1
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
2
|
Giusto E, Maistrello L, Iannotta L, Giusti V, Iovino L, Bandopadhyay R, Antonini A, Bubacco L, Barresi R, Plotegher N, Greggio E, Civiero L. Prospective Role of PAK6 and 14-3-3γ as Biomarkers for Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:495-506. [PMID: 38640169 DOI: 10.3233/jpd-230402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Parkinson's disease is a progressive neurodegenerative disorder mainly distinguished by sporadic etiology, although a genetic component is also well established. Variants in the LRRK2 gene are associated with both familiar and sporadic disease. We have previously shown that PAK6 and 14-3-3γ protein interact with and regulate the activity of LRRK2. Objective The aim of this study is to quantify PAK6 and 14-3-3γ in plasma as reliable biomarkers for the diagnosis of both sporadic and LRRK2-linked Parkinson's disease. Methods After an initial quantification of PAK6 and 14-3-3γ expression by means of Western blot in post-mortem human brains, we verified the presence of the two proteins in plasma by using quantitative ELISA tests. We analyzed samples obtained from 39 healthy subjects, 40 patients with sporadic Parkinson's disease, 50 LRRK2-G2019S non-manifesting carriers and 31 patients with LRRK2-G2019S Parkinson's disease. Results The amount of PAK6 and 14-3-3γ is significantly different in patients with Parkinson's disease compared to healthy subjects. Moreover, the amount of PAK6 also varies with the presence of the G2019S mutation in the LRRK2 gene. Although the generalized linear models show a low association between the presence of Parkinson's disease and PAK6, the kinase could be added in a broader panel of biomarkers for the diagnosis of Parkinson's disease. Conclusions Changes of PAK6 and 14-3-3γ amount in plasma represent a shared readout for patients affected by sporadic and LRRK2-linked Parkinson's disease. Overall, they can contribute to the establishment of an extended panel of biomarkers for the diagnosis of Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Lucia Iannotta
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Angelo Antonini
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Comi G, Leocani L, Tagliavini F. Preserving the brain: forum on neurodegenerative diseases. Neurol Sci 2023; 44:2613-2616. [PMID: 37002504 PMCID: PMC10257600 DOI: 10.1007/s10072-023-06721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa Di Cura Igea, Milan, Italy.
| | - Letizia Leocani
- University Vita-Salute San Raffaele and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute San Raffaele, Milan, Italy
| | | |
Collapse
|
4
|
Dubiela P, Szymańska-Rożek P, Eljaszewicz A, Lipiński P, Hasiński P, Giersz D, Walewska A, Tynecka M, Moniuszko M, Tylki-Szymańska A. Alpha-Synuclein mRNA Level Found Dependent on L444P Variant in Carriers and Gaucher Disease Patients on Enzyme Replacement Therapy. Biomolecules 2023; 13:biom13040644. [PMID: 37189391 DOI: 10.3390/biom13040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/17/2023] Open
Abstract
Gaucher disease (GD) is the most frequent sphingolipidosis, caused by biallelic pathogenic variants in the GBA1 gene encoding for β-glucocerebrosidase (GCase, E.C. 3.2.1.45). The condition is characterized by hepatosplenomegaly, hematological abnormalities, and bone disease in both non-neuronopathic type 1 (GD1) and neuronopathic type 3 (GD3). Interestingly, GBA1 variants were found to be one of the most important risk factors for the development of Parkinson's disease (PD) in GD1 patients. We performed a comprehensive study regarding the two most disease-specific biomarkers, glucosylsphingosine (Lyso-Gb1) and α-synuclein for GD and PD, respectively. A total of 65 patients with GD treated with ERT (47 GD1 patients and 18 GD3 patients), 19 GBA1 pathogenic variant carriers (including 10 L444P carriers), and 16 healthy subjects were involved in the study. Lyso-Gb1 was assessed by dried blood spot testing. The level of α-synuclein as an mRNA transcript, total, and oligomer protein concentration were measured with real-time PCR and ELISA, respectively. α-synuclein mRNA level was found significantly elevated in GD3 patients and L444P carriers. GD1 patients, along with GBA1 carriers of an unknown or unconfirmed variant, as well as healthy controls, have the same low level of α-synuclein mRNA. There was no correlation found between the level of α-synuclein mRNA and age in GD patients treated with ERT, whereas there was a positive correlation in L444P carriers.
Collapse
Affiliation(s)
- Paweł Dubiela
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Paulina Szymańska-Rożek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730 Warsaw, Poland
| | - Piotr Hasiński
- Department of Internal Medicine and Gastroenterology, Municipal Hospital, 43-100 Tychy, Poland
| | - Dorota Giersz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Alicja Walewska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730 Warsaw, Poland
| |
Collapse
|
5
|
Chahine LM. Prodromal α-Synucleinopathies. Continuum (Minneap Minn) 2022; 28:1268-1280. [DOI: 10.1212/con.0000000000001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Gómez-Isla T, Frosch MP. Lesions without symptoms: understanding resilience to Alzheimer disease neuropathological changes. Nat Rev Neurol 2022; 18:323-332. [PMID: 35332316 PMCID: PMC10607925 DOI: 10.1038/s41582-022-00642-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 12/12/2022]
Abstract
Since the original description of amyloid-β plaques and tau tangles more than 100 years ago, these lesions have been considered the neuropathological hallmarks of Alzheimer disease (AD). The prevalence of plaques, tangles and dementia increases with age, and the lesions are considered to be causally related to the cognitive symptoms of AD. Current schemes for assessing AD lesion burden examine the distribution, abundance and characteristics of plaques and tangles at post mortem, yielding an estimate of the likelihood of cognitive impairment. Although this approach is highly predictive for most individuals, in some instances, a striking mismatch between lesions and symptoms can be observed. A small subset of individuals harbour a high burden of plaques and tangles at autopsy, which would be expected to have had devastating clinical consequences, but remain at their cognitive baseline, indicating 'resilience'. The study of these brains might provide the key to understanding the 'black box' between the accumulation of plaques and tangles and cognitive impairment, and show the way towards disease-modifying treatments for AD. In this Review, we begin by considering the heterogeneity of clinical manifestations associated with the presence of plaques and tangles, and then focus on insights derived from the rare yet informative individuals who display high amounts of amyloid and tau deposition in their brains (observed directly at autopsy) without manifesting dementia during life. The resilient response of these individuals to the gradual accumulation of plaques and tangles has potential implications for assessing an individual's risk of AD and for the development of interventions aimed at preserving cognition.
Collapse
Affiliation(s)
- Teresa Gómez-Isla
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Boston, MA, USA.
| | - Matthew P Frosch
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Boston, MA, USA
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Zehravi M, Kabir J, Akter R, Malik S, Ashraf GM, Tagde P, Ramproshad S, Mondal B, Rahman MH, Mohan AG, Cavalu S. A Prospective Viewpoint on Neurological Diseases and Their Biomarkers. Molecules 2022; 27:molecules27113516. [PMID: 35684455 PMCID: PMC9182418 DOI: 10.3390/molecules27113516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders that affect both the central and peripheral nervous systems. To name a few causes, NDDs can be caused by ischemia, oxidative and endoplasmic reticulum (ER) cell stress, inflammation, abnormal protein deposition in neural tissue, autoimmune-mediated neuron loss, and viral or prion infections. These conditions include Alzheimer's disease (AD), Lewy body dementia (LBD), and Parkinson's disease (PD). The formation of β-sheet-rich aggregates of intra- or extracellular proteins in the CNS hallmarks all neurodegenerative proteinopathies. In systemic lupus erythematosus (SLE), numerous organs, including the central nervous system (CNS), are affected. However, the inflammatory process is linked to several neurodegenerative pathways that are linked to depression because of NDDs. Pro-inflammatory signals activated by aging may increase vulnerability to neuropsychiatric disorders. Viruses may increase macrophages and CCR5+ T cells within the CNS during dementia formation and progression. Unlike medical symptoms, which are just signs of a patient's health as expressed and perceived, biomarkers are reproducible and quantitative. Therefore, this current review will highlight and summarize the neurological disorders and their biomarkers.
Collapse
Affiliation(s)
- Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| | - Janisa Kabir
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India;
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| |
Collapse
|
8
|
Zang C, Liu H, Shang J, Yang H, Wang L, Sheng C, Zhang Z, Bao X, Yu Y, Yao X, Zhang D. Gardenia jasminoides J.Ellis extract GJ-4 alleviated cognitive deficits of APP/PS1 transgenic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153780. [PMID: 34607163 DOI: 10.1016/j.phymed.2021.153780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Accumulating evidence demonstrates that traditional Chinese medicines that act on multiple targets could effectively treat various multi-etiological diseases, including cerebrovascular diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and so on. Previous studies have shown that crocin richments (GJ-4), Gardenia jasminoides J.Ellis extract, provide neuroprotective effects on cognitive impairments in AD mouse models. However, the mechanism how GJ-4 improves cognition remains still unclear. PURPOSE The aim of this study was to uncover the protective effects and underlying mechanism of GJ-4 on PrP-hAβPPswe/PS1ΔE9 (APP/PS1) transgenic mice. METHODS APP/PS1 mice were given GJ-4 (10, 20, and 50 mg/kg), donepezil (5 mg/kg) and memantine (5 mg/kg) orally at eight months of age for 12 consecutive weeks. Morris water maze and novel object recognition were conducted to assess the cognitive ability of mice. The release of inflammatory cytokines was determined by RT-PCR assay, and the pathological features of neurons and microglia were assayed by immunohistochemistry and immunofluorescence assay. The expression of Aβ-related proteins and signaling pathways were determined by Western blot. RESULTS The behavioral results revealed that GJ-4 ameliorated the cognitive deficits of APP/PS1 mice measured by Morris water maze and novel object recognition tests. Mechanism studies indicated that GJ-4 significantly decreased β-amyloid (Aβ) level through reducing Aβ production and promoting Aβ degradation. It has been reported that Aβ plaques trigger the hyper-phosphorylation of tau protein in APP/PS1 mice. Consistent with previous studies, hyper-phosphorylation of tau was also occurred in APP/PS1 mice in the present study, and GJ-4 inhibited Tau phosphorylation at different sites. Overwhelming evidence indicates that neuroinflammation stimulated by Aβ and hyperphosphorylated tau is involved in the pathological progression of AD. We found that GJ-4 suppressed neuroinflammatory responses in the brain through regulating phosphatidylinositide 3-kinase/AKT (PI3K/AKT) signaling pathway activation, and subsequent expression of inflammatory proteins and release of inflammatory cytokines. CONCLUSION Altogether, GJ-4 ameliorated cognition of APP/PS1 transgenic mice through multiple targets, including Aβ, tau and neuroinflammation. This study provides a solid research basis for further development of GJ-4 as a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Caixia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Hanyu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Chanjuan Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xinsheng Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
9
|
Ferrer-Lorente R, Lozano-Cruz T, Fernández-Carasa I, Miłowska K, de la Mata FJ, Bryszewska M, Consiglio A, Ortega P, Gómez R, Raya A. Cationic Carbosilane Dendrimers Prevent Abnormal α-Synuclein Accumulation in Parkinson's Disease Patient-Specific Dopamine Neurons. Biomacromolecules 2021; 22:4582-4591. [PMID: 34613701 PMCID: PMC8906628 DOI: 10.1021/acs.biomac.1c00884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Accumulation
of misfolded α-synuclein (α-syn) is a
hallmark of Parkinson’s disease (PD) thought to play important
roles in the pathophysiology of the disease. Dendritic systems, able
to modulate the folding of proteins, have emerged as promising new
therapeutic strategies for PD treatment. Dendrimers have been shown
to be effective at inhibiting α-syn aggregation in cell-free
systems and in cell lines. Here, we set out to investigate the effects
of dendrimers on endogenous α-syn accumulation in disease-relevant
cell types from PD patients. For this purpose, we chose cationic carbosilane
dendrimers of bow-tie topology based on their performance at inhibiting
α-syn aggregation in vitro. Dopamine neurons
were differentiated from induced pluripotent stem cell (iPSC) lines
generated from PD patients carrying the LRRK2G2019S mutation, which reportedly display
abnormal accumulation of α-syn, and from healthy individuals
as controls. Treatment of PD dopamine neurons with non-cytotoxic concentrations
of dendrimers was effective at preventing abnormal accumulation and
aggregation of α-syn. Our results in a genuinely human experimental
model of PD highlight the therapeutic potential of dendritic systems
and open the way to developing safe and efficient therapies for delaying
or even halting PD progression.
