1
|
Ignatavicius A, Matar E, Lewis SJG. Visual hallucinations in Parkinson's disease: spotlight on central cholinergic dysfunction. Brain 2025; 148:376-393. [PMID: 39252645 PMCID: PMC11788216 DOI: 10.1093/brain/awae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Visual hallucinations are a common non-motor feature of Parkinson's disease and have been associated with accelerated cognitive decline, increased mortality and early institutionalization. Despite their prevalence and negative impact on patient outcomes, the repertoire of treatments aimed at addressing this troubling symptom is limited. Over the past two decades, significant contributions have been made in uncovering the pathological and functional mechanisms of visual hallucinations, bringing us closer to the development of a comprehensive neurobiological framework. Convergent evidence now suggests that degeneration within the central cholinergic system may play a significant role in the genesis and progression of visual hallucinations. Here, we outline how cholinergic dysfunction may serve as a potential unifying neurobiological substrate underlying the multifactorial and dynamic nature of visual hallucinations. Drawing upon previous theoretical models, we explore the impact that alterations in cholinergic neurotransmission has on the core cognitive processes pertinent to abnormal perceptual experiences. We conclude by highlighting that a deeper understanding of cholinergic neurobiology and individual pathophysiology may help to improve established and emerging treatment strategies for the management of visual hallucinations and psychotic symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Anna Ignatavicius
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Elie Matar
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Simon J G Lewis
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Parkinson’s Disease Research, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
2
|
Tang X, Liang Q, Li T, Ouyang Y, Huang ZX, Tang X, Jin J, Yu L, Wang X. Excessive Daytime Sleepiness as a Risk Factor for Impulse Control Disorders in Parkinson's Disease. Neuropsychiatr Dis Treat 2024; 20:2517-2527. [PMID: 39691631 PMCID: PMC11651074 DOI: 10.2147/ndt.s485339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024] Open
Abstract
Purpose Impulse control disorders (ICDs) and excessive daytime sleepiness (EDS) are common symptoms in Parkinson's disease (PD). Few longitudinal studies have focused on the association between EDS and ICDs. This longitudinal study aimed at assessing association between EDS and ICDs in PD. Patients and Methods Patients without ICDs were incorporated from the Parkinson's Progression Markers Initiative. All patients were followed until the onset of ICDs or the end of 4 years. A total of 260 PD patients were included. Univariable and multivariable logistic regression were used to explore association between EDS and ICDs. Results The overall frequency of ICDs at the end of follow-up was 23.8% (62 patients). The mean duration from dopamine replacement therapy to develop ICDs was 3.30 ± 2.42 years. Patients with ICDs had significantly higher Epworth Sleepiness Scale (ESS) score (P = 0.002) and higher proportion of EDS (P = 0.030) when compared to patients without ICDs. The multivariable logistic regression analysis indicated that high ESS (OR = 2.01, 95% CI 1.01-4.04, p = 0.049) score, high dopamine agonist equivalent daily dose (OR = 2.54, 95% CI 1.37-4.71, p = 0.003), high Geriatric Depression Scale (OR = 2.33, 95% CI 1.27-4.28, p = 0.006) score and postural instability (OR = 3.03, 95% CI 1.26-7.29, p = 0.013) were associated with ICDs occurrence. Conclusion Our results indicated that EDS acts as a risk for ICDs occurrence in PD. Clinicians should pay attention to EDS in clinical practice. This may be a promising new approach to better understand and therapy ICDs.
Collapse
Affiliation(s)
- Xiaohui Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Department of Neurology, Zhabei Central Hospital, Shanghai, People’s Republic of China
| | - Qian Liang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Tao Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yetong Ouyang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhe Xue Huang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xiaoshun Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jiayi Jin
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Lijia Yu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xijin Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Slater NM, Melzer TR, Myall DJ, Anderson TJ, Dalrymple-Alford JC. Cholinergic Basal Forebrain Integrity and Cognition in Parkinson's Disease: A Reappraisal of Magnetic Resonance Imaging Evidence. Mov Disord 2024; 39:2155-2172. [PMID: 39360864 DOI: 10.1002/mds.30023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Cognitive impairment is a well-recognized and debilitating symptom of Parkinson's disease (PD). Degradation in the cortical cholinergic system is thought to be a key contributor. Both postmortem and in vivo cholinergic positron emission tomography (PET) studies have provided valuable evidence of cholinergic system changes in PD, which are pronounced in PD dementia (PDD). A growing body of literature has employed magnetic resonance imaging (MRI), a noninvasive, more cost-effective alternative to PET, to examine cholinergic system structural changes in PD. This review provides a comprehensive discussion of the methodologies and findings of studies that have focused on the relationship between cholinergic basal forebrain (cBF) integrity, based on T1- and diffusion-weighted MRI, and cognitive function in PD. Nucleus basalis of Meynert (Ch4) volume has been consistently reduced in cognitively impaired PD samples and has shown potential utility as a prognostic indicator for future cognitive decline. However, the extent of structural changes in Ch4, especially in early stages of cognitive decline in PD, remains unclear. In addition, evidence for structural change in anterior cBF regions in PD has not been well established. This review underscores the importance of continued cross-sectional and longitudinal research to elucidate the role of cholinergic dysfunction in the cognitive manifestations of PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicola M Slater
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Tracy R Melzer
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Tim J Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Department of Neurology, Christchurch Hospital, Te Whatu Ora Waitaha Canterbury, Christchurch, New Zealand
| | - John C Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
4
|
Uliana DL, Martinez A, Grace AA. THPP-1 PDE10A inhibitor reverses the cognitive deficits and hyperdopaminergic state in a neurodevelopment model of schizophrenia. Schizophr Res 2024; 274:315-326. [PMID: 39437478 DOI: 10.1016/j.schres.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder characterized by positive, negative, and cognitive symptoms. The neurodevelopmental methylazoxy-methanol acetate (MAM) rodent model replicates key neurobiological features of SCZ which includes hyperdopaminergic states in the ventral tegmental area (VTA) and cognitive deficits. Typical and atypical antipsychotics are primarily effective in treating the positive symptoms of SCZ but often fall short of addressing cognitive deficits. A promising therapeutic approach for treating all symptoms of SCZ has emerged through the inhibition of phosphodiesterase 10 A (PDE10A). Our study aim was to investigate the impact of acute and chronic THPP-1 (PDE10A inhibitor) treatment, in MAM rats, focusing on cognitive deficits and VTA dopamine (DA) activity. Adult offspring of pregnant rats treated with Saline or MAM (20 mg/kg) on gestational day 17 were treated with THPP-1 acutely (male/female rats; 3 mg/kg) at postnatal day (PD) 70-80 or chronically (males; 3 weeks; 2-3 mg/kg) from PD 70-91 and tested in the novel object recognition test and electrophysiological recording of DA neurons in the VTA. Acute THPP-1 treatment reversed cognitive impairments and normalized the increased number of active DA neurons in the VTA of male and female MAM rats, without affecting control rats. Also, chronic THPP-1 treatment reversed cognitive deficits and normalized DA hyperactivity in the VTA of male MAM rats. The efficacy of THPP-1 in reversing MAM-induced impairments underscores its ability to target disease-specific circuitry without affecting normal regulated systems in control rats. Our findings highlight the therapeutic potential of THPP-1 for addressing cognitive deficits and DA dysregulation in SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Angela Martinez
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Kim Y, Gut NK, Shiflett MW, Mena-Segovia J. Inhibition of midbrain cholinergic neurons impairs decision-making strategies during reversal learning. Front Mol Neurosci 2024; 17:1481956. [PMID: 39640944 PMCID: PMC11617536 DOI: 10.3389/fnmol.2024.1481956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The pedunculopontine nucleus (PPN) plays a role in coordinating complex behaviors and adapting to changing environmental conditions. The specific role of cholinergic neurons in PPN function is not well understood, but their ascending connectivity with basal ganglia and thalamus suggests involvement in adaptive functions. Methods We used a chemogenetic approach in ChAT::Cre rats to explore the specific contribution of PPN cholinergic neurons to behavioral flexibility, focusing on the adaptation to shifting reward contingencies in a Reversal Learning Task. Rats were first trained in a non-probabilistic reversal learning task, followed by a probabilistic phase to challenge their adaptive strategies under varying reward conditions. Results Motor functions were evaluated to confirm that behavioral observations were not confounded by motor deficits. We found that inhibition of PPN cholinergic neurons did not affect performance in the non-probabilistic condition but significantly altered the rats' ability to adapt to the probabilistic condition. Under chemogenetic inhibition, the rats showed a marked deficiency in utilizing previous trial outcomes for decision-making and an increased sensitivity to negative outcomes. Logistic regression and Q-learning models revealed that suppression of PPN cholinergic activity impaired the adaptation of decision-making strategies. Discussion Our results highlight the role of PPN cholinergic neurons in dynamically updating action-outcome expectations and adapting to new contingencies. The observed impairments in decision-making under PPN cholinergic inhibition align with cognitive deficits associated with cholinergic dysfunction in neurodegenerative disorders. These findings suggest that cholinergic neurons in the PPN are essential for maximizing rewards through the flexible updating of behavioral strategies.
Collapse
Affiliation(s)
- Yuwoong Kim
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Nadine K. Gut
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | | | - Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| |
Collapse
|
6
|
Miranda NC, Oliveira LM, Moreira TS, Ramirez JM, Kalume F, Takakura AC. Sleep-related respiratory disruptions and laterodorsal tegmental nucleus in a mouse model of Parkinson's disease. iScience 2024; 27:111251. [PMID: 39563887 PMCID: PMC11574806 DOI: 10.1016/j.isci.2024.111251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder affecting the motor system, with non-classic symptoms such as sleep disturbances and respiratory dysfunctions. These issues reflect a complex pathophysiological interaction that severely impacts quality of life. Using a 6-hydroxydopamine (6-OHDA) mouse model of PD, we investigated these connections by analyzing sleep patterns and respiratory parameters during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Our findings revealed altered breathing, including reduced respiratory frequency and increased apneas during both NREM and REM. To address these abnormalities, we employed chemogenetic stimulation of cholinergic neurons in the laterodorsal tegmental nucleus (LDTg), a key region for sleep-wake regulation and respiratory modulation. This intervention normalized respiratory function. These results highlight the critical role of LDTg cholinergic neurons in the coordinating sleep and breathing, suggesting that targeting these neurons could offer a therapeutic strategy for managing PD-related respiratory complications.
