1
|
Corbo I, Favieri F, Forte G, Casagrande M. Decision-making under uncertainty in healthy and cognitively impaired aging: A systematic review and meta-analysis. Arch Gerontol Geriatr 2025; 129:105643. [PMID: 39369563 DOI: 10.1016/j.archger.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Decision-making (DM) is a complex cognitive behavior that involves gathering information and assessing options to identify choices under risky and uncertain conditions. Mild Cognitive Impairment (MCI) is a construct that includes a constellation of symptoms ranging from behavioral to cognitive impairments. This cluster of symptoms is frequently associated with poor decision-making. This study aimed to examine decision-making in pathological aging, specifically MCI. Therefore, we conducted a systematic review and meta-analysis to evaluate these relationships. According to the PRISMA 2020 Statement, nine studies were selected for the systematic review and eight for the meta-analysis. The results highlighted that MCI is associated with impaired decision-making in risky and ambiguous situations. The systematic review reported that MCI was associated with impaired decision-making in ambiguous and in risky conditions. In contrast, the meta-analysis showed significant differences in overall decision-making and particularly in ambiguous conditions. This difficulty may be due to different impairments that affect MCI. The difficulty in advantageous decision-making could be due to different brain alterations in MCI, which could lead to problems in tasks requiring feedback-based responses. These findings advance our understanding of decision-making in aging and suggest how decision-making alterations in MCI would affect the totality of executive functions and daily activities.
Collapse
Affiliation(s)
- Ilaria Corbo
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Francesca Favieri
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Giuseppe Forte
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Maria Casagrande
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| |
Collapse
|
2
|
Jardine KH, Minard EP, Wideman CE, Edwards H, Abouelnaga KH, Messer WS, Winters BD. M1 muscarinic receptor activation reverses age-related memory updating impairment in mice. Neurobiol Aging 2025; 145:65-75. [PMID: 39489146 DOI: 10.1016/j.neurobiolaging.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Previously consolidated memories can become temporarily labile upon reactivation. Reactivation-based memory updating is chiefly studied in young subjects, so we aimed to assess this process across the lifespan. To do this, we developed a behavioural paradigm wherein a reactivated object memory is updated with contextual information; 3-month-old and 6-month-old male C57BL/6 mice displayed object memory updating, but 12-month-old mice did not. We found that M1 muscarinic acetylcholine receptor signaling during reactivation was necessary for object memory updating in the young mice. Next, we targeted this mechanism in an attempt to facilitate object memory updating in aging mice. Remarkably, systemic pharmacological M1 receptor activation reversed the age-related deficit. Quantification of cholinergic system markers within perirhinal cortex revealed subtle cellular changes that may contribute to differential performance across age groups. These findings suggest that natural cholinergic change across the lifespan contributes to inflexible memory in the aging brain.
Collapse
Affiliation(s)
- Kristen H Jardine
- Department of Psychology and Collaborative Neuroscience Program, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.
| | - Emily P Minard
- Department of Psychology and Collaborative Neuroscience Program, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Cassidy E Wideman
- Department of Psychology and Collaborative Neuroscience Program, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Haley Edwards
- Department of Psychology and Collaborative Neuroscience Program, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Karim H Abouelnaga
- Department of Psychology and Collaborative Neuroscience Program, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - William S Messer
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, 2801 Bancroft Street, Toledo, OH 43606, United States
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
3
|
Sieu LA, Singla S, Liu J, Zheng X, Sharafeldin A, Chandrasekaran G, Valcarce-Aspegren M, Niknahad A, Fu I, Doilicho N, Gummadavelli A, McCafferty C, Crouse RB, Perrenoud Q, Picciotto MR, Cardin JA, Blumenfeld H. Slow and fast cortical cholinergic arousal is reduced in a mouse model of focal seizures with impaired consciousness. Cell Rep 2024; 43:115012. [PMID: 39643969 DOI: 10.1016/j.celrep.2024.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024] Open
Abstract
Patients with focal temporal lobe seizures often experience loss of consciousness associated with cortical slow waves, like those in deep sleep. Previous work in rat models suggests that decreased subcortical arousal causes depressed cortical function during focal seizures. However, these studies were performed under light anesthesia, making it impossible to correlate conscious behavior with physiology. We show in an awake mouse model that electrically induced focal seizures in the hippocampus cause impaired behavioral responses to auditory stimuli, cortical slow waves, and reduced mean cortical high-frequency activity. Behavioral responses are related to cortical cholinergic release at two different timescales. Slow state-related decreases in acetylcholine correlate with overall impaired behavior during seizures. Fast phasic acetylcholine release is related to variable spared or impaired behavioral responses with each auditory stimulus. These findings establish a strong relationship between decreased cortical arousal and impaired consciousness in focal seizures, which may help guide future treatment.
Collapse
Affiliation(s)
- Lim-Anna Sieu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shobhit Singla
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiayang Liu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xinyuan Zheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Ganesh Chandrasekaran
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Ava Niknahad
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ivory Fu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Natnael Doilicho
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abhijeet Gummadavelli
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cian McCafferty
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy and Neuroscience Program, University College Cork, Cork, Ireland
| | - Richard B Crouse
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Quentin Perrenoud
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina R Picciotto
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
4
|
Tsotsokou G, Fassea M, Papatheodoropoulos C. Muscarinic Modulation of Network Excitability and Short-Term Dynamics in the Dorsal and Ventral Hippocampus. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001367. [PMID: 39758582 PMCID: PMC11696349 DOI: 10.17912/micropub.biology.001367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Cholinergic transmission fundamentally modulates information processing in the brain via muscarinic receptors. Using in vitro electrophysiological recordings of population spikes from the CA1 region, we found that the muscarinic receptor agonist carbachol (CCh, 1 μM) enhances the basal excitation level in the dorsal but not ventral hippocampus. Using a frequency stimulation protocol, we found that CCh transforms depression of neuronal output into facilitation (at 3-30 Hz) in the ventral hippocampus while only lessening depression in the dorsal hippocampus, suggesting that muscarinic transmission boosts basal neuronal activation in the dorsal hippocampus and strongly facilitates the output of the ventral hippocampus in a frequency-dependent manner.
Collapse
Affiliation(s)
- Giota Tsotsokou
- Laboratory of Physiology, Department of Medicine, University of Patras, Pátrai, West Greece, Greece
| | - Milena Fassea
- Laboratory of Physiology, Department of Medicine, University of Patras, Pátrai, West Greece, Greece
| | | |
Collapse
|
5
|
Hagger-Vaughan N, Kolnier D, Storm JF. Non-apical plateau potentials and persistent firing induced by metabotropic cholinergic modulation in layer 2/3 pyramidal cells in the rat prefrontal cortex. PLoS One 2024; 19:e0314652. [PMID: 39656720 DOI: 10.1371/journal.pone.0314652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Here we describe a type of depolarising plateau potentials (PPs; sustained depolarisations outlasting the stimuli) in layer 2/3 pyramidal cells (L2/3PC) in rat prefrontal cortex (PFC) slices, using whole-cell somatic recordings. To our knowledge, this PP type has not been described before. In particular, unlike previously described plateau potentials that originate in the large apical dendrite of L5 cortical pyramidal neurons, these L2/3PC PPs are generated independently of the apical dendrite. Thus, surprisingly, these PPs persisted when the apical dendrite was cut off (~50 μm from the soma), and were sustained by local calcium application only to the somatic and basal dendritic compartments. The prefrontal L2/3PCs have been postulated to have a key role in consciousness, according to the Global Neuronal Workspace Theory: their long-range cortico-cortical connections provide the architecture required for the "global work-space", "ignition", amplification, and sustained, reverberant activity, considered essential for conscious access. The PPs in L2/3PCs caused sustained spiking that profoundly altered the input-output relationships of these neurons, resembling the sustained activity suggested to underlie working memory and the mechanism underlying "behavioural time scale synaptic plasticity" in hippocampal pyramidal cells. The non-apical L2/3 PPs depended on metabotropic cholinergic (mAChR) or glutamatergic (mGluR) modulation, which is probably essential also for conscious brain states and experience, in both wakefulness and dreaming. Pharmacological tests indicated that the non-apical L2/3 PPs depend on transient receptor potential (TRP) cation channels, both TRPC4 and TRPC5, and require external calcium (Ca2+) and internal Ca2+ stores, but not voltage-gated Ca2+ channels, unlike Ca2+-dependent PPs in other cortical pyramidal neurons. These L2/3 non-apical plateau potentials may be involved in prefrontal functions, such as access consciousness, working memory, and executive functions such as planning, decision-making, and outcome prediction.
Collapse
Affiliation(s)
- Nicholas Hagger-Vaughan
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daniel Kolnier
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Johan F Storm
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Brown T, Kanel P, Griggs A, Carli G, Vangel R, Albin RL, Bohnen NI. Regional cerebral cholinergic vesicular transporter correlates of visual contrast sensitivity in Parkinson's disease: Implications for visual and cognitive function. Parkinsonism Relat Disord 2024; 131:107229. [PMID: 39693855 DOI: 10.1016/j.parkreldis.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Visual and visual processing deficits are implicated in freezing, falling, and cognitive impairments in Parkinson's disease (PD). In particular, contrast sensitivity deficits are common and may be related to cognitive impairment in PD. While dopaminergic deficits play a role in PD-related visual dysfunction, brain cholinergic systems also modulate many aspects of visual processing. The aim of this study was to explore regional cerebral cholinergic terminal density correlates of contrast sensitivity in PD. Ninety-one PD subjects underwent contrast sensitivity testing, motor testing, cognitive testing, and brain MRI and [18F]-fluoroethoxybenzovesamicol [18F]-FEOBV PET imaging. Whole brain false discovery error-corrected (p < 0.05) correlations revealed significant associations between VAChT deficits in pericentral, limbic, and visual processing regions and contrast sensitivity performance, independent of disease duration and dopaminergic medication doses. These results suggest that brain cholinergic deficits correlate with contrast sensitivity deficits in PD. Additionally, decreased Rabin contrast sensitivity scores were associated with lower total scores in the Parkinson's Disease Cognitive Rating Scale. These findings suggest that diminished cognitive performance correlated with contrast sensitivity partly reflects underlying vulnerabilities of brain cholinergic systems.
Collapse
Affiliation(s)
- Taylor Brown
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA.
| | - Alexis Griggs
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Giulia Carli
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Robert Vangel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Roger L Albin
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA; Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Labrador-Espinosa MA, Silva-Rodriguez J, Okkels N, Muñoz-Delgado L, Horsager J, Castro-Labrador S, Franco-Rosado P, Castellano-Guerrero AM, Iglesias-Camacho E, San-Eufrasio M, Macías-García D, Jesús S, Adarmes-Gómez A, Ojeda-Lepe E, Carrillo F, Martín-Rodríguez JF, Roldan Lora F, García-Solís D, Borghammer P, Mir P, Grothe MJ. Cortical hypometabolism in Parkinson's disease is linked to cholinergic basal forebrain atrophy. Mol Psychiatry 2024:10.1038/s41380-024-02842-9. [PMID: 39639173 DOI: 10.1038/s41380-024-02842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Cortical hypometabolism on FDG-PET is a well-established neuroimaging biomarker of cognitive impairment in Parkinson's disease (PD), but its pathophysiologic origins are incompletely understood. Cholinergic basal forebrain (cBF) degeneration is a prominent pathological feature of PD-related cognitive impairment and may contribute to cortical hypometabolism through cholinergic denervation of cortical projection areas. Here, we investigated in-vivo associations between subregional cBF volumes on 3T-MRI, cortical hypometabolism on [18F]FDG-PET, and cognitive deficits in a cohort of 95 PD participants with varying degrees of cognitive impairment. We further assessed the spatial correspondence of the cortical pattern of cBF-associated hypometabolism with the pattern of cholinergic denervation in PD as assessed by [18F]FEOBV-PET imaging of presynaptic cholinergic terminal density in a second cohort. Lower volume of the cortically-projecting posterior cBF, but not of the anterior cBF, was significantly associated with extensive neocortical hypometabolism [p(FDR) < 0.05], which mediated the association between cBF atrophy and cognitive impairment (mediated proportion: 43%, p < 0.001). In combined models, posterior cBF atrophy explained more variance in cortical hypometabolism (R2 = 0.26, p < 0.001) than local atrophy in the cortical areas themselves (R2 = 0.16, p = 0.01). Topographic correspondence analysis with the [18F]FEOBV-PET pattern revealed that cortical areas showing most pronounced cBF-associated hypometabolism correspond to those showing most severe cholinergic denervation in PD (Spearman's ρ = 0.57, p < 0.001). In conclusion, posterior cBF atrophy in PD is selectively associated with hypometabolism in denervated cortical target areas, which mediates the effect of cBF atrophy on cognitive impairment. These data provide first-time in-vivo evidence that cholinergic degeneration represents a principle pathological correlate of cortical hypometabolism underlying cognitive impairment in PD.
