1
|
Zheng WL, Wu Z, Hummos A, Yang GR, Halassa MM. Rapid context inference in a thalamocortical model using recurrent neural networks. Nat Commun 2024; 15:8275. [PMID: 39333467 PMCID: PMC11436643 DOI: 10.1038/s41467-024-52289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Cognitive flexibility is a fundamental ability that enables humans and animals to exhibit appropriate behaviors in various contexts. The thalamocortical interactions between the prefrontal cortex (PFC) and the mediodorsal thalamus (MD) have been identified as crucial for inferring temporal context, a critical component of cognitive flexibility. However, the neural mechanism responsible for context inference remains unknown. To address this issue, we propose a PFC-MD neural circuit model that utilizes a Hebbian plasticity rule to support rapid, online context inference. Specifically, the model MD thalamus can infer temporal contexts from prefrontal inputs within a few trials. This is achieved through the use of PFC-to-MD synaptic plasticity with pre-synaptic traces and adaptive thresholding, along with winner-take-all normalization in the MD. Furthermore, our model thalamus gates context-irrelevant neurons in the PFC, thus facilitating continual learning. We evaluate our model performance by having it sequentially learn various cognitive tasks. Incorporating an MD-like component alleviates catastrophic forgetting of previously learned contexts and demonstrates the transfer of knowledge to future contexts. Our work provides insight into how biological properties of thalamocortical circuits can be leveraged to achieve rapid context inference and continual learning.
Collapse
Affiliation(s)
- Wei-Long Zheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zhongxuan Wu
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Ali Hummos
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guangyu Robert Yang
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Altera.AL, Inc., Menlo Park, CA, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
- Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Sherman SM, Usrey WM. Transthalamic Pathways for Cortical Function. J Neurosci 2024; 44:e0909242024. [PMID: 39197951 PMCID: PMC11358609 DOI: 10.1523/jneurosci.0909-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
The cerebral cortex contains multiple, distinct areas that individually perform specific computations. A particular strength of the cortex is the communication of signals between cortical areas that allows the outputs of these compartmentalized computations to influence and build on each other, thereby dramatically increasing the processing power of the cortex and its role in sensation, action, and cognition. Determining how the cortex communicates signals between individual areas is, therefore, critical for understanding cortical function. Historically, corticocortical communication was thought to occur exclusively by direct anatomical connections between areas that often sequentially linked cortical areas in a hierarchical fashion. More recently, anatomical, physiological, and behavioral evidence is accumulating indicating a role for the higher-order thalamus in corticocortical communication. Specifically, the transthalamic pathway involves projections from one area of the cortex to neurons in the higher-order thalamus that, in turn, project to another area of the cortex. Here, we consider the evidence for and implications of having two routes for corticocortical communication with an emphasis on unique processing available in the transthalamic pathway and the consequences of disorders and diseases that affect transthalamic communication.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
3
|
Odegaard KE, Bouaichi CG, Owanga G, Vincis R. Neural Processing of Taste-Related Signals in the Mediodorsal Thalamus of Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606609. [PMID: 39149395 PMCID: PMC11326204 DOI: 10.1101/2024.08.05.606609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Our consummatory decisions depend on the taste of food and the reward experienced while eating, which are processed through neural computations in interconnected brain areas. Although many gustatory regions of rodents have been explored, the mediodorsal nucleus of the thalamus (MD) remains understudied. The MD, a multimodal brain area connected with gustatory centers, is often studied for its role in processing associative and cognitive information and has been shown to represent intraorally-delivered chemosensory stimuli after strong retronasal odor-taste associations. Key questions remain about whether MD neurons can process taste quality independently of odor-taste associations and how they represent extraoral signals predicting rewarding and aversive gustatory outcomes. Here, we present electrophysiological evidence demonstrating how mouse MD neurons represent and encode 1) the identity and concentrations of basic taste qualities during active licking, and 2) auditory signals anticipating rewarding and aversive taste outcomes. Our data reveal that MD neurons can reliably and dynamically encode taste identity in a broadly tuned manner and taste concentrations with spiking activity positively and negatively correlated with stimulus intensity. Our data also show that MD can represent information related to predictive cues and their associated outcomes, regardless of whether the cue predicts a rewarding or aversive outcome. In summary, our findings suggest that the mediodorsal thalamus is integral to the taste pathway, as it can encode sensory-discriminative dimensions of tastants and participate in processing associative information essential for ingestive behaviors.
Collapse
Affiliation(s)
- Katherine E. Odegaard
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Cecilia G. Bouaichi
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Greg Owanga
- Florida State University, Department of Mathematics
| | - Roberto Vincis
- Florida State University, Department of Biological Science, Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology
| |
Collapse
|
4
|
Lenoir M, Engeln M, Navailles S, Girardeau P, Ahmed SH. A large-scale c-Fos brain mapping study on extinction of cocaine-primed reinstatement. Neuropsychopharmacology 2024; 49:1459-1467. [PMID: 38664549 PMCID: PMC11251268 DOI: 10.1038/s41386-024-01867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 07/17/2024]
Abstract
Individuals with cocaine addiction can experience many craving episodes and subsequent relapses, which represents the main obstacle to recovery. Craving is often favored when abstinent individuals ingest a small dose of cocaine, encounter cues associated with drug use or are exposed to stressors. Using a cocaine-primed reinstatement model in rat, we recently showed that cocaine-conditioned interoceptive cues can be extinguished with repeated cocaine priming in the absence of drug reinforcement, a phenomenon we called extinction of cocaine priming. Here, we applied a large-scale c-Fos brain mapping approach following extinction of cocaine priming in male rats to identify brain regions implicated in processing the conditioned interoceptive stimuli of cocaine priming. We found that cocaine-primed reinstatement is associated with increased c-Fos expression in key brain regions (e.g., dorsal and ventral striatum, several prefrontal areas and insular cortex), while its extinction mostly disengages them. Moreover, while reinstatement behavior was correlated with insular and accumbal activation, extinction of cocaine priming implicated parts of the ventral pallidum, the mediodorsal thalamus and the median raphe. These brain patterns of activation and inhibition suggest that after repeated priming, interoceptive signals lose their conditioned discriminative properties and that action-outcome associations systems are mobilized in search for new contingencies, a brain state that may predispose to rapid relapse.
Collapse
Affiliation(s)
- Magalie Lenoir
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| | - Michel Engeln
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| | | | - Paul Girardeau
- Univ. Bordeaux, UFR des Sciences Odontologiques, Bordeaux, France
| | - Serge H Ahmed
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| |
Collapse
|
5
|
Menezes EC, Geiger H, Abreu FF, Rachmany L, Wilson DA, Alldred MJ, Castellanos FX, Fu R, Sargin D, Corvelo A, Teixeira CM. Early-life prefrontal cortex inhibition and early-life stress lead to long-lasting behavioral, transcriptional, and physiological impairments. Mol Psychiatry 2024; 29:2359-2371. [PMID: 38486048 PMCID: PMC11399324 DOI: 10.1038/s41380-024-02499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 09/01/2024]
Abstract
Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.
Collapse
Affiliation(s)
- Edênia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | | | - Fabiula F Abreu
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lital Rachmany
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Melissa J Alldred
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Francisco X Castellanos
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Rui Fu
- New York Genome Center, New York, NY, 10013, USA
| | - Derya Sargin
- Department of Psychology, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | - Cátia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Ge MJ, Chen G, Zhang ZQ, Yu ZH, Shen JX, Pan C, Han F, Xu H, Zhu XL, Lu YP. Chronic restraint stress induces depression-like behaviors and alterations in the afferent projections of medial prefrontal cortex from multiple brain regions in mice. Brain Res Bull 2024; 213:110981. [PMID: 38777132 DOI: 10.1016/j.brainresbull.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The medial prefrontal cortex (mPFC) forms output pathways through projection neurons, inversely receiving adjacent and long-range inputs from other brain regions. However, how afferent neurons of mPFC are affected by chronic stress needs to be clarified. In this study, the effects of chronic restraint stress (CRS) on the distribution density of mPFC dendrites/dendritic spines and the projections from the cortex and subcortical brain regions to the mPFC were investigated. METHODS In the present study, C57BL/6 J transgenic (Thy1-YFP-H) mice were subjected to CRS to establish an animal model of depression. The infralimbic (IL) of mPFC was selected as the injection site of retrograde AAV using stereotactic technique. The effects of CRS on dendrites/dendritic spines and afferent neurons of the mPFC IL were investigaed by quantitatively assessing the distribution density of green fluorescent (YFP) positive dendrites/dendritic spines and red fluorescent (retrograde AAV recombinant protein) positive neurons, respectively. RESULTS The results revealed that retrograde tracing virus labeled neurons were widely distributed in ipsilateral and contralateral cingulate cortex (Cg1), second cingulate cortex (Cg2), prelimbic cortex (PrL), infralimbic cortex, medial orbital cortex (MO), and dorsal peduncular cortex (DP). The effects of CRS on the distribution density of mPFC red fluorescence positive neurons exhibited regional differences, ranging from rostral to caudal or from top to bottom. Simultaneously, CRS resulted a decrease in the distribution density of basal, proximal and distal dendrites, as well as an increase in the loss of dendritic spines of the distal dendrites in the IL of mPFC. Furthermore, varying degrees of red retrograde tracing virus fluorescence signals were observed in other cortices, amygdala, hippocampus, septum/basal forebrain, hypothalamus, thalamus, mesencephalon, and brainstem in both ipsilateral and contralateral brain. CRS significantly reduced the distribution density of red fluorescence positive neurons in other cortices, hippocampus, septum/basal forebrain, hypothalamus, and thalamus. Conversely, CRS significantly increased the distribution density of red fluorescence positive neurons in amygdala. CONCLUSION Our results suggest a possible mechanism that CRS leads to disturbances in synaptic plasticity by affecting multiple inputs to the mPFC, which is characterized by a decrease in the distribution density of dendrites/dendritic spines in the IL of mPFC and a reduction in input neurons of multiple cortices to the IL of mPFC as well as an increase in input neurons of amygdala to the IL of mPFC, ultimately causing depression-like behaviors.