Collapse
Affiliation(s)
- Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, São Paulo 05508-000, SP, Brazil
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, São Paulo 05508-000, SP, Brazil
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA
- Department of Neurological Surgery, University of Washington, 1900 9th Avenue, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA
- Department of Neurological Surgery, University of Washington, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
7
|
Laguna A, Peñuelas N, Gonzalez-Sepulveda M, Nicolau A, Arthaud S, Guillard-Sirieix C, Lorente-Picón M, Compte J, Miquel-Rio L, Xicoy H, Liu J, Parent A, Cuadros T, Romero-Giménez J, Pujol G, Giménez-Llort L, Fort P, Bortolozzi A, Carballo-Carbajal I, Vila M. Modelling human neuronal catecholaminergic pigmentation in rodents recapitulates age-related neurodegenerative deficits. Nat Commun 2024; 15:8819. [PMID: 39394193 PMCID: PMC11470033 DOI: 10.1038/s41467-024-53168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
One key limitation in developing effective treatments for neurodegenerative diseases is the lack of models accurately mimicking the complex physiopathology of the human disease. Humans accumulate with age the pigment neuromelanin inside neurons that synthesize catecholamines. Neurons reaching the highest neuromelanin levels preferentially degenerate in Parkinson's, Alzheimer's and apparently healthy aging individuals. However, this brain pigment is not taken into consideration in current animal models because common laboratory species, such as rodents, do not produce neuromelanin. Here we generate a tissue-specific transgenic mouse, termed tgNM, that mimics the human age-dependent brain-wide distribution of neuromelanin within catecholaminergic regions, based on the constitutive catecholamine-specific expression of human melanin-producing enzyme tyrosinase. We show that, in parallel to progressive human-like neuromelanin pigmentation, these animals display age-related neuronal dysfunction and degeneration affecting numerous brain circuits and body tissues, linked to motor and non-motor deficits, reminiscent of early neurodegenerative stages. This model could help explore new research avenues in brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
| | - Núria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alba Nicolau
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Sébastien Arthaud
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Camille Guillard-Sirieix
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Joan Compte
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lluís Miquel-Rio
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC); Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
- Systems Neuropharmacology Research Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Helena Xicoy
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jiong Liu
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jordi Romero-Giménez
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Gemma Pujol
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
- Department of Psychiatry and Forensic Medicine-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
| | - Patrice Fort
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Analia Bortolozzi
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC); Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
- Systems Neuropharmacology Research Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain.
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
8
|
Zhang JB, Wan XJ, Duan WX, Dai XQ, Xia D, Fu X, Hu LF, Wang F, Liu CF. Circadian disruption promotes the neurotoxicity of oligomeric alpha-synuclein in mice. NPJ Parkinsons Dis 2024; 10:179. [PMID: 39333201 PMCID: PMC11437279 DOI: 10.1038/s41531-024-00798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024] Open
Abstract
Circadian disruption often arises prior to the onset of typical motor deficits in patients with Parkinson's disease (PD). It remains unclear whether such a prevalent non-motor manifestation would contribute to the progression of PD. Diffusible oligomeric alpha-synuclein (O-αSyn) is perceived as the most toxic and rapid-transmitted species in the early stages of PD. Exploring the factors that influence the spread and toxicity of O-αSyn should be helpful for developing effective interventions for the disease. The aim of this study was to explore the effects of circadian disruption on PD pathology and parkinsonism-like behaviors in a novel mouse model induced by O-αSyn. We discovered that O-αSyn could enter the brain rapidly following intranasal administration, resulting in the formation of nitrated-αSyn pathology and non-motor symptoms of the mice. Meanwhile, circadian disruption exacerbated the burden of nitrated-αSyn pathology and accelerated the loss of dopaminergic neurons in O-αSyn-treated mice. Subsequent experiments demonstrated that circadian disruption might act via promoting nitrative stress and neuroinflammation. These findings could highlight the circadian rhythms as a potential diagnostic and therapeutic target in early-stage PD.
Collapse
Affiliation(s)
- Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Xiao-Jie Wan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Xue-Qin Dai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Dong Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Xiang Fu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Li-Fang Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, 215123, Suzhou, China.
- Department of Neurology, Xiongan Xuanwu Hospital, 071700, Xiongan, China.
| |
Collapse
|
9
|
Fernández-Peña C, Pace RL, Fernando LM, Pittman BG, Schwarz LA. Adrenergic C1 neurons enhance anxiety via projections to PAG. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612440. [PMID: 39314285 PMCID: PMC11419123 DOI: 10.1101/2024.09.11.612440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Anxiety is an emotional state precipitated by the anticipation of real or potential threats. Anxiety disorders are the most prevalent psychiatric illnesses globally and increase the risk of developing comorbid conditions that negatively impact the brain and body. The etiology of anxiety disorders remains unresolved, limiting improvement of therapeutic strategies to alleviate anxiety-related symptoms with increased specificity and efficacy. Here, we applied novel intersectional tools to identify a discrete population of brainstem adrenergic neurons, named C1 cells, that promote aversion and anxiety-related behaviors via projections to the periaqueductal gray matter (PAG). While C1 cells have traditionally been implicated in modulation of autonomic processes, rabies tracing revealed that they receive input from brain areas with diverse functions. Calcium-based in vivo imaging showed that activation of C1 cells enhances excitatory responses in vlPAG, activity that is exacerbated in times of heightened stress. Furthermore, inhibition of C1 cells impedes the development of anxiety-like behaviors in response to stressful situations. Overall, these findings suggest that C1 neurons are positioned to integrate complex information from the brain and periphery for the promotion of anxiety-like behaviors.
Collapse
Affiliation(s)
- Carlos Fernández-Peña
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Rachel L. Pace
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lourds M. Fernando
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Brittany G. Pittman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lindsay A. Schwarz
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| |
Collapse
|
10
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
11
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
12
|
Chiu WH, Wattad N, Goldberg JA. Ion channel dysregulation and cellular adaptations to alpha-synuclein in stressful pacemakers of the parkinsonian brainstem. Pharmacol Ther 2024; 260:108683. [PMID: 38950869 DOI: 10.1016/j.pharmthera.2024.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Parkinson's disease (PD) is diagnosed by its cardinal motor symptoms that are associated with the loss of dopamine neurons in the substantia nigra pars compacta (SNc). However, PD patients suffer from various non-motor symptoms years before diagnosis. These prodromal symptoms are thought to be associated with the appearance of Lewy body pathologies (LBP) in brainstem regions such as the dorsal motor nucleus of the vagus (DMV), the locus coeruleus (LC) and others. The neurons in these regions that are vulnerable to LBP are all slow autonomous pacemaker neurons that exhibit elevated oxidative stress due to their perpetual influx of Ca2+ ions. Aggregation of toxic α-Synuclein (aSyn) - the main constituent of LBP - during the long prodromal period challenges these vulnerable neurons, presumably altering their biophysics and physiology. In contrast to pathophysiology of late stage parkinsonism which is well-documented, little is known about the pathophysiology of the brainstem during prodromal PD. In this review, we discuss ion channel dysregulation associated with aSyn aggregation in brainstem pacemaker neurons and their cellular responses to them. While toxic aSyn elevates oxidative stress in SNc and LC pacemaker neurons and exacerbates their phenotype, DMV neurons mount an adaptive response that mitigates the oxidative stress. Ion channel dysregulation and cellular adaptations may be the drivers of the prodromal symptoms of PD. For example, selective targeting of toxic aSyn to DMV pacemakers, elevates the surface density of K+ channels, which slows their firing rate, resulting in reduced parasympathetic tone to the gastrointestinal tract, which resembles the prodromal PD symptoms of dysphagia and constipation. The divergent responses of SNc & LC vs. DMV pacemaker neurons may explain why the latter outlive the former despite presenting LBPs earlier. Elucidation the brainstem pathophysiology of prodromal PD could pave the way for physiological biomarkers, earlier diagnosis and novel neuroprotective therapies for PD.
Collapse
Affiliation(s)
- Wei-Hua Chiu
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Nadine Wattad
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Joshua A Goldberg
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
13
|
Bastos-Gonçalves R, Coimbra B, Rodrigues AJ. The mesopontine tegmentum in reward and aversion: From cellular heterogeneity to behaviour. Neurosci Biobehav Rev 2024; 162:105702. [PMID: 38718986 DOI: 10.1016/j.neubiorev.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
14
|
Taylor NL, Whyte CJ, Munn BR, Chang C, Lizier JT, Leopold DA, Turchi JN, Zaborszky L, Műller EJ, Shine JM. Causal evidence for cholinergic stabilization of attractor landscape dynamics. Cell Rep 2024; 43:114359. [PMID: 38870015 PMCID: PMC11255396 DOI: 10.1016/j.celrep.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
There is substantial evidence that neuromodulatory systems critically influence brain state dynamics; however, most work has been purely descriptive. Here, we quantify, using data combining local inactivation of the basal forebrain with simultaneous measurement of resting-state fMRI activity in the macaque, the causal role of long-range cholinergic input to the stabilization of brain states in the cerebral cortex. Local inactivation of the nucleus basalis of Meynert (nbM) leads to a decrease in the energy barriers required for an fMRI state transition in cortical ongoing activity. Moreover, the inactivation of particular nbM sub-regions predominantly affects information transfer in cortical regions known to receive direct anatomical projections. We demonstrate these results in a simple neurodynamical model of cholinergic impact on neuronal firing rates and slow hyperpolarizing adaptation currents. We conclude that the cholinergic system plays a critical role in stabilizing macroscale brain state dynamics.