Collapse
Grants
- USE-19094-G Universidad de Sevilla (University of Seville)
- CD21/00067 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CM21/00051 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI20/00613 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CP19/00031 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CVI-02526 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PE-0210-2018 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PI-0459-2018 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PE-0186-2019 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- CTS-7685 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
Collapse
Affiliation(s)
- Miguel A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Silva-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain
| | - Niels Okkels
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Regional Hospital Viborg, Viborg, Denmark
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Sandra Castro-Labrador
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain
| | - Pablo Franco-Rosado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana María Castellano-Guerrero
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Iglesias-Camacho
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Manuela San-Eufrasio
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Astrid Adarmes-Gómez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Ojeda-Lepe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Florinda Roldan Lora
- Unidad de Radiodiagnóstico, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - David García-Solís
- Unidad de Medicina Nuclear, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain.
| |
Collapse
|
8
|
Vijayakumari AA, Saadatpour L, Floden D, Fernandez H, Walter BL. Neuroanatomical heterogeneity drives divergent cognitive and motor trajectories in Parkinson's disease subtypes. J Neurol Sci 2024; 468:123335. [PMID: 39644799 DOI: 10.1016/j.jns.2024.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/11/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Cognitive symptoms of Parkinson's disease (PD) may initially present subtly, often overshadowed by more noticeable motor symptoms. However, as PD progresses, predicting which individuals will experience significant cognitive decline becomes challenging due to variability, suggesting distinct PD subtypes with varying cognitive trajectories. This study aimed to identify early PD subtypes based on patterns of gray matter atrophy in brain regions associated with cognition and assess their distinct patterns of cognitive change over time. Recognizing PD primarily as a movement disorder, we also evaluated their motor symptoms. METHODS We analyzed T1-weighted MRI data, cognitive, and motor scores from 114 de novo PD patients and 120 healthy controls. Multivariate gray matter volumetric distances (MGMV) across frontal, subcortical, parietal, temporal, and occipital regions were computed, and K-means clustering was used to identify PD subtypes. Subsequently, cognitive assessments were compared between subtypes at baseline and 48 months using linear mixed-effects models and reliable change indices. Motor-symptom changes were assessed using linear mixed-effects models. RESULTS Two PD subtypes were identified from baseline MRI. Subtype 1 showed significantly higher MGMV in frontal (p < 0.001) and subcortical (p < 0.001) regions, indicating atrophy. At 48 months, subtype 1 had poorer global cognitive performance than subtype 2 (p = 0.005) and faster progression of postural instability and gait disturbance (p = 0.04). CONCLUSIONS PD subtypes identified early by distinct frontal and subcortical atrophy patterns exhibited divergent trajectories of cognitive decline and worsening motor symptoms over time, underscoring the neuroanatomical heterogeneity that drives clinical variability in PD.
Collapse
Affiliation(s)
- Anupa A Vijayakumari
- Center for Neurological Restoration, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Leila Saadatpour
- Center for Neurological Restoration, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Darlene Floden
- Center for Neurological Restoration, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hubert Fernandez
- Center for Neurological Restoration, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Benjamin L Walter
- Center for Neurological Restoration, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Ferjančič Benetik S, Knez D, Obreza A, Košak U, Gobec S. Dual inhibition of butyrylcholinesterase and p38α mitogen-activated protein kinase: A new approach for the treatment of Alzheimer's disease. Pharmacol Ther 2024; 264:108748. [PMID: 39521443 DOI: 10.1016/j.pharmthera.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The simultaneous targeting of neuroinflammation and cholinergic hypofunction, the key pathological changes in Alzheimer's disease (AD), is not addressed by drugs currently in clinical trials, highlighting a critical therapeutic gap. We propose that dual-acting small molecules that inhibit butyrylcholinesterase (BChE) and mitogen-activated protein kinase p38α (p38α MAPK) represent a novel strategy to combat AD. This hypothesis is supported by cellular and animal studies as well as in silico modelling showing that it is possible to act simultaneously on both enzymes. Amyloid beta (Aβ) plaques trigger a pro-inflammatory microglial response that overactivates p38α MAPK, leading to increased Aβ synthesis, tau hyperphosphorylation, and altered synaptic plasticity. Overactivated microglia exacerbate neuroinflammation and cholinergic degeneration, ultimately leading to cognitive impairment. Structural similarities between the binding sites of BChE and p38α MAPK provide a promising basis for the development of dual inhibitors that could alleviate AD symptoms and address the underlying pathology.
Collapse
Affiliation(s)
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Aleš Obreza
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Urban Košak
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Hosny EN, Sawie HG, El-Gizawy MM, Mohammed HS, Faraag AR, Khadrawy YA. Therapeutic effects of alpha lipoic acid and/or caffeine-loaded chitosan nanoparticles on memory impairment and neurochemical changes in high-fat diet-induced obese rats. Physiol Behav 2024; 287:114697. [PMID: 39288867 DOI: 10.1016/j.physbeh.2024.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
The therapeutic effects of alpha lipoic acid (LA) and/or caffeine-loaded chitosan nanoparticles (CCNPs) on obesity-induced memory impairment were evaluated in the present study. Rats were divided into control rats, obese rats induced by high fat diet (HFD) and obese rats treated with LA and/or CCNPs. Obesity was confirmed by measuring the body mass index (BMI). Memory and cognitive functions were evaluated by novel object recognition test (NORT). The levels of serotonin (5-HT), dopamine (DA), norepinephrine (NE), lipid peroxidation (MDA), nitric oxide (NO), reduced glutathione (GSH), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), leptin (LEP) and ghrelin (GHR) and the activities of monoamine oxidase (MAO), acetylcholinesterase (AchE) and Na+,K+,ATPase were determined in the cortex and hippocampus. The cerebral histopathological alterations were examined in obese rats. Obese rats showed impaired memory and exhibited significant neurochemical changes, including decreased levels of 5-HT, DA, GSH, GHR, and Na+,K+-ATPase activity, as well as an increase in AchE, MAO, MDA, NO, IL-1β, TNF-α, and LEP. LA and/or CCNPs treatment reduced BMI and improved memory. LA or CCNPs alleviated the cortical and hippocampal neurochemical changes and histopathological changes induced by obesity. Furthermore, LA and CCNPs exhibited antioxidant and anti-inflammatory properties, which likely contributed to their effects. However, no synergistic effect was observed between LA and CCNPs. These findings suggest that LA or CCNPs may be a potential therapy against obesity and its adverse effects on memory, mediated by their ability to restore monoamine levels and exhibit antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Eman N Hosny
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hussein G Sawie
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mayada M El-Gizawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdel Razik Faraag
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| |
Collapse
|
11
|
Tallino S, Etebari R, McDonough I, Leon H, Sepulveda I, Winslow W, Bartholomew SK, Perez SE, Mufson EJ, Velazquez R. Assessing the Benefit of Dietary Choline Supplementation Throughout Adulthood in the Ts65Dn Mouse Model of Down Syndrome. Nutrients 2024; 16:4167. [PMID: 39683562 DOI: 10.3390/nu16234167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Down syndrome (DS) is the most common cause of early-onset Alzheimer's disease (AD). Dietary choline has been proposed as a modifiable factor to improve the cognitive and pathological outcomes of AD and DS, especially as many do not reach adequate daily intake levels of choline. While lower circulating choline levels correlate with worse pathological measures in AD patients, choline status and intake in DS is widely understudied. Perinatal choline supplementation (Ch+) in the Ts65Dn mouse model of DS protects offspring against AD-relevant pathology and improves cognition. Further, dietary Ch+ in adult AD models also ameliorates pathology and improves cognition. However, dietary Ch+ in adult Ts65Dn mice has not yet been explored; thus, this study aimed to supply Ch+ throughout adulthood to determine the effects on cognition and DS co-morbidities. METHODS We fed trisomic Ts65Dn mice and disomic littermate controls either a choline normal (ChN; 1.1 g/kg) or a Ch+ (5 g/kg) diet from 4.5 to 14 months of age. RESULTS We found that Ch+ in adulthood failed to improve genotype-specific deficits in spatial learning. However, in both genotypes of female mice, Ch+ significantly improved cognitive flexibility in a reverse place preference task in the IntelliCage behavioral phenotyping system. Further, Ch+ significantly reduced weight gain and peripheral inflammation in female mice of both genotypes, and significantly improved glucose metabolism in male mice of both genotypes. CONCLUSIONS Our findings suggest that adulthood choline supplementation benefits behavioral and biological factors important for general well-being in DS and related to AD risk.
Collapse
Affiliation(s)
- Savannah Tallino
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Rachel Etebari
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Ian McDonough
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hector Leon
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Isabella Sepulveda
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Wendy Winslow
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Samantha K Bartholomew
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sylvia E Perez
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| | - Elliott J Mufson
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| | - Ramon Velazquez
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| |
Collapse
|
12
|
Lu X, Xiong W, Chen Z, Li Y, Xu F, Yang X, Long M, Guo W, Wu S, Sun L, Wang G. Exercise-conditioned plasma ameliorates postoperative cognitive dysfunction by activating hippocampal cholinergic circuit and enhancing BDNF/TrkB signaling. Cell Commun Signal 2024; 22:551. [PMID: 39558340 PMCID: PMC11572510 DOI: 10.1186/s12964-024-01938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a prevalent complication following anesthesia and surgery, particularly in the elderly, leading to increased mortality and reduced quality of life. Despite its prevalence, there are no effective clinical treatments. Exercise has shown cognitive benefits in aging and various diseases, which can be transferred to sedentary animals through plasma. However, it is unclear if exercise-conditioned plasma can replicate these benefits in the context of POCD. METHODS Sixteen-month-old male C57BL/6J mice underwent 30 days of voluntary running wheel training or received systemic administration of exercise-conditioned plasma, followed by tibial fracture surgery under general anesthesia at 17 months of age. Cognitive performance, hippocampal synaptic deficits, neuroinflammation, BDNF/TrkB signaling, and medial septum (MS)-hippocampal cholinergic activity were evaluated through immunohistochemical staining, transmission electron microscopy, Western blotting, and biochemical assays. To investigate the role of hippocampal BDNF signaling and cholinergic activity in the therapeutic effects, the TrkB antagonist ANA-12 and the cholinergic receptor muscarinic 1 (CHRM1) antagonist trihexyphenidyl (THP) were administered via intraperitoneal injection, and adeno-associated virus (AAV) vectors expressing Chrm1 shRNA were delivered via intrahippocampal stereotaxic microinjection. RESULTS Exercise-conditioned plasma mimicked the benefits of exercise, alleviating cognitive decline induced by anesthesia/surgery, restoring hippocampal synapse formation and levels of regulators for synaptic plasticity, inhibiting neuroinflammatory responses to surgery by microglia and astrocytes, augmenting BDNF production and TrkB phosphorylation in hippocampal neurons, astrocytes, and microglia, upregulating MS expression of choline acetyltransferase (CHAT) and hippocampal expression of CHRM1 in neurons and astrocytes, and enhancing hippocampal cholinergic innervation and acetylcholine release. Conversely, ANA-12 administration blocked TrkB activation and reduced the protective effects on cognition, synaptic deficits, and neuroinflammatory reactivity of glial cells post-surgery. Similarly, THP administration or intrahippocampal delivery of AAV-Chrm1 shRNA inhibited the activation of the hippocampal cholinergic circuit by exercise plasma, negating the cognitive and neuropathological benefits and reducing BDNF/TrkB signaling enhancements. CONCLUSION Exercise-conditioned plasma can replicate the protective effects of exercise against anesthesia/surgery-induced neuroinflammation, synaptic, and cognitive impairments, at least partly, through CHRM1-dependent regulation of hippocampal cholinergic activity and BDNF/TrkB signaling.