Collapse
Affiliation(s)
- Raquel Ferrer-Lorente
- Regenerative Medicine Program, and Program for Clinical Translation of Regenerative Medicine in Catalonia─P-CMR[C], L'Hospitalet de Llobregat (Barcelona), Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Tania Lozano-Cruz
- University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Hospitalet de Llobregat (Barcelona), Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Francisco Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Hospitalet de Llobregat (Barcelona), Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Department of Molecular and Translational Medicine, University of Brescia, Brescia 25121, Italy
| | - Paula Ortega
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Angel Raya
- Regenerative Medicine Program, and Program for Clinical Translation of Regenerative Medicine in Catalonia─P-CMR[C], L'Hospitalet de Llobregat (Barcelona), Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08907, Spain
| |
Collapse
|
10
|
Ding J, Huang J, Yin D, Liu T, Ren Z, Hu S, Ye Y, Le C, Zhao N, Zhou H, Li Z, Qi X, Huang J. Trilobatin Alleviates Cognitive Deficits and Pathologies in an Alzheimer's Disease Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3298400. [PMID: 34777683 PMCID: PMC8589506 DOI: 10.1155/2021/3298400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease nowadays that causes memory impairments. It is characterized by extracellular aggregates of amyloid-beta (Aβ), intracellular aggregates of hyperphosphorylated Tau (p-Tau), and other pathological features. Trilobatin (TLB), a natural flavonoid compound isolated from Lithocarpuspolystachyus Rehd., has emerged as a neuroprotective agent. However, the effects and mechanisms of TLB on Alzheimer's disease (AD) remain unclear. In this research, different doses of TLB were orally introduced to 3×FAD AD model mice. The pathology, memory performance, and Toll-like receptor 4- (TLR4-) dependent inflammatory pathway protein level were assessed. Here, we show that TLB oral treatment protected 3×FAD AD model mice against the Aβ burden, neuroinflammation, Tau hyperphosphorylation, synaptic degeneration, hippocampal neuronal loss, and memory impairment. The TLR4, a pattern recognition immune receptor, has been implicated in neurodegenerative disease-related neuroinflammation. We found that TLB suppressed glial activation by inhibiting the TLR4-MYD88-NFκB pathway, which leads to the inflammatory factor TNF-α, IL-1β, and IL-6 reduction. Our study shows that TLR4 might be a key target of TLB in AD treatment and suggests a multifaceted target of TLB in halting AD. Taken together, our findings suggest a potential therapeutic effect of TLB in AD treatment.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dan Yin
- Laboratory of Electron Microscopy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| | - Zheng Ren
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yuanliang Ye
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou, China
| | - Cuiyun Le
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Na Zhao
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Hongmei Zhou
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Zhu Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
11
|
Dilliott AA, Abdelhady A, Sunderland KM, Farhan SMK, Abrahao A, Binns MA, Black SE, Borrie M, Casaubon LK, Dowlatshahi D, Finger E, Fischer CE, Frank A, Freedman M, Grimes D, Hassan A, Jog M, Kumar S, Kwan D, Lang AE, Mandzia J, Masellis M, McIntyre AD, Pasternak SH, Pollock BG, Rajji TK, Rogaeva E, Sahlas DJ, Saposnik G, Sato C, Seitz D, Shoesmith C, Steeves TDL, Swartz RH, Tan B, Tang-Wai DF, Tartaglia MC, Turnbull J, Zinman L, Hegele RA. Contribution of rare variant associations to neurodegenerative disease presentation. NPJ Genom Med 2021; 6:80. [PMID: 34584092 PMCID: PMC8478934 DOI: 10.1038/s41525-021-00243-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
Genetic factors contribute to neurodegenerative diseases, with high heritability estimates across diagnoses; however, a large portion of the genetic influence remains poorly understood. Many previous studies have attempted to fill the gaps by performing linkage analyses and association studies in individual disease cohorts, but have failed to consider the clinical and pathological overlap observed across neurodegenerative diseases and the potential for genetic overlap between the phenotypes. Here, we leveraged rare variant association analyses (RVAAs) to elucidate the genetic overlap among multiple neurodegenerative diagnoses, including Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), mild cognitive impairment, and Parkinson's disease (PD), as well as cerebrovascular disease, using the data generated with a custom-designed neurodegenerative disease gene panel in the Ontario Neurodegenerative Disease Research Initiative (ONDRI). As expected, only ~3% of ONDRI participants harboured a monogenic variant likely driving their disease presentation. Yet, when genes were binned based on previous disease associations, we observed an enrichment of putative loss of function variants in PD genes across all ONDRI cohorts. Further, individual gene-based RVAA identified significant enrichment of rare, nonsynonymous variants in PARK2 in the FTD cohort, and in NOTCH3 in the PD cohort. The results indicate that there may be greater heterogeneity in the genetic factors contributing to neurodegeneration than previously appreciated. Although the mechanisms by which these genes contribute to disease presentation must be further explored, we hypothesize they may be a result of rare variants of moderate phenotypic effect contributing to overlapping pathology and clinical features observed across neurodegenerative diagnoses.
Collapse
Affiliation(s)
- Allison A Dilliott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Abdalla Abdelhady
- Department of Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Kelly M Sunderland
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Sali M K Farhan
- Departments of Neurology and Neurosurgery, and Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Agessandro Abrahao
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Malcolm A Binns
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Sandra E Black
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
- LCCampbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program Sunnybrook Health Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael Borrie
- St. Joseph's Health Care Centre, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Leanne K Casaubon
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- University Health Network Stroke Program, Toronto Western Hospital, Toronto, ON, Canada
| | - Dar Dowlatshahi
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Frank
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Bruyère Research Institute, Ottawa, ON, Canada
| | - Morris Freedman
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Baycrest Health Sciences, Mt. Sinai Hospital and University of Toronto, Toronto, ON, Canada
| | - David Grimes
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ayman Hassan
- Thunder Bay Regional Research Institute and Northern Ontario School of Medicine, Thunder Bay, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Donna Kwan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Anthony E Lang
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Jennifer Mandzia
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Mario Masellis
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Cognitive & Movement Disorders Clinic and L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Science Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Stephen H Pasternak
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Cognitive Neurology and Alzheimer's Disease Research Centre, Parkwood Institute, St. Joseph's Health Care, London, ON, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | | | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Clinical Outcomes and Decision Neuroscience Unit, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Dallas Seitz
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Thomas D L Steeves
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Division of Neurology, St. Michael's Hospital, Toronto, ON, Canada
| | - Richard H Swartz
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
- LCCampbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program Sunnybrook Health Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - David F Tang-Wai
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, Canada
- University Health Network Memory Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - John Turnbull
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
12
|
Jiang L, Mei JP, Zhao YW, Zhang R, Pan HX, Yang Y, Sun QY, Xu Q, Yan XX, Tan JQ, Li JC, Tang BS, Guo JF. Low-frequency and rare coding variants of NUS1 contribute to susceptibility and phenotype of Parkinson's disease. Neurobiol Aging 2021; 110:106-112. [PMID: 34635350 DOI: 10.1016/j.neurobiolaging.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 01/13/2023]
Abstract
NUS1 has been recently identified as a candidate gene for Parkinson's disease (PD). Few studies have examined the association of NUS1 variants with PD susceptibility and phenotypes. In the first cohort, whole-exome sequencing was performed to identify variants in NUS1 exon-coding and exon-intron regions in 1542 cases and 1625 controls. 13 variants were totally detected, of which 10 rare variants and 3 low-frequency variants. Burden analysis showed that rare NUS1 variants significantly enriched in PD (p=0.016). We also performed a meta-analysis based on previous and our studies to correlate NUS1 mutations with PD susceptibility. Integrating our previous cohort (3210 cases and 2807 controls) and the first cohort identified the significant association of rs539668656 with PD risk (odds ratio (OR) = 2.82, p = 0.016). The genotype-phenotype association analysis showed that patients carrying rare variants, or rs539668656 were significantly associated with earlier onset age, depression, emotional impairment and severe disease condition. Our results support the role of NUS1 rare variants and rs539668656 towards PD susceptibility and phenotype.
Collapse
Affiliation(s)
- Li Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun-Pu Mei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Wen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Xu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi-Ying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie-Qiong Tan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jin-Chen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-dos-Santos C, de Souza TP, Souza Port’s NM, dos Santos Pinheiro JA, Ribeiro-dos-Santos Â, Vidal AF. Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson's Disease. Int J Mol Sci 2021; 22:9839. [PMID: 34576000 PMCID: PMC8471599 DOI: 10.3390/ijms22189839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Collapse
Affiliation(s)
- Gleyce Fonseca Cabral
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ana Paula Schaan
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Giovanna C. Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Natacha M. Souza Port’s
- Laboratório de Neurofarmacologia Molecular, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jhully Azevedo dos Santos Pinheiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará–R. dos Mundurucus, Belém 66073-000, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
| | - Amanda F. Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
- ITVDS—Instituto Tecnológico Vale Desenvolvimento Sustentável–R. Boaventura da Silva, Belém 66055-090, Brazil
| |
Collapse
|
14
|
Toxic Feedback Loop Involving Iron, Reactive Oxygen Species, α-Synuclein and Neuromelanin in Parkinson's Disease and Intervention with Turmeric. Mol Neurobiol 2021; 58:5920-5936. [PMID: 34426907 DOI: 10.1007/s12035-021-02516-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a movement disorder associated with severe loss of mainly dopaminergic neurons in the substantia nigra. Pathological hallmarks include Lewy bodies, and loss of neuromelanin, due to degeneration of neuromelanin-containing dopaminergic neurons. Despite being described over 200 years ago, the etiology of PD remains unknown. Here, we highlight the roles of reactive oxygen species (ROS), iron, alpha synuclein (α-syn) and neuromelanin in a toxic feedback loop culminating in neuronal death and spread of the disease. Dopaminergic neurons are particularly vulnerable due to decreased antioxidant concentration with aging, constant exposure to ROS and presence of neurotoxic compounds (e.g. ortho-quinones). ROS and iron increase each other's levels, creating a state of oxidative stress. α-Syn aggregation is influenced by ROS and iron but also increases ROS and iron via its induced mitochondrial dysfunction and ferric-reductase activity. Neuromelanin's binding affinity is affected by increased ROS and iron. Furthermore, during neuronal death, neuromelanin is degraded in the extracellular space, releasing its bound toxins. This cycle of events continues to neighboring neurons in the form of a toxic loop, causing PD pathology. The increase in ROS and iron may be an important target for therapies to disrupt this toxic loop, and therefore diets rich in certain 'nutraceuticals' may be beneficial. Turmeric is an attractive candidate, as it is known to have anti-oxidant and iron chelating properties. More studies are needed to test this theory and if validated, this would be a step towards development of lifestyle-based therapeutic modalities to complement existing PD treatments.