Collapse
Affiliation(s)
- Ming-Jun Ge
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Geng Chen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Zhen-Qiang Zhang
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Zong-Hao Yu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Jun-Xian Shen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Chuan Pan
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Fei Han
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Hui Xu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Anhui College of Traditional Chinese Medicine, No. 18 Wuxiashan West Road, Wuhu 241002, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Department of Anatomy, Wannan Medical College, No. 22 Wenchang West Road, Wuhu 241002, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China.
| |
Collapse
|
7
|
Yoshimoto A, Morikawa S, Kato E, Takeuchi H, Ikegaya Y. Top-down brain circuits for operant bradycardia. Science 2024; 384:1361-1368. [PMID: 38900870 DOI: 10.1126/science.adl3353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Heart rate (HR) can be voluntarily regulated when individuals receive real-time feedback. In a rat model of HR biofeedback, the neocortex and medial forebrain bundle were stimulated as feedback and reward, respectively. The rats reduced their HR within 30 minutes, achieving a reduction of approximately 50% after 5 days of 3-hour feedback. The reduced HR persisted for at least 10 days after training while the rats exhibited anxiolytic behavior and an elevation in blood erythrocyte count. This bradycardia was prevented by inactivating anterior cingulate cortical (ACC) neurons projecting to the ventromedial thalamic nucleus (VMT). Theta-rhythm stimulation of the ACC-to-VMT pathway replicated the bradycardia. VMT neurons projected to the dorsomedial hypothalamus (DMH) and DMH neurons projected to the nucleus ambiguus, which innervates parasympathetic neurons in the heart.
Collapse
Affiliation(s)
- Airi Yoshimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shota Morikawa
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Eriko Kato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruki Takeuchi
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Patterson RA, Brooks H, Mirjalili M, Rashidi-Ranjbar N, Zomorrodi R, Blumberger DM, Fischer CE, Flint AJ, Graff-Guerrero A, Herrmann N, Kennedy JL, Kumar S, Lanctôt KL, Mah L, Mulsant BH, Pollock BG, Voineskos AN, Wang W, Rajji TK. Neurophysiological and other features of working memory in older adults at risk for dementia. Cogn Neurodyn 2024; 18:795-811. [PMID: 38826646 PMCID: PMC11143125 DOI: 10.1007/s11571-023-09938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Theta-gamma coupling (TGC) is a neurophysiological process that supports working memory. Working memory is associated with other clinical and biological features. The extent to which TGC is associated with these other features and whether it contributes to working memory beyond these features is unknown. Two-hundred-and-three older participants at risk for Alzheimer's dementia-98 with mild cognitive impairment (MCI), 39 with major depressive disorder (MDD) in remission, and 66 with MCI and MDD (MCI + MDD)-completed a clinical assessment, N-back-EEG, and brain MRI. Among them, 190 completed genetic testing, and 121 completed [11C] Pittsburgh Compound B ([11C] PIB) PET imaging. Hierarchical linear regressions were used to assess whether TGC is associated with demographic and clinical variables; Alzheimer's disease-related features (APOE ε4 carrier status and β-amyloid load); and structural features related to working memory. Then, linear regressions were used to assess whether TGC is associated with 2-back performance after accounting for these features. Other than age, TGC was not associated with any non-neurophysiological features. In contrast, TGC (β = 0.27; p = 0.006), age (β = - 0.29; p = 0.012), and parietal cortical thickness (β = 0.24; p = 0.020) were associated with 2-back performance. We also examined two other EEG features that are linked to working memory-theta event-related synchronization and alpha event-related desynchronization-and found them not to be associated with any feature or performance after accounting for TGC. Our findings suggest that TGC is a process that is independent of other clinical, genetic, neurochemical, and structural variables, and supports working memory in older adults at risk for dementia. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09938-y.
Collapse
Affiliation(s)
| | - Heather Brooks
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Mina Mirjalili
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | | | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Daniel M. Blumberger
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON M6J 1H1 Canada
| | - Corinne E. Fischer
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B, 1T8 Canada
| | - Alastair J. Flint
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- University Health Network, Toronto, ON M5G 1L7 Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Nathan Herrmann
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Sunnybrook Health Sciences Centre, ON M4N 3M5 Toronto, Canada
| | - James L. Kennedy
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Sanjeev Kumar
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| | - Krista L. Lanctôt
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Sunnybrook Health Sciences Centre, ON M4N 3M5 Toronto, Canada
| | - Linda Mah
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Rotman Research Institute, Baycrest, Toronto, ON M6A 2E1 Canada
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON M6J 1H1 Canada
| | - Bruce G. Pollock
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| | - Aristotle N. Voineskos
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Wei Wang
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Tarek K. Rajji
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| |
Collapse
|
9
|
Lyuboslavsky P, Ordemann GJ, Kizimenko A, Brumback AC. Two contrasting mediodorsal thalamic circuits target the mouse medial prefrontal cortex. J Neurophysiol 2024; 131:876-890. [PMID: 38568510 PMCID: PMC11383385 DOI: 10.1152/jn.00456.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 05/09/2024] Open
Abstract
At the heart of the prefrontal network is the mediodorsal (MD) thalamus. Despite the importance of MD in a broad range of behaviors and neuropsychiatric disorders, little is known about the physiology of neurons in MD. We injected the retrograde tracer cholera toxin subunit B (CTB) into the medial prefrontal cortex (mPFC) of adult wild-type mice. We prepared acute brain slices and used current clamp electrophysiology to measure and compare the intrinsic properties of the neurons in MD that project to mPFC (MD→mPFC neurons). We show that MD→mPFC neurons are located predominantly in the medial (MD-M) and lateral (MD-L) subnuclei of MD. MD-L→mPFC neurons had shorter membrane time constants and lower membrane resistance than MD-M→mPFC neurons. Relatively increased hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity in MD-L neurons accounted for the difference in membrane resistance. MD-L neurons had a higher rheobase that resulted in less readily generated action potentials compared with MD-M→mPFC neurons. In both cell types, HCN channels supported generation of burst spiking. Increased HCN channel activity in MD-L neurons results in larger after-hyperpolarization potentials compared with MD-M neurons. These data demonstrate that the two populations of MD→mPFC neurons have divergent physiologies and support a differential role in thalamocortical information processing and potentially behavior.NEW & NOTEWORTHY To realize the potential of circuit-based therapies for psychiatric disorders that localize to the prefrontal network, we need to understand the properties of the populations of neurons that make up this network. The mediodorsal (MD) thalamus has garnered attention for its roles in executive functioning and social/emotional behaviors mediated, at least in part, by its projections to the medial prefrontal cortex (mPFC). Here, we identify and compare the physiology of the projection neurons in the two MD subnuclei that provide ascending inputs to mPFC in mice. Differences in intrinsic excitability between the two populations of neurons suggest that neuromodulation strategies targeting the prefrontal thalamocortical network will have differential effects on these two streams of thalamic input to mPFC.
Collapse
Affiliation(s)
- Polina Lyuboslavsky
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| | - Gregory J Ordemann
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| | - Alena Kizimenko
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| | - Audrey C Brumback
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
10
|
Soto NN, Gaspar P, Bacci A. Not Just a Mood Disorder─Is Depression a Neurodevelopmental, Cognitive Disorder? Focus on Prefronto-Thalamic Circuits. ACS Chem Neurosci 2024; 15:1611-1618. [PMID: 38580316 PMCID: PMC11027097 DOI: 10.1021/acschemneuro.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
Depression is one of the most burdensome psychiatric disorders, affecting hundreds of millions of people worldwide. The disease is characterized not only by severe emotional and affective impairments, but also by disturbed vegetative and cognitive functions. Although many candidate mechanisms have been proposed to cause the disease, the pathophysiology of cognitive impairments in depression remains unclear. In this article, we aim to assess the link between cognitive alterations in depression and possible developmental changes in neuronal circuit wiring during critical periods of susceptibility. We review the existing literature and propose a role of serotonin signaling during development in shaping the functional states of prefrontal neuronal circuits and prefronto-thalamic loops. We discuss how early life insults affecting the serotonergic system could be important in the alterations of these local and long-range circuits, thus favoring the emergence of neurodevelopmental disorders, such as depression.
Collapse
Affiliation(s)
- Nina Nitzan Soto
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| | - Patricia Gaspar
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| | - Alberto Bacci
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| |
Collapse
|
11
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
12
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Wolff M, Halassa MM. The mediodorsal thalamus in executive control. Neuron 2024; 112:893-908. [PMID: 38295791 DOI: 10.1016/j.neuron.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024]
Abstract
Executive control, the ability to organize thoughts and action plans in real time, is a defining feature of higher cognition. Classical theories have emphasized cortical contributions to this process, but recent studies have reinvigorated interest in the role of the thalamus. Although it is well established that local thalamic damage diminishes cognitive capacity, such observations have been difficult to inform functional models. Recent progress in experimental techniques is beginning to enrich our understanding of the anatomical, physiological, and computational substrates underlying thalamic engagement in executive control. In this review, we discuss this progress and particularly focus on the mediodorsal thalamus, which regulates the activity within and across frontal cortical areas. We end with a synthesis that highlights frontal thalamocortical interactions in cognitive computations and discusses its functional implications in normal and pathological conditions.
Collapse
Affiliation(s)
- Mathieu Wolff
- University of Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France.
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
Flynn LT, Bouras NN, Migovich VM, Clarin JD, Gao WJ. The "psychiatric" neuron: the psychic neuron of the cerebral cortex, revisited. Front Hum Neurosci 2024; 18:1356674. [PMID: 38562227 PMCID: PMC10982399 DOI: 10.3389/fnhum.2024.1356674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Nearly 25 years ago, Dr. Patricia Goldman-Rakic published her review paper, "The 'Psychic' Neuron of the Cerebral Cortex," outlining the circuit-level dynamics, neurotransmitter systems, and behavioral correlates of pyramidal neurons in the cerebral cortex, particularly as they relate to working memory. In the decades since the release of this paper, the existing literature and our understanding of the pyramidal neuron have increased tremendously, and research is still underway to better characterize the role of the pyramidal neuron in both healthy and psychiatric disease states. In this review, we revisit Dr. Goldman-Rakic's characterization of the pyramidal neuron, focusing on the pyramidal neurons of the prefrontal cortex (PFC) and their role in working memory. Specifically, we examine the role of PFC pyramidal neurons in the intersection of working memory and social function and describe how deficits in working memory may actually underlie the pathophysiology of social dysfunction in psychiatric disease states. We briefly describe the cortico-cortical and corticothalamic connections between the PFC and non-PFC brain regions, as well the microcircuit dynamics of the pyramidal neuron and interneurons, and the role of both these macro- and microcircuits in the maintenance of the excitatory/inhibitory balance of the cerebral cortex for working memory function. Finally, we discuss the consequences to working memory when pyramidal neurons and their circuits are dysfunctional, emphasizing the resulting social deficits in psychiatric disease states with known working memory dysfunction.