Collapse
Affiliation(s)
- Natasha L Taylor
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Christopher J Whyte
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Brandon R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Catie Chang
- Vanderbilt School of Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joseph T Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, Washington DC, USA; Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda MD, USA
| | - Janita N Turchi
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda MD, USA
| | - Laszlo Zaborszky
- Centre for Molecular & Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Eli J Műller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Han Y, Zhang JQ, Ji YW, Luan YW, Li SY, Geng HZ, Ji Y, Yin C, Liu S, Zhou CY, Xiao C. α4 nicotinic receptors on GABAergic neurons mediate a cholinergic analgesic circuit in the substantia nigra pars reticulata. Acta Pharmacol Sin 2024; 45:1160-1174. [PMID: 38438581 PMCID: PMC11130268 DOI: 10.1038/s41401-024-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4β2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-β-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.
Collapse
Affiliation(s)
- Yu Han
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu, 322099, China
| | - Jia-Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ya-Wei Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi-Wen Luan
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Wuxi People's Hospital, Wuxi, 214023, China
| | - Shu-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui-Zhen Geng
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Su Liu
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Chun-Yi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
16
|
Ryczko D. The Mesencephalic Locomotor Region: Multiple Cell Types, Multiple Behavioral Roles, and Multiple Implications for Disease. Neuroscientist 2024; 30:347-366. [PMID: 36575956 PMCID: PMC11107129 DOI: 10.1177/10738584221139136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mesencephalic locomotor region (MLR) controls locomotion in vertebrates. In humans with Parkinson disease, locomotor deficits are increasingly associated with decreased activity in the MLR. This brainstem region, commonly considered to include the cuneiform and pedunculopontine nuclei, has been explored as a target for deep brain stimulation to improve locomotor function, but the results are variable, from modest to promising. However, the MLR is a heterogeneous structure, and identification of the best cell type to target is only beginning. Here, I review the studies that uncovered the role of genetically defined MLR cell types, and I highlight the cells whose activation improves locomotor function in animal models of Parkinson disease. The promising cell types to activate comprise some glutamatergic neurons in the cuneiform and caudal pedunculopontine nuclei, as well as some cholinergic neurons of the pedunculopontine nucleus. Activation of MLR GABAergic neurons should be avoided, since they stop locomotion or evoke bouts flanked with numerous stops. MLR is also considered a potential target in spinal cord injury, supranuclear palsy, primary progressive freezing of gait, or stroke. Better targeting of the MLR cell types should be achieved through optimized deep brain stimulation protocols, pharmacotherapy, or the development of optogenetics for human use.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
- Neurosciences Sherbrooke, Sherbrooke, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
17
|
Juárez Tello A, van der Zouwen CI, Dejas L, Duque-Yate J, Boutin J, Medina-Ortiz K, Suresh JS, Swiegers J, Sarret P, Ryczko D. Dopamine-sensitive neurons in the mesencephalic locomotor region control locomotion initiation, stop, and turns. Cell Rep 2024; 43:114187. [PMID: 38722743 PMCID: PMC11157412 DOI: 10.1016/j.celrep.2024.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
The locomotor role of dopaminergic neurons is traditionally attributed to their ascending projections to the basal ganglia, which project to the mesencephalic locomotor region (MLR). In addition, descending dopaminergic projections to the MLR are present from basal vertebrates to mammals. However, the neurons targeted in the MLR and their behavioral role are unknown in mammals. Here, we identify genetically defined MLR cells that express D1 or D2 receptors and control different motor behaviors in mice. In the cuneiform nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons stop locomotion. In the pedunculopontine nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons evoke ipsilateral turns. Using RNAscope, we show that MLR dopamine-sensitive neurons comprise a combination of glutamatergic, GABAergic, and cholinergic neurons, suggesting that different neurotransmitter-based cell types work together to control distinct behavioral modules. Altogether, our study uncovers behaviorally relevant cell types in the mammalian MLR based on the expression of dopaminergic receptors.
Collapse
Affiliation(s)
- Andrea Juárez Tello
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Léonie Dejas
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Juan Duque-Yate
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katherine Medina-Ortiz
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jacinthlyn Sylvia Suresh
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jordan Swiegers
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Neurosciences Sherbrooke, Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Neurosciences Sherbrooke, Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
18
|
Shibata T, Hattori N, Nishijo H, Kuroda S, Takakusaki K. Evolutionary origin of alpha rhythms in vertebrates. Front Behav Neurosci 2024; 18:1384340. [PMID: 38651071 PMCID: PMC11033391 DOI: 10.3389/fnbeh.2024.1384340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The purpose of this review extends beyond the traditional triune brain model, aiming to elucidate the evolutionary aspects of alpha rhythms in vertebrates. The forebrain, comprising the telencephalon (pallium) and diencephalon (thalamus, hypothalamus), is a common feature in the brains of all vertebrates. In mammals, evolution has prioritized the development of the forebrain, especially the neocortex, over the midbrain (mesencephalon) optic tectum, which serves as the prototype for the visual brain. This evolution enables mammals to process visual information in the retina-thalamus (lateral geniculate nucleus)-occipital cortex pathway. The origin of posterior-dominant alpha rhythms observed in mammals in quiet and dark environments is not solely attributed to cholinergic pontine nuclei cells functioning as a 10 Hz pacemaker in the brainstem. It also involves the ability of the neocortex's cortical layers to generate traveling waves of alpha rhythms with waxing and waning characteristics. The utilization of alpha rhythms might have facilitated the shift of attention from external visual inputs to internal cognitive processes as an adaptation to thrive in dark environments. The evolution of alpha rhythms might trace back to the dinosaur era, suggesting that enhanced cortical connectivity linked to alpha bands could have facilitated the development of nocturnal awakening in the ancestors of mammals. In fishes, reptiles, and birds, the pallium lacks a cortical layer. However, there is a lack of research clearly observing dominant alpha rhythms in the pallium or organized nuclear structures in fishes, reptiles, or birds. Through convergent evolution, the pallium of birds, which exhibits cortex-like fiber architecture, has not only acquired advanced cognitive and motor abilities but also the capability to generate low-frequency oscillations (4-25 Hz) resembling alpha rhythms. This suggests that the origins of alpha rhythms might lie in the pallium of a common ancestor of birds and mammals.
Collapse
Affiliation(s)
- Takashi Shibata
- Department of Neurosurgery, Toyama University Hospital, Toyama, Japan
- Department of Neurosurgery, Toyama Nishi General Hospital, Toyama, Japan
| | - Noriaki Hattori
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Hisao Nishijo
- Faculty of Human Sciences, University of East Asia, Yamaguchi, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Toyama University Hospital, Toyama, Japan
| | - Kaoru Takakusaki
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
19
|
Chen RYT, Evans RC. Comparing tonic and phasic dendritic calcium in cholinergic pedunculopontine neurons and dopaminergic substantia nigra neurons. Eur J Neurosci 2024; 59:1638-1656. [PMID: 38383047 PMCID: PMC10987283 DOI: 10.1111/ejn.16281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Several brainstem nuclei degenerate in Parkinson's disease (PD). In addition to the well-characterized dopaminergic neurons of the substantia nigra pars compacta (SNc), the cholinergic neurons of the pedunculopontine nucleus (PPN) also degenerate in PD. One leading hypothesis of selective vulnerability is that pacemaking activity and the activation of low-threshold L-type calcium current are major contributors to tonic calcium load and cellular stress in SNc dopaminergic neurons. However, it is not yet clear whether the vulnerable PPN cholinergic neurons share this property. Therefore, we used two-photon dendritic calcium imaging and whole-cell electrophysiology to evaluate the role of L-type calcium channels in tonic and phasic dendritic calcium signals in PPN and SNc neurons. In addition, we investigated N- and P/Q-type calcium channel regulation of firing properties and dendritic calcium in PPN neurons. We found that blocking L-type channels reduces tonic firing rate and dendritic calcium levels in SNc neurons. By contrast, the tonic calcium load in PPN neurons did not depend on L-, N- or P/Q-type channels. However, we found that blocking either L-type (with nifedipine) or N- and P/Q-type (with omega-conotoxin MVIIC) channels reduces phasic calcium influx in PPN dendrites. Together, these findings show that L-type calcium channels play different roles in the activity of SNc and PPN neurons, and suggest that low-threshold L-type channels are not responsible for tonic calcium levels in PPN cholinergic neurons and are therefore not likely to be a source of selective vulnerability in these cells.
Collapse
Affiliation(s)
- Rita Yu-Tzu Chen
- Department of Neuroscience, Georgetown University Medical Center, Washington DC
| | - Rebekah C. Evans
- Department of Neuroscience, Georgetown University Medical Center, Washington DC
| |
Collapse
|
20
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
21
|
Sharma S, Badenhorst CA, Ashby DM, Di Vito SA, Tran MA, Ghavasieh Z, Grewal GK, Belway CR, McGirr A, Whelan PJ. Inhibitory medial zona incerta pathway drives exploratory behavior by inhibiting glutamatergic cuneiform neurons. Nat Commun 2024; 15:1160. [PMID: 38326327 PMCID: PMC10850156 DOI: 10.1038/s41467-024-45288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The cuneiform nucleus (CnF) regulates locomotor activity, which is canonically viewed as being primarily involved in initiating locomotion and regulating speed. Recent research shows greater context dependency in the locomotor functions of this nucleus. Glutamatergic neurons, which contain vesicular glutamate transporter 2 (vGLUT2), regulate context-dependent locomotor speed in the CnF and play a role in defensive behavior. Here, we identify projections from the medial zona incerta (mZI) to CnF vGLUT2 neurons that promote exploratory behavior. Using fiber photometry recordings in male mice, we find that mZI gamma-aminobutyric acid (GABA) neurons increase activity during periods of exploration. Activation of mZI GABAergic neurons is associated with reduced spiking of CnF neurons. Additionally, activating both retrogradely labeled mZI-CnF GABAergic projection neurons and their terminals in the CnF increase exploratory behavior. Inhibiting CnF vGLUT2 neuronal activity also increases exploratory behavior. These findings provide evidence for the context-dependent dynamic regulation of CnF vGLUT2 neurons, with the mZI-CnF circuit shaping exploratory behavior.
