriction injury (CCI)-induced neuropathic pain-like behavior but did not affect basal nociception. Moreover, GPR151 in DRG neurons was required for CCI-induced neuronal hyperexcitability and upregulation of colony-stimulating factor 1 (CSF1), which is necessary for microglial activation in the spinal cord after nerve injury. Mechanistically, GPR151 coupled with P2X3 ion channels and promoted their functional activities in neuropathic pain-like hypersensitivity. Knockout of Gpr151 suppressed P2X3-mediated calcium elevation and spontaneous pain behavior in CCI mice. Conversely, overexpression of Gpr151 significantly enhanced P2X3-mediated calcium elevation and DRG neuronal excitability. Furthermore, knockdown of P2X3 in DRGs reversed CCI-induced CSF1 upregulation, spinal microglial activation, and neuropathic pain-like behavior. Finally, the co-expression of GPR151 and P2X3 was confirmed in small-diameter human DRG neurons, indicating the clinical relevance of our findings. Together, our results suggest that GPR151 in nociceptive DRG neurons plays a key role in the pathogenesis of neuropathic pain and could be a potential target for treating neuropathic pain.
Collapse
Affiliation(s)
- Li-Ping Xia
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Luo
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Ma
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ya-Kai Xie
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Li
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hailan Hu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhen-Zhong Xu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
47
|
Wong LS, Yen YT, Lee CH. The Implications of Pruritogens in the Pathogenesis of Atopic Dermatitis. Int J Mol Sci 2021; 22:7227. [PMID: 34281281 PMCID: PMC8269281 DOI: 10.3390/ijms22137227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/17/2023] Open
Abstract
Atopic dermatitis (AD) is a prototypic inflammatory disease that presents with intense itching. The pathophysiology of AD is multifactorial, involving environmental factors, genetic susceptibility, skin barrier function, and immune responses. A recent understanding of pruritus transmission provides more information about the role of pruritogens in the pathogenesis of AD. There is evidence that pruritogens are not only responsible for eliciting pruritus, but also interact with immune cells and act as inflammatory mediators, which exacerbate the severity of AD. In this review, we discuss the interaction between pruritogens and inflammatory molecules and summarize the targeted therapies for AD.
Collapse
Affiliation(s)
- Lai-San Wong
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Yu-Ta Yen
- Department of Dermatology, Fooying University Hospital, Pingtung 928, Taiwan;
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
48
|
Middleton SJ, Barry AM, Comini M, Li Y, Ray PR, Shiers S, Themistocleous AC, Uhelski ML, Yang X, Dougherty PM, Price TJ, Bennett DL. Studying human nociceptors: from fundamentals to clinic. Brain 2021; 144:1312-1335. [PMID: 34128530 PMCID: PMC8219361 DOI: 10.1093/brain/awab048] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Allison M Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Maddalena Comini
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Yan Li
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pradipta R Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas C Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.,Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Megan L Uhelski
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Patrick M Dougherty
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
49
|
Zhou X, Du J, Qing L, Mee T, Xu X, Wang Z, Xu C, Jia X. Identification of sensory and motor nerve fascicles by immunofluorescence staining after peripheral nerve injury. J Transl Med 2021; 19:207. [PMID: 33985539 PMCID: PMC8117274 DOI: 10.1186/s12967-021-02871-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background Inappropriate matching of motor and sensory fibers after nerve repair or nerve grafting can lead to failure of nerve recovery. Identification of motor and sensory fibers is important for the development of new approaches that facilitate neural regeneration and the next generation of nerve signal-controlled neuro-prosthetic limbs with sensory feedback technology. Only a few methods have been reported to differentiate sensory and motor nerve fascicles, and the reliability of these techniques is unknown. Immunofluorescence staining is one of the most commonly used methods to distinguish sensory and motor nerve fibers, however, its accuracy remains unknown. Methods In this study, we aim to determine the efficacy of popular immunofluorescence markers for motor and sensory nerve fibers. We harvested the facial (primarily motor fascicles) and sural (primarily sensory fascicles) nerves in rats, and examined the immunofluorescent staining expressions of motor markers (choline acetyltransferase (ChAT), tyrosine kinase (TrkA)), and sensory markers [neurofilament protein 200 kDa (NF-200), calcitonin gene-related peptide (CGRP) and Transient receptor potential vanillic acid subtype 1 (TRPV1)]. Three methods, including the average area percentage, the mean gray value, and the axon count, were used to quantify the positive expression of nerve markers in the immunofluorescence images. Results Our results suggest the mean gray value method is the most reliable method. The mean gray value of immunofluorescence in ChAT (63.0 ± 0.76%) and TRKA (47.6 ± 0.43%) on the motor fascicles was significantly higher than that on the sensory fascicles (ChAT: 49.2 ± 0.72%, P < 0.001; and TRKA: 29.1 ± 0.85%, P < 0.001). Additionally, the mean gray values of TRPV1 (51.5 ± 0.83%), NF-200 (61.5 ± 0.62%) and CGRP (37.7 ± 1.22%) on the motor fascicles were significantly lower than that on the sensory fascicles respectively (71.9 ± 2.32%, 69.3 ± 0.46%, and 54.3 ± 1.04%) (P < 0.001). The most accurate cutpoint occurred using CHAT/CRCP ratio, where a value of 0.855 had 100% sensitivity and 100% specificity to identify motor and sensory nerve with an area under the ROC curve of 1.000 (P < 0.001). Conclusions A combination of ChAT and CGRP is suggested to distinguish motor and sensory nerve fibers.
Collapse
Affiliation(s)
- Xijie Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Liming Qing
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Thomas Mee
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Cynthia Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA. .,Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
50
|
Zhang Y, Zhang H, Jiang B, Tong X, Yan S, Lu J. Current views on neuropeptides in atopic dermatitis. Exp Dermatol 2021; 30:1588-1597. [PMID: 33963624 DOI: 10.1111/exd.14382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease involving skin barrier dysfunction and immune imbalance. However, the mechanism of AD is not clear completely and may be related to heredity and environment. Neuropeptides are a class of peptides secreted by nerve endings, they may play roles in promoting vasodilation, plasma extravasation, chemotaxis of inflammatory cells and mediating pruritus. Since itching and immune cell infiltration are the main manifestations of atopic dermatitis, to further investigate the impact of neuropeptides on AD, our review summarized the mechanisms of several common neuropeptides in AD and hypothesized that neuropeptides may be the novel potential targets in AD treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Hanyi Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Boyue Jiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoliang Tong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyu Yan
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|