1
|
VanInsberghe M, van Oudenaarden A. Sequencing technologies to measure translation in single cells. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00822-z. [PMID: 39833532 DOI: 10.1038/s41580-024-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Translation is one of the most energy-intensive processes in a cell and, accordingly, is tightly regulated. Genome-wide methods to measure translation and the translatome and to study the complex regulation of protein synthesis have enabled unprecedented characterization of this crucial step of gene expression. However, technological limitations have hampered our understanding of translation control in multicellular tissues, rare cell types and dynamic cellular processes. Recent optimizations, adaptations and new techniques have enabled these measurements to be made at single-cell resolution. In this Progress, we discuss single-cell sequencing technologies to measure translation, including ribosome profiling, ribosome affinity purification and spatial translatome methods.
Collapse
Affiliation(s)
- Michael VanInsberghe
- Oncode Institute, Utrecht, the Netherlands.
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands.
- University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Samuels TN, Wu F, Mahmood M, Abuzaid WA, Sun N, Moresco A, Siu VM, O'Donoghue P, Heinemann IU. Transfer RNA and small molecule therapeutics for aminoacyl-tRNA synthetase diseases. FEBS J 2024. [PMID: 39702998 DOI: 10.1111/febs.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Aminoacyl-tRNA synthetases catalyze the ligation of a specific amino acid to its cognate tRNA. The resulting aminoacyl-tRNAs are indispensable intermediates in protein biosynthesis, facilitating the precise decoding of the genetic code. Pathogenic alleles in the aminoacyl-tRNA synthetases can lead to several dominant and recessive disorders. To date, disease-specific treatments for these conditions are largely unavailable. We review pathogenic human synthetase alleles, the molecular and cellular mechanisms of tRNA synthetase diseases, and emerging approaches to allele-specific treatments, including small molecules and nucleic acid-based therapeutics. Current treatment approaches to rescue defective or dysfunctional tRNA synthetase mutants include supplementation with cognate amino acids and delivery of cognate tRNAs to alleviate bottlenecks in translation. Complementary approaches use inhibitors to target the integrated stress response, which can be dysregulated in tRNA synthetase diseases.
Collapse
Affiliation(s)
- Tristan N Samuels
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Fanqi Wu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Maria Mahmood
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Wajd A Abuzaid
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Nancy Sun
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Angelica Moresco
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Victoria M Siu
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Chemistry, Western University, London, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| |
Collapse
|
3
|
Savoca G, Gianfredi A, Bartolini L. The Development of Epilepsy Following CNS Viral Infections: Mechanisms. Curr Neurol Neurosci Rep 2024; 25:2. [PMID: 39549124 DOI: 10.1007/s11910-024-01393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE OF REVIEW This review examines the role of different viral infections in epileptogenesis, with a focus on Herpesviruses such as Human Herpesvirus 6 (HHV-6) and Epstein Barr Virus (EBV), Flaviviruses, Picornaviruses, Human Immunodeficiency Virus (HIV), Influenzavirus and Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). RECENT FINDINGS A growing literature on animal models, such as the paradigmatic Theiler's murine encephalomyelitis virus (TMEV) model, and clinical investigations in patients with epilepsy have started to elucidate cellular mechanisms implicated in seizure initiation and development of epilepsy following viral infections. A central role of neuroinflammation has emerged, with evidence of activation of the innate and adaptive immunity, dysregulation of microglial and astrocytic activity and production of multiple cytokines and other inflammatory mediators. Several chronic downstream effects result in increased blood-brain barrier permeability, direct neuronal damage, and modifications of ion channels ultimately leading to altered neuronal excitability and seizure generation. Key findings underscore the complex interplay between initial viral infection, neuroinflammation, and later development of epilepsy. Further research is needed to elucidate these mechanisms and develop targeted interventions.
Collapse
Affiliation(s)
- Giulia Savoca
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Arianna Gianfredi
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Luca Bartolini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy.
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
4
|
Blazie SM, Fortunati D, Zhao Y, Jin Y. C. elegans LIN-66 mediates EIF-3/eIF3-dependent protein translation via a cold-shock domain. Life Sci Alliance 2024; 7:e202402673. [PMID: 38886018 PMCID: PMC11184513 DOI: 10.26508/lsa.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Protein translation initiation is a conserved process involving many proteins acting in concert. The 13 subunit eukaryotic initiation factor 3 (eIF3) complex is essential for assembly of the pre-initiation complex that scans mRNA and positions ribosome at the initiation codon. We previously reported that a gain-of-function (gf) mutation affecting the G subunit of the Caenorhabditis elegans eIF3 complex, eif-3.g(gf), selectively modulates protein translation in the ventral cord cholinergic motor neurons. Here, through unbiased genetic suppressor screening, we identified that the gene lin-66 mediates eif-3.g(gf)-dependent protein translation in motor neurons. LIN-66 is composed largely of low-complexity amino acid sequences with unknown functional domains. We combined bioinformatics analysis with in vivo functional dissection and identified a cold-shock domain in LIN-66 critical for its function. In cholinergic motor neurons, LIN-66 shows a close association with EIF-3.G in the cytoplasm. The low-complexity amino acid sequences of LIN-66 modulate its subcellular pattern. As cold-shock domains function broadly in RNA regulation, we propose that LIN-66 mediates stimulus-dependent protein translation by facilitating the interaction of mRNAs with EIF-3.G.