Collapse
Affiliation(s)
- L. Taylor Flynn
- Department of Neurobiology, Drexel University College of Medicine, Philadelphia, PA, United States
- Drexel University College of Medicine, Philadelphia, PA, United States
| | - Nadia N. Bouras
- Department of Neurobiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Volodar M. Migovich
- Department of Neurobiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jacob D. Clarin
- Department of Neurobiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Wen-Jun Gao
- Department of Neurobiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
15
|
Xiao H, Xi K, Wang K, Zhou Y, Dong B, Xie J, Xie Y, Zhang H, Ma G, Wang W, Feng D, Guo B, Wu S. Restoring the Function of Thalamocortical Circuit Through Correcting Thalamic Kv3.2 Channelopathy Normalizes Fear Extinction Impairments in a PTSD Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305939. [PMID: 38102998 PMCID: PMC10916658 DOI: 10.1002/advs.202305939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Impaired extinction of fear memory is one of the most common symptoms in post-traumatic stress disorder (PTSD), with limited therapeutic strategies due to the poor understanding of its underlying neural substrates. In this study, functional screening is performed and identified hyperactivity in the mediodorsal thalamic nucleus (MD) during fear extinction. Furthermore, the encoding patterns of the hyperactivated MD is investigated during persistent fear responses using multiple machine learning algorithms. The anterior cingulate cortex (ACC) is also identified as a functional downstream region of the MD that mediates the extinction of fear memory. The thalamocortical circuit is comprehensively analyzed and found that the MD-ACC parvalbumin interneurons circuit is preferentially enhanced in PTSD mice, disrupting the local excitatory and inhibitory balance. It is found that decreased phosphorylation of the Kv3.2 channel contributed to the hyperactivated MD, primarily to the malfunctioning thalamocortical circuit. Using a lipid nanoparticle-based RNA therapy strategy, channelopathy is corrected via a methoxylated siRNA targeting the protein phosphatase 6 catalytic subunit and restored fear memory extinction in PTSD mice. These findings highlight the function of the thalamocortical circuit in PTSD-related impaired extinction of fear memory and provide therapeutic insights into Kv3.2-targeted RNA therapy for PTSD.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaiwen Xi
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaifang Wang
- Department of AnesthesiologyTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Yongsheng Zhou
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Eastern Theater Air Force Hospital of PLANanjing210000China
| | - Baowen Dong
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Jinyi Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Yuqiao Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Haifeng Zhang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Guaiguai Ma
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wenting Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Baolin Guo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Shengxi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
16
|
Zhou T, Ho YY, Lee RX, Fath AB, He K, Scott J, Bajwa N, Hartley ND, Wilde J, Gao X, Li C, Hong E, Nassar MR, Wimmer RD, Singh T, Halassa MM, Feng G. Enhancement of mediodorsal thalamus rescues aberrant belief dynamics in a mouse model with schizophrenia-associated mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574745. [PMID: 38260581 PMCID: PMC10802391 DOI: 10.1101/2024.01.08.574745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Optimizing behavioral strategy requires belief updating based on new evidence, a process that engages higher cognition. In schizophrenia, aberrant belief dynamics may lead to psychosis, but the mechanisms underlying this process are unknown, in part, due to lack of appropriate animal models and behavior readouts. Here, we address this challenge by taking two synergistic approaches. First, we generate a mouse model bearing patient-derived point mutation in Grin2a (Grin2aY700X+/-), a gene that confers high-risk for schizophrenia and recently identified by large-scale exome sequencing. Second, we develop a computationally trackable foraging task, in which mice form and update belief-driven strategies in a dynamic environment. We found that Grin2aY700X+/- mice perform less optimally than their wild-type (WT) littermates, showing unstable behavioral states and a slower belief update rate. Using functional ultrasound imaging, we identified the mediodorsal (MD) thalamus as hypofunctional in Grin2aY700X+/- mice, and in vivo task recordings showed that MD neurons encoded dynamic values and behavioral states in WT mice. Optogenetic inhibition of MD neurons in WT mice phenocopied Grin2aY700X+/- mice, and enhancing MD activity rescued task deficits in Grin2aY700X+/- mice. Together, our study identifies the MD thalamus as a key node for schizophrenia-relevant cognitive dysfunction, and a potential target for future therapeutics.
Collapse
Affiliation(s)
- Tingting Zhou
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Yi-Yun Ho
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Ray X Lee
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Amanda B Fath
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Kathleen He
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Jonathan Scott
- Department of Neuroscience, Tufts University School of Medicine
| | - Navdeep Bajwa
- Department of Neuroscience, Tufts University School of Medicine
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard
| | - Jonathan Wilde
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Xian Gao
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Cui Li
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Evan Hong
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | | | - Ralf D Wimmer
- Department of Neuroscience, Tufts University School of Medicine
| | - Tarjinder Singh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard
| | | | - Guoping Feng
- Yang Tan Collection and McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard
| |
Collapse
|
17
|
Mukherjee A, Halassa MM. The Associative Thalamus: A Switchboard for Cortical Operations and a Promising Target for Schizophrenia. Neuroscientist 2024; 30:132-147. [PMID: 38279699 PMCID: PMC10822032 DOI: 10.1177/10738584221112861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Schizophrenia is a brain disorder that profoundly perturbs cognitive processing. Despite the success in treating many of its symptoms, the field lacks effective methods to measure and address its impact on reasoning, inference, and decision making. Prefrontal cortical abnormalities have been well documented in schizophrenia, but additional dysfunction in the interactions between the prefrontal cortex and thalamus have recently been described. This dysfunction may be interpreted in light of parallel advances in neural circuit research based on nonhuman animals, which show critical thalamic roles in maintaining and switching prefrontal activity patterns in various cognitive tasks. Here, we review this basic literature and connect it to emerging innovations in clinical research. We highlight the value of focusing on associative thalamic structures not only to better understand the very nature of cognitive processing but also to leverage these circuits for diagnostic and therapeutic development in schizophrenia. We suggest that the time is right for building close bridges between basic thalamic research and its clinical translation, particularly in the domain of cognition and schizophrenia.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael M Halassa
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Sohal VS. Neurobiology of schizophrenia. Curr Opin Neurobiol 2024; 84:102820. [PMID: 38091860 DOI: 10.1016/j.conb.2023.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 02/18/2024]
Affiliation(s)
- Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
19
|
Lin S, Zhang C, Zhang Y, Chen S, Lin X, Peng B, Xu Z, Hou G, Qiu Y. Shared and specific neurobiology in bipolar disorder and unipolar disorder: Evidence based on the connectome gradient and a transcriptome-connectome association study. J Affect Disord 2023; 341:304-312. [PMID: 37661059 DOI: 10.1016/j.jad.2023.08.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Distinguishing bipolar disorder (BD) and unipolar disorder (UD) remains challenging. To identify the common and diagnosis-specific neuropathological alterations and their potential molecular mechanisms in patients with UD and BD (with a current depressive episode). METHODS Resting-state functional magnetic resonance imaging was obtained from 279 participants (95 BD patients, 107 UD patients and 77 health controls). Connectome gradients analysis was performed to explore the shared and diagnosis-specific gradient alterations in BD and UD. The Allen Human Brain Atlas data was used to explore the potential gene mechanisms of the gradient alterations. RESULTS BD and UD had shared hierarchical disorganisation, including downgrading and contraction from the unimodal sensory networks (vision and sensorimotor) to the transmodal cognitive networks (limbic, frontoparietal, dorsal attention, and default) (all P < 0.05, FDR corrected) in gradient 1 and gradient 2. The BD patients had specific connectome gradient dysfunction in the subcortical network. Moreover, the hierarchical disorganisation was closely correlated with profiles of gene expression specific to the neuroglial cells in the prefrontal cortex in BD and UD, while the most correlated gene ontology biological processes and function were concentrated in synaptic signalling, calcium ion binding, and transmembrane transporter activity. CONCLUSION These findings reveal the shared and diagnosis-specific neurobiological mechanism underlying BD and UD patients, which advances our understanding of the neuromechanisms of these disorders.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Chao Zhang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yingli Zhang
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Bo Peng
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Ziyun Xu
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China.
| |
Collapse
|
20
|
Mengxing L, Lerma-Usabiaga G, Clascá F, Paz-Alonso PM. High-Resolution Tractography Protocol to Investigate the Pathways between Human Mediodorsal Thalamic Nucleus and Prefrontal Cortex. J Neurosci 2023; 43:7780-7798. [PMID: 37709539 PMCID: PMC10648582 DOI: 10.1523/jneurosci.0721-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Animal studies have established that the mediodorsal nucleus (MD) of the thalamus is heavily and reciprocally connected with all areas of the prefrontal cortex (PFC). In humans, however, these connections are difficult to investigate. High-resolution imaging protocols capable of reliably tracing the axonal tracts linking the human MD with each of the PFC areas may thus be key to advance our understanding of the variation, development, and plastic changes of these important circuits, in health and disease. Here, we tested in adult female and male humans the reliability of a new reconstruction protocol based on in vivo diffusion MRI to trace, measure, and characterize the fiber tracts interconnecting the MD with 39 human PFC areas per hemisphere. Our protocol comprised the following three components: (1) defining regions of interest; (2) preprocessing diffusion data; and, (3) modeling white matter tracts and tractometry. This analysis revealed largely separate PFC territories of reciprocal MD-PFC tracts bearing striking resemblance with the topographic layout observed in macaque connection-tracing studies. We then examined whether our protocol could reliably reconstruct each of these MD-PFC tracts and their profiles across test and retest sessions. Results revealed that this protocol was able to trace and measure, in both left and right hemispheres, the trajectories of these 39 area-specific axon bundles with good-to-excellent test-retest reproducibility. This protocol, which has been made publicly available, may be relevant for cognitive neuroscience and clinical studies of normal and abnormal PFC function, development, and plasticity.SIGNIFICANCE STATEMENT Reciprocal MD-PFC interactions are critical for complex human cognition and learning. Reliably tracing, measuring and characterizing MD-PFC white matter tracts using high-resolution noninvasive methods is key to assess individual variation of these systems in humans. Here, we propose a high-resolution tractography protocol that reliably reconstructs 39 area-specific MD-PFC white matter tracts per hemisphere and quantifies structural information from diffusion MRI data. This protocol revealed a detailed mapping of thalamocortical and corticothalamic MD-PFC tracts in four different PFC territories (dorsal, medial, orbital/frontal pole, inferior frontal) showing structural connections resembling those observed in tracing studies with macaques. Furthermore, our automated protocol revealed high test-retest reproducibility and is made publicly available, constituting a step forward in mapping human MD-PFC circuits in clinical and academic research.