Collapse
|
15
|
Abramov AY, Bachurin SO. Neurodegenerative disorders-Searching for targets and new ways of diseases treatment. Med Res Rev 2021; 41:2603-2605. [PMID: 33645761 DOI: 10.1002/med.21794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Affiliation(s)
- Andrey Y Abramov
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences Severny proezd, 1, Chernogolovka, 142432, Russia
| |
Collapse
|
16
|
Choi DK, Kim YK, HoonYu J, Min SH, Park SW. Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:271-287. [PMID: 34127196 DOI: 10.1016/bs.pmbts.2021.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Generation of proper models for studying human genetic diseases has been hindered until recently by the scarcity of primary cell samples from genetic disease patients and inefficient genetic modification tools. However, recent advances in clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology and human induced pluripotent stem cells (hiPSCs) have provided an opportunity to explore the function of pathogenic variants and obtain gene-corrected cells for autologous cell therapy. In this chapter, we address recent applications of CRISPR/Cas9 to hiPSCs in genetic diseases, including neurodegenerative, cardiovascular, and rare diseases.
Collapse
Affiliation(s)
- Dong-Kyu Choi
- New Drug Development Center, DGMIF, Daegu, Republic of Korea
| | - Yong-Kyu Kim
- New Drug Development Center, DGMIF, Daegu, Republic of Korea
| | - Ji HoonYu
- New Drug Development Center, DGMIF, Daegu, Republic of Korea
| | - Sang-Hyun Min
- New Drug Development Center, DGMIF, Daegu, Republic of Korea
| | - Sang-Wook Park
- Department of Oral Biochemistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
17
|
Zhao Y, Qin L, Pan H, Liu Z, Jiang L, He Y, Zeng Q, Zhou X, Zhou X, Zhou Y, Fang Z, Wang Z, Xiang Y, Yang H, Wang Y, Zhang K, Zhang R, He R, Zhou X, Zhou Z, Yang N, Liang D, Chen J, Zhang X, Zhou Y, Liu H, Deng P, Xu K, Xu K, Zhou C, Zhong J, Xu Q, Sun Q, Li B, Zhao G, Wang T, Chen L, Shang H, Liu W, Chan P, Xue Z, Wang Q, Guo L, Wang X, Xu C, Zhang Z, Chen T, Lei L, Zhang H, Wang C, Tan J, Yan X, Shen L, Jiang H, Zhang Z, Hu Z, Xia K, Yue Z, Li J, Guo J, Tang B. The role of genetics in Parkinson's disease: a large cohort study in Chinese mainland population. Brain 2020; 143:2220-2234. [PMID: 32613234 DOI: 10.1093/brain/awaa167] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023] Open
Abstract
This study aimed to determine the mutational spectrum of familial Parkinson's disease and sporadic early-onset Parkinson's disease (sEOPD) in a mainland Chinese population and the clinical features of mutation carriers. We performed multiplex ligation-dependent probe amplification assays and whole-exome sequencing for 1676 unrelated patients with Parkinson's disease in a mainland Chinese population, including 192 probands from families with autosomal-recessive Parkinson's disease, 242 probands from families with autosomal-dominant Parkinson's disease, and 1242 sEOPD patients (age at onset ≤ 50). According to standards and guidelines from the American College of Medical Genetics and Genomics, pathogenic/likely pathogenic variants in 23 known Parkinson's disease-associated genes occurred more frequently in the autosomal-recessive Parkinson's disease cohort (65 of 192, 33.85%) than in the autosomal-dominant Parkinson's disease cohort (10 of 242, 4.13%) and the sEOPD cohort (57 of 1242, 4.59%), which leads to an overall molecular diagnostic yield of 7.88% (132 of 1676). We found that PRKN was the most frequently mutated gene (n = 83, 4.95%) and present the first evidence of an SNCA duplication and LRRK2 p.N1437D variant in mainland China. In addition, several novel pathogenic/likely pathogenic variants including LRRK2 (p.V1447M and p.Y1645S), ATP13A2 (p.R735X and p.A819D), FBXO7 (p.G67E), LRP10 (c.322dupC/p.G109Rfs*51) and TMEM230 (c.429delT/p.P144Qfs*2) were identified in our cohort. Furthermore, the age at onset of the 132 probands with genetic diagnoses (median, 31.5 years) was about 14.5 years earlier than that of patients without molecular diagnoses (i.e. non-carriers, median 46.0 years). Specifically, the age at onset of Parkinson's disease patients with pathogenic/likely pathogenic variants in ATP13A2, PLA2G6, PRKN, or PINK1 was significantly lower than that of non-carriers, while the age at onset of carriers with other gene pathogenic/likely pathogenic variants was similar to that of non-carriers. The clinical spectrum of Parkinson's disease-associated gene carriers in this mainland Chinese population was similar to that of other populations. We also detected 61 probands with GBA possibly pathogenic variants (3.64%) and 59 probands with GBA p.L444P (3.52%). These results shed insight into the genetic spectrum and clinical manifestations of Parkinson's disease in mainland China and expand the existing repertoire of pathogenic or likely pathogenic variants involved in known Parkinson's disease-associated genes. Our data highlight the importance of genetic testing in Parkinson's disease patients with age at onset < 40 years, especially in those from families with a recessive inheritance pattern, who may benefit from early diagnosis and treatment.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yangjie Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenghuan Fang
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zheng Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Honglan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kailin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Nannan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Dongxiao Liang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Juan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongli Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Penghui Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kun Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ke Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chaojun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Junfei Zhong
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiguo Liu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Piu Chan
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100101, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Li Guo
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450047, China
| | - Changshui Xu
- Department of Neurology, Henan provincial people's hospital, Zhengzhou, Henan 450003, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Lifang Lei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Xinxiang Yan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuohua Zhang
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhengmao Hu
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Kun Xia
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhenyu Yue
- Departments of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jinchen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
18
|
Devos D, Hirsch E, Wyse R. Seven Solutions for Neuroprotection in Parkinson's Disease. Mov Disord 2020; 36:306-316. [PMID: 33184908 DOI: 10.1002/mds.28379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra and accumulation of iron and alpha-synuclein; it follows a characteristic pattern throughout the nervous system. Despite decades of successful preclinical neuroprotective studies, no drug has then shown efficacy in clinical trials. Considering this dilemma, we have reviewed and organized solutions of varying importance that can be exclusive or additive, and we outline approaches to help generate successful development of neuroprotective drugs for PD: (1) select patients in which the targeted mechanism is involved in the pathological process associated with the monitoring of target engagement, (2) combine treatments that target multiple pathways, (3) establish earliest interventions and develop better prodromal biomarkers, (4) adopt rigorous methodology and specific disease-relevant designs for disease-modifying clinical trials, (5) customize drug with better brain biodistribution, (6) prioritize repurposed drugs as a first line approach, and (7) adapt preclinical models to the targeted mechanisms with translational biomarkers to increase their predictive value. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David Devos
- Department of Medical Pharmacology, Expert Center for Parkinson, CHU-Lille, Lille Neuroscience & Cognition, Inserm, zUMR-S1172, LICEND, University of Lille, Lille, France
| | - Etienne Hirsch
- Institut du Cerveau-ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Richard Wyse
- The Cure Parkinson's Trust, London, United Kingdom
| |
Collapse
|
19
|
Su C, Tong J, Wang F. Mining genetic and transcriptomic data using machine learning approaches in Parkinson's disease. NPJ PARKINSONS DISEASE 2020; 6:24. [PMID: 32964109 PMCID: PMC7481248 DOI: 10.1038/s41531-020-00127-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/13/2020] [Indexed: 01/08/2023]
Abstract
High-throughput techniques have generated abundant genetic and transcriptomic data of Parkinson’s disease (PD) patients but data analysis approaches such as traditional statistical methods have not provided much in the way of insightful integrated analysis or interpretation of the data. As an advanced computational approach, machine learning, which enables people to identify complex patterns and insight from data, has consequently been harnessed to analyze and interpret large, highly complex genetic and transcriptomic data toward a better understanding of PD. In particular, machine learning models have been developed to integrate patient genotype data alone or combined with demographic, clinical, neuroimaging, and other information, for PD outcome study. They have also been used to identify biomarkers of PD based on transcriptomic data, e.g., gene expression profiles from microarrays. This study overviews the relevant literature on using machine learning models for genetic and transcriptomic data analysis in PD, points out remaining challenges, and suggests future directions accordingly. Undoubtedly, the use of machine learning is amplifying PD genetic and transcriptomic achievements for accelerating the study of PD. Existing studies have demonstrated the great potential of machine learning in discovering hidden patterns within genetic or transcriptomic information and thus revealing clues underpinning pathology and pathogenesis. Moving forward, by addressing the remaining challenges, machine learning may advance our ability to precisely diagnose, prognose, and treat PD.
Collapse
Affiliation(s)
- Chang Su
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY USA
| | - Jie Tong
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY USA
| |
Collapse
|
20
|
Shutinoski B, Hakimi M, Harmsen IE, Lunn M, Rocha J, Lengacher N, Zhou YY, Khan J, Nguyen A, Hake-Volling Q, El-Kodsi D, Li J, Alikashani A, Beauchamp C, Majithia J, Coombs K, Shimshek D, Marcogliese PC, Park DS, Rioux JD, Philpott DJ, Woulfe JM, Hayley S, Sad S, Tomlinson JJ, Brown EG, Schlossmacher MG. Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Sci Transl Med 2020; 11:11/511/eaas9292. [PMID: 31554740 DOI: 10.1126/scitranslmed.aas9292] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 12/27/2018] [Accepted: 05/11/2019] [Indexed: 12/20/2022]
Abstract
Variants in the leucine-rich repeat kinase-2 (LRRK2) gene are associated with Parkinson's disease, leprosy, and Crohn's disease, three disorders with inflammation as an important component. Because of its high expression in granulocytes and CD68-positive cells, LRRK2 may have a function in innate immunity. We tested this hypothesis in two ways. First, adult mice were intravenously inoculated with Salmonella typhimurium, resulting in sepsis. Second, newborn mouse pups were intranasally infected with reovirus (serotype 3 Dearing), which induced encephalitis. In both mouse models, wild-type Lrrk2 expression was protective and showed a sex effect, with female Lrrk2-deficient animals not controlling infection as well as males. Mice expressing Lrrk2 carrying the Parkinson's disease-linked p.G2019S mutation controlled infection better, with reduced bacterial growth and longer animal survival during sepsis. This gain-of-function effect conferred by the p.G2019S mutation was mediated by myeloid cells and was abolished in animals expressing a kinase-dead Lrrk2 variant, p.D1994S. Mouse pups with reovirus-induced encephalitis that expressed the p.G2019S Lrrk2 mutation showed increased mortality despite lower viral titers. The p.G2019S mutant Lrrk2 augmented immune cell chemotaxis and generated more reactive oxygen species during virulent infection. Reovirus-infected brains from mice expressing the p.G2019S mutant Lrrk2 contained higher concentrations of α-synuclein. Animals expressing one or two p.D1994S Lrrk2 alleles showed lower mortality from reovirus-induced encephalitis. Thus, Lrrk2 alleles may alter the course of microbial infections by modulating inflammation, and this may be dependent on the sex and genotype of the host as well as the type of pathogen.