Collapse
Affiliation(s)
- Xiaodi Lu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Weijie Xiong
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Zhuo Chen
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yurou Li
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Fengyan Xu
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Xue Yang
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Meiwen Long
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Wenhan Guo
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Shuliang Wu
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
| | - Liang Sun
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
13
|
Negida A, Vohra H, Lageman S, Mukhopadhyay N, Berman B, Weintraub D, Barrett M. Parkinson's Disease Mild Cognitive Impairment with MRI evidence of Cholinergic Nucleus 4 Degeneration: A New Subtype? RESEARCH SQUARE 2024:rs.3.rs-5278177. [PMID: 39606488 PMCID: PMC11601818 DOI: 10.21203/rs.3.rs-5278177/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Subtyping Parkinson's disease with mild cognitive impairment (PD-MCI) could improve clinical trial design and personalized treatments. Cholinergic nucleus 4 (Ch4) volume has been linked to cognitive impairment severity and future decline in PD. This study investigates whether PD-MCI patients with MRI evidence of Ch4 degeneration have distinct clinical profiles and cognitive trajectories. Baseline MRI scans of 148 PD-MCI participants from the Parkinson's Progression Markers Initiative (PPMI) were analyzed. Patients with low Ch4 grey matter density (GMD) had worse motor, autonomic, and olfactory symptoms, and were more likely to belong to the diffuse malignant PD subtype (51.6% vs. 23.4%; P < 0.01). They also had faster progression to cognitive milestones (P = 0.0046). These findings identify PD-MCI with low Ch4 as a distinct subtype with more severe symptoms and faster cognitive decline, highlighting the importance of considering this group in PD-MCI clinical trials, particularly for cholinergic therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Weintraub
- University of Pennsylvania, Philadelphia Veterans Affairs Medical Center
| | | |
Collapse
|
14
|
Wu JL, Li ZM, Chen H, Chen WJ, Hu NY, Jin SY, Li XW, Chen YH, Yang JM, Gao TM. Distinct septo-hippocampal cholinergic projections separately mediate stress-induced emotional and cognitive deficits. SCIENCE ADVANCES 2024; 10:eado1508. [PMID: 39514666 PMCID: PMC11546849 DOI: 10.1126/sciadv.ado1508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Patients suffering from chronic stress develop numerous symptoms, including emotional and cognitive deficits. The precise circuit mechanisms underlying different symptoms remain poorly understood. We identified two distinct basal forebrain cholinergic subpopulations in mice projecting to the dorsal hippocampus (dHPC) or ventral hippocampus (vHPC), which exhibited distinct input organizations, electrophysiological characteristics, transcriptomics, and responses to positive and negative valences of stimuli and were critical for cognitive and emotional modulation, respectively. Moreover, chronic stress induced elevated anxiety levels and cognitive deficits in mice, accompanied by enhanced vHPC but suppressed dHPC cholinergic projections. Chemogenetic activation of dHPC or inhibition of vHPC cholinergic projections alleviated stress-induced aberrant behaviors. Furthermore, we identified that the acetylcholinesterase inhibitor donepezil combined with blockade of muscarinic receptor 1-type muscarinic acetylcholine receptors in the vHPC rescued both stress-induced phenotypes. These data illuminated distinct septo-hippocampal cholinergic circuits mediated specific symptoms independently under stress, which may provide promising strategies for circuit-based treating of stress-related psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Hao Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wen-Jun Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Neng-Yuan Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Khalil I, Sayad R, Kedwany AM, Sayed HH, Caprara ALF, Rissardo JP. Cardiovascular dysautonomia and cognitive impairment in Parkinson's disease (Review). MEDICINE INTERNATIONAL 2024; 4:70. [PMID: 39355336 PMCID: PMC11443310 DOI: 10.3892/mi.2024.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Cognitive impairment is a prevalent non-motor symptom of Parkinson's disease (PD), which can result in significant disability and distress for patients and caregivers. There is a marked variation in the timing, characteristics and rate at which cognitive decline occurs in patients with PD. This decline can vary from normal cognition to mild cognitive impairment and dementia. Cognitive impairment is associated with several pathophysiological mechanisms, including the accumulation of β-amyloid and tau in the brain, oxidative stress and neuroinflammation. Cardiovascular autonomic dysfunctions are commonly observed in patients with PD. These dysfunctions play a role in the progression of cognitive impairment, the incidents of falls and even in mortality. The majority of symptoms of dysautonomia arise from changes in the peripheral autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. Cardiovascular changes, including orthostatic hypotension, supine hypertension and abnormal nocturnal blood pressure (BP), can occur in both the early and advanced stages of PD. These changes tend to increase as the disease advances. The present review aimed to describe the cognitive changes in the setting of cardiovascular dysautonomia and to discuss strategies through which these changes can be modified and managed. It is a multifactorial process usually involving decreased blood flow to the brain, resulting in the development of cerebral ischemic lesions, an increased presence of abnormal white matter signals in the brain, and a potential influence on the process of neurodegeneration in PD. Another possible explanation is this association being independent observations of PD progression. Patients with clinical symptoms of dysautonomia should undergo 24-h ambulatory BP monitoring, as they are frequently subtle and underdiagnosed.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Faculty of Medicine, Alexandria University, Alexandria 5372066, Egypt
| | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Hager Hamdy Sayed
- Department of Nuclear Medicine, Assuit University, Assuit 71515, Egypt
| | | | | |
Collapse
|
16
|
Moyano P, Flores A, San Juan J, García J, Anadón MJ, Plaza JC, Naval MV, Fernández MDLC, Guerra-Menéndez L, Del Pino J. Imidacloprid unique and repeated treatment produces cholinergic transmission disruption and apoptotic cell death in SN56 cells. Food Chem Toxicol 2024; 193:114988. [PMID: 39251036 DOI: 10.1016/j.fct.2024.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Imidacloprid (IMI), the most widely used worldwide neonicotinoid biocide, produces cognitive disorders after repeated and single treatment. However, little was studied about the possible mechanisms that produce this effect. Cholinergic neurotransmission regulates cognitive function. Most cholinergic neuronal bodies are present in the basal forebrain (BF), regulating memory and learning process, and their dysfunction or loss produces cognition decline. BF SN56 cholinergic wild-type or acetylcholinesterase (AChE), β-amyloid-precursor-protein (βAPP), Tau, glycogen-synthase-kinase-3-beta (GSK3β), beta-site-amyloid-precursor-protein-cleaving enzyme 1 (BACE1), and/or nuclear-factor-erythroid-2-related-factor-2 (NRF2) silenced cells were treated for 1 and 14 days with IMI (1 μM-800 μM) with or without recombinant heat-shock-protein-70 (rHSP70), recombinant proteasome 20S (rP20S) and with or without N-acetyl-cysteine (NAC) to determine the possible mechanisms that mediate this effect. IMI treatment for 1 and 14 days altered cholinergic transmission through AChE inhibition, and triggered cell death partially through oxidative stress generation, AChE-S overexpression, HSP70 downregulation, P20S inhibition, and Aβ and Tau peptides accumulation. IMI produced oxidative stress through reactive oxygen species production and antioxidant NRF2 pathway downregulation, and induced Aβ and Tau accumulation through BACE1, GSK3β, HSP70, and P20S dysfunction. These results may assist in determining the mechanisms that produce cognitive dysfunction observed following IMI exposure and provide new therapeutic tools.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier San Juan
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María José Anadón
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Jose Carlos Plaza
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Maria Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María de la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucía Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Moschonas EH, Capeci HE, Annas EM, Domyslawski VB, Steber JA, Donald HM, Genkinger NR, Rennerfeldt PL, Bittner RA, Vozzella VJ, Cheng JP, Kline AE, Bondi CO. Evaluating the Efficacy of Chronic Galantamine on Sustained Attention and Cholinergic Neurotransmission in A Pre-Clinical Model of Traumatic Brain Injury. J Neurotrauma 2024; 41:2428-2441. [PMID: 38994598 PMCID: PMC11698658 DOI: 10.1089/neu.2024.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Cholinergic disruptions underlie attentional deficits following traumatic brain injury (TBI). Yet, drugs specifically targeting acetylcholinesterase (AChE) inhibition have yielded mixed outcomes. Therefore, we hypothesized that galantamine (GAL), a dual-action competitive AChE inhibitor and α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator, provided chronically after injury, will attenuate TBI-induced deficits of sustained attention and enhance ACh efflux in the medial prefrontal cortex (mPFC), as assessed by in vivo microdialysis. In Experiment 1, adult male rats (n = 10-15/group) trained in the 3-choice serial reaction time (3-CSRT) test were randomly assigned to controlled cortical impact (CCI) or sham surgery and administered GAL (0.5, 2.0, or 5.0 mg/kg; i.p.) or saline vehicle (VEH; 1 mL/kg; i.p) beginning 24-h post-surgery and once daily thereafter for 27 days. Measures of sustained attention and distractibility were assessed on post-operative days 21-25 in the 3-CSRT, following which cortical lesion volume and basal forebrain cholinergic cells were quantified on day 27. In Experiment 2, adult male rats (n = 3-4/group) received a CCI and 24 h later administered (i.p.) one of the three doses of GAL or VEH for 21 days to quantify the dose-dependent effect of GAL on in vivo ACh efflux in the mPFC. Two weeks after the CCI, a guide cannula was implanted in the right mPFC. On post-surgery day 21, baseline and post-injection dialysate samples were collected in a temporally matched manner with the cohort undergoing behavior. ACh levels were analyzed using reverse phase high-performance liquid chromatography (HPLC) coupled to an electrochemical detector. Cortical lesion volume was quantified on day 22. The data were subjected to ANOVA, with repeated measures where appropriate, followed by Newman-Keuls post hoc analyses. All TBI groups displayed impaired sustained attention versus the pooled SHAM controls (p's < 0.05). Moreover, the highest dose of GAL (5.0 mg/kg) exacerbated attentional deficits relative to VEH and the two lower doses of GAL (p's < 0.05). TBI significantly reduced cholinergic cells in the right basal forebrain, regardless of treatment condition, versus SHAM (p < 0.05). In vivo microdialysis revealed no differences in basal ACh in the mPFC; however, GAL (5.0 mg/kg) significantly increased ACh efflux 30 min following injection compared to the VEH and the other GAL (0.5 and 2.0 mg/kg) treated groups (p's < 0.05). In both experiments, there were no differences in cortical lesion volume across treatment groups (p's > 0.05). In summary, albeit the higher dose of GAL increased ACh release, it did not improve measures of sustained attention or histopathological markers, thereby partially supporting the hypothesis and providing the impetus for further investigations into alternative cholinergic pharmacotherapies such as nAChR positive allosteric modulators.
Collapse
Affiliation(s)
- Eleni H. Moschonas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haley E. Capeci
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ellen M. Annas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Veronica B. Domyslawski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jade A. Steber
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hailey M. Donald
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicholas R. Genkinger
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Piper L. Rennerfeldt
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rachel A. Bittner
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vincent J. Vozzella
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey P. Cheng
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Children’s Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Children’s Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Kipp BT, Nunes PT, Savage LM. Dysregulation of neurotrophin expression in prefrontal cortex and nucleus basalis magnocellularis during and after adolescent intermittent ethanol exposure. Alcohol 2024; 120:1-14. [PMID: 38897258 PMCID: PMC11390331 DOI: 10.1016/j.alcohol.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
A preclinical model of human adolescent binge drinking, adolescent intermittent ethanol exposure (AIE) recreates the heavy binge withdrawal consummatory patterns of adolescents and has identified the loss of basal forebrain cholinergic neurons as a pathological hallmark of this model. Cholinergic neurons of the nucleus basalis magnocellularis (NbM) that innervate the prefrontal cortex (PFC) are particularly vulnerable to alcohol related neurodegeneration. Target derived neurotrophins (nerve growth factor [NGF] and brain-derived neurotrophic factor [BDNF]) regulate cholinergic phenotype expression and survival. Evidence from other disease models implicates the role of immature neurotrophin, or proneurotrophins, activity at neurotrophic receptors in promoting cholinergic degeneration; however, it has yet to be explored in adolescent binge drinking. We sought to characterize the pro- and mature neurotrophin expression, alongside their cognate receptors and cholinergic markers in an AIE model. Male and female Sprague Dawley rats underwent 5 g/kg 20% EtOH or water gavage on two-day-on, two-day-off cycles from post-natal day 25-57. Rats were sacrificed 2 h, 24 h, or 3 weeks following the last gavage, and tissue were collected for protein measurement. Western blot analyses revealed that ethanol intoxication reduced the expression of BDNF and vesicular acetylcholine transporter (vAChT) in the PFC, while NGF was lower in the NbM of AIE treated animals. During acute alcohol withdrawal, proNGF in the PFC was increased while proBDNF decreased, and in the NbM proBDNF increased while NGF decreased. During AIE abstinence, the expression of neurotrophins, their receptors, and vAChT did not differ from controls in the PFC. In contrast, in the NbM the expression of both NGF and choline acetyltransferase (ChAT) were reduced long-term following AIE. Taken together these findings suggest that AIE alters the expression of proneurotrophins and neurotrophins during intoxication and withdrawal that favor prodegenerative mechanisms by increasing the expression of proNGF and proBDNF, while also reducing NGF and BDNF.