Collapse
Affiliation(s)
- Sandeep Sharma
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cecilia A Badenhorst
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Donovan M Ashby
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Stephanie A Di Vito
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Michelle A Tran
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Zahra Ghavasieh
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gurleen K Grewal
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cole R Belway
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
22
|
Coulombe V, Goetz L, Bhattacharjee M, Gould PV, Saikali S, Takech MA, Philippe É, Parent A, Parent M. Cholinergic and Nadph-δ neurons in the pedunculopontine and laterodorsal tegmental nuclei of human and nonhuman primates. J Comp Neurol 2024; 532:e25570. [PMID: 38108576 DOI: 10.1002/cne.25570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
The brainstem pedunculopontine (PPN) and laterodorsal tegmental (LDTg) nuclei are involved in multifarious activities, including motor control. Yet, their exact cytoarchitectural boundaries are still uncertain. We therefore initiated a comparative study of the topographical and neurochemical organization of the PPN and LDTg in cynomolgus monkeys (Macaca fascicularis) and humans. The distribution and morphological characteristics of neurons expressing choline acetyltransferase (ChAT) and/or nicotinamide adenine dinucleotide phosphate diaphorase (Nadph-δ) were documented. The number and density of the labeled neurons were obtained by stringent stereological methods, whereas their topographical distribution was reported upon corresponding magnetic resonance imaging (MRI) planes. In both human and nonhuman primates, the PPN and LDTg are populated by three neurochemically distinct types of neurons (ChAT-/Nadph-δ+, ChAT+/Nadph-δ-, and ChAT+/Nadph-δ+), which are distributed according to a complex spatial interplay. Three-dimensional reconstructions reveal that ChAT+ neurons in the PPN and LDTg form a continuum with some overlaps with pigmented neurons of the locus coeruleus, dorsally, and of the substantia nigra (SN) complex, ventrally. The ChAT+ neurons in the PPN and LDTg are -two to three times more numerous in humans than in monkeys but their density is -three to five times higher in monkeys than in humans. Neurons expressing both ChAT and Nadph-δ have a larger cell body and a longer primary dendritic arbor than singly labeled neurons. Stereological quantification reveals that 25.6% of ChAT+ neurons in the monkey PPN are devoid of Nadph-δ staining, a finding that questions the reliability of Nadph-δ as a marker for cholinergic neurons in primate brainstem.
Collapse
Affiliation(s)
| | - Laurent Goetz
- Hôpital Fondation Rothschild, Neurochirurgie pédiatrique - Unité Parkinson, Paris, France
| | - Manik Bhattacharjee
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm, Grenoble, France
- CNRS, UMR, Grenoble INP, TIMC, Grenoble, France
| | - Peter V Gould
- Hôpital de L'Enfant-Jésus, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Stephan Saikali
- Hôpital de L'Enfant-Jésus, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | | | - Éric Philippe
- Laboratoire d'Anatomie, Université Laval, Quebec City, QC, Canada
| | - André Parent
- CERVO Brain Research Center, Quebec City, QC, Canada
| | - Martin Parent
- CERVO Brain Research Center, Quebec City, QC, Canada
| |
Collapse
|
23
|
Luu P, Tucker DM, Friston K. From active affordance to active inference: vertical integration of cognition in the cerebral cortex through dual subcortical control systems. Cereb Cortex 2024; 34:bhad458. [PMID: 38044461 DOI: 10.1093/cercor/bhad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
In previous papers, we proposed that the dorsal attention system's top-down control is regulated by the dorsal division of the limbic system, providing a feedforward or impulsive form of control generating expectancies during active inference. In contrast, we proposed that the ventral attention system is regulated by the ventral limbic division, regulating feedback constraints and error-correction for active inference within the neocortical hierarchy. Here, we propose that these forms of cognitive control reflect vertical integration of subcortical arousal control systems that evolved for specific forms of behavior control. The feedforward impetus to action is regulated by phasic arousal, mediated by lemnothalamic projections from the reticular activating system of the lower brainstem, and then elaborated by the hippocampus and dorsal limbic division. In contrast, feedback constraint-based on environmental requirements-is regulated by the tonic activation furnished by collothalamic projections from the midbrain arousal control centers, and then sustained and elaborated by the amygdala, basal ganglia, and ventral limbic division. In an evolutionary-developmental analysis, understanding these differing forms of active affordance-for arousal and motor control within the subcortical vertebrate neuraxis-may help explain the evolution of active inference regulating the cognition of expectancy and error-correction within the mammalian 6-layered neocortex.
Collapse
Affiliation(s)
- Phan Luu
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3AR, United Kingdom
- VERSES AI Research Lab, Los Angeles, CA 90016, USA
| |
Collapse
|
24
|
Mulloy SM, Aback EM, Gao R, Engel S, Pawaskar K, Win C, Moua A, Hillukka L, Lee AM. Subregion and sex differences in ethanol activation of cholinergic and glutamatergic cells in the mesopontine tegmentum. Sci Rep 2024; 14:46. [PMID: 38168499 PMCID: PMC10762073 DOI: 10.1038/s41598-023-50526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Ethanol engages cholinergic signaling and elicits endogenous acetylcholine release. Acetylcholine input to the midbrain originates from the mesopontine tegmentum (MPT), which is composed of the laterodorsal tegmentum (LDT) and the pedunculopontine tegmental nucleus (PPN). We investigated the effect of acute and chronic ethanol administration on cholinergic and glutamatergic neuron activation in the PPN and LDT in male and female mice. We show that ethanol activates neurons of the PPN and not the LDT in male mice. Chronic 15 daily injections of 2 g/kg ethanol induced Fos expression in cholinergic and glutamatergic PPN neurons in male mice, whereas ethanol did not increase cholinergic and glutamatergic neuronal activation in the LDT. A single acute 4 g/kg injection, but not a single 2 g/kg injection, induced cholinergic neuron activation in the male PPN but not the LDT. In contrast, acute or chronic ethanol at either dose or duration had no effect on the activation of cholinergic or glutamatergic neurons in the MPT of female mice. Female mice had higher baseline level of activation in cholinergic neurons compared with males. We also found a population of co-labeled cholinergic and glutamatergic neurons in the PPN and LDT which were highly active in the saline- and ethanol-treated groups in both sexes. These findings illustrate the complex differential effects of ethanol across dose, time point, MPT subregion and sex.
Collapse
Affiliation(s)
- S M Mulloy
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - E M Aback
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - R Gao
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S Engel
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - K Pawaskar
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - C Win
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - A Moua
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - L Hillukka
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - A M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
25
|
Luo Y, Li Y, Yuan J. The regulation of the pedunculopontine tegmental nucleus in sleep-wake states. Sleep Biol Rhythms 2024; 22:5-11. [PMID: 38469582 PMCID: PMC10900045 DOI: 10.1007/s41105-023-00489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2023] [Indexed: 03/13/2024]
Abstract
The pedunculopontine tegmental nucleus (PPTg) plays a vital role in sleep/wake states. There are three main kinds of heterogeneous neurons involved: cholinergic, glutamatergic, and gamma-aminobutyric acidergic (GABAergic) neurons. However, the precise roles of cholinergic, glutamatergic and GABAergic PPTg cell groups in regulating sleep-wake are unknown. Recent work suggests that the cholinergic, glutamatergic, and GABAergic neurons of the PPTg may activate the main arousal-promoting nucleus, thus exerting their wakefulness effects. We review the related projection pathways and functions of various neurons of the PPTg, especially the mechanisms of the PPTg in sleep-wake, thus providing new perspectives for research of sleep-wake mechanisms.
Collapse
Affiliation(s)
- Yiting Luo
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Ying Li
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Jie Yuan
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyin, China
| |
Collapse
|
26
|
Frost-Nylén J, Thompson WS, Robertson B, Grillner S. The Basal Ganglia Downstream Control of Action - An Evolutionarily Conserved Strategy. Curr Neuropharmacol 2024; 22:1419-1430. [PMID: 37563813 PMCID: PMC11097981 DOI: 10.2174/1570159x21666230810141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/05/2023] [Indexed: 08/12/2023] Open
Abstract
The motor areas of the cortex and the basal ganglia both contribute to determining which motor actions will be recruited at any moment in time, and their functions are intertwined. Here, we review the basal ganglia mechanisms underlying the selection of behavior of the downstream control of motor centers in the midbrain and brainstem and show that the basic organization of the forebrain motor system is evolutionarily conserved throughout vertebrate phylogeny. The output level of the basal ganglia (e.g. substantia nigra pars reticulata) has GABAergic neurons that are spontaneously active at rest and inhibit a number of specific motor centers, each of which can be relieved from inhibition if the inhibitory output neurons themselves become inhibited. The motor areas of the cortex act partially via the dorsolateral striatum (putamen), which has specific modules for the forelimb, hindlimb, trunk, etc. Each module operates in turn through the two types of striatal projection neurons that control the output modules of the basal ganglia and thereby the downstream motor centers. The mechanisms for lateral inhibition in the striatum are reviewed as well as other striatal mechanisms contributing to action selection. The motor cortex also exerts a direct excitatory action on specific motor centers. An overview is given of the basal ganglia control exerted on the different midbrain/brainstem motor centers, and the efference copy information fed back via the thalamus to the striatum and cortex, which is of importance for the planning of future movements.