Collapse
Affiliation(s)
- Bojan Shutinoski
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mansoureh Hakimi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Irene E Harmsen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Michaela Lunn
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Juliana Rocha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nathalie Lengacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Yi Yuan Zhou
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jasmine Khan
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Angela Nguyen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Quinton Hake-Volling
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Daniel El-Kodsi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Juan Li
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Azadeh Alikashani
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudine Beauchamp
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jay Majithia
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Derya Shimshek
- Novartis Institutes of BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Paul C Marcogliese
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - John D Rioux
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - John M Woulfe
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Earl G Brown
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Qiu X, He H, Huang Y, Wang J, Xiao Y. Genome-wide identification of m 6A-associated single-nucleotide polymorphisms in Parkinson's disease. Neurosci Lett 2020; 737:135315. [PMID: 32827573 DOI: 10.1016/j.neulet.2020.135315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
N6-methyladenosine (m6A)-associated single nucleotide polymorphisms (SNPs) play a vital role in several neurological diseases. However, little is known about the relationship between m6A modification and Parkinson's disease (PD). We investigated potential functional variants of m6A-SNPs from large-scale genome-wide association studies (GWAS) in PD patients. The candidate m6A-SNPs were further assessed by expression quantitative trait loci (eQTL) analysis and differential gene expression analysis. We identified 12 m6A-SNPs that were significantly associated with PD risk. Further, eQTL and expression analyses identified five of these m6A-SNPs (rs75072999 of GAK, rs1378602, rs4924839 and rs8071834 of ALKBH5, and rs1033500 of C6orf10) that were associated with altered gene expression in PD. Our results suggest that m6A-SNPs could play a role in PD risk. Future studies are needed to confirm these PD-associated m6A-SNPs and elucidate their mechanisms.
Collapse
Affiliation(s)
- Xiaohui Qiu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Honghu He
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanning Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
22
|
Schmidt-Kastner R, Guloksuz S, Kietzmann T, van Os J, Rutten BPF. Analysis of GWAS-Derived Schizophrenia Genes for Links to Ischemia-Hypoxia Response of the Brain. Front Psychiatry 2020; 11:393. [PMID: 32477182 PMCID: PMC7235330 DOI: 10.3389/fpsyt.2020.00393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Obstetric complications (OCs) can induce major adverse conditions for early brain development and predispose to mental disorders, including schizophrenia (SCZ). We previously hypothesized that SCZ candidate genes respond to ischemia-hypoxia as part of OCs which impacts neurodevelopment. We here tested for an overlap between SCZ genes from genome-wide association study (GWAS) (n=458 genes from 145 loci of the most recent GWAS dataset in SCZ) and gene sets for ischemia-hypoxia response. Subsets of SCZ genes were related to (a) mutation-intolerant genes (LoF database), (b) role in monogenic disorders of the nervous system (OMIM, manual annotations), and (c) synaptic function (SynGO). Ischemia-hypoxia response genes of the brain (IHR genes, n=1,629), a gene set from RNAseq in focal brain ischemia (BH, n=2,449) and genes from HypoxiaDB (HDB, n=2,289) were overlapped with the subset of SCZ genes and tested for enrichment with Chi-square tests (p < 0.017). The SCZ GWAS dataset was enriched for LoF (n=112; p=0.0001), and the LoF subset was enriched for IHR genes (n=25; p=0.0002), BH genes (n=35; p=0.0001), and HDB genes (n=23; p=0.0005). N=96 genes of the SCZ GWAS dataset (21%) could be linked to a monogenic disorder of the nervous system whereby IHR genes (n=19, p=0.008) and BH genes (n=23; p=0.002) were found enriched. N=46 synaptic genes were found in the SCZ GWAS gene set (p=0.0095) whereby enrichments for IHR genes (n=20; p=0.0001) and BH genes (n=13; p=0.0064) were found. In parallel, detailed annotations of SCZ genes for a role of the hypoxia-inducible factors (HIFs) identified n=33 genes of high interest. Genes from SCZ GWAS were enriched for mutation-intolerant genes which in turn were strongly enriched for three sets of genes for the ischemia-hypoxia response that may be invoked by OCs. A subset of one fifth of SCZ genes has established roles in monogenic disorders of the nervous system which was enriched for two gene sets related to ischemia-hypoxia. SCZ genes related to synaptic functions were also related to ischemia-hypoxia. Variants of SCZ genes interacting with ischemia-hypoxia provide a specific starting point for functional and genomic studies related to OCs.
Collapse
Affiliation(s)
- Rainald Schmidt-Kastner
- Integrated Medical Science Department, C.E. Schmidt College of Medicine, Florida Atlantic University (FAU), Boca Raton, FL, United States
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, United Kingdom
| | - Bart P. F. Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
23
|
Yao YN, Wang MD, Tang XC, Wu B, Sun HM. Reduced plasma progranulin levels are associated with the severity of Parkinson's disease. Neurosci Lett 2020; 725:134873. [PMID: 32112819 DOI: 10.1016/j.neulet.2020.134873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/25/2020] [Indexed: 11/29/2022]
Abstract
Blood levels of progranulin (PGRN) are suggested to be decreased in patients with Parkinson's disease (PD). However, the association between blood levels of progranulin and the severity of PD is not yet clear. A total of 55 PD patients and 55 normal control (NC) subjects were recruited in the present study. Hoehn and Yahr stages (H&Y) and Unified Parkinson's Disease Rating Scale scores (UPDRS) were examined to assess the severity of the disease. UPDRS motor section (UPDRS-III) was used to assess the motor function of the patients. Plasma levels of PGRN were tested by Elisa assays. Plasma PGRN levels are significantly decreased in PD patients (PD vs. NC: 333.8 ± 8.067 vs. 364.2 ± 10.11 ng/ml, p = 0.020). In the subgroup analysis, plasma PGRN levels decrease as H&Y score increases (H&Y = 1 vs. H&Y = 2: 363.5 ± 3.251 vs. 336.3 ± 7.403 ng/ml, p = 0.013; H&Y = 1 vs. H&Y = 3-5: 363.5 ± 3.251 vs. 218.1 ± 18.12 ng/ml, p < 0.001; H&Y = 2 vs. H&Y = 3-5: 336.3 ± 7.403 vs. 218.1 ± 18.12 ng/ml, p = 0.076). Plasma levels of progranulin are negatively correlated with the severity of PD, as reflected by UPDRS (γ=-0.754, p < 0.001), UPDRS-III (γ=-0.808, p < 0.001) and disease duration (γ=-0.633, p < 0.001). Circulating PGRN levels might be a potential indicator of the disease severity of PD.
Collapse
Affiliation(s)
- Yi-Na Yao
- Second Department of Neurology, the 4(th) Hospital of Daqing, Heilongjiang, 163000, No. 198, Central Street, Ranghulu District, Daqing City, China
| | - Ming-Da Wang
- Second Department of Neurology, the 4(th) Hospital of Daqing, Heilongjiang, 163000, No. 198, Central Street, Ranghulu District, Daqing City, China
| | - Xi-Cun Tang
- Second Department of Neurology, the 4(th) Hospital of Daqing, Heilongjiang, 163000, No. 198, Central Street, Ranghulu District, Daqing City, China
| | - Bo Wu
- Second Department of Neurology, the 4(th) Hospital of Daqing, Heilongjiang, 163000, No. 198, Central Street, Ranghulu District, Daqing City, China
| | - Hong-Ming Sun
- Second Department of Neurology, the 4(th) Hospital of Daqing, Heilongjiang, 163000, No. 198, Central Street, Ranghulu District, Daqing City, China.
| |
Collapse
|
24
|
Bobbili DR, Banda P, Krüger R, May P. Excess of singleton loss-of-function variants in Parkinson's disease contributes to genetic risk. J Med Genet 2020; 57:617-623. [PMID: 32054687 PMCID: PMC7476273 DOI: 10.1136/jmedgenet-2019-106316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 12/04/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder with complex genetic architecture. Besides rare mutations in high-risk genes related to monogenic familial forms of PD, multiple variants associated with sporadic PD were discovered via association studies. METHODS We studied the whole-exome sequencing data of 340 PD cases and 146 ethnically matched controls from the Parkinson's Progression Markers Initiative (PPMI) and performed burden analysis for different rare variant classes. Disease prediction models were built based on clinical, non-clinical and genetic features, including both common and rare variants, and two machine learning methods. RESULTS We observed a significant exome-wide burden of singleton loss-of-function variants (corrected p=0.037). Overall, no exome-wide burden of rare amino acid changing variants was detected. Finally, we built a disease prediction model combining singleton loss-of-function variants, a polygenic risk score based on common variants, and family history of PD as features and reached an area under the curve of 0.703 (95% CI 0.698 to 0.708). By incorporating a rare variant feature, our model increased the performance of the state-of-the-art classification model for the PPMI dataset, which reached an area under the curve of 0.639 based on common variants alone. CONCLUSION The main finding of this study is to highlight the contribution of singleton loss-of-function variants to the complex genetics of PD and that disease risk prediction models combining singleton and common variants can improve models built solely on common variants.
Collapse
Affiliation(s)
- Dheeraj Reddy Bobbili
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg .,MeGeno S.A, Esch-sur-Alzette, Luxembourg
| | - Peter Banda
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Rejko Krüger
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxemborg (CHL), Luxembourg, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Patrick May
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| |
Collapse
|
25
|
Kumar D, Kumar P. Aβ, Tau, and α-Synuclein aggregation and integrated role of PARK2 in the regulation and clearance of toxic peptides. Neuropeptides 2019; 78:101971. [PMID: 31540705 DOI: 10.1016/j.npep.2019.101971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's and Parkinson's diseases are one of the world's leading causes of death. >50 million people throughout the world are suffering with these diseases. They are two distinct progressive neurodegenerative disorders affecting different regions of the brain with diverse symptoms, including memory and motor loss respectively, but with the advancement of diseases, both affect the whole brain and exhibit some common biological symptoms. For instance, >50% PD patients develop dementia in their later stages, though it is a hallmark of Alzheimer's disease. In fact, latest research has suggested the involvement of some common pathophysiological and genetic links between these diseases, including the deposition of pathological Aβ, Tau, and α-synuclein in both the cases. Therefore, it is pertinent to diagnose the shared biomarkers, their aggregation mechanism, their intricate relationships in the pathophysiology of disease and therapeutic markers to target them. This would enable us to identify novel markers for the early detection of disease and targets for the future therapies. Herein, we investigated molecular aspects of Aβ, Tau, and α-Synuclein aggregation, and characterized their functional partners involved in the pathology of AD and PD. Moreover, we identified the molecular-crosstalk between AD and PD associated with their pathogenic proteins- Aβ, Tau, and α-Synuclein. Furthermore, we characterized their ubiquitinational enzymes and associated interaction network regulating the proteasomal clearance of these pathological proteins.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
26
|
Li H, Jiang H, Zhang B, Feng J. Modeling Parkinson's Disease Using Patient-specific Induced Pluripotent Stem Cells. JOURNAL OF PARKINSONS DISEASE 2019; 8:479-493. [PMID: 30149462 PMCID: PMC6218140 DOI: 10.3233/jpd-181353] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterized by the degeneration of nigral dopaminergic (DA) neurons. While over 90% of cases are idiopathic, without a clear etiology, mutations in many genes have been linked to rare, familial forms of PD. It has been quite challenging to develop effective animal models of PD that capture salient features of PD. The discovery of induced pluripotent stem cells (iPSCs) makes it possible to generate patient-specific DA neurons to study PD. Here, we review the methods for the generation of iPSCs and discuss previous studies using iPSC-derived neurons from monogenic forms of PD. These investigations have revealed several converging pathways that intersect with the unique vulnerabilities of human nigral DA neurons. With the rapid development in stem cell biology, it is possible to generate patient-specific neurons that will be increasingly similar to those in the brain of the patient. Combined with the ability to edit the genome to generate isogenic iPSCs, the generation and analysis of patient-specific midbrain DA neurons will transform PD research by providing a valuable tool for mechanistic study and drug discovery.