Collapse
Affiliation(s)
- Liu Mengxing
- Basque Center on Cognition, Brain and Language, 20009 Donostia-San Sebastián, Spain
| | - Garikoitz Lerma-Usabiaga
- Basque Center on Cognition, Brain and Language, 20009 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Francisco Clascá
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma de Madrid University, 28029 Madrid, Spain
| | - Pedro M Paz-Alonso
- Basque Center on Cognition, Brain and Language, 20009 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
21
|
Nagy-Pál P, Veres JM, Fekete Z, Karlócai MR, Weisz F, Barabás B, Reéb Z, Hájos N. Structural Organization of Perisomatic Inhibition in the Mouse Medial Prefrontal Cortex. J Neurosci 2023; 43:6972-6987. [PMID: 37640552 PMCID: PMC10586541 DOI: 10.1523/jneurosci.0432-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Perisomatic inhibition profoundly controls neural function. However, the structural organization of inhibitory circuits giving rise to the perisomatic inhibition in the higher-order cortices is not completely known. Here, we performed a comprehensive analysis of those GABAergic cells in the medial prefrontal cortex (mPFC) that provide inputs onto the somata and proximal dendrites of pyramidal neurons. Our results show that most GABAergic axonal varicosities contacting the perisomatic region of superficial (layer 2/3) and deep (layer 5) pyramidal cells express parvalbumin (PV) or cannabinoid receptor type 1 (CB1). Further, we found that the ratio of PV/CB1 GABAergic inputs is larger on the somatic membrane surface of pyramidal tract neurons in comparison with those projecting to the contralateral hemisphere. Our morphologic analysis of in vitro labeled PV+ basket cells (PVBC) and CCK/CB1+ basket cells (CCKBC) revealed differences in many features. PVBC dendrites and axons arborized preferentially within the layer where their soma was located. In contrast, the axons of CCKBCs expanded throughout layers, although their dendrites were found preferentially either in superficial or deep layers. Finally, using anterograde trans-synaptic tracing we observed that PVBCs are preferentially innervated by thalamic and basal amygdala afferents in layers 5a and 5b, respectively. Thus, our results suggest that PVBCs can control the local circuit operation in a layer-specific manner via their characteristic arborization, whereas CCKBCs rather provide cross-layer inhibition in the mPFC.SIGNIFICANCE STATEMENT Inhibitory cells in cortical circuits are crucial for the precise control of local network activity. Nevertheless, in higher-order cortical areas that are involved in cognitive functions like decision-making, working memory, and cognitive flexibility, the structural organization of inhibitory cell circuits is not completely understood. In this study we show that perisomatic inhibitory control of excitatory cells in the medial prefrontal cortex is performed by two types of basket cells endowed with different morphologic properties that provide inhibitory inputs with distinct layer specificity on cells projecting to disparate areas. Revealing this difference in innervation strategy of the two basket cell types is a key step toward understanding how they fulfill their distinct roles in cortical network operations.
Collapse
Affiliation(s)
- Petra Nagy-Pál
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Judit M Veres
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsuzsanna Fekete
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Mária R Karlócai
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Filippo Weisz
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bence Barabás
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Reéb
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Norbert Hájos
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, Indiana 47405
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana 47405
| |
Collapse
|
22
|
Collomb-Clerc A, Gueguen MCM, Minotti L, Kahane P, Navarro V, Bartolomei F, Carron R, Regis J, Chabardès S, Palminteri S, Bastin J. Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning. Nat Commun 2023; 14:6534. [PMID: 37848435 PMCID: PMC10582006 DOI: 10.1038/s41467-023-42380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Reinforcement-based adaptive decision-making is believed to recruit fronto-striatal circuits. A critical node of the fronto-striatal circuit is the thalamus. However, direct evidence of its involvement in human reinforcement learning is lacking. We address this gap by analyzing intra-thalamic electrophysiological recordings from eight participants while they performed a reinforcement learning task. We found that in both the anterior thalamus (ATN) and dorsomedial thalamus (DMTN), low frequency oscillations (LFO, 4-12 Hz) correlated positively with expected value estimated from computational modeling during reward-based learning (after outcome delivery) or punishment-based learning (during the choice process). Furthermore, LFO recorded from ATN/DMTN were also negatively correlated with outcomes so that both components of reward prediction errors were signaled in the human thalamus. The observed differences in the prediction signals between rewarding and punishing conditions shed light on the neural mechanisms underlying action inhibition in punishment avoidance learning. Our results provide insight into the role of thalamus in reinforcement-based decision-making in humans.
Collapse
Affiliation(s)
- Antoine Collomb-Clerc
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Maëlle C M Gueguen
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Lorella Minotti
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Fabrice Bartolomei
- Timone University Hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, University Hospital of Marseille, Marseille, France
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
| | - Romain Carron
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
- Timone University Hospital, Department of functional and stereotactic neurosurgery, University Hospital of Marseille, Marseille, France
| | - Jean Regis
- Neurosurgery Department, University Hospital of Marseille, Marseille, France
| | - Stephan Chabardès
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurosurgery Department, University Hospital of Grenoble, Grenoble, France
| | - Stefano Palminteri
- Laboratoire de Neurosciences Cognitives Computationnelles, Département d'Etudes Cognitives, ENS, PSL, INSERM, Paris, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
23
|
Venkatesh P, Wolfe C, Lega B. Neuromodulation of the anterior thalamus: Current approaches and opportunities for the future. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100109. [PMID: 38020810 PMCID: PMC10663132 DOI: 10.1016/j.crneur.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
The role of thalamocortical circuits in memory has driven a recent burst of scholarship, especially in animal models. Investigating this circuitry in humans is more challenging. And yet, the development of new recording and stimulation technologies deployed for clinical indications has created novel opportunities for data collection to elucidate the cognitive roles of thalamic structures. These technologies include stereoelectroencephalography (SEEG), deep brain stimulation (DBS), and responsive neurostimulation (RNS), all of which have been applied to memory-related thalamic regions, specifically for seizure localization and treatment. This review seeks to summarize the existing applications of neuromodulation of the anterior thalamic nuclei (ANT) and highlight several devices and their capabilities that can allow cognitive researchers to design experiments to assay its functionality. Our goal is to introduce to investigators, who may not be familiar with these clinical devices, the capabilities, and limitations of these tools for understanding the neurophysiology of the ANT as it pertains to memory and other behaviors. We also briefly cover the targeting of other thalamic regions including the centromedian (CM) nucleus, dorsomedial (DM) nucleus, and pulvinar, with associated potential avenues of experimentation.
Collapse
Affiliation(s)
- Pooja Venkatesh
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | | |
Collapse
|
24
|
de Mooij-van Malsen JG, Röhrdanz N, Buschhoff AS, Schiffelholz T, Sigurdsson T, Wulff P. Task-specific oscillatory synchronization of prefrontal cortex, nucleus reuniens, and hippocampus during working memory. iScience 2023; 26:107532. [PMID: 37636046 PMCID: PMC10450413 DOI: 10.1016/j.isci.2023.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/04/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Working memory requires maintenance of and executive control over task-relevant information on a timescale of seconds. Spatial working memory depends on interactions between hippocampus, for the representation of space, and prefrontal cortex, for executive control. A monosynaptic hippocampal projection to the prefrontal cortex has been proposed to serve this interaction. However, connectivity and inactivation experiments indicate a critical role of the nucleus reuniens in hippocampal-prefrontal communication. We have investigated the dynamics of oscillatory coherence throughout the prefrontal-hippocampal-reuniens network in a touchscreen-based working memory task. We found that coherence at distinct frequencies evolved depending on phase and difficulty of the task. During choice, the reuniens did not participate in enhanced prefrontal-hippocampal theta but in gamma coherence. Strikingly, the reuniens was strongly embedded in performance-related increases in beta coherence, suggesting the execution of top-down control. In addition, we show that during working memory maintenance the prefrontal-hippocampal-reuniens network displays performance-related delay activity.
Collapse
Affiliation(s)
| | - Niels Röhrdanz
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Thomas Schiffelholz
- Center of Integrative Psychiatry, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Peer Wulff
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
25
|
Soteros BM, Tillmon H, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Heterogeneous complement and microglia activation mediates stress-induced synapse loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546889. [PMID: 37425856 PMCID: PMC10327081 DOI: 10.1101/2023.06.28.546889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the mouse medial prefrontal cortex (mPFC). Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (ApoE high ) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the ApoE high microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
|
26
|
Ramsay IS, Mueller B, Ma Y, Shen C, Sponheim SR. Thalamocortical connectivity and its relationship with symptoms and cognition across the psychosis continuum. Psychol Med 2023; 53:5582-5591. [PMID: 36047043 DOI: 10.1017/s0033291722002793] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Coordination between the thalamus and cortex is necessary for efficient processing of sensory information and appears disrupted in schizophrenia. The significance of this disrupted coordination (i.e. thalamocortical dysconnectivity) to the symptoms and cognitive deficits of schizophrenia is unclear. It is also unknown whether similar dysconnectivity is observed in other forms of psychotic psychopathology and associated with familial risk for psychosis. Here we examine the relevance of thalamocortical connectivity to the clinical symptoms and cognition of patients with psychotic psychopathology, their first-degree biological relatives, and a group of healthy controls. METHOD Patients with a schizophrenia-spectrum diagnosis (N = 100) or bipolar disorder with a history of psychosis (N = 33), their first-degree relatives (N = 73), and a group of healthy controls (N = 43) underwent resting functional MRI in addition to clinical and cognitive assessments as part of the Psychosis Human Connectome Project. A bilateral mediodorsal thalamus seed-based analysis was used to measure thalamocortical connectivity and test for group differences, as well as associations with symptomatology and cognition. RESULTS Reduced connectivity from mediodorsal thalamus to insular, orbitofrontal, and cerebellar regions was seen in schizophrenia. Across groups, greater symptomatology was related to less thalamocortical connectivity to the left middle frontal gyrus, anterior cingulate, right insula, and cerebellum. Poorer cognition was related to less thalamocortical connectivity to bilateral insula. Analyses revealed similar patterns of dysconnectivity across patient groups and their relatives. CONCLUSIONS Reduced thalamo-prefrontal-cerebellar and thalamo-insular connectivity may contribute to clinical symptomatology and cognitive deficits in patients with psychosis as well as individuals with familial risk for psychotic psychopathology.