Collapse
Affiliation(s)
| | | | - Brita Robertson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Onofrj M, Russo M, Delli Pizzi S, De Gregorio D, Inserra A, Gobbi G, Sensi SL. The central role of the Thalamus in psychosis, lessons from neurodegenerative diseases and psychedelics. Transl Psychiatry 2023; 13:384. [PMID: 38092757 PMCID: PMC10719401 DOI: 10.1038/s41398-023-02691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The PD-DLB psychosis complex found in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) includes hallucinations, Somatic Symptom/Functional Disorders, and delusions. These disorders exhibit similar presentation patterns and progression. Mechanisms at the root of these symptoms also share similarities with processes promoting altered states of consciousness found in Rapid Eye Movement sleep, psychiatric disorders, or the intake of psychedelic compounds. We propose that these mechanisms find a crucial driver and trigger in the dysregulated activity of high-order thalamic nuclei set in motion by ThalamoCortical Dysrhythmia (TCD). TCD generates the loss of finely tuned cortico-cortical modulations promoted by the thalamus and unleashes the aberrant activity of the Default Mode Network (DMN). TCD moves in parallel with altered thalamic filtering of external and internal information. The process produces an input overload to the cortex, thereby exacerbating DMN decoupling from task-positive networks. These phenomena alter the brain metastability, creating dreamlike, dissociative, or altered states of consciousness. In support of this hypothesis, mind-altering psychedelic drugs also modulate thalamic-cortical pathways. Understanding the pathophysiological background of these conditions provides a conceptual bridge between neurology and psychiatry, thereby helping to generate a promising and converging area of investigation and therapeutic efforts.
Collapse
Affiliation(s)
- Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
28
|
Mulloy SM, Aback EM, Gao R, Engel S, Pawaskar K, Win C, Moua A, Hillukka L, Lee AM. Subregion and sex differences in ethanol activation of cholinergic and glutamatergic cells in the mesopontine tegmentum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566053. [PMID: 38014248 PMCID: PMC10680559 DOI: 10.1101/2023.11.08.566053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Ethanol engages cholinergic signaling and elicits endogenous acetylcholine release. Acetylcholine input to the midbrain originates from the mesopontine tegmentum (MPT), which is composed of the laterodorsal tegmentum (LDT) and the pedunculopontine tegmental nucleus (PPN). We investigated the effect of acute and chronic ethanol administration on cholinergic and glutamatergic neuron activation in the PPN and LDT in male and female mice. We show that ethanol selectively activates neurons of the PPN and not the LDT in male mice. Acute 4.0 g/kg and chronic 15 daily injections of 2.0 g/kg i.p. ethanol induced Fos expression in cholinergic and glutamatergic PPN neurons in male mice, whereas cholinergic and glutamatergic neurons of the LDT were unresponsive. In contrast, acute or chronic ethanol at either dose or duration had no effect on the activation of cholinergic or glutamatergic neurons in the MPT of female mice. Female mice had higher level of baseline activation in cholinergic neurons compared with males. We also found a population of co-labeled cholinergic and glutamatergic neurons in the PPN and LDT which were highly active in the saline- and ethanol-treated groups in both sexes. These findings illustrate the complex differential effects of ethanol across dose, time point, MPT subregion and sex.
Collapse
Affiliation(s)
- S M Mulloy
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - E M Aback
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - R Gao
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S Engel
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - K Pawaskar
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - C Win
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - A Moua
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - L Hillukka
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - A M Lee
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Schumacher J, Ray NJ, Hamilton CA, Bergamino M, Donaghy PC, Firbank M, Watson R, Roberts G, Allan L, Barnett N, O'Brien JT, Thomas AJ, Taylor JP. Free water imaging of the cholinergic system in dementia with Lewy bodies and Alzheimer's disease. Alzheimers Dement 2023; 19:4549-4563. [PMID: 36919460 DOI: 10.1002/alz.13034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Degeneration of cortical cholinergic projections from the nucleus basalis of Meynert (NBM) is characteristic of dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), whereas involvement of cholinergic projections from the pedunculopontine nucleus (PPN) to the thalamus is less clear. METHODS We studied both cholinergic projection systems using a free water-corrected diffusion tensor imaging (DTI) model in the following cases: 46 AD, 48 DLB, 35 mild cognitive impairment (MCI) with AD, 38 MCI with Lewy bodies, and 71 controls. RESULTS Free water in the NBM-cortical pathway was increased in both dementia and MCI groups compared to controls and associated with cognition. Free water along the PPN-thalamus tract was increased only in DLB and related to visual hallucinations. Results were largely replicated in an independent cohort. DISCUSSION While NBM-cortical projections degenerate early in AD and DLB, the thalamic cholinergic input from the PPN appears to be more selectively affected in DLB and might associate with visual hallucinations. HIGHLIGHTS Free water in the NBM-cortical cholinergic pathways is increased in AD and DLB. NBM-cortical pathway integrity is related to overall cognitive performance. Free water in the PPN-thalamus cholinergic pathway is only increased in DLB, not AD. PPN-thalamus pathway integrity might be related to visual hallucinations in DLB.
Collapse
Affiliation(s)
- Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Rostock, Germany
| | - Nicola J Ray
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - Maurizio Bergamino
- Barrow Neurological Institute, Neuroimaging Research, Phoenix, Arizona, USA
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - Michael Firbank
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - Rosie Watson
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Gemma Roberts
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - Louise Allan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
- University of Exeter Medical School, Exeter, UK
| | - Nicola Barnett
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Medicine, Cambridge, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| |
Collapse
|
30
|
Hu Y, Ma TC, Alberico SL, Ding Y, Jin L, Kang UJ. Substantia Nigra Pars Reticulata Projections to the Pedunculopontine Nucleus Modulate Dyskinesia. Mov Disord 2023; 38:1850-1860. [PMID: 37461292 PMCID: PMC10932617 DOI: 10.1002/mds.29558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Long-term use of levodopa for Parkinson's disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID. OBJECTIVE The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model. METHODS We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation. RESULTS Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation. CONCLUSIONS Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yong Hu
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Thong C. Ma
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | | | - Yunmin Ding
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Un Jung Kang
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
31
|
Chung L, Jing M, Li Y, Tapper AR. Feed-forward Activation of Habenula Cholinergic Neurons by Local Acetylcholine. Neuroscience 2023; 529:172-182. [PMID: 37572877 PMCID: PMC10840387 DOI: 10.1016/j.neuroscience.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
While the functional and behavioral role of the medial habenula (MHb) is still emerging, recent data indicate an involvement of this nuclei in regulating mood, aversion, and addiction. Unique to the MHb is a large cluster of cholinergic neurons that project to the interpeduncular nucleus and densely express acetylcholine receptors (AChRs) suggesting that the activity of these cholinergic neurons may be regulated by ACh itself. Whether endogenous ACh from within the habenula regulates cholinergic neuron activity has not been demonstrated. Supporting a role for ACh in modulating MHb activity, acetylcholinesterase inhibitors increased the firing rate of MHb cholinergic neurons in mouse habenula slices, an effect blocked by AChR antagonists and mediated by ACh which was detected via expressing fluorescent ACh sensors in MHb in vivo. To test if cholinergic afferents innervate MHb cholinergic neurons, we used anterograde and retrograde viral tracing to identify cholinergic inputs. Surprisingly, tracing experiments failed to detect cholinergic inputs into the MHb, including from the septum, suggesting that MHb cholinergic neurons may release ACh within the MHb to drive cholinergic activity. To test this hypothesis, we expressed channelrhodopsin in a portion of MHb cholinergic neurons while recording from non-opsin-expressing neurons. Light pulses progressively increased activity of MHb cholinergic neurons indicating feed-forward activation driven by MHb ACh release. These data indicate MHb cholinergic neurons may utilize a unique feed-forward mechanism to synchronize and increase activity by releasing local ACh.
Collapse
Affiliation(s)
- Leeyup Chung
- Brudnick Neuropsychiatric Research Institute, Dept. of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; Chinese Institute for Brain Research, 102206 Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; Chinese Institute for Brain Research, 102206 Beijing, China
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, Dept. of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
32
|
Tsunematsu T, Matsumoto S, Merkler M, Sakata S. Pontine Waves Accompanied by Short Hippocampal Sharp Wave-Ripples During Non-rapid Eye Movement Sleep. Sleep 2023; 46:zsad193. [PMID: 37478470 PMCID: PMC10485565 DOI: 10.1093/sleep/zsad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
Ponto-geniculo-occipital or pontine (P) waves have long been recognized as an electrophysiological signature of rapid eye movement (REM) sleep. However, P-waves can be observed not just during REM sleep, but also during non-REM (NREM) sleep. Recent studies have uncovered that P-waves are functionally coupled with hippocampal sharp wave ripples (SWRs) during NREM sleep. However, it remains unclear to what extent P-waves during NREM sleep share their characteristics with P-waves during REM sleep and how the functional coupling to P-waves modulates SWRs. Here, we address these issues by performing multiple types of electrophysiological recordings and fiber photometry in both sexes of mice. P-waves during NREM sleep share their waveform shapes and local neural ensemble dynamics at a short (~100 milliseconds) timescale with their REM sleep counterparts. However, the dynamics of mesopontine cholinergic neurons are distinct at a longer (~10 seconds) timescale: although P-waves are accompanied by cholinergic transients, the cholinergic tone gradually reduces before P-wave genesis during NREM sleep. While P-waves are coupled to hippocampal theta rhythms during REM sleep, P-waves during NREM sleep are accompanied by a rapid reduction in hippocampal ripple power. SWRs coupled with P-waves are short-lived and hippocampal neural firing is also reduced after P-waves. These results demonstrate that P-waves are part of coordinated sleep-related activity by functionally coupling with hippocampal ensembles in a state-dependent manner.
Collapse
Affiliation(s)
- Tomomi Tsunematsu
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-, Japan
| | - Sumire Matsumoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-, Japan
| | - Mirna Merkler
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
33
|
Goñi-Erro H, Selvan R, Caggiano V, Leiras R, Kiehn O. Pedunculopontine Chx10 + neurons control global motor arrest in mice. Nat Neurosci 2023; 26:1516-1528. [PMID: 37501003 PMCID: PMC10471498 DOI: 10.1038/s41593-023-01396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Arrest of ongoing movements is an integral part of executing motor programs. Behavioral arrest may happen upon termination of a variety of goal-directed movements or as a global motor arrest either in the context of fear or in response to salient environmental cues. The neuronal circuits that bridge with the executive motor circuits to implement a global motor arrest are poorly understood. We report the discovery that the activation of glutamatergic Chx10-derived neurons in the pedunculopontine nucleus (PPN) in mice arrests all ongoing movements while simultaneously causing apnea and bradycardia. This global motor arrest has a pause-and-play pattern with an instantaneous interruption of movement followed by a short-latency continuation from where it was paused. Mice naturally perform arrest bouts with the same combination of motor and autonomic features. The Chx10-PPN-evoked arrest is different to ventrolateral periaqueductal gray-induced freezing. Our study defines a motor command that induces a global motor arrest, which may be recruited in response to salient environmental cues to allow for a preparatory or arousal state, and identifies a locomotor-opposing role for rostrally biased glutamatergic neurons in the PPN.