Collapse
Affiliation(s)
- Hong Li
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Houbo Jiang
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Boyang Zhang
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jian Feng
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
27
|
Blauwendraat C, Reed X, Kia DA, Gan-Or Z, Lesage S, Pihlstrøm L, Guerreiro R, Gibbs JR, Sabir M, Ahmed S, Ding J, Alcalay RN, Hassin-Baer S, Pittman AM, Brooks J, Edsall C, Hernandez DG, Chung SJ, Goldwurm S, Toft M, Schulte C, Bras J, Wood NW, Brice A, Morris HR, Scholz SW, Nalls MA, Singleton AB, Cookson MR. Frequency of Loss of Function Variants in LRRK2 in Parkinson Disease. JAMA Neurol 2019; 75:1416-1422. [PMID: 30039155 DOI: 10.1001/jamaneurol.2018.1885] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Importance Pathogenic variants in LRRK2 are a relatively common genetic cause of Parkinson disease (PD). Currently, the molecular mechanism underlying disease is unknown, and gain and loss of function (LOF) models of pathogenesis have been postulated. LRRK2 variants are reported to result in enhanced phosphorylation of substrates and increased cell death. However, the double knockout of Lrrk2 and its homologue Lrrk1 results in neurodegeneration in a mouse model, suggesting that disease may occur by LOF. Because LRRK2 inhibitors are currently in development as potential disease-modifying treatments in PD, it is critical to determine whether LOF variants in LRRK2 increase or decrease the risk of PD. Objective To determine whether LRRK1 and LRRK2 LOF variants contribute to the risk of developing PD. Design, Setting, and Participants To determine the prevailing mechanism of LRRK2-mediated disease in human populations, next-generation sequencing data from a large case-control cohort (>23 000 individuals) was analyzed for LOF variants in LRRK1 and LRRK2. Data were generated at 5 different sites and 5 different data sets, including cases with clinically diagnosed PD and neurologically normal control individuals. Data were collected from 2012 through 2017. Main Outcomes and Measures Frequencies of LRRK1 and LRRK2 LOF variants present in the general population and compared between cases and controls. Results Among 11 095 cases with PD and 12 615 controls, LRRK1 LOF variants were identified in 0.205% of cases and 0.139% of controls (odds ratio, 1.48; SE, 0.571; 95% CI, 0.45-4.44; P = .49) and LRRK2 LOF variants were found in 0.117% of cases and 0.087% of controls (odds ratio, 1.48; SE, 0.431; 95% CI, 0.63-3.50; P = .36). All association tests suggested lack of association between LRRK1 or LRRK2 variants and PD. Further analysis of lymphoblastoid cell lines from several heterozygous LOF variant carriers found that, as expected, LRRK2 protein levels are reduced by approximately half compared with wild-type alleles. Conclusions and Relevance Together these findings indicate that haploinsufficiency of LRRK1 or LRRK2 is neither a cause of nor protective against PD. Furthermore, these results suggest that kinase inhibition or allele-specific targeting of mutant LRRK2 remain viable therapeutic strategies in PD.
Collapse
Affiliation(s)
- Cornelis Blauwendraat
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.,Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Demis A Kia
- Department of Molecular Neurosciences, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Suzanne Lesage
- Institut National de la Santé et de la Recherche Medicale U1127, Centre National de la Recherche Scientifique-Unité Mixte de Recherché (UMR) 7225, Sorbonne Universités, Université Pierre-et-Marie-Curie, University of Paris 06, UMR S1127, Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Rita Guerreiro
- Dementia Research Institute, UCL, London, United Kingdom.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom.,Department of Medical Sciences and Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Marya Sabir
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Sarah Ahmed
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Sharon Hassin-Baer
- Movement Disorders Institute, Department of Neurology and Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alan M Pittman
- Department of Molecular Neurosciences, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Janet Brooks
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Connor Edsall
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Stefano Goldwurm
- Parkinson Institute of Milan, Azienda Socio Sanitaria Territoriale Gaetano Pini/CTO, Milano, Italy.,Department of Neuroscience, Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jose Bras
- Dementia Research Institute, UCL, London, United Kingdom.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom.,Department of Medical Sciences and Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Nicholas W Wood
- Department of Molecular Neurosciences, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Alexis Brice
- Institut National de la Santé et de la Recherche Medicale U1127, Centre National de la Recherche Scientifique-Unité Mixte de Recherché (UMR) 7225, Sorbonne Universités, Université Pierre-et-Marie-Curie, University of Paris 06, UMR S1127, Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Huw R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.,Department of Neurology, Johns Hopkins University Medical Center, Baltimore, Maryland
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland.,Data Tecnica International, Glen Echo, Maryland
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
28
|
Zhang K, Yang Q, Fan Z, Zhao J, Li H. Platelet-driven formation of interface peptide nano-network biosensor enabling a non-invasive means for early detection of Alzheimer's disease. Biosens Bioelectron 2019; 145:111701. [PMID: 31541786 DOI: 10.1016/j.bios.2019.111701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/27/2022]
Abstract
Soft material fabricated with DNA origami or peptide cross-linking technique may be promising theranostic platforms in the future; however, their naturally occurring counterparts, such as the peptide aggregates in the neurodegenerative diseases, constitute an increasingly burdensome issue of public health. Thus, a design of artificial peptide nano-network biosensor is conceived, in an attempt to combat the natural pathological peptides, by mimicking their pathogenesis process. Specifically, periphery platelet can secrete A-beta and induce its cross-linking & aggregation to form a surface peptide nano-network, resulting in large numbers of poly-tyrosine strands being covalently trapped in the network to serve as an efficient signal amplifier, through the electrochemical oxidation of tyrosine. This method is sensitive and quantitative in the range of normal and pathological periphery platelet distribution and can effectively discriminate Alzheimer's disease (AD) patients based on the detected potential neurodegenerative activity of platelet. These results may point to some future perspective of this method in the early screening of AD.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China.
| | - Qianlu Yang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhenqiang Fan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Hao Li
- School of Biological Science and Technology, University of Jinan, No. 106 Jiwei Road, Jinan, Shandong, 250022, China.
| |
Collapse
|
29
|
Chen SJ, Wu RM, Ho CH, Cheng J, Lin HY, Lin CH. Genetic analysis of PODXL gene in patients with familial and young-onset Parkinson's disease in a Taiwanese population. Neurobiol Aging 2019; 84:235.e9-235.e10. [PMID: 31564376 DOI: 10.1016/j.neurobiolaging.2019.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/25/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022]
Abstract
Mutations in the podocalyxin-like gene (PODXL) have been recently identified in a consanguineous Indian family with juvenile-onset Parkinson's disease (PD) and 3 unrelated patients with PD. However, the pathogenicity of PODXL mutations in the disease and their role in other PD populations remain unclear. The aim of this study was to investigate the PODXL mutations in a Taiwanese cohort with familial and young-onset PD. Among 531 participants, including 161 probands from PD pedigrees without known PD-causative gene mutations and 370 patients with early-onset PD (age of onset <50 years), all exons and exon-intron boundary junctions of PODXL were analyzed by Sanger sequencing. We did not find any pathogenic coding variants or previously reported mutations, indicating that PODXL mutations may not play a role in familial or early-onset PD in this Taiwanese population.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Bei-Hu Branch, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Han Ho
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jay Cheng
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
30
|
Pang SYY, Ho PWL, Liu HF, Leung CT, Li L, Chang EES, Ramsden DB, Ho SL. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson's disease. Transl Neurodegener 2019; 8:23. [PMID: 31428316 PMCID: PMC6696688 DOI: 10.1186/s40035-019-0165-9] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by dopaminergic neuronal loss in the substantia nigra pars compacta and intracellular inclusions called Lewy bodies (LB). During the course of disease, misfolded α-synuclein, the major constituent of LB, spreads to different regions of the brain in a prion-like fashion, giving rise to successive non-motor and motor symptoms. Etiology is likely multifactorial, and involves interplay among aging, genetic susceptibility and environmental factors. MAIN BODY The prevalence of PD rises exponentially with age, and aging is associated with impairment of cellular pathways which increases susceptibility of dopaminergic neurons to cell death. However, the majority of those over the age of 80 do not have PD, thus other factors in addition to aging are needed to cause disease. Discovery of neurotoxins which can result in parkinsonism led to efforts in identifying environmental factors which may influence PD risk. Nevertheless, the causality of most environmental factors is not conclusively established, and alternative explanations such as reverse causality and recall bias cannot be excluded. The lack of geographic clusters and conjugal cases also go against environmental toxins as a major cause of PD. Rare mutations as well as common variants in genes such as SNCA, LRRK2 and GBA are associated with risk of PD, but Mendelian causes collectively only account for 5% of PD and common polymorphisms are associated with small increase in PD risk. Heritability of PD has been estimated to be around 30%. Thus, aging, genetics and environmental factors each alone is rarely sufficient to cause PD for most patients. CONCLUSION PD is a multifactorial disorder involving interplay of aging, genetics and environmental factors. This has implications on the development of appropriate animal models of PD which take all these factors into account. Common converging pathways likely include mitochondrial dysfunction, impaired autophagy, oxidative stress and neuroinflammation, which are associated with the accumulation and spread of misfolded α-synuclein and neurodegeneration. Understanding the mechanisms involved in the initiation and progression of PD may lead to potential therapeutic targets to prevent PD or modify its course.