Collapse
Affiliation(s)
- Stephen M Blazie
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniel Fortunati
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yan Zhao
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Tresky R, Miyamoto Y, Nagayoshi Y, Yabuki Y, Araki K, Takahashi Y, Komohara Y, Ge H, Nishiguchi K, Fukuda T, Kaneko H, Maeda N, Matsuura J, Iwasaki S, Sakakida K, Shioda N, Wei FY, Tomizawa K, Chujo T. TRMT10A dysfunction perturbs codon translation of initiator methionine and glutamine and impairs brain functions in mice. Nucleic Acids Res 2024; 52:9230-9246. [PMID: 38950903 PMCID: PMC11347157 DOI: 10.1093/nar/gkae520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
In higher eukaryotes, tRNA methyltransferase 10A (TRMT10A) is responsible for N1-methylguanosine modification at position nine of various cytoplasmic tRNAs. Pathogenic mutations in TRMT10A cause intellectual disability, microcephaly, diabetes, and short stature in humans, and generate cytotoxic tRNA fragments in cultured cells; however, it is not clear how TRMT10A supports codon translation or brain functions. Here, we generated Trmt10a null mice and showed that tRNAGln(CUG) and initiator methionine tRNA levels were universally decreased in various tissues; the same was true in a human cell line lacking TRMT10A. Ribosome profiling of mouse brain revealed that dysfunction of TRMT10A causes ribosome slowdown at the Gln(CAG) codon and increases translation of Atf4 due to higher frequency of leaky scanning of its upstream open reading frames. Broadly speaking, translation of a subset of mRNAs, especially those for neuronal structures, is perturbed in the mutant brain. Despite not showing discernable defects in the pancreas, liver, or kidney, Trmt10a null mice showed lower body weight and smaller hippocampal postsynaptic densities, which is associated with defective synaptic plasticity and memory. Taken together, our study provides mechanistic insight into the roles of TRMT10A in the brain, and exemplifies the importance of universal tRNA modification during translation of specific codons.
Collapse
Affiliation(s)
- Roland Tresky
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yu Nagayoshi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukie Takahashi
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Huicong Ge
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kayo Nishiguchi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hitomi Kaneko
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nobuko Maeda
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Jin Matsuura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Kourin Sakakida
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
6
|
Moreira-Gomes T, Nóbrega C. From the disruption of RNA metabolism to the targeting of RNA-binding proteins: The case of polyglutamine spinocerebellar ataxias. J Neurochem 2024; 168:1442-1459. [PMID: 37990934 DOI: 10.1111/jnc.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine-induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA-binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
Collapse
Affiliation(s)
- Tiago Moreira-Gomes
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
7
|
Wang X, Yang Q, Zhou X, Keene CD, Ryazanov AG, Ma T. Suppression of eEF2 phosphorylation alleviates synaptic failure and cognitive deficits in mouse models of Down syndrome. Alzheimers Dement 2024; 20:5357-5374. [PMID: 38934363 PMCID: PMC11350057 DOI: 10.1002/alz.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Cognitive impairment is a core feature of Down syndrome (DS), and the underlying neurobiological mechanisms remain unclear. Translation dysregulation is linked to multiple neurological disorders characterized by cognitive impairments. Phosphorylation of the translational factor eukaryotic elongation factor 2 (eEF2) by its kinase eEF2K results in inhibition of general protein synthesis. METHODS We used genetic and pharmacological methods to suppress eEF2K in two lines of DS mouse models. We further applied multiple approaches to evaluate the effects of eEF2K inhibition on DS pathophysiology. RESULTS We found that eEF2K signaling was overactive in the brain of patients with DS and DS mouse models. Inhibition of eEF2 phosphorylation through suppression of eEF2K in DS model mice improved multiple aspects of DS-associated pathophysiology including de novo protein synthesis deficiency, synaptic morphological defects, long-term synaptic plasticity failure, and cognitive impairments. DISCUSSION Our data suggested that eEF2K signaling dysregulation mediates DS-associated synaptic and cognitive impairments. HIGHLIGHTS Phosphorylation of the translational factor eukaryotic elongation factor 2 (eEF2) is increased in the Down syndrome (DS) brain. Suppression of the eEF2 kinase (eEF2K) alleviates cognitive deficits in DS models. Suppression of eEF2K improves synaptic dysregulation in DS models. Cognitive and synaptic impairments in DS models are rescued by eEF2K inhibitors.