Collapse
Affiliation(s)
- Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Bryon Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Yizhou Ma
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Catonsville, MD, USA
| | - Chen Shen
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Healthcare System, Minneapolis, MN, USA
| |
Collapse
|
27
|
Ha M, Park SH, Park I, Kim T, Lee J, Kim M, Kwon JS. Aberrant cortico-thalamo-cerebellar network interactions and their association with impaired cognitive functioning in patients with schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:50. [PMID: 37573437 PMCID: PMC10423253 DOI: 10.1038/s41537-023-00375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/04/2023] [Indexed: 08/14/2023]
Abstract
Evidence indicating abnormal functional connectivity (FC) among the cortex, thalamus, and cerebellum in schizophrenia patients has increased. However, the role of the thalamus and cerebellum when integrated into intrinsic networks and how those integrated networks interact in schizophrenia patients are largely unknown. We generated an integrative network map by merging thalamic and cerebellar network maps, which were parcellated using a winner-take-all approach, onto a cortical network map. Using cognitive networks, the default mode network (DMN), the dorsal attention network (DAN), the salience network (SAL), and the central executive network (CEN) as regions of interest, the FC of 48 schizophrenia patients was compared with that of 57 healthy controls (HCs). The association between abnormal FC and cognitive impairment was also investigated in patients. FC was lower between the SAL-CEN, SAL-DMN, and DMN-CEN and within-CEN in schizophrenia patients than in HCs. Hypoconnectivity between the DMN-CEN was correlated with impaired cognition in schizophrenia patients. Our findings broadly suggest the plausible role of the thalamus and cerebellum in integrative intrinsic networks in patients, which may contribute to the disrupted triple network and cognitive dysmetria in schizophrenia.
Collapse
Affiliation(s)
- Minji Ha
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Soo Hwan Park
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Inkyung Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jungha Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Jayachandran M, Viena TD, Garcia A, Veliz AV, Leyva S, Roldan V, Vertes RP, Allen TA. Nucleus reuniens transiently synchronizes memory networks at beta frequencies. Nat Commun 2023; 14:4326. [PMID: 37468487 PMCID: PMC10356781 DOI: 10.1038/s41467-023-40044-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Episodic memory-based decision-making requires top-down medial prefrontal cortex and hippocampal interactions. This integrated prefrontal-hippocampal memory state is thought to be organized by synchronized network oscillations and mediated by connectivity with the thalamic nucleus reuniens (RE). Whether and how the RE synchronizes prefrontal-hippocampal networks in memory, however, remains unknown. Here, we recorded local field potentials from the prefrontal-RE-hippocampal network while rats engaged in a nonspatial sequence memory task, thereby isolating memory-related activity from running-related oscillations. We found that synchronous prefrontal-hippocampal beta bursts (15-30 Hz) dominated during memory trials, whereas synchronous theta activity (6-12 Hz) dominated during non-memory-related running. Moreover, RE beta activity appeared first, followed by prefrontal and hippocampal synchronized beta, suggesting that prefrontal-hippocampal beta could be driven by the RE. To test whether the RE is capable of driving prefrontal-hippocampal beta synchrony, we used an optogenetic approach (retroAAV-ChR2). RE activation induced prefrontal-hippocampal beta coherence and reduced theta coherence, matching the observed memory-driven network state in the sequence task. These findings are the first to demonstrate that the RE contributes to memory by driving transient synchronized beta in the prefrontal-hippocampal system, thereby facilitating interactions that underlie memory-based decision-making.
Collapse
Affiliation(s)
- Maanasa Jayachandran
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Tatiana D Viena
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Andy Garcia
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Abdiel Vasallo Veliz
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Sofia Leyva
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Valentina Roldan
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA.
- Department of Environmental & Occupational Health, Robert Stempel College of Public Health, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
29
|
Heald JB, Wolpert DM, Lengyel M. The Computational and Neural Bases of Context-Dependent Learning. Annu Rev Neurosci 2023; 46:233-258. [PMID: 36972611 PMCID: PMC10348919 DOI: 10.1146/annurev-neuro-092322-100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Flexible behavior requires the creation, updating, and expression of memories to depend on context. While the neural underpinnings of each of these processes have been intensively studied, recent advances in computational modeling revealed a key challenge in context-dependent learning that had been largely ignored previously: Under naturalistic conditions, context is typically uncertain, necessitating contextual inference. We review a theoretical approach to formalizing context-dependent learning in the face of contextual uncertainty and the core computations it requires. We show how this approach begins to organize a large body of disparate experimental observations, from multiple levels of brain organization (including circuits, systems, and behavior) and multiple brain regions (most prominently the prefrontal cortex, the hippocampus, and motor cortices), into a coherent framework. We argue that contextual inference may also be key to understanding continual learning in the brain. This theory-driven perspective places contextual inference as a core component of learning.
Collapse
Affiliation(s)
- James B Heald
- Department of Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; ,
| | - Daniel M Wolpert
- Department of Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; ,
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom;
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom;
- Center for Cognitive Computation, Department of Cognitive Science, Central European University, Budapest, Hungary
| |
Collapse
|
30
|
Rassi E, Lin WM, Zhang Y, Emmerzaal J, Haegens S. β Band Rhythms Influence Reaction Times. eNeuro 2023; 10:ENEURO.0473-22.2023. [PMID: 37364994 PMCID: PMC10312120 DOI: 10.1523/eneuro.0473-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023] Open
Abstract
Despite their involvement in many cognitive functions, β oscillations are among the least understood brain rhythms. Reports on whether the functional role of β is primarily inhibitory or excitatory have been contradictory. Our framework attempts to reconcile these findings and proposes that several β rhythms co-exist at different frequencies. β Frequency shifts and their potential influence on behavior have thus far received little attention. In this human magnetoencephalography (MEG) experiment, we asked whether changes in β power or frequency in auditory cortex and motor cortex influence behavior (reaction times) during an auditory sweep discrimination task. We found that in motor cortex, increased β power slowed down responses, while in auditory cortex, increased β frequency slowed down responses. We further characterized β as transient burst events with distinct spectro-temporal profiles influencing reaction times. Finally, we found that increased motor-to-auditory β connectivity also slowed down responses. In sum, β power, frequency, bursting properties, cortical focus, and connectivity profile all influenced behavioral outcomes. Our results imply that the study of β oscillations requires caution as β dynamics are multifaceted phenomena, and that several dynamics must be taken into account to reconcile mixed findings in the literature.
Collapse
Affiliation(s)
- Elie Rassi
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Department of Psychology, Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria
| | - Wy Ming Lin
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Hector Research Institute for Education Sciences and Psychology, University of Tübingen, 72074 Tübingen, Germany
| | - Yi Zhang
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Jill Emmerzaal
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
- REVAL Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, 3500 Diepenbeek, Belgium
| | - Saskia Haegens
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032
| |
Collapse
|
31
|
Domanski APF, Kucewicz MT, Russo E, Tricklebank MD, Robinson ESJ, Durstewitz D, Jones MW. Distinct hippocampal-prefrontal neural assemblies coordinate memory encoding, maintenance, and recall. Curr Biol 2023; 33:1220-1236.e4. [PMID: 36898372 PMCID: PMC10728550 DOI: 10.1016/j.cub.2023.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Short-term memory enables incorporation of recent experience into subsequent decision-making. This processing recruits both the prefrontal cortex and hippocampus, where neurons encode task cues, rules, and outcomes. However, precisely which information is carried when, and by which neurons, remains unclear. Using population decoding of activity in rat medial prefrontal cortex (mPFC) and dorsal hippocampal CA1, we confirm that mPFC populations lead in maintaining sample information across delays of an operant non-match to sample task, despite individual neurons firing only transiently. During sample encoding, distinct mPFC subpopulations joined distributed CA1-mPFC cell assemblies hallmarked by 4-5 Hz rhythmic modulation; CA1-mPFC assemblies re-emerged during choice episodes but were not 4-5 Hz modulated. Delay-dependent errors arose when attenuated rhythmic assembly activity heralded collapse of sustained mPFC encoding. Our results map component processes of memory-guided decisions onto heterogeneous CA1-mPFC subpopulations and the dynamics of physiologically distinct, distributed cell assemblies.
Collapse
Affiliation(s)
- Aleksander P F Domanski
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; The Alan Turing Institute, British Library, 96 Euston Rd, London, UK; The Francis Crick Institute, 1 Midland Road, London, UK
| | - Michal T Kucewicz
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; BioTechMed Center, Brain & Mind Electrophysiology Laboratory, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Eleonora Russo
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Mark D Tricklebank
- Centre for Neuroimaging Science, King's College London, Denmark Hill, London SE5 8AF, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Matt W Jones
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
32
|
Weiner VS, Zhou DW, Kahali P, Stephen EP, Peterfreund RA, Aglio LS, Szabo MD, Eskandar EN, Salazar-Gomez AF, Sampson AL, Cash SS, Brown EN, Purdon PL. Propofol disrupts alpha dynamics in functionally distinct thalamocortical networks during loss of consciousness. Proc Natl Acad Sci U S A 2023; 120:e2207831120. [PMID: 36897972 PMCID: PMC10089159 DOI: 10.1073/pnas.2207831120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/14/2023] [Indexed: 03/12/2023] Open
Abstract
During propofol-induced general anesthesia, alpha rhythms measured using electroencephalography undergo a striking shift from posterior to anterior, termed anteriorization, where the ubiquitous waking alpha is lost and a frontal alpha emerges. The functional significance of alpha anteriorization and the precise brain regions contributing to the phenomenon are a mystery. While posterior alpha is thought to be generated by thalamocortical circuits connecting nuclei of the sensory thalamus with their cortical partners, the thalamic origins of the propofol-induced alpha remain poorly understood. Here, we used human intracranial recordings to identify regions in sensory cortices where propofol attenuates a coherent alpha network, distinct from those in the frontal cortex where it amplifies coherent alpha and beta activities. We then performed diffusion tractography between these identified regions and individual thalamic nuclei to show that the opposing dynamics of anteriorization occur within two distinct thalamocortical networks. We found that propofol disrupted a posterior alpha network structurally connected with nuclei in the sensory and sensory associational regions of the thalamus. At the same time, propofol induced a coherent alpha oscillation within prefrontal cortical areas that were connected with thalamic nuclei involved in cognition, such as the mediodorsal nucleus. The cortical and thalamic anatomy involved, as well as their known functional roles, suggests multiple means by which propofol dismantles sensory and cognitive processes to achieve loss of consciousness.