Collapse
Affiliation(s)
- Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Hui-Fang Liu
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Chi-Ting Leung
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Lingfei Li
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Eunice Eun Seo Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
31
|
Lin CH, Li CH, Yang KC, Lin FJ, Wu CC, Chieh JJ, Chiu MJ. Blood NfL: A biomarker for disease severity and progression in Parkinson disease. Neurology 2019; 93:e1104-e1111. [PMID: 31420461 DOI: 10.1212/wnl.0000000000008088] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 06/04/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine whether plasma neurofilament light chain (NfL) levels were associated with motor and cognitive progression in Parkinson disease (PD). METHODS This prospective follow-up study enrolled 178 participants, including 116 with PD, 22 with multiple system atrophy (MSA), and 40 healthy controls. We measured plasma NfL levels with electrochemiluminescence immunoassay. Patients with PD received evaluations of motor and cognition at baseline and at a mean follow-up interval of 3 years. Changes in the Unified Parkinson's Disease Rating Scale (UPDRS) part III motor score and Mini-Mental State Examination score were used to assess motor and cognition progression. RESULTS Plasma NfL levels were significantly higher in the MSA group than in the PD and healthy groups (35.8 ± 6.2, 17.6 ± 2.8, and 10.6 ± 2.3 pg/mL, respectively, p < 0.001). In the PD group, NfL levels were significantly elevated in patients with advanced Hoehn-Yahr stage and patients with dementia (p < 0.001). NfL levels were modestly correlated with UPDRS part III scores (r = 0.42, 95% confidence interval 0.46-0.56, p < 0.001). After a mean follow-up of 3.4 ± 1.2 years, a Cox regression analysis adjusted for age, sex, disease duration, and baseline motor or cognitive status showed that higher baseline NfL levels were associated with higher risks for either motor or cognition progression (p = 0.029 and p = 0.015, respectively). CONCLUSIONS Plasma NfL levels correlated with disease severity and progression in terms of both motor and cognitive functions in PD. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that plasma NfL level distinguishes PD from MSA and is a surrogate biomarker for PD progression.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- From the Department of Neurology (C.-H.L., C.-H.L., M.-J.C.), Department of Internal Medicine (K.-C.Y., C.-C.W.), and Department of Pharmacy (F.-J.L.), National Taiwan University Hospital, College of Medicine, National Taiwan University; Department of Pharmacology (K.-C.Y.), Graduate Institute of Clinical Pharmacy & School of Pharmacy (F.-J.L.), and Graduate Institute of Brain and Mind Sciences (M.-J.C.), College of Medicine, National Taiwan University; Institute of Electro-Optical Science and Technology (J.-J.C.), National Taiwan Normal University; and Graduate Institute of Biomedical Engineering and Bioinformatics (M.-J.C.) and Graduate Institute of Psychology (M.-J.C.), National Taiwan University, Taipei
| | - Cheng-Hsuan Li
- From the Department of Neurology (C.-H.L., C.-H.L., M.-J.C.), Department of Internal Medicine (K.-C.Y., C.-C.W.), and Department of Pharmacy (F.-J.L.), National Taiwan University Hospital, College of Medicine, National Taiwan University; Department of Pharmacology (K.-C.Y.), Graduate Institute of Clinical Pharmacy & School of Pharmacy (F.-J.L.), and Graduate Institute of Brain and Mind Sciences (M.-J.C.), College of Medicine, National Taiwan University; Institute of Electro-Optical Science and Technology (J.-J.C.), National Taiwan Normal University; and Graduate Institute of Biomedical Engineering and Bioinformatics (M.-J.C.) and Graduate Institute of Psychology (M.-J.C.), National Taiwan University, Taipei
| | - Kai-Chien Yang
- From the Department of Neurology (C.-H.L., C.-H.L., M.-J.C.), Department of Internal Medicine (K.-C.Y., C.-C.W.), and Department of Pharmacy (F.-J.L.), National Taiwan University Hospital, College of Medicine, National Taiwan University; Department of Pharmacology (K.-C.Y.), Graduate Institute of Clinical Pharmacy & School of Pharmacy (F.-J.L.), and Graduate Institute of Brain and Mind Sciences (M.-J.C.), College of Medicine, National Taiwan University; Institute of Electro-Optical Science and Technology (J.-J.C.), National Taiwan Normal University; and Graduate Institute of Biomedical Engineering and Bioinformatics (M.-J.C.) and Graduate Institute of Psychology (M.-J.C.), National Taiwan University, Taipei
| | - Fang-Ju Lin
- From the Department of Neurology (C.-H.L., C.-H.L., M.-J.C.), Department of Internal Medicine (K.-C.Y., C.-C.W.), and Department of Pharmacy (F.-J.L.), National Taiwan University Hospital, College of Medicine, National Taiwan University; Department of Pharmacology (K.-C.Y.), Graduate Institute of Clinical Pharmacy & School of Pharmacy (F.-J.L.), and Graduate Institute of Brain and Mind Sciences (M.-J.C.), College of Medicine, National Taiwan University; Institute of Electro-Optical Science and Technology (J.-J.C.), National Taiwan Normal University; and Graduate Institute of Biomedical Engineering and Bioinformatics (M.-J.C.) and Graduate Institute of Psychology (M.-J.C.), National Taiwan University, Taipei
| | - Chau-Chung Wu
- From the Department of Neurology (C.-H.L., C.-H.L., M.-J.C.), Department of Internal Medicine (K.-C.Y., C.-C.W.), and Department of Pharmacy (F.-J.L.), National Taiwan University Hospital, College of Medicine, National Taiwan University; Department of Pharmacology (K.-C.Y.), Graduate Institute of Clinical Pharmacy & School of Pharmacy (F.-J.L.), and Graduate Institute of Brain and Mind Sciences (M.-J.C.), College of Medicine, National Taiwan University; Institute of Electro-Optical Science and Technology (J.-J.C.), National Taiwan Normal University; and Graduate Institute of Biomedical Engineering and Bioinformatics (M.-J.C.) and Graduate Institute of Psychology (M.-J.C.), National Taiwan University, Taipei
| | - Jen-Jie Chieh
- From the Department of Neurology (C.-H.L., C.-H.L., M.-J.C.), Department of Internal Medicine (K.-C.Y., C.-C.W.), and Department of Pharmacy (F.-J.L.), National Taiwan University Hospital, College of Medicine, National Taiwan University; Department of Pharmacology (K.-C.Y.), Graduate Institute of Clinical Pharmacy & School of Pharmacy (F.-J.L.), and Graduate Institute of Brain and Mind Sciences (M.-J.C.), College of Medicine, National Taiwan University; Institute of Electro-Optical Science and Technology (J.-J.C.), National Taiwan Normal University; and Graduate Institute of Biomedical Engineering and Bioinformatics (M.-J.C.) and Graduate Institute of Psychology (M.-J.C.), National Taiwan University, Taipei
| | - Ming-Jang Chiu
- From the Department of Neurology (C.-H.L., C.-H.L., M.-J.C.), Department of Internal Medicine (K.-C.Y., C.-C.W.), and Department of Pharmacy (F.-J.L.), National Taiwan University Hospital, College of Medicine, National Taiwan University; Department of Pharmacology (K.-C.Y.), Graduate Institute of Clinical Pharmacy & School of Pharmacy (F.-J.L.), and Graduate Institute of Brain and Mind Sciences (M.-J.C.), College of Medicine, National Taiwan University; Institute of Electro-Optical Science and Technology (J.-J.C.), National Taiwan Normal University; and Graduate Institute of Biomedical Engineering and Bioinformatics (M.-J.C.) and Graduate Institute of Psychology (M.-J.C.), National Taiwan University, Taipei.
| |
Collapse
|
32
|
Rana P, Franco EF, Rao Y, Syed K, Barh D, Azevedo V, Ramos RTJ, Ghosh P. Evaluation of the Common Molecular Basis in Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2019; 20:E3730. [PMID: 31366155 PMCID: PMC6695669 DOI: 10.3390/ijms20153730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders related to aging. Though several risk factors are shared between these two diseases, the exact relationship between them is still unknown. In this paper, we analyzed how these two diseases relate to each other from the genomic, epigenomic, and transcriptomic viewpoints. Using an extensive literature mining, we first accumulated the list of genes from major genome-wide association (GWAS) studies. Based on these GWAS studies, we observed that only one gene (HLA-DRB5) was shared between AD and PD. A subsequent literature search identified a few other genes involved in these two diseases, among which SIRT1 seemed to be the most prominent one. While we listed all the miRNAs that have been previously reported for AD and PD separately, we found only 15 different miRNAs that were reported in both diseases. In order to get better insights, we predicted the gene co-expression network for both AD and PD using network analysis algorithms applied to two GEO datasets. The network analysis revealed six clusters of genes related to AD and four clusters of genes related to PD; however, there was very low functional similarity between these clusters, pointing to insignificant similarity between AD and PD even at the level of affected biological processes. Finally, we postulated the putative epigenetic regulator modules that are common to AD and PD.
Collapse
Affiliation(s)
- Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Edian F Franco
- Institute of Biological Sciences, Federal University of Para, Belem-PA 66075-110, Brazil
| | - Yug Rao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Khajamoinuddin Syed
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
| | - Vasco Azevedo
- Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte-MG 31270-901, Brazil
| | - Rommel T J Ramos
- Institute of Biological Sciences, Federal University of Para, Belem-PA 66075-110, Brazil
- Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte-MG 31270-901, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
33
|
Roosen DA, Blauwendraat C, Cookson MR, Lewis PA. DNAJC
proteins and pathways to parkinsonism. FEBS J 2019; 286:3080-3094. [DOI: 10.1111/febs.14936] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Dorien A. Roosen
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
- School of Pharmacy University of Reading UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
| | - Mark R. Cookson
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
| | - Patrick A. Lewis
- School of Pharmacy University of Reading UK
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
| |
Collapse
|
34
|
Abramov AY. Different faces of neurodegeneration. FEBS J 2019; 285:3544-3546. [PMID: 30295008 DOI: 10.1111/febs.14646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
This Special Issue comprises nine reviews offering perspectives from the development of neurodegeneration in different pathologies to neuronal protection, providing new views on the mechanism of neurodegeneration and associated processes and a summary of the progress in neuroscience. We hope you find these reviews interesting and informative and we thank the authors for these excellent contributions to The FEBS Journal.
Collapse
Affiliation(s)
- Andrey Y Abramov
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
35
|
Blauwendraat C, Heilbron K, Vallerga CL, Bandres-Ciga S, von Coelln R, Pihlstrøm L, Simón-Sánchez J, Schulte C, Sharma M, Krohn L, Siitonen A, Iwaki H, Leonard H, Noyce AJ, Tan M, Gibbs JR, Hernandez DG, Scholz SW, Jankovic J, Shulman LM, Lesage S, Corvol JC, Brice A, van Hilten JJ, Marinus J, Tienari P, Majamaa K, Toft M, Grosset DG, Gasser T, Heutink P, Shulman JM, Wood N, Hardy J, Morris HR, Hinds DA, Gratten J, Visscher PM, Gan-Or Z, Nalls MA, Singleton AB. Parkinson's disease age at onset genome-wide association study: Defining heritability, genetic loci, and α-synuclein mechanisms. Mov Disord 2019; 34:866-875. [PMID: 30957308 PMCID: PMC6579628 DOI: 10.1002/mds.27659] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increasing evidence supports an extensive and complex genetic contribution to PD. Previous genome-wide association studies (GWAS) have shed light on the genetic basis of risk for this disease. However, the genetic determinants of PD age at onset are largely unknown. OBJECTIVES To identify the genetic determinants of PD age at onset. METHODS Using genetic data of 28,568 PD cases, we performed a genome-wide association study based on PD age at onset. RESULTS We estimated that the heritability of PD age at onset attributed to common genetic variation was ∼0.11, lower than the overall heritability of risk for PD (∼0.27), likely, in part, because of the subjective nature of this measure. We found two genome-wide significant association signals, one at SNCA and the other a protein-coding variant in TMEM175, both of which are known PD risk loci and a Bonferroni-corrected significant effect at other known PD risk loci, GBA, INPP5F/BAG3, FAM47E/SCARB2, and MCCC1. Notably, SNCA, TMEM175, SCARB2, BAG3, and GBA have all been shown to be implicated in α-synuclein aggregation pathways. Remarkably, other well-established PD risk loci, such as GCH1 and MAPT, did not show a significant effect on age at onset of PD. CONCLUSIONS Overall, we have performed the largest age at onset of PD genome-wide association studies to date, and our results show that not all PD risk loci influence age at onset with significant differences between risk alleles for age at onset. This provides a compelling picture, both within the context of functional characterization of disease-linked genetic variability and in defining differences between risk alleles for age at onset, or frank risk for disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- 23andMe, Inc., 899 W Evelyn Avenue, Mountain View, CA, USA
| | - Costanza L. Vallerga
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Rainer von Coelln
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Javier Simón-Sánchez
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tubingen, Germany
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ari Siitonen
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- The Michael J Fox Foundation for Parkinson’s Research, NY, USA
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J. Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Manuela Tan
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Jankovic
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa M. Shulman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Suzanne Lesage
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Jean-Christophe Corvol
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Alexis Brice
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | | | - Johan Marinus
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Pentti Tienari
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Kari Majamaa
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Donald G. Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Peter Heutink
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Joshua M Shulman
- Departments of Molecular & Human Genetics and Neuroscience, Baylor College of Medicine, Houston, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, USA
| | - Nicolas Wood
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - John Hardy
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Huw R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London UK
- UCL Movement Disorders Centre, UCL Institute of Neurology, London, UK
| | - David A. Hinds
- 23andMe, Inc., 899 W Evelyn Avenue, Mountain View, CA, USA
| | - Jacob Gratten
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Peter M. Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
36
|
Billingsley KJ, Barbosa IA, Bandrés-Ciga S, Quinn JP, Bubb VJ, Deshpande C, Botia JA, Reynolds RH, Zhang D, Simpson MA, Blauwendraat C, Gan-Or Z, Gibbs JR, Nalls MA, Singleton A, Ryten M, Koks S. Mitochondria function associated genes contribute to Parkinson's Disease risk and later age at onset. NPJ Parkinsons Dis 2019; 5:8. [PMID: 31123700 PMCID: PMC6531455 DOI: 10.1038/s41531-019-0080-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the etiology of monogenic Parkinson's disease (PD). Yet the role that mitochondrial processes play in the most common form of the disease; sporadic PD, is yet to be fully established. Here, we comprehensively assessed the role of mitochondrial function-associated genes in sporadic PD by leveraging improvements in the scale and analysis of PD GWAS data with recent advances in our understanding of the genetics of mitochondrial disease. We calculated a mitochondrial-specific polygenic risk score (PRS) and showed that cumulative small effect variants within both our primary and secondary gene lists are significantly associated with increased PD risk. We further reported that the PRS of the secondary mitochondrial gene list was significantly associated with later age at onset. Finally, to identify possible functional genomic associations we implemented Mendelian randomization, which showed that 14 of these mitochondrial function-associated genes showed functional consequence associated with PD risk. Further analysis suggested that the 14 identified genes are not only involved in mitophagy, but implicate new mitochondrial processes. Our data suggests that therapeutics targeting mitochondrial bioenergetics and proteostasis pathways distinct from mitophagy could be beneficial to treating the early stage of PD.