Collapse
Affiliation(s)
- Xin Wang
- Department of Internal MedicineGerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Qian Yang
- Department of Internal MedicineGerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Xueyan Zhou
- Department of Internal MedicineGerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - C. Dirk Keene
- Department of PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Alexey G. Ryazanov
- Department of PharmacologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Tao Ma
- Department of Internal MedicineGerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Translational NeuroscienceWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
8
|
Khaket TP, Rimal S, Wang X, Bhurtel S, Wu YC, Lu B. Ribosome stalling during c-myc translation presents actionable cancer cell vulnerability. PNAS NEXUS 2024; 3:pgae321. [PMID: 39161732 PMCID: PMC11330866 DOI: 10.1093/pnasnexus/pgae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 08/21/2024]
Abstract
Myc is a major driver of tumor initiation, progression, and maintenance. Up-regulation of Myc protein level rather than acquisition of neomorphic properties appears to underlie most Myc-driven cancers. Cellular mechanisms governing Myc expression remain incompletely defined. In this study, we show that ribosome-associated quality control (RQC) plays a critical role in maintaining Myc protein level. Ribosomes stall during the synthesis of the N-terminal portion of cMyc, generating aberrant cMyc species and necessitating deployment of the early RQC factor ZNF598 to handle translational stress and restore cMyc translation. ZNF598 expression is up-regulated in human glioblastoma (GBM), and its expression positively correlates with that of cMyc. ZNF598 knockdown inhibits human GBM neurosphere formation in cell culture and Myc-dependent tumor growth in vivo in Drosophila. Intriguingly, the SARS-COV-2-encoded translational regulator Nsp1 impinges on ZNF598 to restrain cMyc translation and consequently cMyc-dependent cancer growth. Remarkably, Nsp1 exhibits synthetic toxicity with the translation and RQC-related factor ATP-binding cassette subfamily E member 1, which, despite its normally positive correlation with cMyc in cancer cells, is co-opted by Nsp1 to down-regulate cMyc and inhibit tumor growth. Ribosome stalling during c-myc translation thus offers actionable cancer cell vulnerability.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suman Rimal
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xingjun Wang
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sunil Bhurtel
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yen-Chi Wu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bingwei Lu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Mihailovich M, Germain PL, Shyti R, Pozzi D, Noberini R, Liu Y, Aprile D, Tenderini E, Troglio F, Trattaro S, Fabris S, Ciptasari U, Rigoli MT, Caporale N, D’Agostino G, Mirabella F, Vitriolo A, Capocefalo D, Skaros A, Franchini AV, Ricciardi S, Biunno I, Neri A, Nadif Kasri N, Bonaldi T, Aebersold R, Matteoli M, Testa G. Multiscale modeling uncovers 7q11.23 copy number variation-dependent changes in ribosomal biogenesis and neuronal maturation and excitability. J Clin Invest 2024; 134:e168982. [PMID: 39007270 PMCID: PMC11245157 DOI: 10.1172/jci168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
Copy number variation (CNV) at 7q11.23 causes Williams-Beuren syndrome (WBS) and 7q microduplication syndrome (7Dup), neurodevelopmental disorders (NDDs) featuring intellectual disability accompanied by symmetrically opposite neurocognitive features. Although significant progress has been made in understanding the molecular mechanisms underlying 7q11.23-related pathophysiology, the propagation of CNV dosage across gene expression layers and their interplay remains elusive. Here we uncovered 7q11.23 dosage-dependent symmetrically opposite dynamics in neuronal differentiation and intrinsic excitability. By integrating transcriptomics, translatomics, and proteomics of patient-derived and isogenic induced neurons, we found that genes related to neuronal transmission follow 7q11.23 dosage and are transcriptionally controlled, while translational factors and ribosomal genes are posttranscriptionally buffered. Consistently, we found phosphorylated RPS6 (p-RPS6) downregulated in WBS and upregulated in 7Dup. Surprisingly, p-4EBP was changed in the opposite direction, reflecting dosage-specific changes in total 4EBP levels. This highlights different dosage-sensitive dyregulations of the mTOR pathway as well as distinct roles of p-RPS6 and p-4EBP during neurogenesis. Our work demonstrates the importance of multiscale disease modeling across molecular and functional layers, uncovers the pathophysiological relevance of ribosomal biogenesis in a paradigmatic pair of NDDs, and uncouples the roles of p-RPS6 and p-4EBP as mechanistically actionable relays in NDDs.
Collapse
Affiliation(s)
- Marija Mihailovich
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
| | - Pierre-Luc Germain
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Computational Neurogenomics, D-HEST Institute for Neuroscience, Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Reinald Shyti
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Davide Aprile
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Flavia Troglio
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sebastiano Trattaro
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ummi Ciptasari
- Department of Cognitive Neurosciences, RadboudUmc, Donders Institute for Brain Cognition and Behaviour, Nijmegen, Netherlands
| | - Marco Tullio Rigoli
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicolò Caporale
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | - Alessandro Vitriolo
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Daniele Capocefalo
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Adrianos Skaros
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
| | | | - Sara Ricciardi
- Department of Biosciences, University of Milan, Milan, Italy
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Ida Biunno
- Integrated Systems Engineering Srl, c/o OpenZone, Bresso, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nael Nadif Kasri
- Department of Cognitive Neurosciences, RadboudUmc, Donders Institute for Brain Cognition and Behaviour, Nijmegen, Netherlands
| | - Tiziana Bonaldi
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Rudolf Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Michela Matteoli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Testa
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Martin-Solana E, Diaz-Lopez I, Mohamedi Y, Ventoso I, Fernandez JJ, Fernandez-Fernandez MR. Progressive alterations in polysomal architecture and activation of ribosome stalling relief factors in a mouse model of Huntington's disease. Neurobiol Dis 2024; 195:106488. [PMID: 38565397 PMCID: PMC7616275 DOI: 10.1016/j.nbd.2024.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.