Collapse
Affiliation(s)
- Brian T Kipp
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - Polliana T Nunes
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - Lisa M Savage
- Department of Psychology, Binghamton University of the State University of New York, New York, USA.
| |
Collapse
|
19
|
Özçete ÖD, Banerjee A, Kaeser PS. Mechanisms of neuromodulatory volume transmission. Mol Psychiatry 2024; 29:3680-3693. [PMID: 38789677 PMCID: PMC11540752 DOI: 10.1038/s41380-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
A wealth of neuromodulatory transmitters regulate synaptic circuits in the brain. Their mode of signaling, often called volume transmission, differs from classical synaptic transmission in important ways. In synaptic transmission, vesicles rapidly fuse in response to action potentials and release their transmitter content. The transmitters are then sensed by nearby receptors on select target cells with minimal delay. Signal transmission is restricted to synaptic contacts and typically occurs within ~1 ms. Volume transmission doesn't rely on synaptic contact sites and is the main mode of monoamines and neuropeptides, important neuromodulators in the brain. It is less precise than synaptic transmission, and the underlying molecular mechanisms and spatiotemporal scales are often not well understood. Here, we review literature on mechanisms of volume transmission and raise scientific questions that should be addressed in the years ahead. We define five domains by which volume transmission systems can differ from synaptic transmission and from one another. These domains are (1) innervation patterns and firing properties, (2) transmitter synthesis and loading into different types of vesicles, (3) architecture and distribution of release sites, (4) transmitter diffusion, degradation, and reuptake, and (5) receptor types and their positioning on target cells. We discuss these five domains for dopamine, a well-studied monoamine, and then compare the literature on dopamine with that on norepinephrine and serotonin. We include assessments of neuropeptide signaling and of central acetylcholine transmission. Through this review, we provide a molecular and cellular framework for volume transmission. This mechanistic knowledge is essential to define how neuromodulatory systems control behavior in health and disease and to understand how they are modulated by medical treatments and by drugs of abuse.
Collapse
Affiliation(s)
- Özge D Özçete
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Luo F, Jiang L, Desai NS, Bai L, Watkins GV, Eldridge MAG, Plotnikova AS, Mohanty A, Cummins AC, Averbeck BB, Talmage DA, Role LW. Comparative Physiology and Morphology of BLA-Projecting NBM/SI Cholinergic Neurons in Mouse and Macaque. J Comp Neurol 2024; 532:e70001. [PMID: 39576005 PMCID: PMC11583843 DOI: 10.1002/cne.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Cholinergic projection neurons of the nucleus basalis and substantia innominata (NBM/SI) densely innervate the basolateral amygdala (BLA) and have been shown to contribute to the encoding of fundamental and life-threatening experiences. Given the vital importance of these circuits in the acquisition and retention of memories that are essential for survival in a changing environment, it is not surprising that the basic anatomical organization of the NBM/SI is well conserved across animal classes as diverse as teleost and mammal. What is not known is the extent to which the physiology and morphology of NBM/SI neurons have also been conserved. To address this issue, we made patch-clamp recordings from NBM/SI neurons in ex vivo slices of two widely divergent mammalian species, mouse and rhesus macaque, focusing our efforts on cholinergic neurons that project to the BLA. We then reconstructed most of these recorded neurons post hoc to characterize neuronal morphology. We found that rhesus macaque BLA-projecting cholinergic neurons were both more intrinsically excitable and less morphologically compact than their mouse homologs. Combining measurements of 18 physiological features and 13 morphological features, we illustrate the extent of the separation. Although macaque and mouse neurons both exhibited considerable within-group diversity and overlapped with each other on multiple individual metrics, a combined morphoelectric analysis demonstrates that they form two distinct neuronal classes. Given the shared purpose of the circuits in which these neurons participate, this finding raises questions about (and offers constraints on) how these distinct classes result in similar behavior.
Collapse
Affiliation(s)
- Feng Luo
- Section on Circuits, Synapses, and Molecular SignalingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Li Jiang
- Section on Genetics of Neuronal Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Niraj S. Desai
- Section on Circuits, Synapses, and Molecular SignalingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Li Bai
- Section on Circuits, Synapses, and Molecular SignalingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Gabrielle V. Watkins
- Section on Circuits, Synapses, and Molecular SignalingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Mark A. G. Eldridge
- Laboratory of NeuropsychologyNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Anya S. Plotnikova
- Laboratory of NeuropsychologyNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Arya Mohanty
- Laboratory of NeuropsychologyNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Alex C. Cummins
- Laboratory of NeuropsychologyNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Bruno B. Averbeck
- Laboratory of NeuropsychologyNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - David A. Talmage
- Section on Genetics of Neuronal Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Lorna W. Role
- Section on Circuits, Synapses, and Molecular SignalingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
21
|
Fecik MJ, Nunes PT, Vetreno RP, Savage LM. Voluntary wheel running exercise rescues behaviorally-evoked acetylcholine efflux in the medial prefrontal cortex and epigenetic changes in ChAT genes following adolescent intermittent ethanol exposure. PLoS One 2024; 19:e0311405. [PMID: 39436939 PMCID: PMC11495633 DOI: 10.1371/journal.pone.0311405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Adolescent intermittent ethanol (AIE) exposure, which models heavy binge ethanol intake in adolescence, leads to a variety of deficits that persist into adulthood-including suppression of the cholinergic neuron phenotype within the basal forebrain. This is accompanied by a reduction in acetylcholine (ACh) tone in the medial prefrontal cortex (mPFC). Voluntary wheel running exercise (VEx) has been shown to rescue AIE-induced suppression of the cholinergic phenotype. Therefore, the goal of the current study is to determine if VEx will also rescue ACh efflux in the mPFC during spontaneous alternation, attention set shifting performance, and epigenetic silencing of the cholinergic phenotype following AIE. Male and female rats were subjected to 16 intragastric gavages of 20% ethanol or tap water on a two-day on/two-day off schedule from postnatal day (PD) 25-54, before being assigned to either VEx or stationary control groups. In Experiment 1, rats were tested on a four-arm spontaneous alternation maze with concurrent in vivo microdialysis for ACh in the mPFC. An operant attention set-shifting task was used to measure changes in cognitive and behavioral flexibility. In Experiment 2, a ChIP analysis of choline acetyltransferase (ChAT) genes was performed on basal forebrain tissue. It was found that VEx increased ACh efflux in the mPFC in both AIE and control male and female rats, as well as rescued the AIE-induced epigenetic methylation changes selectively at the Chat promoter CpG island across sexes. Overall, these data support the restorative effects of exercise on damage to the cholinergic projections to the mPFC and demonstrate the plasticity of cholinergic system for recovery after alcohol induced brain damage.
Collapse
Affiliation(s)
- Matthew J. Fecik
- Department of Psychology, Behavioral Neuroscience Area, Binghamton University-State University of New York, Binghamton, NY, United States of America
| | - Polliana T. Nunes
- Department of Psychology, Behavioral Neuroscience Area, Binghamton University-State University of New York, Binghamton, NY, United States of America
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Lisa M. Savage
- Department of Psychology, Behavioral Neuroscience Area, Binghamton University-State University of New York, Binghamton, NY, United States of America
| |
Collapse
|
22
|
Song Y, Gordon PC, Roy O, Metsomaa J, Belardinelli P, Rostami M, Ziemann U. Involvement of muscarinic acetylcholine receptor-mediated cholinergic neurotransmission in TMS-EEG responses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111167. [PMID: 39383933 DOI: 10.1016/j.pnpbp.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a valuable tool for investigating brain functions in health and disease. However, the detailed neural mechanisms underlying TMS-EEG responses, including TMS-evoked EEG potentials (TEPs) and TMS-induced EEG oscillations (TIOs), remain largely unknown. Combining TMS-EEG with pharmacological interventions provides a unique opportunity to elucidate the roles of specific receptor-mediated neurotransmissions in these responses. Here, we investigated the involvement of muscarinic acetylcholine receptor (mAChR)-mediated cholinergic neurotransmission in TMS-EEG responses by evaluating the effects of mAChR antagonists on TEPs and TIOs in twenty-four healthy participants using a randomized, placebo-controlled crossover design. TEPs and TIOs were measured before and after administering a single oral dose of scopolamine (a non-selective mAChR antagonist), biperiden (an M1 mAChR antagonist), or placebo, with TMS targeting the left medial prefrontal cortex (mPFC), angular gyrus (AG), and supplementary motor area (SMA). The results indicated that mAChR-mediated cholinergic neurotransmission played a role in TEPs, but not TIOs, in a target-specific manner. Specifically, scopolamine significantly increased the amplitude of a local TEP component between approximately 40 and 63 ms post-stimulus when TMS was applied to the SMA, but not the mPFC or AG. Biperiden produced a similar but less pronounced effect. Importantly, the effects of these mAChR antagonists on TEPs were independent of those on sensory-evoked EEG potentials caused by TMS-associated sensory stimulation. These findings expand our understanding of TMS-EEG physiology, providing insights for its application in physiological and clinical research.
Collapse
Affiliation(s)
- Yufei Song
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Pedro C Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Olivier Roy
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CERVO Brain Research Centre, Quebec, Canada; Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Finland
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Maryam Rostami
- Faculty of Electrical and Computer Engineering, University of Tehran, Iran
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
23
|
van der Horn HJ, Vakhtin AA, Julio K, Nitschke S, Shaff N, Dodd AB, Erhardt E, Phillips JP, Pirio Richardson S, Deligtisch A, Stewart M, Suarez Cedeno G, Meles SK, Mayer AR, Ryman SG. Parkinson's disease cerebrovascular reactivity pattern: A feasibility study. J Cereb Blood Flow Metab 2024; 44:1774-1786. [PMID: 38578669 PMCID: PMC11494834 DOI: 10.1177/0271678x241241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
A mounting body of research points to cerebrovascular dysfunction as a fundamental element in the pathophysiology of Parkinson's disease (PD). In the current feasibility study, blood-oxygen-level-dependent (BOLD) MRI was used to measure cerebrovascular reactivity (CVR) in response to hypercapnia in 26 PD patients and 16 healthy controls (HC), and aimed to find a multivariate pattern specific to PD. Whole-brain maps of CVR amplitude (i.e., magnitude of response to CO2) and latency (i.e., time to reach maximum amplitude) were computed, which were further analyzed using scaled sub-profile model principal component analysis (SSM-PCA) with leave-one-out cross-validation. A meaningful pattern based on CVR latency was identified, which was named the PD CVR pattern (PD-CVRP). This pattern was characterized by relatively increased latency in basal ganglia, sensorimotor cortex, supplementary motor area, thalamus and visual cortex, as well as decreased latency in the cerebral white matter, relative to HC. There were no significant associations with clinical measures, though sample size may have limited our ability to detect significant associations. In summary, the PD-CVRP highlights the importance of cerebrovascular dysfunction in PD, and may be a potential biomarker for future clinical research and practice.
Collapse
Affiliation(s)
- Harm Jan van der Horn
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Andrei A Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Kayla Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Stephanie Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Nicholas Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Andrew B Dodd
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - John P Phillips
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
- New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Amanda Deligtisch
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Melanie Stewart
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Gerson Suarez Cedeno
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew R Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
24
|
Dasgupta S, Pandya MA, Zanin JP, Liu T, Sun Q, Li H, Friedman WJ. ProNGF elicits retrograde axonal degeneration of basal forebrain neurons through p75 NTR and induction of amyloid precursor protein. Sci Signal 2024; 17:eadn2616. [PMID: 39316663 PMCID: PMC11487763 DOI: 10.1126/scisignal.adn2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/15/2024] [Indexed: 09/26/2024]
Abstract
Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple regions in the brain to regulate cognitive functions. Degeneration of BFCNs is seen with aging, after brain injury, and in neurodegenerative disorders. An increase in the amount of the immature proform of nerve growth factor (proNGF) in the cerebral cortex results in retrograde degeneration of BFCNs through activation of proNGF receptor p75NTR. Here, we investigated the signaling cascades initiated at the axon terminal that mediate proNGF-induced retrograde degeneration. We found that local axonal protein synthesis and retrograde transport mediated proNGF-induced degeneration initiated from the axon terminal. Analysis of the nascent axonal proteome revealed that proNGF stimulation of axonal terminals triggered the synthesis of numerous proteins within the axon, and pathway analysis showed that amyloid precursor protein (APP) was a key upstream regulator in cultured BFCNs and in mice. Our findings reveal a functional role for APP in mediating BFCN axonal degeneration and cell death induced by proNGF.