Collapse
Affiliation(s)
- Kimberley J. Billingsley
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, , University of Liverpool, Liverpool, UK
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ines A. Barbosa
- Department of Medical and Molecular Genetics, King’s College London School of Basic and Medical Biosciences, London, SE1 9RT UK
| | - Sara Bandrés-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - John P. Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, , University of Liverpool, Liverpool, UK
| | - Vivien J. Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, , University of Liverpool, Liverpool, UK
| | - Charu Deshpande
- Clinical Genetics Unit, Guys and St. Thomas’ NHS Foundation Trust, London, SE1 9RT UK
| | - Juan A. Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, 30100 Murcia, Spain
- Department of Neurodegenerative Disease, UCL Institute of Neurology, 10-12 Russell Square House, London, UK
| | - Regina H. Reynolds
- Department of Neurodegenerative Disease, UCL Institute of Neurology, 10-12 Russell Square House, London, UK
| | - David Zhang
- Department of Neurodegenerative Disease, UCL Institute of Neurology, 10-12 Russell Square House, London, UK
| | - Michael A. Simpson
- Department of Medical and Molecular Genetics, King’s College London School of Basic and Medical Biosciences, London, SE1 9RT UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC Canada
- Department of Human Genetics, McGill University, Montréal, QC Canada
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
- Data Tecnica International, Glen Echo, MD 20812 USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL Institute of Neurology, 10-12 Russell Square House, London, UK
| | - Sulev Koks
- The Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009 Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, 6150 Australia
| |
Collapse
|
37
|
Rs2015 Polymorphism in miRNA Target Site of Sirtuin2 Gene Is Associated with the Risk of Parkinson's Disease in Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1498034. [PMID: 31214610 PMCID: PMC6535834 DOI: 10.1155/2019/1498034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
Accumulating evidence reveals that the sirtuin family is involved in the pathology of Parkinson's disease (PD). However, the association between the polymorphisms of the sirtuin gene and the risk of PD remains elusive. Here, we investigated the possible association of nine SIRT1 and SIRT2 SNPs with the risk of PD through a clinical case-control study from the Chinese Han population. Our results showed that rs12778366 in the promoter region of SIRT1 and rs2015 in the 3′untranslated region (3′UTR) of the SIRT2 were significantly associated with the risk of PD. Five SNPs related to SIRT1, rs3740051, rs7895833, rs7069102, rs2273773, and rs4746720 and two SNPs related to SIRT2, rs10410544, and rs45592833 did not show an association with PD risk in this study. Moreover, we found that mRNA level of SIRT2 was upregulated, and mRNA level of SIRT1 was downregulated in the peripheral blood of PD patients compared with healthy controls, and we also observed that SNPs rs12778366 and rs2015 influenced the SIRT1 and SIRT2 expression levels, respectively. Further functional assays suggest that rs2015 may affect the expression of SIRT2 by affecting the binding of miR-8061 to the 3′UTR of SIRT2, ultimately contributing to the risk of PD.
Collapse
|
38
|
|
39
|
Lin CH, Chen PL, Tai CH, Lin HI, Chen CS, Chen ML, Wu RM. A clinical and genetic study of early-onset and familial parkinsonism in taiwan: An integrated approach combining gene dosage analysis and next-generation sequencing. Mov Disord 2019; 34:506-515. [PMID: 30788857 PMCID: PMC6594087 DOI: 10.1002/mds.27633] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/24/2022] Open
Abstract
Background Recent genetic progress has allowed for the molecular diagnosis of Parkinson's disease. However, genetic causes of PD vary widely in different ethnicities. Mutational frequencies and clinical phenotypes of genes associated with PD in Asian populations are largely unknown. The objective of this study was to identify the mutational frequencies and clinical spectrums of multiple PD‐causative genes in a Taiwanese PD cohort. Methods A total of 571 participants including 324 patients with early‐onset parkinsonism (onset age, <50 years) and 247 parkinsonism pedigrees were recruited at a tertiary referral center in Taiwan from 2002 to 2017. Genetic causes were identified by an integrated approach including gene dosage analysis, a targeted next‐generation sequencing panel containing 40 known PD‐causative genes, repeat‐primed polymerase chain reaction, and whole‐exome sequencing analysis. Results Thirty of the 324 patients with early‐onset parkinsonism (9.3%) were found to carry mutations in Parkin, PINK1, or PLA2G6 or had increased trinucleotide repeats in SCA8. Twenty‐nine of 109 probands with autosomal‐recessive inheritance of parkinsonism (26.6%) were found to carry mutations in Parkin, PINK1, GBA, or HTRA2. The genetic causes for the 138 probands with an autosomal‐dominant inheritance pattern of parkinsonism were more heterogeneous. Seventeen probands (12.3%) carried pathogenic mutations in LRRK2, VPS35, MAPT, GBA, DNAJC13, C9orf72, SCA3, or SCA17. A novel missense mutation in the UQCRC1 gene was found in a family with autosomal‐dominant inheritance parkinsonism via whole‐exome sequencing analysis. Conclusions Our findings provide a better understanding of the genetic architecture of PD in eastern Asia and broaden the clinical spectrum of PD‐causing mutations. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hang-I Lin
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Shan Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Ling Chen
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Sabir MS, Scholz SW. DNA typos spell trouble: Somatic mutations as a cause of idiopathic neurodegenerative diseases? Mov Disord 2019; 34:321. [PMID: 30675953 DOI: 10.1002/mds.27624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marya S Sabir
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Liss B, Striessnig J. The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson's Disease. Annu Rev Pharmacol Toxicol 2019; 59:263-289. [PMID: 30625283 DOI: 10.1146/annurev-pharmtox-010818-021214] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motor symptoms of Parkinson's disease (PD) mainly arise from degeneration of dopamine neurons within the substantia nigra. As no disease-modifying PD therapies are available, and side effects limit long-term benefits of current symptomatic therapies, novel treatment approaches are needed. The ongoing phase III clinical study STEADY-PD is investigating the potential of the dihydropyridine isradipine, an L-type Ca2+ channel (LTCC) blocker, for neuroprotective PD therapy. Here we review the clinical and preclinical rationale for this trial and discuss potential reasons for the ambiguous outcomes of in vivo animal model studies that address PD-protective dihydropyridine effects. We summarize current views about the roles of Cav1.2 and Cav1.3 LTCC isoforms for substantia nigra neuron function, and their high vulnerability to degenerative stressors, and for PD pathophysiology. We discuss different dihydropyridine sensitivities of LTCC isoforms in view of their potential as drug targets for PD neuroprotection, and we conclude by considering how these aspects could guide further drug development.
Collapse
Affiliation(s)
- Birgit Liss
- Institut für Angewandte Physiologie, Universität Ulm, 89081 Ulm, Germany;
| | - Jörg Striessnig
- Abteilung Pharmakologie und Toxikologie, Institut für Pharmazie, and Center for Molecular Biosciences Innsbruck, Universität Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
42
|
Han Z, Tian R, Ren P, Zhou W, Wang P, Luo M, Jin S, Jiang Q. Parkinson's disease and Alzheimer's disease: a Mendelian randomization study. BMC MEDICAL GENETICS 2018; 19:215. [PMID: 30598082 PMCID: PMC6311900 DOI: 10.1186/s12881-018-0721-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and Parkinson's disease (PD) are the top two common neurodegenerative diseases in elderly. Recent studies found the α-synuclein have a key role in AD. Although many clinical and pathological features between AD and PD are shared, the genetic association between them remains unclear, especially whether α-synuclein in PD genetically alters AD risk. RESULTS We did not obtain any significant result (OR = 0.918, 95% CI: 0.782-1.076, P = 0.291) in MR analysis between PD and AD risk. In MR between α-synuclein in PD with AD risk, we only extracted rs356182 as the IV through a strict screening process. The result indicated a significant association based on IVW method (OR = 0.638, 95% CI: 0.485-0.838, P = 1.20E-03). In order to examine the robustness of the IVW method, we used other three complementary analytical methods and also obtained consistent results. CONCLUSION The overall PD genetic risk factors did not predict AD risk, but the α-synuclein susceptibility genetic variants in PD reduce the AD risk. We believe that our findings may help to understand the association between them, which may be useful for future genetic studies for both diseases.