Collapse
Affiliation(s)
- Eva Martin-Solana
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain
| | - Irene Diaz-Lopez
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Yamina Mohamedi
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Ivan Ventoso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jose-Jesus Fernandez
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain; Centro de Investigación en Nanomateriales y Nanotecnología (CINN-CSIC). Av. Vega 4-6, 33940 El Entrego, Asturias, Spain.
| | - Maria Rosario Fernandez-Fernandez
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain; Centro de Investigación en Nanomateriales y Nanotecnología (CINN-CSIC). Av. Vega 4-6, 33940 El Entrego, Asturias, Spain.
| |
Collapse
|
11
|
Kapur M, Molumby MJ, Guzman C, Heinz S, Ackerman SL. Cell-type-specific expression of tRNAs in the brain regulates cellular homeostasis. Neuron 2024; 112:1397-1415.e6. [PMID: 38377989 PMCID: PMC11065635 DOI: 10.1016/j.neuron.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/23/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Defects in tRNA biogenesis are associated with multiple neurological disorders, yet our understanding of these diseases has been hampered by an inability to determine tRNA expression in individual cell types within a complex tissue. Here, we developed a mouse model in which RNA polymerase III is conditionally epitope tagged in a Cre-dependent manner, allowing us to accurately profile tRNA expression in any cell type in vivo. We investigated tRNA expression in diverse nervous system cell types, revealing dramatic heterogeneity in the expression of tRNA genes between populations. We found that while maintenance of levels of tRNA isoacceptor families is critical for cellular homeostasis, neurons are differentially vulnerable to insults to distinct tRNA isoacceptor families. Cell-type-specific translatome analysis suggests that the balance between tRNA availability and codon demand may underlie such differential resilience. Our work provides a platform for investigating the complexities of mRNA translation and tRNA biology in the brain.
Collapse
Affiliation(s)
- Mridu Kapur
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; The Howard Hughes Medical Institute
| | - Michael J Molumby
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; The Howard Hughes Medical Institute
| | - Carlos Guzman
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, Bioinformatics & Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sven Heinz
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, Bioinformatics & Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; The Howard Hughes Medical Institute; Department of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Bhattacharyya U, John J, Lencz T, Lam M. Dissecting Schizophrenia Biology Using Pleiotropy with Cognitive Genomics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.16.24305885. [PMID: 38699340 PMCID: PMC11065000 DOI: 10.1101/2024.04.16.24305885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Given the increasingly large number of loci discovered by psychiatric GWAS, specification of the key biological pathways underlying these loci has become a priority for the field. We have previously leveraged the pleiotropic genetic relationships between schizophrenia and two cognitive phenotypes (educational attainment and cognitive task performance) to differentiate two subsets of illness-relevant SNPs: (1) those with "concordant" alleles, which are associated with reduced cognitive ability/education and increased schizophrenia risk; and (2) those with "discordant" alleles linked to reduced educational and/or cognitive levels but lower schizophrenia susceptibility. In the present study, we extend our prior work, utilizing larger input GWAS datasets and a more powerful statistical approach to pleiotropic meta-analysis, the Pleiotropic Locus Exploration and Interpretation using Optimal test (PLEIO). Our pleiotropic meta-analysis of schizophrenia and the two cognitive phenotypes revealed 768 significant loci (159 novel). Among these, 347 loci harbored concordant SNPs, 270 encompassed discordant SNPs, and 151 "dual" loci contained concordant and discordant SNPs. Competitive gene-set analysis using MAGMA related concordant SNP loci with neurodevelopmental pathways (e.g., neurogenesis), whereas discordant loci were associated with mature neuronal synaptic functions. These distinctions were also observed in BrainSpan analysis of temporal enrichment patterns across developmental periods, with concordant loci containing more prenatally expressed genes than discordant loci. Dual loci were enriched for genes related to mRNA translation initiation, representing a novel finding in the schizophrenia literature.
Collapse
Affiliation(s)
- Upasana Bhattacharyya
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
| | - Jibin John
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
| | - Todd Lencz
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Max Lam
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Institute of Mental Health, Singapore
- Lee Kong Chian School of Medicine, Population and Global Health, Nanyang Technological University
| |
Collapse
|
13
|
Henis M, Rücker T, Scharrenberg R, Richter M, Baltussen L, Hong S, Meka DP, Schwanke B, Neelagandan N, Daaboul D, Murtaza N, Krisp C, Harder S, Schlüter H, Kneussel M, Hermans-Borgmeyer I, de Wit J, Singh KK, Duncan KE, de Anda FC. The autism susceptibility kinase, TAOK2, phosphorylates eEF2 and modulates translation. SCIENCE ADVANCES 2024; 10:eadf7001. [PMID: 38608030 PMCID: PMC11014455 DOI: 10.1126/sciadv.adf7001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in 16p11.2 deletion models. We show that TAOK2 associates with the translational machinery and functions as a translational brake by phosphorylating eukaryotic elongation factor 2 (eEF2). Previously, all signal-mediated regulation of translation elongation via eEF2 phosphorylation was believed to be mediated by a single kinase, eEF2K. However, we show that TAOK2 can directly phosphorylate eEF2 on the same regulatory site, but functions independently of eEF2K signaling. Collectively, our results reveal an eEF2K-independent signaling pathway for control of translation elongation and suggest altered translation as a molecular component in the etiology of some forms of ASD.