Collapse
Affiliation(s)
- Srestha Dasgupta
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Mansi A. Pandya
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Juan P. Zanin
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Tong Liu
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Qian Sun
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Hong Li
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wilma J. Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
25
|
Görgülü I, Jagannath V, Pons S, Koniuszewski F, Groszer M, Maskos U, Huck S, Scholze P. The human-specific nicotinic receptor subunit CHRFAM7A reduces α7 receptor function in human induced pluripotent stem cells-derived and transgenic mouse neurons. Eur J Neurosci 2024; 60:4893-4906. [PMID: 39073048 DOI: 10.1111/ejn.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
We investigated the impact of the human-specific gene CHRFAM7A on the function of α7 nicotinic acetylcholine receptors (α7 nAChRs) in two different types of neurons: human-induced pluripotent stem cell (hiPSC)-derived cortical neurons, and superior cervical ganglion (SCG) neurons, taken from transgenic mice expressing CHRFAM7A. dupα7, the gene product of CHRFAM7A, which lacks a major part of the extracellular N-terminal ligand-binding domain, co-assembles with α7, the gene product of CHRNA7. We assessed the receptor function in hiPSC-derived cortical and SCG neurons with Fura-2 calcium imaging and three different α7-specific ligands: PNU282987, choline, and 4BP-TQS. Given the short-lived open state of α7 receptors, we combined the two orthosteric agonists PNU282987 and choline with the type-2 positive allosteric modulator (PAM II) PNU120596. In line with different cellular models used previously, we demonstrate that CHRFAM7A has a major impact on nicotinic α7 nAChRs by reducing calcium transients in response to all three agonists.
Collapse
Affiliation(s)
- Ilayda Görgülü
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Vinita Jagannath
- Institut du Fer à Moulin, Sorbonne University, UMR-S 1270, Paris, France
- MSD R&D Innovation Centre, London, UK
| | - Stephanie Pons
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Université Paris Cité, UMR 3571, Paris, France
| | - Filip Koniuszewski
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Groszer
- Institut du Fer à Moulin, Sorbonne University, UMR-S 1270, Paris, France
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Université Paris Cité, UMR 3571, Paris, France
| | - Sigismund Huck
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petra Scholze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Zhang Q, Singh P, Peng DW, Peng EY, Burns JM, Swerdlow RH, Suo WZ. Proactive M2 blockade prevents cognitive decline in GRK5-deficient APP transgenic mice via enhancing cholinergic neuronal resilience. J Biol Chem 2024; 300:107619. [PMID: 39098530 PMCID: PMC11400976 DOI: 10.1016/j.jbc.2024.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) poses an immense challenge in healthcare, lacking effective therapies. This study investigates the potential of anthranilamide derivative (AAD23), a selective M2 receptor antagonist, in proactively preventing cognitive impairments and cholinergic neuronal degeneration in G protein-coupled receptor kinase-5-deficient Swedish APP (GAP) mice. GAP mice manifest cognitive deficits by 7 months and develop senile plaques by 9 months. A 6-month AAD23 treatment was initiated at 5 months and stopped at 11 months before behavioral assessments without the treatment. AAD23-treated mice exhibited preserved cognitive abilities and improved cholinergic axonal health in the nucleus basalis of Meynert akin to wildtype mice. Conversely, vehicle-treated GAP mice displayed memory deficits and pronounced cholinergic axonal swellings in the nucleus basalis of Meynert. Notably, AAD23 treatment did not alter senile plaques and microgliosis. These findings highlight AAD23's efficacy in forestalling AD-related cognitive decline in G protein-coupled receptor kinase-5-deficient subjects, attributing its success to restoring cholinergic neuronal integrity and resilience, enhancing resistance against diverse degenerative insults.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Prabhakar Singh
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - David W Peng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Evelyn Y Peng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Jeffery M Burns
- Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA
| | - William Z Suo
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA; Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA.
| |
Collapse
|
27
|
Damborsky JC, Yakel JL. Regulation of Hippocamposeptal Synaptic Transmission by GABA BRs Is Altered in 5XFAD Mice in a Sex- and Age-Dependent Manner. J Mol Neurosci 2024; 74:82. [PMID: 39212758 PMCID: PMC11364565 DOI: 10.1007/s12031-024-02260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Hippocamposeptal (HS) neurons send GABAergic projections from the hippocampus to the medial septum/diagonal band of Broca (MS/DBB) as part of a reciprocal loop that is critical for memory. HS neurons are proposed to be particularly sensitive to the deleterious effects of pathological exposure to amyloid-β (Aβ), as would occur during Alzheimer's disease (AD). However, it is not known how HS GABA release in the MS/DBB is altered during the progression of AD. To target HS neurons in a mouse model of AD, we crossed SST-Cre mice to 5XFAD mice and performed stereotaxic injections of Cre-dependent AAV containing mCherry/channelrhodopsin-2 (ChR2) into the hippocampus of offspring at 4, 6, 9, and 12 months. We used optogenetics to selectively stimulate HS terminals while performing whole-cell patch-clamp recordings from MS/DBB neurons in slices. There was a transient reduction in HS-inhibitory postsynaptic current (IPSC) amplitude in female 5XFAD mice at 6 months, but no difference in males at any age, and no difference in paired-pulse ratio in either sex at any age. When bath applying the GABABR agonist, baclofen, we found a larger decrease in HS-IPSC amplitude in 5XFAD females at 9 months and 5XFAD males at 12 months. In 12-month-old 5XFAD females, response to baclofen was significantly reduced. These data suggest that there is a transient increase in responsiveness to GABABR activation in 5XFAD mice that occurs earlier in females than in males. These sex-specific changes to HS function are likely to impact the relay of information between the hippocampus and MS/DBB.
Collapse
Affiliation(s)
- Joanne C Damborsky
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Dr., P.O. Box 12233, Mail Drop F2-08, Research Triangle Park, NC, 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Dr., P.O. Box 12233, Mail Drop F2-08, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
28
|
Mei F, Zhao C, Li S, Xue Z, Zhao Y, Xu Y, Ye R, You H, Yu P, Han X, Carr GV, Weinberger DR, Yang F, Lu B. Ngfr + cholinergic projection from SI/nBM to mPFC selectively regulates temporal order recognition memory. Nat Commun 2024; 15:7342. [PMID: 39187496 PMCID: PMC11347598 DOI: 10.1038/s41467-024-51707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Acetylcholine regulates various cognitive functions through broad cholinergic innervation. However, specific cholinergic subpopulations, circuits and molecular mechanisms underlying recognition memory remain largely unknown. Here we show that Ngfr+ cholinergic neurons in the substantia innominate (SI)/nucleus basalis of Meynert (nBM)-medial prefrontal cortex (mPFC) circuit selectively underlies recency judgements. Loss of nerve growth factor receptor (Ngfr-/- mice) reduced the excitability of cholinergic neurons in the SI/nBM-mPFC circuit but not in the medial septum (MS)-hippocampus pathway, and impaired temporal order memory but not novel object and object location recognition. Expression of Ngfr in Ngfr-/- SI/nBM restored defected temporal order memory. Fiber photometry revealed that acetylcholine release in mPFC not only predicted object encounters but also mediated recency judgments of objects, and such acetylcholine release was absent in Ngfr-/- mPFC. Chemogenetic and optogenetic inhibition of SI/nBM projection to mPFC in ChAT-Cre mice diminished mPFC acetylcholine release and deteriorated temporal order recognition. Impaired cholinergic activity led to a depolarizing shift of GABAergic inputs to mPFC pyramidal neurons, due to disturbed KCC2-mediated chloride gradients. Finally, potentiation of acetylcholine signaling upregulated KCC2 levels, restored GABAergic driving force and rescued temporal order recognition deficits in Ngfr-/- mice. Thus, NGFR-dependent SI/nBM-mPFC cholinergic circuit underlies temporal order recognition memory.
Collapse
Affiliation(s)
- Fan Mei
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chen Zhao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Zeping Xue
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- School of Basic Medicine, Capital Medical University, Beijing, China
- Laboratory of Cognitive and Behavioral Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yueyang Zhao
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yihua Xu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Rongrong Ye
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Peng Yu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Xinyu Han
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Gregory V Carr
- Department of Pharmacology and Molecular Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Department of Pharmacology and Molecular Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feng Yang
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Laboratory of Cognitive and Behavioral Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
29
|
Conley AC, Vega JN, Johnson JV, Dumas JA, Newhouse PA. Effect of estradiol with or without micronized progesterone on cholinergic-related cognitive performance in postmenopausal women. Front Neurosci 2024; 18:1428675. [PMID: 39184322 PMCID: PMC11342399 DOI: 10.3389/fnins.2024.1428675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Women are at a higher risk of developing Alzheimer's disease (AD), and the decline in estrogens post-menopause is thought of as a factor increasing this risk. Estradiol (E2) is important in supporting cholinergic neuronal integrity, and cholinergic functioning may be negatively impacted following the loss of E2 post-menopause. The use of exogenous E2 has been observed to enhance cholinergically mediated cognitive performance in healthy post-menopausal women, which indicates a potentially protective mechanism. However, E2 is often co-administered with progestin or progesterone to prevent endometrial proliferation. Progesterone/progestins have previously been shown to have a detrimental effect on E2-mediated biological and cognitive effects mediated by cholinergic systems in preclinical models, therefore the present study aimed to assess whether progesterone would modify the effect of E2 to influence cognition during cholinergic blockade. Methods Twenty participants completed 3-months of oral E2 treatment with micronized progesterone (mPRO) or with placebo (PLC) in a repeated-measures within-subjects crossover design, in which they also completed five anticholinergic challenge days per hormone treatment condition. During the challenge participants were administered low or high doses of the nicotinic cholinergic antagonist mecamylamine, the muscarinic cholinergic antagonist scopolamine, or placebo. Following drug administration participants performed cognitive tests sensitive to cholinergic tone, assessing attention, episodic memory, and working memory. Results Significant decrements were found on some tasks when participants were taking E2+mPRO compared to E2 alone. Specifically, under more challenging task conditions and larger anticholinergic doses, participants showed poorer performance on the Critical Flicker Fusion task and the Stroop test and responded more conservatively on the N-back working memory task. Other tasks showed no differences between treatments under cholinergic blockade. Discussion The findings show that mPRO when taken in concert with E2, was detrimental to effortful cognitive performance, in the presence of cholinergic blockade. These results are important for assessing the impact of combined postmenopausal hormone treatment on cognitive performance that is dependent on cholinergic functioning after menopause.
Collapse
Affiliation(s)
- Alexander C. Conley
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer N. Vega
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia V. Johnson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Julie A. Dumas
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Paul A. Newhouse
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, United States
| |
Collapse
|
30
|
Luo F, Jiang L, Desai NS, Bai L, Watkins GV, Eldridge MAG, Plotnikova A, Mohanty A, Cummins AC, Averbeck BB, Talmage DA, Role LW. Comparative physiology and morphology of BLA-projecting NBM/SI cholinergic neurons in mouse and macaque. RESEARCH SQUARE 2024:rs.3.rs-4824445. [PMID: 39149491 PMCID: PMC11326416 DOI: 10.21203/rs.3.rs-4824445/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cholinergic projection neurons of the nucleus basalis and substantia innominata (NBM/SI) densely innervate the basolateral amygdala (BLA) and have been shown to contribute to the encoding of fundamental and life-threatening experiences. Given the vital importance of these circuits in the acquisition and retention of memories that are essential for survival in a changing environment, it is not surprising that the basic anatomical organization of the NBM/SI is well conserved across animal classes as diverse as teleost and mammal. What is not known is the extent to which the physiology and morphology of NBM/SI neurons have also been conserved. To address this issue, we made patch-clamp recordings from NBM/SI neurons in ex vivo slices of two widely divergent mammalian species, mouse and rhesus macaque, focusing our efforts on cholinergic neurons that project to the BLA. We then reconstructed most of these recorded neurons post hoc to characterize neuronal morphology. We found that rhesus macaque BLA-projecting cholinergic neurons were both more intrinsically excitable and less morphologically compact than their mouse homologs. Combining measurements of 18 physiological features and 13 morphological features, we illustrate the extent of the separation. Although macaque and mouse neurons both exhibited considerable within-group diversity and overlapped with each other on multiple individual metrics, a combined morpho-electric analysis demonstrates that they form two distinct neuronal classes. Given the shared purpose of the circuits in which these neurons participate, this finding raises questions about (and offers constraints on) how these distinct classes result in similar behavior.