Collapse
Affiliation(s)
- Haizea Goñi-Erro
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raghavendra Selvan
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Vittorio Caggiano
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Meta AI Research, New York, NY, USA
| | - Roberto Leiras
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Chen RYT, Evans RC. Comparing tonic and phasic calcium in the dendrites of vulnerable midbrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555184. [PMID: 37693427 PMCID: PMC10491175 DOI: 10.1101/2023.08.28.555184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Several midbrain nuclei degenerate in Parkinson's Disease (PD). Many of these nuclei share the common characteristics that are thought to contribute to their selective vulnerability, including pacemaking activity and high levels of calcium influx. In addition to the well-characterized dopaminergic neurons of the substantia nigra pars compacta (SNc), the cholinergic neurons of the pedunculopontine nucleus (PPN) also degenerate in PD. It is well established that the low-threshold L-type calcium current is a main contributor to tonic calcium in SNc dopaminergic neurons and is hypothesized to contribute to their selective vulnerability. However, it is not yet clear whether the vulnerable PPN cholinergic neurons share this property. Therefore, we used two-photon dendritic calcium imaging and whole-cell electrophysiology to evaluate the role of L-type calcium channels in the tonic and phasic activity of PPN neurons and the corresponding dendritic calcium signal and directly compare these characteristics to SNc neurons. We found that blocking L-type channels reduces tonic firing rate and dendritic calcium levels in SNc neurons. By contrast, the calcium load in PPN neurons during pacemaking did not depend on L-type channels. However, we find that blocking L-type channels reduces phasic calcium influx in PPN dendrites. Together, these findings show that L-type calcium channels play different roles in the activity of SNc and PPN neurons, and suggest that low-threshold L-type channels are not responsible for tonic calcium levels in PPN cholinergic neurons and are therefore not likely to be a source of selective vulnerability in these cells.
Collapse
Affiliation(s)
- Rita Yu-Tzu Chen
- Department of Neuroscience, Georgetown University Medical Center, Washington DC
| | - Rebekah C. Evans
- Department of Neuroscience, Georgetown University Medical Center, Washington DC
| |
Collapse
|
35
|
Dávila G, Torres-Prioris MJ, López-Barroso D, Berthier ML. Turning the Spotlight to Cholinergic Pharmacotherapy of the Human Language System. CNS Drugs 2023; 37:599-637. [PMID: 37341896 PMCID: PMC10374790 DOI: 10.1007/s40263-023-01017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Even though language is essential in human communication, research on pharmacological therapies for language deficits in highly prevalent neurodegenerative and vascular brain diseases has received little attention. Emerging scientific evidence suggests that disruption of the cholinergic system may play an essential role in language deficits associated with Alzheimer's disease and vascular cognitive impairment, including post-stroke aphasia. Therefore, current models of cognitive processing are beginning to appraise the implications of the brain modulator acetylcholine in human language functions. Future work should be directed further to analyze the interplay between the cholinergic system and language, focusing on identifying brain regions receiving cholinergic innervation susceptible to modulation with pharmacotherapy to improve affected language domains. The evaluation of language deficits in pharmacological cholinergic trials for Alzheimer's disease and vascular cognitive impairment has thus far been limited to coarse-grained methods. More precise, fine-grained language testing is needed to refine patient selection for pharmacotherapy to detect subtle deficits in the initial phases of cognitive decline. Additionally, noninvasive biomarkers can help identify cholinergic depletion. However, despite the investigation of cholinergic treatment for language deficits in Alzheimer's disease and vascular cognitive impairment, data on its effectiveness are insufficient and controversial. In the case of post-stroke aphasia, cholinergic agents are showing promise, particularly when combined with speech-language therapy to promote trained-dependent neural plasticity. Future research should explore the potential benefits of cholinergic pharmacotherapy in language deficits and investigate optimal strategies for combining these agents with other therapeutic approaches.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain.
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| |
Collapse
|
36
|
Yu Y, Gratton C, Smith DM. From correlation to communication: Disentangling hidden factors from functional connectivity changes. Netw Neurosci 2023; 7:411-430. [PMID: 37397894 PMCID: PMC10312287 DOI: 10.1162/netn_a_00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/02/2022] [Indexed: 01/11/2024] Open
Abstract
While correlations in the BOLD fMRI signal are widely used to capture functional connectivity (FC) and its changes across contexts, its interpretation is often ambiguous. The entanglement of multiple factors including local coupling of two neighbors and nonlocal inputs from the rest of the network (affecting one or both regions) limits the scope of the conclusions that can be drawn from correlation measures alone. Here we present a method of estimating the contribution of nonlocal network input to FC changes across different contexts. To disentangle the effect of task-induced coupling change from the network input change, we propose a new metric, "communication change," utilizing BOLD signal correlation and variance. With a combination of simulation and empirical analysis, we demonstrate that (1) input from the rest of the network accounts for a moderate but significant amount of task-induced FC change and (2) the proposed "communication change" is a promising candidate for tracking the local coupling in task context-induced change. Additionally, when compared to FC change across three different tasks, communication change can better discriminate specific task types. Taken together, this novel index of local coupling may have many applications in improving our understanding of local and widespread interactions across large-scale functional networks.
Collapse
Affiliation(s)
- Yuhua Yu
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Derek M. Smith
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Zhao P, Jiang T, Wang H, Jia X, Li A, Gong H, Li X. Upper brainstem cholinergic neurons project to ascending and descending circuits. BMC Biol 2023; 21:135. [PMID: 37280580 DOI: 10.1186/s12915-023-01625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Based on their anatomical location, rostral projections of nuclei are classified as ascending circuits, while caudal projections are classified as descending circuits. Upper brainstem neurons participate in complex information processing and specific sub-populations preferentially project to participating ascending or descending circuits. Cholinergic neurons in the upper brainstem have extensive collateralizations in both ascending and descending circuits; however, their single-cell projection patterns remain unclear because of the lack of comprehensive characterization of individual neurons. RESULTS By combining fluorescent micro-optical sectional tomography with sparse labeling, we acquired a high-resolution whole-brain dataset of pontine-tegmental cholinergic neurons (PTCNs) and reconstructed their detailed morphology using semi-automatic reconstruction methods. As the main source of acetylcholine in some subcortical areas, individual PTCNs had abundant axons with lengths up to 60 cm and 5000 terminals and innervated multiple brain regions from the spinal cord to the cortex in both hemispheres. Based on various collaterals in the ascending and descending circuits, individual PTCNs were grouped into four subtypes. The morphology of cholinergic neurons in the pedunculopontine nucleus was more divergent, whereas the laterodorsal tegmental nucleus neurons contained richer axonal branches and dendrites. In the ascending circuits, individual PTCNs innervated the thalamus in three different patterns and projected to the cortex via two separate pathways. Moreover, PTCNs targeting the ventral tegmental area and substantia nigra had abundant collaterals in the pontine reticular nuclei, and these two circuits contributed oppositely to locomotion. CONCLUSIONS Our results suggest that individual PTCNs have abundant axons, and most project to various collaterals in the ascending and descending circuits simultaneously. They target regions with multiple patterns, such as the thalamus and cortex. These results provide a detailed organizational characterization of cholinergic neurons to understand the connexional logic of the upper brainstem.
Collapse
Affiliation(s)
- Peilin Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute of neurological diseases, North Sichuan Medical University, Nanchong, 637100, China
| | - Tao Jiang
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Huading Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xueyan Jia
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
38
|
Carrette LLG, Kimbrough A, Davoudian PA, Kwan AC, Collazo A, George O. Hyperconnectivity of Two Separate Long-Range Cholinergic Systems Contributes to the Reorganization of the Brain Functional Connectivity during Nicotine Withdrawal in Male Mice. eNeuro 2023; 10:ENEURO.0019-23.2023. [PMID: 37295945 PMCID: PMC10306126 DOI: 10.1523/eneuro.0019-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic nicotine results in dependence with withdrawal symptoms on discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity; however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene Fos during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity, they were organized into two anticorrelated networks that were separated into basal forebrain-projecting and brainstem-thalamic-projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2, Chrna3, Chrna10, and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in Fos expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced Fos expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence.