Collapse
Affiliation(s)
- Melad Henis
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, New Valley University, 72511 El-Kharga, Egypt
| | - Tabitha Rücker
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Robin Scharrenberg
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Melanie Richter
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lucas Baltussen
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Shuai Hong
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Durga Praveen Meka
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Birgit Schwanke
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Nagammal Neelagandan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Danie Daaboul
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Nadeem Murtaza
- Krembil Research Institute, Donald K. Johnson Eye Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8S 4A9, Canada
| | - Christoph Krisp
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Sönke Harder
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Matthias Kneussel
- Institute of Neurogenetics, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Service Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Karun K. Singh
- Krembil Research Institute, Donald K. Johnson Eye Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
- Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Cir, Toronto, Ontario M5S 1 A8, Canada
| | - Kent E. Duncan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Froylan Calderón de Anda
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
14
|
Shao B, Yan J, Zhang J, Liu L, Chen Y, Buskirk AR. Riboformer: a deep learning framework for predicting context-dependent translation dynamics. Nat Commun 2024; 15:2011. [PMID: 38443396 PMCID: PMC10915169 DOI: 10.1038/s41467-024-46241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Translation elongation is essential for maintaining cellular proteostasis, and alterations in the translational landscape are associated with a range of diseases. Ribosome profiling allows detailed measurements of translation at the genome scale. However, it remains unclear how to disentangle biological variations from technical artifacts in these data and identify sequence determinants of translation dysregulation. Here we present Riboformer, a deep learning-based framework for modeling context-dependent changes in translation dynamics. Riboformer leverages the transformer architecture to accurately predict ribosome densities at codon resolution. When trained on an unbiased dataset, Riboformer corrects experimental artifacts in previously unseen datasets, which reveals subtle differences in synonymous codon translation and uncovers a bottleneck in translation elongation. Further, we show that Riboformer can be combined with in silico mutagenesis to identify sequence motifs that contribute to ribosome stalling across various biological contexts, including aging and viral infection. Our tool offers a context-aware and interpretable approach for standardizing ribosome profiling datasets and elucidating the regulatory basis of translation kinetics.
Collapse
Affiliation(s)
- Bin Shao
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Jiawei Yan
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
| | - Lili Liu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ye Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Grosshans D, Thomas R, Zhang D, Cronkite C, Thomas R, Singh S, Bronk L, Morales R, Duman J. Subcellular functions of tau mediates repair response and synaptic homeostasis in injury. RESEARCH SQUARE 2024:rs.3.rs-3897741. [PMID: 38464175 PMCID: PMC10925419 DOI: 10.21203/rs.3.rs-3897741/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Injury responses in terminally differentiated cells such as neurons is tightly regulated by pathways aiding homeostatic maintenance. Cancer patients subjected to neuronal injury in brain radiation experience cognitive declines similar to those seen in primary neurodegenerative diseases. Numerous studies have investigated the effect of radiation in proliferating cells of the brain, yet the impact in differentiated, post-mitotic neurons, especially the structural and functional alterations remain largely elusive. We identified that microtubule-associated tau is a critical player in neuronal injury response via compartmentalized functions in both repair-centric and synaptic regulatory pathways. Ionizing radiation-induced injury acutely induces increase in phosphorylated tau in the nucleus and directly interacts with histone 2AX (H2AX), a DNA damage repair (DDR) marker. Loss of tau significantly reduced H2AX after irradiation, indicating that tau may play an important role in neuronal DDR response. We also observed that loss of tau increases eukaryotic elongation factor levels after irradiation, the latter being a positive regulator of protein translation. This cascades into a significant increase in synaptic proteins, resulting in disrupted homeostasis. Consequently, novel object recognition test showed decrease in learning and memory in tau-knockout mice after irradiation, and electroencephalographic activity showed increase in delta and theta band oscillations, often seen in dementia patients. Our findings demonstrate tau's previously undefined, multifunctional role in acute responses to injury, ranging from DDR response in the nucleus to synaptic function within a neuron. Such knowledge is vital to develop therapeutic strategies targeting neuronal injury in cognitive decline for at risk and vulnerable populations.
Collapse
|
16
|
Popper B, Bürkle M, Ciccopiedi G, Marchioretto M, Forné I, Imhof A, Straub T, Viero G, Götz M, Schieweck R. Ribosome inactivation regulates translation elongation in neurons. J Biol Chem 2024; 300:105648. [PMID: 38219816 PMCID: PMC10869266 DOI: 10.1016/j.jbc.2024.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.
Collapse
Affiliation(s)
- Bastian Popper
- Core Facility Animal Models, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Martina Bürkle
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Giuliana Ciccopiedi
- Department for Cell Biology & Anatomy, Biomedical Center (BMC), LMU Munich, Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Marta Marchioretto
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy
| | - Ignasi Forné
- Protein Analysis Unit, Department for Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Axel Imhof
- Protein Analysis Unit, Department for Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Department of Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Gabriella Viero
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy
| | - Magdalena Götz
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Rico Schieweck
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany; Department for Cell Biology & Anatomy, Biomedical Center (BMC), LMU Munich, Munich, Germany; Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy.
| |
Collapse
|
17
|
Wong HHW, Watt AJ, Sjöström PJ. Synapse-specific burst coding sustained by local axonal translation. Neuron 2024; 112:264-276.e6. [PMID: 37944518 DOI: 10.1016/j.neuron.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/19/2023] [Accepted: 09/13/2023] [Indexed: 11/12/2023]
Abstract
Neurotransmission in the brain is unreliable, suggesting that high-frequency spike bursts rather than individual spikes carry the neural code. For instance, cortical pyramidal neurons rely on bursts in memory formation. Protein synthesis is another key factor in long-term synaptic plasticity and learning but is widely considered unnecessary for synaptic transmission. Here, however, we show that burst neurotransmission at synapses between neocortical layer 5 pyramidal cells depends on axonal protein synthesis linked to presynaptic NMDA receptors and mTOR. We localized protein synthesis to axons with laser axotomy and puromycylation live imaging. We whole-cell recorded connected neurons to reveal how translation sustained readily releasable vesicle pool size and replenishment rate. We live imaged axons and found sparsely docked RNA granules, suggesting synapse-specific regulation. In agreement, translation boosted neurotransmission onto excitatory but not inhibitory basket or Martinotti cells. Local axonal mRNA translation is thus a hitherto unappreciated principle for sustaining burst coding at specific synapse types.