Collapse
Affiliation(s)
- Zhifa Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rui Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Peng Ren
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shuilin Jin
- Department of Mathematics, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
43
|
Kyrochristos ID, Ziogas DE, Roukos DH. Precision in personalized prediction-based medicine. Per Med 2018; 15:467-470. [PMID: 30387685 DOI: 10.2217/pme-2018-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ioannis D Kyrochristos
- Centre for Biosystems & Genome Network Medicine, Ioannina University, Ioannina, 45110, Greece.,Department of Surgery, Ioannina University Hospital, Ioannina, 45110, Greece
| | - Demosthenes E Ziogas
- Centre for Biosystems & Genome Network Medicine, Ioannina University, Ioannina, 45110, Greece.,Department of Surgery, 'G. Hatzikosta' General Hospital, Ioannina, 45001, Greece
| | - Dimitrios H Roukos
- Centre for Biosystems & Genome Network Medicine, Ioannina University, Ioannina, 45110, Greece.,Department of Surgery, Ioannina University Hospital, Ioannina, 45110, Greece.,Department of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, 11527, Greece
| |
Collapse
|
44
|
Keogh MJ, Wei W, Aryaman J, Walker L, van den Ameele J, Coxhead J, Wilson I, Bashton M, Beck J, West J, Chen R, Haudenschild C, Bartha G, Luo S, Morris CM, Jones NS, Attems J, Chinnery PF. High prevalence of focal and multi-focal somatic genetic variants in the human brain. Nat Commun 2018; 9:4257. [PMID: 30323172 PMCID: PMC6189186 DOI: 10.1038/s41467-018-06331-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022] Open
Abstract
Somatic mutations during stem cell division are responsible for several cancers. In principle, a similar process could occur during the intense cell proliferation accompanying human brain development, leading to the accumulation of regionally distributed foci of mutations. Using dual platform >5000-fold depth sequencing of 102 genes in 173 adult human brain samples, we detect and validate somatic mutations in 27 of 54 brains. Using a mathematical model of neurodevelopment and approximate Bayesian inference, we predict that macroscopic islands of pathologically mutated neurons are likely to be common in the general population. The detected mutation spectrum also includes DNMT3A and TET2 which are likely to have originated from blood cell lineages. Together, these findings establish developmental mutagenesis as a potential mechanism for neurodegenerative disorders, and provide a novel mechanism for the regional onset and focal pathology in sporadic cases.
Collapse
Affiliation(s)
- Michael J Keogh
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Wei Wei
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Juvid Aryaman
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | - Lauren Walker
- Institute of Neuroscience, Newcastle University, Campus for Aging and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Jelle van den Ameele
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jon Coxhead
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Ian Wilson
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Matthew Bashton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Jon Beck
- Personalis Inc, 1330O'Brien Dr, Menlo Park, CA, 94025, USA
| | - John West
- Personalis Inc, 1330O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Richard Chen
- Personalis Inc, 1330O'Brien Dr, Menlo Park, CA, 94025, USA
| | | | - Gabor Bartha
- Personalis Inc, 1330O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Shujun Luo
- Personalis Inc, 1330O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Chris M Morris
- Institute of Neuroscience, Newcastle University, Campus for Aging and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, SW7 2AZ, UK
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Campus for Aging and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
45
|
A Druggable Genome Screen Identifies Modifiers of α-Synuclein Levels via a Tiered Cross-Species Validation Approach. J Neurosci 2018; 38:9286-9301. [PMID: 30249792 DOI: 10.1523/jneurosci.0254-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023] Open
Abstract
Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.
Collapse
|
46
|
Krzyzosiak A, Sigurdardottir A, Luh L, Carrara M, Das I, Schneider K, Bertolotti A. Target-Based Discovery of an Inhibitor of the Regulatory Phosphatase PPP1R15B. Cell 2018; 174:1216-1228.e19. [PMID: 30057111 PMCID: PMC6108835 DOI: 10.1016/j.cell.2018.06.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022]
Abstract
Protein phosphorylation is a prevalent and ubiquitous mechanism of regulation. Kinases are popular drug targets, but identifying selective phosphatase inhibitors has been challenging. Here, we used surface plasmon resonance to design a method to enable target-based discovery of selective serine/threonine phosphatase inhibitors. The method targeted a regulatory subunit of protein phosphatase 1, PPP1R15B (R15B), a negative regulator of proteostasis. This yielded Raphin1, a selective inhibitor of R15B. In cells, Raphin1 caused a rapid and transient accumulation of its phosphorylated substrate, resulting in a transient attenuation of protein synthesis. In vitro, Raphin1 inhibits the recombinant R15B-PP1c holoenzyme, but not the closely related R15A-PP1c, by interfering with substrate recruitment. Raphin1 was orally bioavailable, crossed the blood-brain barrier, and demonstrated efficacy in a mouse model of Huntington's disease. This identifies R15B as a druggable target and provides a platform for target-based discovery of inhibitors of serine/threonine phosphatases.
Collapse
Affiliation(s)
- Agnieszka Krzyzosiak
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anna Sigurdardottir
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Laura Luh
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marta Carrara
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Indrajit Das
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kim Schneider
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anne Bertolotti
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
47
|
Keogh MJ, Wei W, Aryaman J, Wilson I, Talbot K, Turner MR, McKenzie CA, Troakes C, Attems J, Smith C, Al Sarraj S, Morris CM, Ansorge O, Pickering-Brown S, Jones N, Ironside JW, Chinnery PF. Oligogenic genetic variation of neurodegenerative disease genes in 980 postmortem human brains. J Neurol Neurosurg Psychiatry 2018; 89:813-816. [PMID: 29332010 PMCID: PMC6204946 DOI: 10.1136/jnnp-2017-317234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Several studies suggest that multiple rare genetic variants in genes causing monogenic forms of neurodegenerative disorders interact synergistically to increase disease risk or reduce the age of onset, but these studies have not been validated in large sporadic case series. METHODS We analysed 980 neuropathologically characterised human brains with Alzheimer's disease (AD), Parkinson's disease-dementia with Lewy bodies (PD-DLB), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) and age-matched controls. Genetic variants were assessed using the American College of Medical Genetics criteria for pathogenicity. Individuals with two or more variants within a relevant disease gene panel were defined as 'oligogenic'. RESULTS The majority of oligogenic variant combinations consisted of a highly penetrant allele or known risk factor in combination with another rare but likely benign allele. The presence of oligogenic variants did not influence the age of onset or disease severity. After controlling for the single known major risk allele, the frequency of oligogenic variants was no different between cases and controls. CONCLUSIONS A priori, individuals with AD, PD-DLB and FTD-ALS are more likely to harbour a known genetic risk factor, and it is the burden of these variants in combination with rare benign alleles that is likely to be responsible for some oligogenic associations. Controlling for this bias is essential in studies investigating a potential role for oligogenic variation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael J Keogh
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Wei Wei
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Juvid Aryaman
- Department of Mathematics, Imperial College London, London, London, UK
| | - Ian Wilson
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Kevin Talbot
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Martin R Turner
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Chris-Anne McKenzie
- Newcastle Brain Tissue Resource, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Oxford, UK
| | - Johannes Attems
- Newcastle Brain Tissue Resource, Newcastle University, Newcastle upon Tyne, UK
| | - Colin Smith
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Safa Al Sarraj
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Oxford, UK
| | - Chris M Morris
- Newcastle Brain Tissue Resource, Newcastle University, Newcastle upon Tyne, UK
| | - Olaf Ansorge
- Department of Neuropathology, John Radcliffe Hospital, Oxford, UK
| | - Stuart Pickering-Brown
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nick Jones
- Department of Mathematics, Imperial College London, London, London, UK
| | - James W Ironside
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
48
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
49
|
Billingsley KJ, Bandres-Ciga S, Saez-Atienzar S, Singleton AB. Genetic risk factors in Parkinson's disease. Cell Tissue Res 2018; 373:9-20. [PMID: 29536161 PMCID: PMC6201690 DOI: 10.1007/s00441-018-2817-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/22/2018] [Indexed: 12/16/2022]
Abstract
Over the last two decades, we have witnessed a revolution in the field of Parkinson's disease (PD) genetics. Great advances have been made in identifying many loci that confer a risk for PD, which has subsequently led to an improved understanding of the molecular pathways involved in disease pathogenesis. Despite this success, it is predicted that only a relatively small proportion of the phenotypic variability has been explained by genetics. Therefore, it is clear that common heritable components of disease are still to be identified. Dissecting the genetic architecture of PD constitutes a critical effort in identifying therapeutic targets and although such substantial progress has helped us to better understand disease mechanism, the route to PD disease-modifying drugs is a lengthy one. In this review, we give an overview of the known genetic risk factors in PD, focusing not on individual variants but the larger networks that have been implicated following comprehensive pathway analysis. We outline the challenges faced in the translation of risk loci to pathobiological relevance and illustrate the need for integrating big-data by noting success in recent work which adopts a broad-scale screening approach. Lastly, with PD genetics now progressing from identifying risk to predicting disease, we review how these models will likely have a significant impact in the future.
Collapse
Affiliation(s)
- K J Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3BX, Liverpool, UK
| | - S Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - S Saez-Atienzar
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - A B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
50
|
Martinez-Valbuena I, Amat-Villegas I, Valenti-Azcarate R, Carmona-Abellan MDM, Marcilla I, Tuñon MT, Luquin MR. Interaction of amyloidogenic proteins in pancreatic β cells from subjects with synucleinopathies. Acta Neuropathol 2018. [PMID: 29536165 DOI: 10.1007/s00401-018-1832-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease patients experience a wide range of non-motor symptoms that may be provoked by deposits of phosphorylated α-synuclein in the peripheral nervous system. Pre-existing diabetes mellitus might be a risk factor for developing Parkinson's disease, and indeed, nearly 60% of Parkinson's disease patients are insulin resistant. Thus, we have investigated whether phosphorylated α-synuclein is deposited in pancreatic tissue of subjects with synucleinopathies. We studied pancreatic tissue from 39 subjects diagnosed with Parkinson's disease, Lewy body Dementia or incidental Lewy bodies disease, as well as that from 34 subjects with diabetes mellitus and a normal neuropathological examination, and 52 subjects with a normal neuropathological examination. We examined the pancreatic accumulation of phosphorylated α-synuclein and of the islet amyloid polypeptide precursor (IAPP), an amyloidogenic protein that plays an unknown role in diabetes mellitus, but that can promote α-synuclein amyloid deposition in vitro. Moreover, we performed proximity ligation assays to assess whether these two proteins interact in the pancreas of these subjects. Cytoplasmic phosphorylated α-synuclein deposits were found in the pancreatic β cells of 14 subjects with Parkinson's disease (93%), in 11 subjects with Lewy body Dementia (85%) and in 8 subjects with incidental Lewy body disease (73%). Furthermore, we found similar phosphorylated α-synuclein inclusions in 23 subjects with a normal neuropathological examination but with diabetes mellitus (68%) and in 9 control subjects (17%). In addition, IAPP/α-synuclein interactions appear to occur in patients with pancreatic inclusions of phosphorylated α-synuclein. The presence of phosphorylated α-synuclein inclusions in pancreatic β cells provides a new evidence of a mechanism that is potentially common to the pathogenesis of diabetes mellitus, PD and DLB. Moreover, the interaction of IAPP and α-synuclein in the pancreatic β cells of patients may represent a novel target for the development of strategies to treat these diseases.
Collapse
Affiliation(s)
- Ivan Martinez-Valbuena
- Neurology Department, Clinica Universidad de Navarra, Avenida de Pio XII 36, 31008, Pamplona, Navarra, Spain
- Regenerative Therapy Laboratory, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Irene Amat-Villegas
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Pathology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Rafael Valenti-Azcarate
- Neurology Department, Clinica Universidad de Navarra, Avenida de Pio XII 36, 31008, Pamplona, Navarra, Spain
- Regenerative Therapy Laboratory, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Maria Del Mar Carmona-Abellan
- Neurology Department, Clinica Universidad de Navarra, Avenida de Pio XII 36, 31008, Pamplona, Navarra, Spain
- Regenerative Therapy Laboratory, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Irene Marcilla
- Regenerative Therapy Laboratory, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Maria-Teresa Tuñon
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Pathology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Maria-Rosario Luquin
- Neurology Department, Clinica Universidad de Navarra, Avenida de Pio XII 36, 31008, Pamplona, Navarra, Spain.
- Regenerative Therapy Laboratory, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.
| |
Collapse
|