Collapse
Affiliation(s)
| | - Adam Kimbrough
- Department of Psychiatry, UC San Diego, California 92093
| | - Pasha A Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut 06511
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Andres Collazo
- Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Olivier George
- Department of Psychiatry, UC San Diego, California 92093
| |
Collapse
|
39
|
Berthier ML, Dávila G. Pharmacotherapy for post-stroke aphasia: what are the options? Expert Opin Pharmacother 2023; 24:1221-1228. [PMID: 37263978 DOI: 10.1080/14656566.2023.2221382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Aphasia is a common, long-lasting aftermath of stroke lesions. There is an increased integration of pharmacotherapy as an adjunctive strategy to speech and language therapy (SLT) for post-stroke aphasia (PSA). Nevertheless, more research in pharmacotherapy for acute and chronic PSA is necessary, including the election of drugs that target different neurotransmitter systems and deficits in specific language domains. AREAS COVERED This article updates the role of pharmacotherapy for PSA, focusing the spotlight on some already investigated drugs and candidate agents deserving of future research. Refining the precision of drug election would require using multimodal biomarkers to develop personalized treatment approaches. There is a solid need to devise feasible randomized controlled trials adapted to the particularities of the PSA population. The emergent role of multimodal interventions combining one or two drugs with noninvasive brain stimulation to augment SLT is emphasized. EXPERT OPINION Pharmacotherapy can improve language deficits not fully alleviated by SLT. In addition, the 'drug-only' approach can also be adopted when administering SLT is not possible. The primary goal of pharmacotherapy is reducing the overall aphasia severity, although targeting language-specific deficits (i.e. naming, spoken output) also contributes to improving functional communication. Unfortunately, there is still little information for recommending a drug for specific language deficits.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga - IBIMA, Malaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga - IBIMA, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| |
Collapse
|
40
|
Alosaimi F, Dominguez-Paredes D, Knoben R, Almasabi F, Hescham S, Kozielski K, Temel Y, Jahanshahi A. Wireless stimulation of the subthalamic nucleus with nanoparticles modulates key monoaminergic systems similar to contemporary deep brain stimulation. Behav Brain Res 2023; 444:114363. [PMID: 36849047 DOI: 10.1016/j.bbr.2023.114363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/14/2022] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is commonly used to alleviate motor symptoms in several movement disorders. However, the procedure is invasive, and the technology has remained largely stagnant since its inception decades ago. Recently, we have shown that wireless nanoelectrodes may offer an alternative approach to conventional DBS. However, this method is still in its infancy, and more research is required to characterize its potential before it can be considered as an alternative to conventional DBS. OBJECTIVES Herein, we aimed to investigate the effect of stimulation via magnetoelectric nanoelectrodes on primary neurotransmitter systems that have implications for DBS in movement disorders. METHODS Mice were injected with either magnetoelectric nanoparticles (MENPs) or magnetostrictive nanoparticles (MSNPs, as a control) in the subthalamic nucleus (STN). Mice then underwent magnetic stimulation, and their motor behavior was assessed in the open field test. In addition, magnetic stimulation was applied before sacrifice and post-mortem brains were processed for immunohistochemistry (IHC) to assess the co-expression of c-Fos with either tyrosine hydroxylase (TH), tryptophan hydroxylase-2 (TPH2) or choline acetyltransferase (ChAT). RESULTS Stimulated animals covered longer distances in the open field test when compared to controls. Moreover, we found a significant increase in c-Fos expression in the motor cortex (MC) and paraventricular region of the thalamus (PV-thalamus) after magnetoelectric stimulation. Stimulated animals showed fewer TPH2/c-Fos double-labeled cells in the dorsal raphe nucleus (DRN), as well as TH/c-Fos double-labeled cells in the ventral tegmental area (VTA), but not in the substantia nigra pars compacta (SNc). There was no significant difference in the number of ChAT/ c-Fos double-labeled cells in the pedunculopontine nucleus (PPN). CONCLUSIONS Magnetoelectric DBS in mice enables selective modulation of deep brain areas and animal behavior. The measured behavioral responses are associated with changes in relevant neurotransmitter systems. These changes are somewhat similar to those observed in conventional DBS, suggesting that magnetoelectric DBS might be a suitable alternative.
Collapse
Affiliation(s)
- Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands; Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - David Dominguez-Paredes
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands
| | - Rick Knoben
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands
| | - Faris Almasabi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands
| | - Sarah Hescham
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands
| | - Kristen Kozielski
- School of Computation, Information and Technology, Technical University of Munich, Munich 80333, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
41
|
Ji YW, Shen ZL, Zhang X, Zhang K, Jia T, Xu X, Geng H, Han Y, Yin C, Yang JJ, Cao JL, Zhou C, Xiao C. Plasticity in ventral pallidal cholinergic neuron-derived circuits contributes to comorbid chronic pain-like and depression-like behaviour in male mice. Nat Commun 2023; 14:2182. [PMID: 37069246 PMCID: PMC10110548 DOI: 10.1038/s41467-023-37968-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
Nucleus- and cell-specific interrogation of individual basal forebrain (BF) cholinergic circuits is crucial for refining targets to treat comorbid chronic pain-like and depression-like behaviour. As the ventral pallidum (VP) in the BF regulates pain perception and emotions, we aim to address the role of VP-derived cholinergic circuits in hyperalgesia and depression-like behaviour in chronic pain mouse model. In male mice, VP cholinergic neurons innervate local non-cholinergic neurons and modulate downstream basolateral amygdala (BLA) neurons through nicotinic acetylcholine receptors. These cholinergic circuits are mobilized by pain-like stimuli and become hyperactive during persistent pain. Acute stimulation of VP cholinergic neurons and the VP-BLA cholinergic projection reduces pain threshold in naïve mice whereas inhibition of the circuits elevated pain threshold in pain-like states. Multi-day repetitive modulation of the VP-BLA cholinergic pathway regulates depression-like behaviour in persistent pain. Therefore, VP-derived cholinergic circuits are implicated in comorbid hyperalgesia and depression-like behaviour in chronic pain mouse model.
Collapse
Affiliation(s)
- Ya-Wei Ji
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Zi-Lin Shen
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xue Zhang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Kairan Zhang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Tao Jia
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiangying Xu
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Huizhen Geng
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Yu Han
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Cui Yin
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun-Li Cao
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Chunyi Zhou
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Cheng Xiao
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| |
Collapse
|
42
|
de Oliveira RP, Yokoyama T, Cardoso Thomaz LDS, de Andrade JS, Santos ADA, de Carvalho Mendonça V, Rosentock T, Carrera M, Medeiros P, Cruz FC, Coimbra NC, Silva RCB. Prepulse inhibition of the acoustic startle reflex impairment by 5-HT2A receptor activation in the inferior colliculusis prevented by GABAA receptor blockade in the pedunculopontine tegmental nucleus. Behav Brain Res 2023; 448:114436. [PMID: 37061200 DOI: 10.1016/j.bbr.2023.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
The relationship between serotonin dysfunction and schizophrenia commenced with the discovery of the effects of lysergic acid diethylamide (LSD) that has high affinity for 5-HT2A receptors. Activation of these receptors produces perceptual and behavioural changes such as illusions, visual hallucinations and locomotor hyperactivity. Using prepulse inhibition (PPI) of the acoustic startle, which is impaired in schizophrenia,we aimed to investigate:i) the existence of a direct and potentially inhibitory neural pathway between the inferior colliculus (IC) and the pedunculopontine tegmental nucleus (PPTg) involved in the mediation of PPI responses by a neural tract tracing procedure;ii) if the microinjection of the 5-HT2A receptors agonist DOI in IC would activate neurons in this structure and in the PPTg by a c-Fos protein immunohistochemistry study;iii) whether the deficits in PPI responses, observed after the administration of DOI in the IC, could be prevented by the concomitant microinjection of the GABAA receptor antagonist bicuculline in the PPTg.Male Wistar rats were used in this study. An IC-PPTg reciprocated neuronal pathway was identified by neurotracing. The number of c-Fos labelled cells was lower in the DOI group in IC and PPTg, suggesting that this decrease could be due to the high levels of GABA in both structures. The concomitant microinjections of bicuculline in PPTg and DOI in IC prevented the PPI deficit observed after the IC microinjection of DOI. Ourfindings suggest that IC 5-HT2A receptors may be at least partially involved in the regulation of inhibitory pathways mediating PPI response in IC and PPTg structures.
Collapse
Affiliation(s)
- Rodolpho Pereira de Oliveira
- Laboratory of Psychobiology of Schizophrenia, Departmentof Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, 11015-020, São Paulo, Brazil
| | - Thais Yokoyama
- Department of Pharmacology, - Federal University of São Paulo (UNIFESP), São Paulo-SP, 04023-062, Brazil
| | - Lucas de Santana Cardoso Thomaz
- Laboratory of Psychobiology of Schizophrenia, Departmentof Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, 11015-020, São Paulo, Brazil
| | - José Simões de Andrade
- Laboratory of Psychobiology of Schizophrenia, Departmentof Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, 11015-020, São Paulo, Brazil
| | - Alexia Dos Anjos Santos
- Department of Pharmacology, - Federal University of São Paulo (UNIFESP), São Paulo-SP, 04023-062, Brazil
| | - Vinícius de Carvalho Mendonça
- Laboratory of Psychobiology of Schizophrenia, Departmentof Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, 11015-020, São Paulo, Brazil
| | - Tatiana Rosentock
- Sygnature Discovery, Department of Bioscience, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, United Kingdom
| | - Marinete Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, RibeirãoPreto Medical School of the Univertsity of São Paulo (FMRP-USP), Av. Bandeirantes, 30900, RibeirãoPreto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotion, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; InstituteofNeuroscienceandBehavior (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil; Interdisciplinary Center for PainCare, Federal Universityof São Carlos (UFSCar), Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, Caixa Postal 676, CEP 13565-905, SP, Brazil; Department of General and Specialized Nursing - EERP/USP RibeirãoPreto College of Nursing - USP
| | - Fábio Cardoso Cruz
- Department of Pharmacology, - Federal University of São Paulo (UNIFESP), São Paulo-SP, 04023-062, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, RibeirãoPreto Medical School of the Univertsity of São Paulo (FMRP-USP), Av. Bandeirantes, 30900, RibeirãoPreto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotion, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; InstituteofNeuroscienceandBehavior (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - Regina Cláudia Barbosa Silva
- Laboratory of Psychobiology of Schizophrenia, Departmentof Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, 11015-020, São Paulo, Brazil; InstituteofNeuroscienceandBehavior (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil.
| |
Collapse
|
43
|
Kwapiszewski JT, Rivera-Perez LM, Roberts MT. Cholinergic Boutons are Distributed Along the Dendrites and Somata of VIP Neurons in the Inferior Colliculus. J Assoc Res Otolaryngol 2023; 24:181-196. [PMID: 36627519 PMCID: PMC10121979 DOI: 10.1007/s10162-022-00885-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Cholinergic signaling shapes sound processing and plasticity in the inferior colliculus (IC), the midbrain hub of the central auditory system, but how cholinergic terminals contact and influence individual neuron types in the IC remains largely unknown. Using pharmacology and electrophysiology, we recently found that acetylcholine strongly excites VIP neurons, a class of glutamatergic principal neurons in the IC, by activating α3β4* nicotinic acetylcholine receptors (nAChRs). Here, we confirm and extend these results using tissue from mice of both sexes. First, we show that mRNA encoding α3 and β4 nAChR subunits is expressed in many neurons throughout the IC, including most VIP neurons, suggesting that these subunits, which are rare in the brain, are important mediators of cholinergic signaling in the IC. Next, by combining fluorescent labeling of VIP neurons and immunofluorescence against the vesicular acetylcholine transporter (VAChT), we show that individual VIP neurons in the central nucleus of the IC (ICc) are contacted by a large number of cholinergic boutons. Cholinergic boutons were distributed adjacent to the somata and along the full length of the dendritic arbors of VIP neurons, positioning cholinergic signaling to affect synaptic computations arising throughout the somatodendritic compartments of VIP neurons. In addition, cholinergic boutons were occasionally observed in close apposition to dendritic spines on VIP neurons, raising the possibility that cholinergic signaling also modulates presynaptic release onto VIP neurons. Together, these results strengthen the evidence that cholinergic signaling exerts widespread influence on auditory computations performed by VIP neurons and other neurons in the IC.