Collapse
Affiliation(s)
- Hovy Ho-Wai Wong
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada.
| | - Alanna J Watt
- Biology Department, McGill University, Montreal, QC H3G 0B1, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada.
| |
Collapse
|
18
|
Salpietro V, Maroofian R, Zaki MS, Wangen J, Ciolfi A, Barresi S, Efthymiou S, Lamaze A, Aughey GN, Al Mutairi F, Rad A, Rocca C, Calì E, Accogli A, Zara F, Striano P, Mojarrad M, Tariq H, Giacopuzzi E, Taylor JC, Oprea G, Skrahina V, Rehman KU, Abd Elmaksoud M, Bassiony M, El Said HG, Abdel-Hamid MS, Al Shalan M, Seo G, Kim S, Lee H, Khang R, Issa MY, Elbendary HM, Rafat K, Marinakis NM, Traeger-Synodinos J, Ververi A, Sourmpi M, Eslahi A, Khadivi Zand F, Beiraghi Toosi M, Babaei M, Jackson A, Bertoli-Avella A, Pagnamenta AT, Niceta M, Battini R, Corsello A, Leoni C, Chiarelli F, Dallapiccola B, Faqeih EA, Tallur KK, Alfadhel M, Alobeid E, Maddirevula S, Mankad K, Banka S, Ghayoor-Karimiani E, Tartaglia M, Chung WK, Green R, Alkuraya FS, Jepson JEC, Houlden H. Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome. Am J Hum Genet 2024; 111:200-210. [PMID: 38118446 PMCID: PMC10806450 DOI: 10.1016/j.ajhg.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Jamie Wangen
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Sabina Barresi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Angelique Lamaze
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Fuad Al Mutairi
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | | | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Elisa Calì
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Accogli
- Division of Medical Genetics, Department of Pediatrics, McGill University, Montreal, Canada
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Unit of Pediatric Neurology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Huma Tariq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Edoardo Giacopuzzi
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Genomics Research Centre, Human Technopole, Milan, Italy; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | - Marwa Abd Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud Bassiony
- Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Huda G El Said
- Department of Family Health, High Institute of Public Health, University of Alexandria, Alexandria, Egypt
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha Al Shalan
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | | | | | - Hane Lee
- 3billion, Inc, Seoul, South Korea
| | | | - Mahmoud Y Issa
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hasnaa M Elbendary
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Karima Rafat
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Ververi
- Genetics Unit, Department of Obstetrics & Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | | | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Masshad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Masshad, Iran
| | | | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | | | | | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Women and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Eissa Ali Faqeih
- Unit of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Majid Alfadhel
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital, London, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Ehsan Ghayoor-Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, University of London, St George's, Cranmer Terrace, London SW17 0RE, UK
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
19
|
Fonódi M, Thalwieser Z, Csortos C, Boratkó A. TIMAP, a Regulatory Subunit of Protein Phosphatase 1, Inhibits In Vitro Neuronal Differentiation. Int J Mol Sci 2023; 24:17360. [PMID: 38139189 PMCID: PMC10744335 DOI: 10.3390/ijms242417360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
TIMAP (TGF-β-inhibited membrane associated protein) is abundant in endothelial cells, and it has been regarded as a member of the myosin phosphatase targeting protein (MYPT) family. Our workgroup previously identified several interacting protein partners of TIMAP and proved its regulatory subunit role for protein phosphatase 1 catalytic subunit (PP1c). TIMAP is also expressed in neuronal cells, but details of its function have not been studied yet. Therefore, we aimed to explore the role of TIMAP in neuronal cells, especially during differentiation. Expression of TIMAP was proved both at mRNA and protein levels in SH-SY5Y human neuroblastoma cells. Differentiation of SH-SY5Y cells was optimized and proved by the detection of neuronal differentiation markers, such as β3-tubulin, nestin and inhibitor of differentiation 1 (ID1) using qPCR and Western blot. We found downregulation of TIMAP during differentiation. In accordance with this, overexpression of recombinant TIMAP attenuated the differentiation of neuronal cells. Moreover, the subcellular localization of TIMAP has changed during differentiation as it translocated from the plasma membrane into the nucleus. The nuclear interactome of TIMAP revealed more than 50 proteins, offering the possibility to further investigate the role of TIMAP in several key physiological pathways of neuronal cells.
Collapse
Affiliation(s)
| | | | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary; (M.F.); (Z.T.); (C.C.)
| |
Collapse
|
20
|
Zou Z, Wei J, Chen Y, Kang Y, Shi H, Yang F, Shi Z, Chen S, Zhou Y, Sepich-Poore C, Zhuang X, Zhou X, Jiang H, Wen Z, Jin P, Luo C, He C. FMRP phosphorylation modulates neuronal translation through YTHDF1. Mol Cell 2023; 83:4304-4317.e8. [PMID: 37949069 PMCID: PMC10872974 DOI: 10.1016/j.molcel.2023.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.