Collapse
Affiliation(s)
- Feng Luo
- Section on Circuits, Synapses, and Molecular Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Li Jiang
- Section on Genetics of Neuronal Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Niraj S. Desai
- Section on Circuits, Synapses, and Molecular Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Li Bai
- Section on Circuits, Synapses, and Molecular Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Gabrielle V. Watkins
- Section on Circuits, Synapses, and Molecular Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Mark A. G. Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, 20892, MD, USA
| | - Anya Plotnikova
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, 20892, MD, USA
| | - Arya Mohanty
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, 20892, MD, USA
| | - Alex C. Cummins
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, 20892, MD, USA
| | - Bruno B. Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, 20892, MD, USA
| | - David A. Talmage
- Section on Genetics of Neuronal Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Lorna W. Role
- Section on Circuits, Synapses, and Molecular Signaling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 20892, MD, USA
| |
Collapse
|
31
|
Shanazz K, Xie K, Oliver T, Bogan J, Vale F, Sword J, Kirov SA, Terry A, O'Herron P, Blake DT. Cortical Acetylcholine Response to Deep Brain Stimulation of the Basal Forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605828. [PMID: 39131297 PMCID: PMC11312592 DOI: 10.1101/2024.07.30.605828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Deep brain stimulation (DBS), the direct electrical stimulation of neuronal tissue in the basal forebrain to enhance release of the neurotransmitter acetylcholine, is under consideration as a method to improve executive function in patients with dementia. While some small studies indicate a positive response in the clinical setting, the relationship between DBS and acetylcholine pharmacokinetics is incompletely understood. Objective We examined the cortical acetylcholine response to different stimulation parameters of the basal forebrain. Methods 2-photon imaging was combined with deep brain stimulation. Stimulating electrodes were implanted in the subpallidal basal forebrain, and the ipsilateral somatosensory cortex was imaged. Acetylcholine activity was determined using the GRABACh-3.0 muscarinic acetylcholine receptor sensor, and blood vessels were imaged with Texas red. Results Experiments manipulating pulse train frequency demonstrated that integrated acetylcholine induced fluorescence was insensitive to frequency, and that peak levels were achieved with frequencies from 60 to 130 Hz. Altering pulse train length indicated that longer stimulation resulted in higher peaks and more activation with sublinear summation. The acetylcholinesterase inhibitor donepezil increased the peak response to 10s of stimulation at 60Hz, and the integrated response increased 57% with the 2 mg/kg dose, and 126% with the 4 mg/kg dose. Acetylcholine levels returned to baseline with a time constant of 14 to 18 seconds in all experiments. Conclusions These data demonstrate that acetylcholine receptor activation is insensitive to frequency between 60 and 130 Hz. High peak responses are achieved with up to 900 pulses. Donepezil increases total acetylcholine receptor activation associated with DBS but did not change temporal kinetics. The long time constants observed in the cerebral cortex add to the evidence supporting volume in addition to synaptic transmission.
Collapse
Affiliation(s)
- Khadijah Shanazz
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Kun Xie
- Dept of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Tucker Oliver
- Dept of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jamal Bogan
- Dept of Science and Mathematics, Augusta University, Augusta, GA
| | - Fernando Vale
- Dept of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jeremy Sword
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Sergei A Kirov
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
- Dept of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Alvin Terry
- Dept of Pharmacology and Toxicology , Medical College of Georgia, Augusta University, Augusta, GA
| | - Philip O'Herron
- Dept of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - David T Blake
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
32
|
Bennett HC, Zhang Q, Wu YT, Manjila SB, Chon U, Shin D, Vanselow DJ, Pi HJ, Drew PJ, Kim Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. Nat Commun 2024; 15:6398. [PMID: 39080289 PMCID: PMC11289283 DOI: 10.1038/s41467-024-50559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Aging is frequently associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods and in vivo imaging to determine detailed changes in aged murine cerebrovascular networks. Whole-brain vascular tracing shows an overall ~10% decrease in vascular length and branching density with ~7% increase in vascular radii in aged brains. Light sheet imaging with 3D immunolabeling reveals increased arteriole tortuosity of aged brains. Notably, vasculature and pericyte densities show selective and significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. We find increased blood extravasation, implying compromised blood-brain barrier function in aged brains. Moreover, in vivo imaging in awake mice demonstrates reduced baseline and on-demand blood oxygenation despite relatively intact neurovascular coupling. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Neurosurgery, Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Steffy B Manjila
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Donghui Shin
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Daniel J Vanselow
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hyun-Jae Pi
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, Biology, and Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
33
|
Xia Y, Dore V, Fripp J, Bourgeat P, Laws SM, Fowler CJ, Rainey-Smith SR, Martins RN, Rowe C, Masters CL, Coulson EJ, Maruff P. Association of Basal Forebrain Atrophy With Cognitive Decline in Early Alzheimer Disease. Neurology 2024; 103:e209626. [PMID: 38885444 PMCID: PMC11254448 DOI: 10.1212/wnl.0000000000209626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES In early Alzheimer disease (AD), β-amyloid (Aβ) deposition is associated with volume loss in the basal forebrain (BF) and cognitive decline. However, the extent to which Aβ-related BF atrophy manifests as cognitive decline is not understood. This study sought to characterize the relationship between BF atrophy and the decline in memory and attention in patients with early AD. METHODS Participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study who completed Aβ-PET imaging and repeated MRI and cognitive assessments were included. At baseline, participants were classified based on their clinical dementia stage and Aβ status, yielding groups that were cognitively unimpaired (CU) Aβ-, CU Aβ+, and mild cognitive impairment (MCI) Aβ+. Linear mixed-effects models were used to assess changes in volumetric measures of BF subregions and the hippocampus and changes in AIBL memory and attention composite scores for each group compared with CU Aβ- participants. Associations between Aβ burden, brain atrophy, and cognitive decline were evaluated and explored further using mediation analyses. RESULTS The cohort included 476 participants (72.6 ± 5.9 years, 55.0% female) with longitudinal data from a median follow-up period of 6.1 years. Compared with the CU Aβ- group (n = 308), both CU Aβ+ (n = 107) and MCI Aβ+ (n = 61) adults showed faster decline in BF and hippocampal volumes and in memory and attention (Cohen d = 0.73-1.74). Rates of atrophy in BF subregions and the hippocampus correlated with cognitive decline, and each individually mediated the impact of Aβ burden on memory and attention decline. When all mediators were considered simultaneously, hippocampal atrophy primarily influenced the effect of Aβ burden on memory decline (β [SE] = -0.139 [0.032], proportion mediated [PM] = 28.0%) while the atrophy of the posterior nucleus basalis of Meynert in the BF (β [SE] = -0.068 [0.029], PM = 13.1%) and hippocampus (β [SE] = -0.121 [0.033], PM = 23.4%) distinctively influenced Aβ-related attention decline. DISCUSSION These findings highlight the significant role of BF atrophy in the complex pathway linking Aβ to cognitive impairment in early stages of AD. Volumetric assessment of BF subregions could be essential in elucidating the relationships between the brain structure and behavior in AD.
Collapse
Affiliation(s)
- Ying Xia
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Vincent Dore
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Jurgen Fripp
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Pierrick Bourgeat
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Simon M Laws
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Christopher J Fowler
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Stephanie R Rainey-Smith
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Ralph N Martins
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Christopher Rowe
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Colin L Masters
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Elizabeth J Coulson
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Paul Maruff
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| |
Collapse
|
34
|
Sundman MH, Green JM, Fuglevand AJ, Chou YH. TMS-derived short afferent inhibition discriminates cognitive status in older adults without dementia. AGING BRAIN 2024; 6:100123. [PMID: 39132326 PMCID: PMC11315225 DOI: 10.1016/j.nbas.2024.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024] Open
Abstract
Aging is a complex and diverse biological process characterized by progressive molecular, cellular, and tissue damage, resulting in a loss of physiological integrity and heightened vulnerability to pathology. This biological diversity corresponds with highly variable cognitive trajectories, which are further confounded by genetic and environmental factors that influence the resilience of the aging brain. Given this complexity, there is a need for neurophysiological indicators that not only discern physiologic and pathologic aging but also closely align with cognitive trajectories. Transcranial Magnetic Stimulation (TMS) may have utility in this regard as a non-invasive brain stimulation tool that can characterize features of cortical excitability. Particularly, as a proxy for central cholinergic function, short-afferent inhibition (SAI) dysfunction is robustly associated with cognitive deficits in the latter stages of Alzheimer's Disease and Related Dementia (ADRD). In this study, we evaluated SAI in healthy young adults and older adults who, though absent clinical diagnoses, were algorithmically classified as cognitively normal (CN) or cognitively impaired (CI) according to the Jak/Bondi actuarial criteria. We report that SAI is preserved in the Old-CN cohort relative to the young adults, and SAI is significantly diminished in the Old-CI cohort relative to both young and CN older adults. Additionally, diminished SAI was significantly associated with impaired sustained attention and working memory. As a proxy measure for central cholinergic deficits, we discuss the potential value of SAI for discerning physiological and pathological aging.
Collapse
Affiliation(s)
- Mark H. Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Jacob M. Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew J. Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Ying-hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
35
|
Xu D, Yu X, Hu J, Yu Y, Wang L, Jiang B, Zhang M. White matter hyperintensities in cholinergic pathways correlates of cognitive impairment in moyamoya disease. Eur Radiol 2024; 34:4596-4606. [PMID: 38092950 DOI: 10.1007/s00330-023-10489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/24/2023] [Accepted: 10/28/2023] [Indexed: 06/29/2024]
Abstract
OBJECTIVE To investigate the effect of cholinergic pathways damage caused by white matter hyperintensities (WMHs) on cognitive function in moyamoya disease (MMD). METHODS We included 62 patients with MMD from a prospectively enrolled cohort. We evaluated the burden of cholinergic pathways damage caused by WMHs using the Cholinergic Pathways Hyperintensities Scale (CHIPS). Cognitive function was evaluated with the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Cognitive impairment was determined according to the cut-off of MMSE and education. Multivariate linear and logistic regression models were used to analyze whether CHIPS was independently associated with cognition. Receiver operating characteristic curve analysis was performed to identify the ability of CHIPS in discriminating cognitive impairment and normal cognition. RESULTS CHIPS was associated with both MMSE and MoCA (β = - 0.601 and β = - 0.672, both p < 0.001). After correcting age, sex, education, volumes of limbic areas, and other factors, CHIPS remained to be independently associated with both MMSE and MoCA (β = - 0.388 and β = - 0.334, both p < 0.001). In the logistic regression, only CHIPS was associated with cognitive impairment (odds ratio = 1.431, 95% confidence interval = 1.103 to 1.856, p = 0.007). The optimal cut-off of CHIPS score was 10, yielding a sensitivity of 87.5% and a specificity of 78.3% in identifying MMD patients with cognitive impairment. CONCLUSIONS The damage of cholinergic pathways caused by WMHs plays an independent effect on cognition and CHIPS could be a useful method in identifying MMD patients likely to be cognitive impairment. CLINICAL RELEVANCE STATEMENT This study shows that Cholinergic Pathways Hyperintensities Scale (CHIPS) could be a simple and reliable method in identifying cognitive impairment for patients with moyamoya disease. CHIPS could be helpful in clinical practice, such as guiding treatment decisions and predicting outcome. KEY POINTS • Cholinergic Pathways Hyperintensities Scale was significantly associated with cognitive screening tests in patients with moyamoya disease. • Cholinergic Pathways Hyperintensities Scale plays an independent effect on cognitive impairment in patients with moyamoya disease. • Cholinergic Pathways Hyperintensities Scale shows higher accuracy than education, volumes of limbic areas, and sex in identifying cognitive impairment in moyamoya disease.
Collapse
Affiliation(s)
- Duo Xu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yannan Yu
- Department of Radiology, UCSF, San Francisco, CA, USA
| | - Lin Wang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Biao Jiang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
36
|
Voegtle A, Mohrbutter C, Hils J, Schulz S, Weuthen A, Brämer U, Ullsperger M, Sweeney-Reed CM. Cholinergic modulation of motor sequence learning. Eur J Neurosci 2024; 60:3706-3718. [PMID: 38716689 DOI: 10.1111/ejn.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 07/06/2024]
Abstract
The cholinergic system plays a key role in motor function, but whether pharmacological modulation of cholinergic activity affects motor sequence learning is unknown. The acetylcholine receptor antagonist biperiden, an established treatment in movement disorders, reduces attentional modulation, but whether it influences motor sequence learning is not clear. Using a randomized, double-blind placebo-controlled crossover design, we tested 30 healthy young participants and showed that biperiden impairs the ability to learn sequential finger movements, accompanied by widespread oscillatory broadband power changes (4-25 Hz) in the motor sequence learning network after receiving biperiden, with greater power in the theta, alpha and beta bands over ipsilateral motor and bilateral parietal-occipital areas. The reduced early theta power during a repeated compared with random sequence, likely reflecting disengagement of top-down attention to sensory processes, was disrupted by biperiden. Alpha synchronization during repeated sequences reflects sensory gating and lower visuospatial attention requirements compared with visuomotor responses to random sequences. After biperiden, alpha synchronization was greater, potentially reflecting excessive visuospatial attention reduction, affecting visuomotor responding required to enable sequence learning. Beta oscillations facilitate sequence learning by integrating visual and somatosensory inputs, stabilizing repeated sequences and promoting prediction of the next stimulus. The beta synchronization after biperiden fits with a disruption of the selective visuospatial attention enhancement associated with initial sequence learning. These findings highlight the role of cholinergic processes in motor sequence learning.