Collapse
Affiliation(s)
- Julia T Kwapiszewski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA
| | - Luis M Rivera-Perez
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA.
- Department of Molecular and Integrative Pharmacology, University of Michigan, MI, Ann Arbor, 48109, USA.
| |
Collapse
|
44
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
45
|
Carrette LL, Kimbrough A, Davoudian PA, Kwan AC, Collazo A, George O. Hyperconnectivity of two separate long-range cholinergic systems contributes to the reorganization of the brain functional connectivity during nicotine withdrawal in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534836. [PMID: 37034602 PMCID: PMC10081261 DOI: 10.1101/2023.03.29.534836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Chronic nicotine results in dependence with withdrawal symptoms upon discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity, however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene FOS during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity they were organized into two anticorrelated networks that were separated into basal forebrain projecting and brainstem-thalamic projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2 , Chrna3 , Chrna10 , and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in FOS expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced FOS expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence. Significance Statement Discontinuation of nicotine use in dependent users is associated with increased whole-brain activation and functional connectivity and leads to withdrawal symptoms. Here we investigated the contribution of the nicotinic cholinergic receptors and main cholinergic projecting brain areas in the whole-brain changes associated with withdrawal. This not only allowed us to visualize and confirm the previously described duality of the cholinergic brain system using this novel methodology, but also identify nicotinic receptors together with 1751 other genes that contribute, and could thus be targets for treatments against, nicotine withdrawal and dependence.
Collapse
Affiliation(s)
| | - Adam Kimbrough
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92032, United States
| | - Pasha A. Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, 06511, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Andres Collazo
- Beckman Institute, CalTech, Pasadena, CA, 91125, United States
| | - Olivier George
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92032, United States
| |
Collapse
|
46
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
47
|
The Pedunculopontine Tegmental Nucleus is not Important for Breathing Impairments Observed in a Parkinson's Disease Model. Neuroscience 2023; 512:32-46. [PMID: 36690033 DOI: 10.1016/j.neuroscience.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a motor disorder resulting from degeneration of dopaminergic neurons of substantia nigra pars compacta (SNpc), with classical and non-classical symptoms such as respiratory instability. An important region for breathing control, the Pedunculopontine Tegmental Nucleus (PPTg), is composed of cholinergic, glutamatergic, and GABAergic neurons. We hypothesize that degenerated PPTg neurons in a PD model contribute to the blunted respiratory activity. Adult mice (40 males and 29 females) that express the fluorescent green protein in cholinergic, glutamatergic or GABAergic cells were used (Chat-cre Ai6, Vglut2-cre Ai6 and Vgat-cre Ai6) and received bilateral intrastriatal injections of vehicle or 6-hydroxydopamine (6-OHDA). Ten days later, the animals were exposed to hypercapnia or hypoxia to activate PPTg neurons. Vglut2-cre Ai6 animals also received retrograde tracer injections (cholera toxin b) into the retrotrapezoid nucleus (RTN) or preBötzinger Complex (preBötC) and anterograde tracer injections (AAV-mCherry) into the SNpc. In 6-OHDA-injected mice, there is a 77% reduction in the number of dopaminergic neurons in SNpc without changing the number of neurons in the PPTg. Hypercapnia activated fewer Vglut2 neurons in PD, and hypoxia did not activate PPTg neurons. PPTg neurons do not input RTN or preBötC regions but receive projections from SNpc. Although our results did not show a reduction in the number of glutamatergic neurons in PPTg, we observed a reduction in the number of neurons activated by hypercapnia in the PD animal model, suggesting that PPTg may participate in the hypercapnia ventilatory response.
Collapse
|
48
|
Su ZH, Patel S, Gavine B, Buchanan T, Bogdanovic M, Sarangmat N, Green AL, Bloem BR, FitzGerald JJ, Antoniades CA. Deep Brain Stimulation and Levodopa Affect Gait Variability in Parkinson Disease Differently. Neuromodulation 2023; 26:382-393. [PMID: 35562261 DOI: 10.1016/j.neurom.2022.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Both dopaminergic medication and subthalamic nucleus (STN) deep brain stimulation (DBS) can improve the amplitude and speed of gait in Parkinson disease (PD), but relatively little is known about their comparative effects on gait variability. Gait irregularity has been linked to the degeneration of cholinergic neurons in the pedunculopontine nucleus (PPN). OBJECTIVES The STN and PPN have reciprocal connections, and we hypothesized that STN DBS might improve gait variability by modulating PPN function. Dopaminergic medication should not do this, and we therefore sought to compare the effects of medication and STN DBS on gait variability. MATERIALS AND METHODS We studied 11 patients with STN DBS systems on and off with no alteration to their medication, and 15 patients with PD without DBS systems on and off medication. Participants walked for two minutes in each state, wearing six inertial measurement units. Variability has previously often been expressed in terms of SD or coefficient of variation over a testing session, but these measures conflate long-term variability (eg, gradual slowing, which is not necessarily pathological) with short-term variability (true irregularity). We used Poincaré analysis to separate the short- and long-term variability. RESULTS DBS decreased short-term variability in lower limb gait parameters, whereas medication did not have this effect. In contrast, STN DBS had no effect on arm swing and trunk motion variability, whereas medication increased them, without obvious dyskinesia. CONCLUSIONS Our results suggest that STN DBS acts through a nondopaminergic mechanism to reduce gait variability. We believe that the most likely explanation is the retrograde activation of cholinergic PPN projection neurons.
Collapse
Affiliation(s)
- Zi H Su
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Salil Patel
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Bronwyn Gavine
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Marko Bogdanovic
- Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK
| | | | - Alexander L Green
- Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - James J FitzGerald
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Chrystalina A Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Davin A, Chabardès S, Devergnas A, Benstaali C, Gutekunst CAN, David O, Torres-Martinez N, Piallat B. Excessive daytime sleepiness in a model of Parkinson's disease improved by low-frequency stimulation of the pedunculopontine nucleus. NPJ Parkinsons Dis 2023; 9:9. [PMID: 36697421 PMCID: PMC9876933 DOI: 10.1038/s41531-023-00455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Patients with Parkinson's disease often complain of excessive daytime sleepiness which negatively impacts their quality of life. The pedunculopontine nucleus, proposed as a target for deep brain stimulation to improve freezing of gait in Parkinson's disease, is also known to play a key role in the arousal system. Thus, the putative control of excessive daytime sleepiness by pedunculopontine nucleus area stimulation merits exploration for treating Parkinson's disease patients. To this end, two adult nonhuman primates (macaca fascicularis) received a deep brain stimulation electrode implanted into the pedunculopontine nucleus area along with a polysomnographic equipment. Stimulation at low frequencies and high frequencies was studied, in healthy and then MPTP-treated nonhuman primates. Here, we observed that MPTP-treated nonhuman primates suffered from excessive daytime sleepiness and that low-frequency stimulation of the pedunculopontine nucleus area was effective in reducing daytime sleepiness. Indeed, low-frequency stimulation of the pedunculopontine nucleus area induced a significant increase in sleep onset latency, longer continuous periods of wakefulness and thus, a partially restored daytime wake architecture. These findings may contribute to the development of new therapeutic strategies in patients suffering from excessive daytime sleepiness.
Collapse
Affiliation(s)
- Aurélie Davin
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Stéphan Chabardès
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, Department of Neurosurgery, 38000, Grenoble, France
| | - Annaelle Devergnas
- Yerkes National Primate Research Center, 30307, Atlanta, USA
- Emory University School of Medicine, 30307, Atlanta, GA, USA
| | - Caroline Benstaali
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | | | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Univ. Aix Marseille, Inserm, INS, Institut de Neurosciences des Systèmes, 13000, Marseille, France
| | | | - Brigitte Piallat
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
50
|
Abstract
The frontal lobe is crucial and contributes to controlling truncal motion, postural responses, and maintaining equilibrium and locomotion. The rich repertoire of frontal gait disorders gives some indication of this complexity. For human walking, it is necessary to simultaneously achieve at least two tasks, such as maintaining a bipedal upright posture and locomotion. Particularly, postural control plays an extremely significant role in enabling the subject to maintain stable gait behaviors to adapt to the environment. To achieve these requirements, the frontal cortex (1) uses cognitive information from the parietal, temporal, and occipital cortices, (2) creates plans and programs of gait behaviors, and (3) acts on the brainstem and spinal cord, where the core posture-gait mechanisms exist. Moreover, the frontal cortex enables one to achieve a variety of gait patterns in response to environmental changes by switching gait patterns from automatic routine to intentionally controlled and learning the new paradigms of gait strategy via networks with the basal ganglia, cerebellum, and limbic structures. This chapter discusses the role of each area of the frontal cortex in behavioral control and attempts to explain how frontal lobe controls walking with special reference to postural control.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|