Collapse
Affiliation(s)
- Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Yantao Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunhee Kang
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hailing Shi
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Fan Yang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zhuoyue Shi
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Caraline Sepich-Poore
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoming Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hualiang Jiang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Cheng Luo
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Forston MD, Wei GZ, Chariker JH, Stephenson T, Andres K, Glover C, Rouchka EC, Whittemore SR, Hetman M. Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cord injury. Sci Rep 2023; 13:21254. [PMID: 38040794 PMCID: PMC10692148 DOI: 10.1038/s41598-023-48425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.
Collapse
Affiliation(s)
- Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - George Z Wei
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Julia H Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
- Neuroscience Training, University Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Tyler Stephenson
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Kariena Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Charles Glover
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
22
|
Abraham JR, Allen FM, Barnard J, Schlatzer D, Natowicz MR. Proteomic investigations of adult polyglucosan body disease: insights into the pathobiology of a neurodegenerative disorder. Front Neurol 2023; 14:1261125. [PMID: 38033781 PMCID: PMC10683643 DOI: 10.3389/fneur.2023.1261125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 12/02/2023] Open
Abstract
Inadequate glycogen branching enzyme 1 (GBE1) activity results in different forms of glycogen storage disease type IV, including adult polyglucosan body disorder (APBD). APBD is clinically characterized by adult-onset development of progressive spasticity, neuropathy, and neurogenic bladder and is histologically characterized by the accumulation of structurally abnormal glycogen (polyglucosan bodies) in multiple cell types. How insufficient GBE1 activity causes the disease phenotype of APBD is poorly understood. We hypothesized that proteomic analysis of tissue from GBE1-deficient individuals would provide insights into GBE1-mediated pathobiology. In this discovery study, we utilized label-free LC-MS/MS to quantify the proteomes of lymphoblasts from 3 persons with APBD and 15 age- and gender-matched controls, with validation of the findings by targeted MS. There were 531 differentially expressed proteins out of 3,427 detected between APBD subjects vs. controls, including pronounced deficiency of GBE1. Bioinformatic analyses indicated multiple canonical pathways and protein-protein interaction networks to be statistically markedly enriched in APBD subjects, including: RNA processing/transport/translation, cell cycle control/replication, mTOR signaling, protein ubiquitination, unfolded protein and endoplasmic reticulum stress responses, glycolysis and cell death/apoptosis. Dysregulation of these processes, therefore, are primary or secondary factors in APBD pathobiology in this model system. Our findings further suggest that proteomic analysis of GBE1 mutant lymphoblasts can be leveraged as part of the screening for pharmaceutical agents for the treatment of APBD.
Collapse
Affiliation(s)
- Joseph R. Abraham
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Frederick M. Allen
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Daniela Schlatzer
- Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Marvin R. Natowicz
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Pathology and Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
23
|
Lee KH. Internal ribosomal entry site-mediated translational activity of nitric oxide synthase 2. Anim Cells Syst (Seoul) 2023; 27:321-328. [PMID: 38414531 PMCID: PMC10898816 DOI: 10.1080/19768354.2023.2275613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/22/2023] [Indexed: 02/29/2024] Open
Abstract
The internal ribosome entry site (IRES) is a unique structure found in the 5' untranslated region (5'-UTR) of specific messenger RNAs (mRNAs) that allows ribosomes to bind and initiate translation without the need for a cap structure. In this study, we investigated the presence and functional properties of the IRES activity of nitric oxide synthase 2 (NOS2) mRNA, which encodes an enzyme that produces nitric oxide in response to various stimuli such as inflammation. Nitric oxide is a signaling molecule that plays a crucial role in various physiological processes, including immune responses and neuronal signaling. Our results showed the existence of IRES activity in the 5'-UTR of Nos2 mRNA in various cell types. IRES-mediated translation of NOS2 mRNA was higher in neuronal cells and its activity increased in response to lipopolysaccharide (LPS). Despite inhibition of cap-dependent translation, nitrite production was partially maintained. These results demonstrate the presence of IRES activity in the 5'-UTR of NOS2 mRNA and suggest that IRES-mediated translation plays a key role in controlling nitric oxide production in response to LPS, an inflammatory stimulus.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
24
|
Petrić Howe M, Patani R. Nonsense-mediated mRNA decay in neuronal physiology and neurodegeneration. Trends Neurosci 2023; 46:879-892. [PMID: 37543480 DOI: 10.1016/j.tins.2023.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 08/07/2023]
Abstract
The processes of mRNA export from the nucleus and subsequent mRNA translation in the cytoplasm are of particular relevance in eukaryotic cells. In highly polarised cells such as neurons, finely-tuned molecular regulation of these processes serves to safeguard the spatiotemporal fidelity of gene expression. Nonsense-mediated mRNA decay (NMD) is a cytoplasmic translation-dependent quality control process that regulates gene expression in a wide range of scenarios in the nervous system, including neurodevelopment, learning, and memory formation. Moreover, NMD dysregulation has been implicated in a broad range of neurodevelopmental and neurodegenerative disorders. We discuss how NMD and related aspects of mRNA translation regulate key neuronal functions and, in particular, we focus on evidence implicating these processes in the molecular pathogenesis of neurodegeneration. Finally, we discuss the therapeutic potential and challenges of targeting mRNA translation and NMD across the spectrum of largely untreatable neurological diseases.