Collapse
Affiliation(s)
- Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Catharina Mohrbutter
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan Hils
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Steve Schulz
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Weuthen
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Uwe Brämer
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Ullsperger
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
37
|
Oliver Goral R, Lamb PW, Yakel JL. Acetylcholine Neurons Become Cholinergic during Three Time Windows in the Developing Mouse Brain. eNeuro 2024; 11:ENEURO.0542-23.2024. [PMID: 38942474 PMCID: PMC11253243 DOI: 10.1523/eneuro.0542-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024] Open
Abstract
Acetylcholine (ACh) neurons in the central nervous system are required for the coordination of neural network activity during higher brain functions, such as attention, learning, and memory, as well as locomotion. Disturbed cholinergic signaling has been described in many neurodevelopmental and neurodegenerative disorders. Furthermore, cotransmission of other signaling molecules, such as glutamate and GABA, with ACh has been associated with essential roles in brain function or disease. However, it is unknown when ACh neurons become cholinergic during development. Thus, understanding the timeline of how the cholinergic system develops and becomes active in the healthy brain is a crucial part of understanding brain development. To study this, we used transgenic mice to selectively label ACh neurons with tdTomato. We imaged serial sectioned brains and generated whole-brain reconstructions at different time points during pre- and postnatal development. We found three crucial time windows-two in the prenatal and one in the postnatal brain-during which most ACh neuron populations become cholinergic in the brain. We also found that cholinergic gene expression is initiated in cortical ACh interneurons, while the cerebral cortex is innervated by cholinergic projection neurons from the basal forebrain. Taken together, we show that ACh neuron populations are present and become cholinergic before postnatal day 12, which is the onset of major sensory processes, such as hearing and vision. We conclude that the birth of ACh neurons and initiation of cholinergic gene expression are temporally separated during development but highly coordinated by brain anatomical structure.
Collapse
Affiliation(s)
- Rene Oliver Goral
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland 20892
| | - Patricia W Lamb
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
38
|
Nguyen HTM, van der Westhuizen ET, Langmead CJ, Tobin AB, Sexton PM, Christopoulos A, Valant C. Opportunities and challenges for the development of M 1 muscarinic receptor positive allosteric modulators in the treatment for neurocognitive deficits. Br J Pharmacol 2024; 181:2114-2142. [PMID: 36355830 DOI: 10.1111/bph.15982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Targeting allosteric sites of M1 muscarinic acetylcholine receptors (M1 receptors) is a promising strategy to treat neurocognitive disorders, such as Alzheimer's disease and schizophrenia. Indeed, the last two decades have seen an impressive body of work focussing on the design and development of positive allosteric modulators (PAMs) for the M1 receptor. This has led to the identification of a structurally diverse range of highly selective M1 PAMs. In preclinical models, M1 PAMs have shown rescue of cognitive deficits and improvement of endpoints predictive of symptom domains of schizophrenia. Yet, to date only a few M1 PAMs have reached early-stage clinical trials, with many of them failing to progress further due to on-target mediated cholinergic adverse effects that have plagued the development of this class of ligand. This review covers the recent preclinical and clinical studies in the field of M1 receptor drug discovery for the treatment of Alzheimer's disease and schizophrenia, with a specific focus on M1 PAM, highlighting both the undoubted potential but also key challenges for the successful translation of M1 PAMs from bench-side to bedside. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Huong T M Nguyen
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Christopher J Langmead
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Andrew B Tobin
- Centre for Translational Pharmacology, University of Glasgow, Glasgow, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Kang Y, Toyoda H, Saito M. Search for unknown neural link between the masticatory and cognitive brain systems to clarify the involvement of its impairment in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2024; 18:1425645. [PMID: 38994328 PMCID: PMC11236757 DOI: 10.3389/fncel.2024.1425645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Brain degenerations in sporadic Alzheimer's disease (AD) are observed earliest in the locus coeruleus (LC), a population of noradrenergic neurons, in which hyperphosphorylated tau protein expression and β-amyloid (Aβ) accumulation begin. Along with this, similar changes occur in the basal forebrain cholinergic neurons, such as the nucleus basalis of Meynert. Neuronal degeneration of the two neuronal nuclei leads to a decrease in neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex, which results in the accumulation of Aβ and hyperphosphorylated tau protein and ultimately causes neuronal cell death in those cortices. On the other hand, a large number of epidemiological studies have shown that tooth loss or masticatory dysfunction is a risk factor for dementia including AD, and numerous studies using experimental animals have also shown that masticatory dysfunction causes brain degeneration in the basal forebrain, hippocampus, and cerebral cortex similar to those observed in human AD, and that learning and memory functions are impaired accordingly. However, it remains unclear how masticatory dysfunction can induce such brain degeneration similar to AD, and the neural mechanism linking the trigeminal nervous system responsible for mastication and the cognitive and memory brain system remains unknown. In this review paper, we provide clues to the search for such "missing link" by discussing the embryological, anatomical, and physiological relationship between LC and its laterally adjoining mesencephalic trigeminal nucleus which plays a central role in the masticatory functions.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Behavioral Physiology, Osaka University Graduate School of Human Sciences, Osaka, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
40
|
Zaborszky L, Varsanyi P, Alloway K, Chavez C, Gielow M, Gombkoto P, Kondo H, Nadasdy Z. Functional architecture of the forebrain cholinergic system in rodents. RESEARCH SQUARE 2024:rs.3.rs-4504727. [PMID: 38947053 PMCID: PMC11213185 DOI: 10.21203/rs.3.rs-4504727/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The basal forebrain cholinergic system (BFCS) participates in functions that are global across the brain, such as sleep-wake cycles, but also participates in capacities that are more behaviorally and anatomically specific, including sensory perception. To better understand the underlying organization principles of the BFCS, more and higher quality anatomical data and analysis is needed. Here, we created a "virtual Basal Forebrain", combining data from numerous rats with cortical retrograde tracer injections into a common 3D reference coordinate space and developed a "spatial density correlation" methodology to analyze patterns in BFCS cortical projection targets, revealing that the BFCS is organized into three principal networks: somatosensory-motor, auditory, and visual. Within each network, clusters of cholinergic cells with increasing complexity innervate cortical targets. These networks represent hierarchically organized building blocks that may enable the BFCS to coordinate spatially selective signaling, including parallel modulation of multiple functionally interconnected yet diverse groups of cortical areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Gombkoto
- Swiss Federal Institute of Technology in Zurich (ETH Zurich)
| | | | | |
Collapse
|
41
|
van Velthoven CTJ, Gao Y, Kunst M, Lee C, McMillen D, Chakka AB, Casper T, Clark M, Chakrabarty R, Daniel S, Dolbeare T, Ferrer R, Gloe J, Goldy J, Guzman J, Halterman C, Ho W, Huang M, James K, Nguy B, Pham T, Ronellenfitch K, Thomas ED, Torkelson A, Pagan CM, Kruse L, Dee N, Ng L, Waters J, Smith KA, Tasic B, Yao Z, Zeng H. The transcriptomic and spatial organization of telencephalic GABAergic neuronal types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599583. [PMID: 38948843 PMCID: PMC11212977 DOI: 10.1101/2024.06.18.599583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that play adaptive and integrative roles in a variety of brain functions. There is a wide array of GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all regions of the mouse telencephalon and their developmental origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and postnatal developing mouse brain. We present a hierarchically organized adult telencephalic GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051 clusters, as well as a corresponding developmental taxonomy of 450 clusters across different ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell types reflect both spatial locations and developmental origins. Transcriptomically and developmentally related cell types can often be found in distant and diverse brain regions indicating that long-distance migration and dispersion is a common characteristic of nearly all classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of both discrete and continuous variations among related cell types that are correlated with gene expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic neuronal types emerge simultaneously during the embryonic stage with limited postnatal diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural and functional studies of cell types and circuits by the entire community.
Collapse
Affiliation(s)
| | - Yuan Gao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mike Huang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Beagan Nguy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
42
|
Li Z, Ma Q, Deng Y, Rolls ET, Shen C, Li Y, Zhang W, Xiang S, Langley C, Sahakian BJ, Robbins TW, Yu JT, Feng J, Cheng W. Irritable Bowel Syndrome Is Associated With Brain Health by Neuroimaging, Behavioral, Biochemical, and Genetic Analyses. Biol Psychiatry 2024; 95:1122-1132. [PMID: 38199582 DOI: 10.1016/j.biopsych.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) interacts with psychopathology in a complex way; however, little is known about the underlying brain, biochemical, and genetic mechanisms. METHODS To clarify the phenotypic and genetic associations between IBS and brain health, we performed a comprehensive retrospective cohort study on a large population. Our study included 171,104 participants from the UK Biobank who underwent a thorough assessment of IBS, with the majority also providing neuroimaging, behavioral, biochemical, and genetic information. Multistage linked analyses were conducted, including phenome-wide association analysis, polygenic risk score calculation, and 2-sample Mendelian randomization analysis. RESULTS The phenome-wide association analysis showed that IBS was linked to brain health problems, including anxiety and depression, and poor cognitive performance. Significantly lower brain volumes associated with more severe IBS were found in key areas related to emotional regulation and higher-order cognition, including the medial orbitofrontal cortex/ventromedial prefrontal cortex, anterior insula, anterior and mid-cingulate cortices, dorsolateral prefrontal cortex, and hippocampus. Higher triglycerides, lower high-intensity lipoprotein, and lower platelets were also related (p < 1 × 10-10) to more severe IBS. Finally, Mendelian randomization analyses demonstrated potential causal relationships between IBS and brain health and indicated possible mediating effects of dyslipidemia and inflammation. CONCLUSIONS For the first time, this study provides a comprehensive understanding of the relationship between IBS and brain health phenotypes, integrating perspectives from neuroimaging, behavioral performance, biochemical factors, and genetics, which is of great significance for clinical applications to potentially address brain health impairments in patients with IBS.
Collapse
Affiliation(s)
- Zeyu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qing Ma
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yueting Deng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, United Kingdom; Oxford Centre for Computational Neuroscience, Oxford, United Kingdom.
| | - Chun Shen
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuzhu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Christelle Langley
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Jin-Tai Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, United Kingdom; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China.
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
43
|
Liu D, Hsueh SC, Tweedie D, Price N, Glotfelty E, Lecca D, Telljohann R, deCabo R, Hoffer BJ, Greig NH. Chronic inflammation with microglia senescence at basal forebrain: impact on cholinergic deficit in Alzheimer's brain haemodynamics. Brain Commun 2024; 6:fcae204. [PMID: 38978722 PMCID: PMC11228546 DOI: 10.1093/braincomms/fcae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Cholinergic innervation in the brain is involved in modulating neurovascular function including cerebral blood flow haemodynamics in response to neuronal activity. Cholinergic deficit is associated with pathophysiology in Alzheimer's disease, albeit the aetiology remains to be clarified. In the current study, neocortex cerebral blood flow response to acetylcholine was evaluated by Laser-Doppler Flowmetry (LDF) in 3xTgAD Alzheimer's disease model) and wild-type mice of two age groups. The peak of cerebral blood flow to acetylcholine (i.v.) from baseline levels (% ΔrCBF) was higher in young 3xTgAD versus in wild-type mice (48.35; 95% CI:27.03-69.67 versus 22.70; CI:15.5-29.91, P < 0.05); this was reversed in old 3xTgAD mice (21.44; CI:2.52-40.35 versus 23.25; CI:23.25-39). Choline acetyltransferase protein was reduced in neocortex, while cerebrovascular reactivity to acetylcholine was preserved in young 3×TgAD mice. This suggests endogenous acetylcholine deficit and possible cholinergic denervation from selected cholinergic nuclei within the basal forebrain. The early deposition of tauopathy moieties (mutant hTau and pTau181) and its coincidence in cholinergic cell clusters (occasionaly), were observed at the basal forebrain of 3xTgAD mice including substantia innominate, nucleus Basalis of Meynert and nucleus of horizontal limb diagonal band of Broca. A prominent feature was microglia interacting tauopathy and demonstrated a variety of morphology changes particularly when located in proximity to tauopathy. The microglia ramified phenotype was reduced as evaluated by the ramification index and Fractal analysis. Increased microglia senescence, identified as SASP (senescence-associated secretory phenotype), was colocalization with p16Ink4ɑ, a marker of irreversible cell-cycle arrest in old 3xTgAD versus wild-type mice (P = 0.001). The p16Ink4ɑ was also observed in neuronal cells bearing tauopathy within the basal forebrain of 3xTgAD mice. TNF-ɑ, the pro-inflammatory cytokine elevated persistently in microglia (Pearson's correlation coefficient = 0.62) and the loss of cholinergic cells in vulnerable basal forebrain environment, was indicated by image analysis in 3xTgAD mice, which linked to the cholinergic deficits in neocortex rCBF haemodynamics. Our study revealed the early change of CBF haemodynamics to acetylcholine in 3xTgAD model. As a major effector of brain innate immune activation, microglia SASP with age-related disease progression is indicative of immune cell senescence, which contributes to chronic inflammation and cholinergic deficits at the basal forebrain. Targeting neuroinflammation and senescence may mitigate cholinergic pathophysiology in Alzheimer's disease.