Collapse
Affiliation(s)
- Veronica S. Weiner
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David W. Zhou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Center for Neurotechnology and Recovery, Department of Neurology, Massachusetts General Hospital, Boston, MA02114
| | - Pegah Kahali
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Emily P. Stephen
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert A. Peterfreund
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| | - Linda S. Aglio
- Harvard Medical School, Boston, MA02115
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Michele D. Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Emad N. Eskandar
- Harvard Medical School, Boston, MA02115
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, MA02114
| | - Andrés F. Salazar-Gomez
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Aaron L. Sampson
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Sydney S. Cash
- Center for Neurotechnology and Recovery, Department of Neurology, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| | - Emery N. Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Cambridge, MA02139
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Patrick L. Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
33
|
Woodburn SC, Asrat HS, Flurer JK, Schwierling HC, Bollinger JL, Vollmer LL, Wohleb ES. Depletion of microglial BDNF increases susceptibility to the behavioral and synaptic effects of chronic unpredictable stress. Brain Behav Immun 2023; 109:127-138. [PMID: 36681359 PMCID: PMC10023455 DOI: 10.1016/j.bbi.2023.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In the medial prefrontal cortex (PFC), chronic stress reduces synaptic expression of glutamate receptors, leading to decreased excitatory signaling from layer V pyramidal neurons and working memory deficits. One key element driving these changes is a reduction in brain-derived neurotrophic factor (BDNF) signaling. BDNF is a potent mediator of synaptic growth and deficient BDNF signaling has been linked to stress susceptibility. Prior studies indicated that neurons are the primary source of BDNF, but more recent work suggests that microglia are also an important source of BDNF. Adding to this, our work showed that 14 days of chronic unpredictable stress (CUS) reduced Bdnf transcript in PFC microglia, evincing its relevance in the effects of stress. To explore this further, we utilized transgenic mice with microglia-specific depletion of BDNF (Cx3cr1Cre/+:Bdnffl/fl) and genotype controls (Cx3cr1Cre/+:Bdnf+/+). In the following experiments, mice were exposed to a shortened CUS paradigm (7 days) to determine if microglial Bdnf depletion promotes stress susceptibility. Analyses of PFC microglia revealed that Cx3cr1Cre/+:Bdnffl/fl mice had shifts in phenotypic markers and gene expression. In a separate cohort, synaptoneurosomes were collected from the PFC and western blotting was performed for synaptic markers. These experiments showed that Cx3cr1Cre/+:Bdnffl/fl mice had baseline deficits in GluN2B, and that 7 days of CUS additionally reduced GluN2A levels in Cx3cr1Cre/+:Bdnffl/fl mice, but not genotype controls. Behavioral and cognitive testing showed that this coincided with exacerbated stress effects on temporal object recognition in Cx3cr1Cre/+:Bdnffl/fl mice. These results indicate that microglial BDNF promotes glutamate receptor expression in the PFC. As such, mice with deficient microglial BDNF had increased susceptibility to the behavioral and cognitive consequences of stress.
Collapse
Affiliation(s)
- Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Helina S Asrat
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James K Flurer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hana C Schwierling
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren L Vollmer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
34
|
Xi K, Xiao H, Huang X, Yuan Z, Liu M, Mao H, Liu H, Ma G, Cheng Z, Xie Y, Liu Y, Feng D, Wang W, Guo B, Wu S. Reversal of hyperactive higher-order thalamus attenuates defensiveness in a mouse model of PTSD. SCIENCE ADVANCES 2023; 9:eade5987. [PMID: 36735778 PMCID: PMC9897664 DOI: 10.1126/sciadv.ade5987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a highly prevalent and debilitating psychiatric disease often accompanied by severe defensive behaviors, preventing individuals from integrating into society. However, the neural mechanisms of defensiveness in PTSD remain largely unknown. Here, we identified that the higher-order thalamus, the posteromedial complex of the thalamus (PoM), was overactivated in a mouse model of PTSD, and suppressing PoM activity alleviated excessive defensive behaviors. Moreover, we found that diminished thalamic inhibition derived from the thalamic reticular nucleus was the major cause of thalamic hyperactivity in PTSD mice. Overloaded thalamic innervation to the downstream cortical area, frontal association cortex, drove abnormal defensiveness. Overall, our study revealed that the malfunction of the higher-order thalamus mediates defensive behaviors and highlighted the thalamocortical circuit as a potential target for treating PTSD-related overreactivity symptoms.
Collapse
Affiliation(s)
- Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Xin Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Ziduo Yuan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Mingyue Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Guaiguai Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
35
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
36
|
The effect of ketamine and D-cycloserine on the high frequency resting EEG spectrum in humans. Psychopharmacology (Berl) 2023; 240:59-75. [PMID: 36401646 PMCID: PMC9816261 DOI: 10.1007/s00213-022-06272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
RATIONALE Preclinical studies indicate that high-frequency oscillations, above 100 Hz (HFO:100-170 Hz), are a potential translatable biomarker for pharmacological studies, with the rapid acting antidepressant ketamine increasing both gamma (40-100 Hz) and HFO. OBJECTIVES To assess the effect of the uncompetitive NMDA antagonist ketamine, and of D-cycloserine (DCS), which acts at the glycine site on NMDA receptors on HFO in humans. METHODS We carried out a partially double-blind, 4-way crossover study in 24 healthy male volunteers. Each participant received an oral tablet and an intravenous infusion on each of four study days. The oral treatment was either DCS (250 mg or 1000 mg) or placebo. The infusion contained 0.5 mg/kg ketamine or saline placebo. The four study conditions were therefore placebo-placebo, 250 mg DCS-placebo, 1000 mg DCS-placebo, or placebo-ketamine. RESULTS Compared with placebo, frontal midline HFO magnitude was increased by ketamine (p = 0.00014) and 1000 mg DCS (p = 0.013). Frontal gamma magnitude was also increased by both these treatments. However, at a midline parietal location, only HFO were increased by DCS, and not gamma, whilst ketamine increased both gamma and HFO at this location. Ketamine induced psychomimetic effects, as measured by the PSI scale, whereas DCS did not increase the total PSI score. The perceptual distortion subscale scores correlated with the posterior low gamma to frontal high beta ratio. CONCLUSIONS Our results suggest that, at high doses, a partial NMDA agonist (DCS) has similar effects on fast neural oscillations as an NMDA antagonist (ketamine). As HFO were induced without psychomimetic effects, they may prove a useful drug development target.
Collapse
|
37
|
Saalmann YB, Mofakham S, Mikell CB, Djuric PM. Microscale multicircuit brain stimulation: Achieving real-time brain state control for novel applications. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100071. [PMID: 36619175 PMCID: PMC9816916 DOI: 10.1016/j.crneur.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological and psychiatric disorders typically result from dysfunction across multiple neural circuits. Most of these disorders lack a satisfactory neuromodulation treatment. However, deep brain stimulation (DBS) has been successful in a limited number of disorders; DBS typically targets one or two brain areas with single contacts on relatively large electrodes, allowing for only coarse modulation of circuit function. Because of the dysfunction in distributed neural circuits - each requiring fine, tailored modulation - that characterizes most neuropsychiatric disorders, this approach holds limited promise. To develop the next generation of neuromodulation therapies, we will have to achieve fine-grained, closed-loop control over multiple neural circuits. Recent work has demonstrated spatial and frequency selectivity using microstimulation with many small, closely-spaced contacts, mimicking endogenous neural dynamics. Using custom electrode design and stimulation parameters, it should be possible to achieve bidirectional control over behavioral outcomes, such as increasing or decreasing arousal during central thalamic stimulation. Here, we discuss one possible approach, which we term microscale multicircuit brain stimulation (MMBS). We discuss how machine learning leverages behavioral and neural data to find optimal stimulation parameters across multiple contacts, to drive the brain towards desired states associated with behavioral goals. We expound a mathematical framework for MMBS, where behavioral and neural responses adjust the model in real-time, allowing us to adjust stimulation in real-time. These technologies will be critical to the development of the next generation of neurostimulation therapies, which will allow us to treat problems like disorders of consciousness and cognition.
Collapse
Affiliation(s)
- Yuri B. Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sima Mofakham
- Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, USA
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Charles B. Mikell
- Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Petar M. Djuric
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
38
|
Canetta SE, Holt ES, Benoit LJ, Teboul E, Sahyoun GM, Ogden RT, Harris AZ, Kellendonk C. Mature parvalbumin interneuron function in prefrontal cortex requires activity during a postnatal sensitive period. eLife 2022; 11:80324. [PMID: 36576777 PMCID: PMC9797185 DOI: 10.7554/elife.80324] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
In their seminal findings, Hubel and Wiesel identified sensitive periods in which experience can exert lasting effects on adult visual cortical functioning and behavior via transient changes in neuronal activity during development. Whether comparable sensitive periods exist for non-sensory cortices, such as the prefrontal cortex, in which alterations in activity determine adult circuit function and behavior is still an active area of research. Here, using mice we demonstrate that inhibition of prefrontal parvalbumin (PV)-expressing interneurons during the juvenile and adolescent period, results in persistent impairments in adult prefrontal circuit connectivity, in vivo network function, and behavioral flexibility that can be reversed by targeted activation of PV interneurons in adulthood. In contrast, reversible suppression of PV interneuron activity in adulthood produces no lasting effects. These findings identify an activity-dependent sensitive period for prefrontal circuit maturation and highlight how abnormal PV interneuron activity during development alters adult prefrontal circuit function and cognitive behavior.
Collapse
Affiliation(s)
- Sarah E Canetta
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | - Emma S Holt
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | - Laura J Benoit
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Molecular Therapeutics, New York Psychiatric Institute, New York, United States
| | - Eric Teboul
- Division of Molecular Therapeutics, New York Psychiatric Institute, New York, United States
| | - Gabriella M Sahyoun
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, United States
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, United States
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Molecular Therapeutics, New York Psychiatric Institute, New York, United States.,Department of Molecular Pharmacology & Therapeutics, Columbia University Medical Center, New York, United States
| |
Collapse
|
39
|
Liu Y, Jia S, Wang J, Wang D, Zhang X, Liu H, Zhou F, Zhang Z, Li Q, Dong H, Zhong H. Endocannabinoid signaling regulates post-operative delirium through glutamatergic mediodorsal thalamus-prelimbic prefrontal cortical projection. Front Aging Neurosci 2022; 14:1036428. [PMID: 36533179 PMCID: PMC9752096 DOI: 10.3389/fnagi.2022.1036428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/12/2022] [Indexed: 10/02/2024] Open
Abstract
Background Post-operative delirium (POD), a common post-operative complication that affects up to 73. 5% of surgical patients, could prolong hospital stays, triple mortality rates, cause long-term cognitive decline and dementia, and boost medical expenses. However, the underlying mechanisms, especially the circuit mechanisms of POD remain largely unclear. Previous studies demonstrated that cannabis use might cause delirium-like behavior through the endocannabinoid system (eCBs), a widely distributed retrograde presynaptic neuromodulator system. We also found that the prelimbic (PrL) and intralimbic (IL) prefrontal cortex, a crucial hub for cognition and emotion, was involved in the eCBs-associated general anesthesia recovery. Objectives The present study aimed to investigate the role of eCBs in POD development, and further clarify its neuronal specificity and circuit specificity attributed to POD. Methods According to a previous study, 2 h of 1.4% isoflurane anesthesia and simple laparotomy were conducted to establish the POD model in C57/BL6 mice aged 8-12 weeks. A battery of behavioral tests, including the buried food, open field, and Y maze tests, were performed at 24 h before anesthesia and surgery (AS) and 6 and 9 h after AS. The behavioral results were calculated as a composite Z score for the POD assessment. To explore the dynamics of eCBs and their effect on POD regulation, an endocannabinoid (eCB) sensor was microinjected into the PrL, and the antagonists (AM281 and hemopressin) and agonist (nabilone) of type 1 cannabinoid receptor (CB1R), were administered systemically or locally (into PrL). Chemogenetics, combined Cre-loxP and Flp-FRT system, were employed in mutant mice for neuronal specificity and circuit specificity observation. Results After AS, the composite Z score significantly increased at 6 and 9 but not at 24 h, whereas blockade of CB1R systemically and intra-PrL could specifically decrease the composite Z score at 6 and 9 h after AS. Results of fiber photometry further confirmed that the activity of eCB in the PrL was enhanced by AS, especially in the Y maze test at 6 h post-operatively. Moreover, the activation of glutamatergic neurons in the PrL could reduce the composite Z score, which could be significantly reversed by exogenous cannabinoid (nabilone) at 6 and 9 h post-operatively. However, activation of GABAergic neurons only decreased composite Z score at 9 h post-operatively, with no response to nabilone application. Further study revealed the glutamatergic projection from mediodorsal thalamus (MD) to PrL glutamatergic neurons, but not hippocampus (HIP)-PrL circuit, was in charge of the effect of eCBs on POD. Conclusion Our study firstly demonstrated the involvement of eCBs in the POD pathogenesis and further revealed that the eCBs may regulate POD through the specific MDglu-PrLglu circuit. These findings not only partly revealed the molecular and circuit mechanisms of POD, but also provided an applicable candidate for the clinical prevention and treatment of POD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Haixing Zhong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
40
|
Wang J, Zhang S, Liu T, Zheng X, Tian X, Bai W. Directional prefrontal-thalamic information flow is selectively required during spatial working memory retrieval. Front Neurosci 2022; 16:1055986. [PMID: 36507330 PMCID: PMC9726760 DOI: 10.3389/fnins.2022.1055986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Spatial working memory is a kind of short-term memory that allows temporarily storing and manipulating spatial information. Evidence suggests that spatial working memory is processed through three distinctive phases: Encoding, maintenance, and retrieval. Though the medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD) are involved in memory retrieval, how the functional interactions and information transfer between mPFC and MD remains largely unclear. Methods We recorded local field potentials (LFPs) from mPFC and MD while mice performed a spatial working memory task in T-maze. The temporal dynamics of functional interactions and bidirectional information flow between mPFC and MD was quantitatively assessed by using directed transfer function. Results Our results showed a significantly elevated information flow from mPFC to MD, varied in time and frequency (theta in particular), accompanying successful memory retrieval. Discussion Elevated theta information flow, a feature that was absent on error trials, indicates an important role of the directional information transfer from mPFC to MD for memory retrieval.
Collapse
|
41
|
The role of thalamic group II mGlu receptors in health and disease. Neuronal Signal 2022; 6:NS20210058. [PMID: 36561092 PMCID: PMC9760452 DOI: 10.1042/ns20210058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2022] Open
Abstract
The thalamus plays a pivotal role in the integration and processing of sensory, motor, and cognitive information. It is therefore important to understand how the thalamus operates in states of both health and disease. In the present review, we discuss the function of the Group II metabotropic glutamate (mGlu) receptors within thalamic circuitry, and how they may represent therapeutic targets in treating disease states associated with thalamic dysfunction.
Collapse
|
42
|
Fredericksen KE, Samuelsen CL. Neural Representation of Intraoral Olfactory and Gustatory Signals by the Mediodorsal Thalamus in Alert Rats. J Neurosci 2022; 42:8136-8153. [PMID: 36171086 PMCID: PMC9636993 DOI: 10.1523/jneurosci.0674-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
The mediodorsal thalamus is a multimodal region involved in a variety of cognitive behaviors, including olfactory attention, odor discrimination, and the hedonic perception of flavors. Although the mediodorsal thalamus forms connections with principal regions of the olfactory and gustatory networks, its role in processing olfactory and gustatory signals originating from the mouth remains unclear. Here, we recorded single-unit activity in the mediodorsal thalamus of behaving female rats during the intraoral delivery of individual odors, individual tastes, and odor-taste mixtures. Our results are the first to demonstrate that neurons in the mediodorsal thalamus dynamically encode chemosensory signals originating from the mouth. This chemoselective population is broadly tuned, exhibits excited and suppressed responses, and responds to odor-taste mixtures differently than an odor or taste alone. Furthermore, a subset of chemoselective neurons encodes the palatability-related features of tastes and may represent associations between previously experienced odor-taste pairs. Our results further demonstrate the multidimensionality of the mediodorsal thalamus and provide additional evidence of its involvement in processing chemosensory information important for ingestive behaviors.SIGNIFICANCE STATEMENT The perception of food relies on the concurrent processing of olfactory and gustatory signals originating from the mouth. The mediodorsal thalamus is a higher-order thalamic nucleus involved in a variety of chemosensory-dependent behaviors and connects the olfactory and gustatory cortices with the prefrontal cortex. However, it is unknown how neurons in the mediodorsal thalamus process intraoral chemosensory signals. Using tetrode recordings in alert rats, our results are the first to show that neurons in the mediodorsal thalamus dynamically represent olfactory and gustatory signals from the mouth. Our findings are consistent with the mediodorsal thalamus being a key node between sensory and prefrontal cortical areas for processing chemosensory information underlying ingestive behavior.
Collapse
Affiliation(s)
- Kelly E Fredericksen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| | - Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
43
|
Sauer JF, Bartos M. Disrupted-in-schizophrenia-1 is required for normal pyramidal cell-interneuron communication and assembly dynamics in the prefrontal cortex. eLife 2022; 11:79471. [PMID: 36239988 PMCID: PMC9566853 DOI: 10.7554/elife.79471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
We interrogated prefrontal circuit function in mice lacking Disrupted-in-schizophrenia-1 (Disc1-mutant mice), a risk factor for psychiatric disorders. Single-unit recordings in awake mice revealed reduced average firing rates of fast-spiking interneurons (INTs), including optogenetically identified parvalbumin-positive cells, and a lower proportion of INTs phase-coupled to ongoing gamma oscillations. Moreover, we observed decreased spike transmission efficacy at local pyramidal cell (PYR)-INT connections in vivo, suggesting a reduced excitatory effect of local glutamatergic inputs as a potential mechanism of lower INT rates. On the network level, impaired INT function resulted in altered activation of PYR assemblies: While assembly activations defined as coactivations within 25 ms were observed equally often, the expression strength of individual assembly patterns was significantly higher in Disc1-mutant mice. Our data, thus, reveal a role of Disc1 in shaping the properties of prefrontal assembly patterns by setting INT responsiveness to glutamatergic drive.
Collapse
Affiliation(s)
- Jonas-Frederic Sauer
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Jung K, Choi Y, Kwon HB. Cortical control of chandelier cells in neural codes. Front Cell Neurosci 2022; 16:992409. [PMID: 36299494 PMCID: PMC9588934 DOI: 10.3389/fncel.2022.992409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Various cortical functions arise from the dynamic interplay of excitation and inhibition. GABAergic interneurons that mediate synaptic inhibition display significant diversity in cell morphology, electrophysiology, plasticity rule, and connectivity. These heterogeneous features are thought to underlie their functional diversity. Emerging attention on specific properties of the various interneuron types has emphasized the crucial role of cell-type specific inhibition in cortical neural processing. However, knowledge is still limited on how each interneuron type forms distinct neural circuits and regulates network activity in health and disease. To dissect interneuron heterogeneity at single cell-type precision, we focus on the chandelier cell (ChC), one of the most distinctive GABAergic interneuron types that exclusively innervate the axon initial segments (AIS) of excitatory pyramidal neurons. Here we review the current understanding of the structural and functional properties of ChCs and their implications in behavioral functions, network activity, and psychiatric disorders. These findings provide insights into the distinctive roles of various single-type interneurons in cortical neural coding and the pathophysiology of cortical dysfunction.