Collapse
Affiliation(s)
- Dong Liu
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Pediatrics, Columbia University Irving Medical Center, Columbia University Vagelos Physicians & Surgeons College of Medicine, New York City, NY 10032, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nate Price
- Experimental Gerontology Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elliot Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Shock, Trauma & Anesthesiology Research Center, University of Maryland, Baltimore, MD 21201, USA
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rafael deCabo
- Department of Pediatrics, Columbia University Irving Medical Center, Columbia University Vagelos Physicians & Surgeons College of Medicine, New York City, NY 10032, USA
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, University Hospitals, Cleveland, OH 44106, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
44
|
Ye Q, Nunez J, Zhang X. Multiple cholinergic receptor subtypes coordinate dual modulation of acetylcholine on anterior and posterior paraventricular thalamic neurons. J Neurochem 2024; 168:995-1018. [PMID: 38664195 PMCID: PMC11136594 DOI: 10.1111/jnc.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
Paraventricular thalamus (PVT) plays important roles in the regulation of emotion and motivation through connecting many brain structures including the midbrain and the limbic system. Although acetylcholine (ACh) neurons of the midbrain were reported to send projections to PVT, little is known about how cholinergic signaling regulates PVT neurons. Here, we used both RNAscope and slice patch-clamp recordings to characterize cholinergic receptor expression and ACh modulation of PVT neurons in mice. We found ACh excited a majority of anterior PVT (aPVT) neurons but predominantly inhibited posterior PVT (pPVT) neurons. Compared to pPVT with more inhibitory M2 receptors, aPVT expressed higher levels of all excitatory receptor subtypes including nicotinic α4, α7, and muscarinic M1 and M3. The ACh-induced excitation was mimicked by nicotine and antagonized by selective blockers for α4β2 and α7 nicotinic ACh receptor (nAChR) subtypes as well as selective antagonists for M1 and M3 muscarinic ACh receptors (mAChR). The ACh-induced inhibition was attenuated by selective M2 and M4 mAChR receptor antagonists. Furthermore, we found ACh increased the frequency of excitatory postsynaptic currents (EPSCs) on a majority of aPVT neurons but decreased EPSC frequency on a larger number of pPVT neurons. In addition, ACh caused an acute increase followed by a lasting reduction in inhibitory postsynaptic currents (IPSCs) on PVT neurons of both subregions. Together, these data suggest that multiple AChR subtypes coordinate a differential modulation of ACh on aPVT and pPVT neurons.
Collapse
Affiliation(s)
- Qiying Ye
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Jeremiah Nunez
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Xiaobing Zhang
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
45
|
Chen H, Gu X, Mao Z, Zeng Q, Jin M, Wang W, Martyniuk CJ. Molecular, behavioral, and growth responses of juvenile yellow catfish (Tachysurus fulvidraco) exposed to carbamazepine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106929. [PMID: 38663201 DOI: 10.1016/j.aquatox.2024.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Carbamazepine (CBZ) is an anticonvulsant medication used to treat epilepsy and bipolar disorder. Due to its persistence and low removal rate in wastewater treatment plants, it is frequently detected in the environment, raising concerns regarding its potential adverse effects on aquatic organisms and ecosystems. In this study, we aimed to assess the impact of CBZ on the behavior and growth of juvenile yellow catfish Tachysurus fulvidraco, a native and economically important species in China. Fish were exposed to CBZ at three concentrations of 1, 10, or 100 µg/L for 14 days. The fish exposed to 10 and 100 μg/L of CBZ exhibited decreased feeding, and a significant increase in cannibalistic tendencies was observed in fish exposed to 100 μg/L CBZ. Acetylcholinesterase activity was increased in the brain of fish exposed to 100 μg/L CBZ. CBZ also inhibited the growth of yellow catfish. To better elucidate mechanisms of toxicity, transcriptomics was conducted in both the brain and liver. In the brain, gene networks associated with neurotransmitter dysfunction were altered by CBZ, as well as networks associated with mitochondrial dysfunction and metabolism. In the liver, gene networks associated with the immune system were altered by CBZ. The current study improves comprehension of the sub-lethal effects of CBZ and reveals novel insight into molecular and biochemical pathways disrupted by CBZ, identifying putative key events associated with reduced growth and altered behavior. This study emphasizes the necessity for improved comprehension of the effects of pharmaceutical contaminants on fish at environmentally relevant levels.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Organismal Biology, Uppsala University, Uppsala 75236, Sweden
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenxia Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Linyi University, Linyi 276000, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 United States
| |
Collapse
|
46
|
Tsotsokou G, Trompoukis G, Papatheodoropoulos C. Muscarinic Modulation of Synaptic Transmission and Short-Term Plasticity in the Dorsal and Ventral Hippocampus. Mol Cell Neurosci 2024; 129:103935. [PMID: 38703973 DOI: 10.1016/j.mcn.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
Muscarinic neurotransmission is fundamentally involved in supporting several brain functions by modulating flow of information in brain neural circuits including the hippocampus which displays a remarkable functional segregation along its longitudinal axis. However, how muscarinic neuromodulation contributes to the functional segregation along the hippocampus remains unclear. In this study we show that the nonselective muscarinic receptor agonist carbachol similarly suppresses basal synaptic transmission in the dorsal and ventral CA1 hippocampal field, in a concentration-depended manner. Furthermore, using a ten-pulse stimulation train of varying frequency we found that carbachol changes the frequency filtering properties more in ventral than dorsal hippocampus by facilitating synaptic inputs at a wide range of input frequencies in the ventral compared with dorsal hippocampus. Using the M2 receptor antagonist gallamine and the M4 receptor antagonist tropicamide, we found that M2 receptors are involved in controlling basal synaptic transmission and short-term synaptic plasticity (STSP) in the ventral but not the dorsal hippocampus, while M4 receptors participate in modulating basal synaptic transmission and STSP in both segments of the hippocampus. These results were corroborated by the higher protein expression levels of M2 receptors in the ventral compared with dorsal hippocampus. We conclude that muscarinic transmission modulates excitatory synaptic transmission and short-term synaptic plasticity along the entire rat hippocampus by acting through M4 receptors and recruiting M2 receptors only in the ventral hippocampus. Furthermore, M4 receptors appear to exert a permissive role on the actions of M2 receptors on STSP in the ventral hippocampus. This dorsoventral differentiation of muscarinic modulation is expected to have important implications in information processing along the endogenous hippocampal circuitry.
Collapse
Affiliation(s)
- Giota Tsotsokou
- Laboratory of Physiology, University of Patras, Department of Medicine, Rion, Greece
| | - George Trompoukis
- Laboratory of Physiology, University of Patras, Department of Medicine, Rion, Greece
| | | |
Collapse
|
47
|
Cui A, Zhang J, Liu Z, Mu X, Zhong X, Xu H, Shan G. Patterned Au@Ag nanoarrays with electrically stimulated laccase-mimicking activity for dual-mode detection of epinephrine. Talanta 2024; 272:125821. [PMID: 38412753 DOI: 10.1016/j.talanta.2024.125821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Epinephrine (EP) is a crucial neurotransmitter in the central nervous system. However, an abnormal level of EP in biological fluids can lead to various diseases. Therefore, it is essential to rapidly and accurately detect EP content. Herein, electrically stimulated patterned Au@Ag nanoarrays with laccase-mimicking activity were designed for the dual-mode detection of EP concentration. The patterned Au@Ag nanoarrays exhibit excellent electrochemical properties and electrically stimulated laccase-mimicking activity. They provide sensitive electrochemical responses for detecting EP content. Simultaneously, the Au@Ag nanoarrays can catalyze the oxidation of EP, enabling its detection through a colorimetric process. This dual-mode approach achieves the detection of EP content over a wide linear range of 0.5-200 μM, with a low detection limit of 0.152 μM. Furthermore, the utility of these nanoarrays for sensing EP in human serum was evaluated. This work provides a convenient method using patterned nanozyme array for the visible, rapid and accurate detection of EP content. It provides the important implication for the development of portable and reliable on-site analytical instruments.
Collapse
Affiliation(s)
- Anni Cui
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jialu Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhifei Liu
- High School Attached to Northeast Normal University International Division, Changchun, 130021, China
| | - Xin Mu
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiahua Zhong
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Haitao Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Guiye Shan
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
48
|
Wang J, Yang Q, Liu X, Li J, Wen YL, Hu Y, Xu TL, Duan S, Xu H. The basal forebrain to lateral habenula circuitry mediates social behavioral maladaptation. Nat Commun 2024; 15:4013. [PMID: 38740778 DOI: 10.1038/s41467-024-48378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Elucidating the neural basis of fear allows for more effective treatments for maladaptive fear often observed in psychiatric disorders. Although the basal forebrain (BF) has an essential role in fear learning, its function in fear expression and the underlying neuronal and circuit substrates are much less understood. Here we report that BF glutamatergic neurons are robustly activated by social stimulus following social fear conditioning in male mice. And cell-type-specific inhibition of those excitatory neurons largely reduces social fear expression. At the circuit level, BF glutamatergic neurons make functional contacts with the lateral habenula (LHb) neurons and these connections are potentiated in conditioned mice. Moreover, optogenetic inhibition of BF-LHb glutamatergic pathway significantly reduces social fear responses. These data unravel an important function of the BF in fear expression via its glutamatergic projection onto the LHb, and suggest that selective targeting BF-LHb excitatory circuitry could alleviate maladaptive fear in relevant disorders.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| | - Qian Yang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xue Liu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jie Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ya-Lan Wen
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Tian-Le Xu
- Center for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shumin Duan
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Han Xu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
49
|
Ni S, Harris B, Gong P. Distributed and dynamical communication: a mechanism for flexible cortico-cortical interactions and its functional roles in visual attention. Commun Biol 2024; 7:550. [PMID: 38719883 PMCID: PMC11078951 DOI: 10.1038/s42003-024-06228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Perceptual and cognitive processing relies on flexible communication among cortical areas; however, the underlying neural mechanism remains unclear. Here we report a mechanism based on the realistic spatiotemporal dynamics of propagating wave patterns in neural population activity. Using a biophysically plausible, multiarea spiking neural circuit model, we demonstrate that these wave patterns, characterized by their rich and complex dynamics, can account for a wide variety of empirically observed neural processes. The coordinated interactions of these wave patterns give rise to distributed and dynamic communication (DDC) that enables flexible and rapid routing of neural activity across cortical areas. We elucidate how DDC unifies the previously proposed oscillation synchronization-based and subspace-based views of interareal communication, offering experimentally testable predictions that we validate through the analysis of Allen Institute Neuropixels data. Furthermore, we demonstrate that DDC can be effectively modulated during attention tasks through the interplay of neuromodulators and cortical feedback loops. This modulation process explains many neural effects of attention, underscoring the fundamental functional role of DDC in cognition.
Collapse
Affiliation(s)
- Shencong Ni
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Brendan Harris
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
50
|
Wang Y, Wang X, Wang L, Zheng L, Meng S, Zhu N, An X, Wang L, Yang J, Zheng C, Ming D. Dynamic prediction of goal location by coordinated representation of prefrontal-hippocampal theta sequences. Curr Biol 2024; 34:1866-1879.e6. [PMID: 38608677 DOI: 10.1016/j.cub.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Prefrontal (PFC) and hippocampal (HPC) sequences of neuronal firing modulated by theta rhythms could represent upcoming choices during spatial memory-guided decision-making. How the PFC-HPC network dynamically coordinates theta sequences to predict specific goal locations and how it is interrupted in memory impairments induced by amyloid beta (Aβ) remain unclear. Here, we detected theta sequences of firing activities of PFC neurons and HPC place cells during goal-directed spatial memory tasks. We found that PFC ensembles exhibited predictive representation of the specific goal location since the starting phase of memory retrieval, earlier than the hippocampus. High predictive accuracy of PFC theta sequences existed during successful memory retrieval and positively correlated with memory performance. Coordinated PFC-HPC sequences showed PFC-dominant prediction of goal locations during successful memory retrieval. Furthermore, we found that theta sequences of both regions still existed under Aβ accumulation, whereas their predictive representation of goal locations was weakened with disrupted spatial representation of HPC place cells and PFC neurons. These findings highlight the essential role of coordinated PFC-HPC sequences in successful memory retrieval of a precise goal location.
Collapse
Affiliation(s)
- Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xueling Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Ling Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Li Zheng
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Shuang Meng
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Nan Zhu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Lei Wang
- School of Statistics and Data Science, Nankai University, Tianjin 300071, China.
| | - Jiajia Yang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300072, China.
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300072, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300072, China.
| |
Collapse
|