Collapse
|
45
|
Engeln M, Fox ME, Chandra R, Choi EY, Nam H, Qadir H, Thomas SS, Rhodes VM, Turner MD, Herman RJ, Calarco CA, Lobo MK. Transcriptome profiling of the ventral pallidum reveals a role for pallido-thalamic neurons in cocaine reward. Mol Psychiatry 2022; 27:3980-3991. [PMID: 35764708 PMCID: PMC9722585 DOI: 10.1038/s41380-022-01668-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Psychostimulant exposure alters the activity of ventral pallidum (VP) projection neurons. However, the molecular underpinnings of these circuit dysfunctions are unclear. We used RNA-sequencing to reveal alterations in the transcriptional landscape of the VP that are induced by cocaine self-administration in mice. We then probed gene expression in select VP neuronal subpopulations to isolate a circuit associated with cocaine intake. Finally, we used both overexpression and CRISPR-mediated knockdown to test the role of a gene target on cocaine-mediated behaviors as well as dendritic spine density. Our results showed that a large proportion (55%) of genes associated with structural plasticity were changed 24 h following cocaine intake. Among them, the transcription factor Nr4a1 (Nuclear receptor subfamily 4, group A, member 1, or Nur77) showed high expression levels. We found that the VP to mediodorsal thalamus (VP → MDT) projection neurons specifically were recapitulating this increase in Nr4a1 expression. Overexpressing Nr4a1 in VP → MDT neurons enhanced drug-seeking and drug-induced reinstatement, while Nr4a1 knockdown prevented self-administration acquisition and subsequent cocaine-mediated behaviors. Moreover, we showed that Nr4a1 negatively regulated spine dynamics in this specific cell subpopulation. Together, our study identifies for the first time the transcriptional mechanisms occurring in VP in drug exposure. Our study provides further understanding on the role of Nr4a1 in cocaine-related behaviors and identifies the crucial role of the VP → MDT circuit in drug intake and relapse-like behaviors.
Collapse
Affiliation(s)
- Michel Engeln
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| | - Megan E Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology & Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric Y Choi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Houman Qadir
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shavin S Thomas
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Victoria M Rhodes
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Makeda D Turner
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rae J Herman
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cali A Calarco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
Griffiths BJ, Zaehle T, Repplinger S, Schmitt FC, Voges J, Hanslmayr S, Staudigl T. Rhythmic interactions between the mediodorsal thalamus and prefrontal cortex precede human visual perception. Nat Commun 2022; 13:3736. [PMID: 35768419 PMCID: PMC9243108 DOI: 10.1038/s41467-022-31407-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
The thalamus is much more than a simple sensory relay. High-order thalamic nuclei, such as the mediodorsal thalamus, exert a profound influence over animal cognition. However, given the difficulty of directly recording from the thalamus in humans, next-to-nothing is known about thalamic and thalamocortical contributions to human cognition. To address this, we analysed simultaneously-recorded thalamic iEEG and whole-head MEG in six patients (plus MEG recordings from twelve healthy controls) as they completed a visual detection task. We observed that the phase of both ongoing mediodorsal thalamic and prefrontal low-frequency activity was predictive of perceptual performance. Critically however, mediodorsal thalamic activity mediated prefrontal contributions to perceptual performance. These results suggest that it is thalamocortical interactions, rather than cortical activity alone, that is predictive of upcoming perceptual performance and, more generally, highlights the importance of accounting for the thalamus when theorising about cortical contributions to human cognition.
Collapse
Affiliation(s)
- Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany
| | - Stefan Repplinger
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Simon Hanslmayr
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
47
|
Uygun DS, Basheer R. Circuits and components of delta wave regulation. Brain Res Bull 2022; 188:223-232. [PMID: 35738502 DOI: 10.1016/j.brainresbull.2022.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Sleep is vital and the deepest stages of sleep occur within Non-rapid-eye-movement sleep (NREM), defined by high electroencephalographic power in the delta (~0.5-4Hz) wave frequency range. Delta waves are thought to facilitate a myriad of physical and mental health functions. This review aims to comprehensively cover the historical and recent advances in the understanding of the mechanisms orchestrating NREM delta waves. We discuss a complete neurocircuit - focusing on one leg of the circuit at a time - and delve deeply into the molecular mechanistic components that contribute to NREM delta wave regulation. We also discuss the relatively localized nature in which these mechanisms have been defined, and how likely they might generalize across distinct sensory and higher order modalities in the brain.
Collapse
Affiliation(s)
- David S Uygun
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| | - Radhika Basheer
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| |
Collapse
|
48
|
Benoit LJ, Holt ES, Posani L, Fusi S, Harris AZ, Canetta S, Kellendonk C. Adolescent thalamic inhibition leads to long-lasting impairments in prefrontal cortex function. Nat Neurosci 2022; 25:714-725. [PMID: 35590075 PMCID: PMC9202412 DOI: 10.1038/s41593-022-01072-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Impaired cortical maturation is a postulated mechanism in the etiology of neurodevelopmental disorders, including schizophrenia. In the sensory cortex, activity relayed by the thalamus during a postnatal sensitive period is essential for proper cortical maturation. Whether thalamic activity also shapes prefrontal cortical maturation is unknown. We show that inhibiting the mediodorsal and midline thalamus in mice during adolescence leads to a long-lasting decrease in thalamo-prefrontal projection density and reduced excitatory drive to prefrontal neurons. It also caused prefrontal-dependent cognitive deficits during adulthood associated with disrupted prefrontal cross-correlations and task outcome encoding. Thalamic inhibition during adulthood had no long-lasting consequences. Exciting the thalamus in adulthood during a cognitive task rescued prefrontal cross-correlations, task outcome encoding and cognitive deficits. These data point to adolescence as a sensitive window of thalamocortical circuit maturation. Furthermore, by supporting prefrontal network activity, boosting thalamic activity provides a potential therapeutic strategy for rescuing cognitive deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Laura J Benoit
- Graduate Program in Neurobiology and Behavior, Columbia University Irving Medical Center, New York, NY, USA
| | - Emma S Holt
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Lorenzo Posani
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Sarah Canetta
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
49
|
Perez-Rando M, Elvira UKA, García-Martí G, Gadea M, Aguilar EJ, Escarti MJ, Ahulló-Fuster MA, Grasa E, Corripio I, Sanjuan J, Nacher J. Alterations in the volume of thalamic nuclei in patients with schizophrenia and persistent auditory hallucinations. Neuroimage Clin 2022; 35:103070. [PMID: 35667173 PMCID: PMC9168692 DOI: 10.1016/j.nicl.2022.103070] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Analysis of structural MRI images using a probabilistic atlas for segmentation of several nuclei of the thalamus. Comparison of chronic patients with schizophrenia, with and without auditory hallucinations and matched healthy controls. Volumetric reductions in patients with AH vs controls: Medial geniculate nucleus, anterior pulvinar nucleus and lateral and medial mediodorsal nuclei. In patients without AH we found reductions in the volume of the pulvinar and mediodorsal nuclei, but not in the medial geniculate nucleus. Found also some significant correlations between the volume of these nuclei and the total score of the PSYRATS scale.
The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| | - Uriel K A Elvira
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Institutes of Biomedical Technologies and Neuroscience, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Gracian García-Martí
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Marien Gadea
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain; Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eduardo J Aguilar
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Maria J Escarti
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain
| | - Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy. Faculty of Nursing, Physiotherapy and Podiatry. Universidad Complutense de Madrid, Spain
| | - Eva Grasa
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Iluminada Corripio
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Julio Sanjuan
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Juan Nacher
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| |
Collapse
|
50
|
Avram M, Müller F, Rogg H, Korda A, Andreou C, Holze F, Vizeli P, Ley L, Liechti ME, Borgwardt S. Characterizing thalamocortical (dys)connectivity following d-amphetamine, LSD, and MDMA administration. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:885-894. [PMID: 35500840 DOI: 10.1016/j.bpsc.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Patients with psychotic disorders present alterations in thalamocortical intrinsic functional connectivity (iFC) as measured by resting-state functional magnetic resonance imaging (rs-fMRI). Specifically, thalamic iFC is increased with sensorimotor cortices (hyperconnectivity) and decreased with prefrontal-limbic cortices (hypoconnectivity). Intriguingly, psychedelics such as lysergic acid diethylamide (LSD) elicit similar thalamocortical-hyperconnectivity with sensorimotor areas in healthy volunteers. It is unclear whether LSD also induces thalamocortical-hypoconnectivity with prefrontal-limbic cortices as current findings are equivocal. Notably, thalamocortical-hyperconnectivity was associated with psychotic symptoms in patients and substance-induced altered states of consciousness in healthy volunteers. Thalamocortical dysconnectivity is likely evoked by altered neurotransmission, e.g., via dopaminergic excess in psychotic disorders and serotonergic agonism in psychedelic-induced states. It is unclear whether thalamocortical dysconnectivity is also elicited by amphetamine-type substances, broadly releasing monoamines (i.e., dopamine, norepinephrine) but producing fewer perceptual effects than psychedelics. METHODS We administrated LSD, d-amphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) in 28 healthy volunteers and investigated their effects on thalamic iFC with two brain networks (auditory-sensorimotor (ASM) and salience (SAL) - corresponding to sensorimotor and prefrontal-limbic cortices, respectively), using a double-blind, placebo-controlled, cross-over design. RESULTS All active substances elicited ASM-thalamic-hyperconnectivity compared to placebo, despite predominantly distinct pharmacological actions and subjective effects. LSD-induced effects correlated with subjective changes in perception, indicating a link between hyperconnectivity and psychedelic-type perceptual alterations. Unlike d-amphetamine and MDMA, which induced hypoconnectivity with SAL, LSD elicited hyperconnectivity. D-amphetamine and MDMA evoked similar thalamocortical dysconnectivity patterns. CONCLUSIONS Psychedelics, empathogens, and psychostimulants evoke thalamocortical-hyperconnectivity with sensorimotor areas, akin to findings in patients with psychotic disorders.
Collapse
Affiliation(s)
- Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany.
| | - Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, 4012, Switzerland
| | - Helena Rogg
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Alexandra Korda
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Christina Andreou
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Friederike Holze
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| |
Collapse
|