Collapse
Affiliation(s)
- Marija Petrić Howe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
25
|
Häfner SJ, Jansson MD, Altinel K, Andersen KL, Abay-Nørgaard Z, Ménard P, Fontenas M, Sørensen DM, Gay DM, Arendrup FS, Tehler D, Krogh N, Nielsen H, Kraushar ML, Kirkeby A, Lund AH. Ribosomal RNA 2'-O-methylation dynamics impact cell fate decisions. Dev Cell 2023; 58:1593-1609.e9. [PMID: 37473757 DOI: 10.1016/j.devcel.2023.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Translational regulation impacts both pluripotency maintenance and cell differentiation. To what degree the ribosome exerts control over this process remains unanswered. Accumulating evidence has demonstrated heterogeneity in ribosome composition in various organisms. 2'-O-methylation (2'-O-me) of rRNA represents an important source of heterogeneity, where site-specific alteration of methylation levels can modulate translation. Here, we examine changes in rRNA 2'-O-me during mouse brain development and tri-lineage differentiation of human embryonic stem cells (hESCs). We find distinct alterations between brain regions, as well as clear dynamics during cortex development and germ layer differentiation. We identify a methylation site impacting neuronal differentiation. Modulation of its methylation levels affects ribosome association of the fragile X mental retardation protein (FMRP) and is accompanied by an altered translation of WNT pathway-related mRNAs. Together, these data identify ribosome heterogeneity through rRNA 2'-O-me during early development and differentiation and suggest a direct role for ribosomes in regulating translation during cell fate acquisition.
Collapse
Affiliation(s)
- Sophia J Häfner
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Martin D Jansson
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kübra Altinel
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kasper L Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zehra Abay-Nørgaard
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Patrice Ménard
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Fontenas
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel M Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David M Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederic S Arendrup
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Disa Tehler
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark; Wallenberg Center for Molecular Medicine, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Anders H Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
26
|
Davies FCJ, Marshall GF, Pegram E, Gadd D, Abbott CM. Endogenous epitope tagging of eEF1A2 in mice reveals early embryonic expression of eEF1A2 and subcellular compartmentalisation of neuronal eEF1A1 and eEF1A2. Mol Cell Neurosci 2023; 126:103879. [PMID: 37429391 DOI: 10.1016/j.mcn.2023.103879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
All vertebrate species express two independently-encoded forms of translation elongation factor eEF1A. In humans and mice eEF1A1 and eEF1A2 are 92 % identical at the amino acid level, but the well conserved developmental switch between the two variants in specific tissues suggests the existence of important functional differences. Heterozygous mutations in eEF1A2 result in neurodevelopmental disorders in humans; the mechanism of pathogenicity is unclear, but one hypothesis is that there is a dominant negative effect on eEF1A1 during development. The high degree of similarity between the eEF1A proteins has complicated expression analysis in the past; here we describe a gene edited mouse line in which we have introduced a V5 tag in the gene encoding eEF1A2. Expression analysis using anti-V5 and anti-eEF1A1 antibodies demonstrates that, in contrast to the prevailing view that eEF1A2 is only expressed postnatally, it is expressed from as early as E11.5 in the developing neural tube. Two colour immunofluorescence also reveals coordinated switching between eEF1A1 and eEF1A2 in different regions of postnatal brain. Completely reciprocal expression of the two variants is seen in post-weaning mouse brain with eEF1A1 expressed in oligodendrocytes and astrocytes and eEF1A2 in neuronal soma. Although eEF1A1 is absent from neuronal cell bodies after development, it is widely expressed in axons. This expression does not appear to coincide with myelin sheaths originating from oligodendrocytes but rather results from localised translation within the axon, suggesting that both variants are transcribed in neurons but show completely distinct subcellular localisation at the protein level. These findings will form an underlying framework for understanding how missense mutations in eEF1A2 result in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Faith C J Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Grant F Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Eleanor Pegram
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Danni Gadd
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Catherine M Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
27
|
Hu HT, Lin YJ, Wang UTT, Lee SP, Liou YH, Chen BC, Hsueh YP. Autism-related KLHL17 and SYNPO act in concert to control activity-dependent dendritic spine enlargement and the spine apparatus. PLoS Biol 2023; 21:e3002274. [PMID: 37651441 PMCID: PMC10499226 DOI: 10.1371/journal.pbio.3002274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/13/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Dendritic spines, the tiny and actin-rich protrusions emerging from dendrites, are the subcellular locations of excitatory synapses in the mammalian brain that control synaptic activity and plasticity. Dendritic spines contain a specialized form of endoplasmic reticulum (ER), i.e., the spine apparatus, required for local calcium signaling and that is involved in regulating dendritic spine enlargement and synaptic plasticity. Many autism-linked genes have been shown to play critical roles in synaptic formation and plasticity. Among them, KLHL17 is known to control dendritic spine enlargement during development. As a brain-specific disease-associated gene, KLHL17 is expected to play a critical role in the brain, but it has not yet been well characterized. In this study, we report that KLHL17 expression in mice is strongly regulated by neuronal activity and KLHL17 modulates the synaptic distribution of synaptopodin (SYNPO), a marker of the spine apparatus. Both KLHL17 and SYNPO are F-actin-binding proteins linked to autism. SYNPO is known to maintain the structure of the spine apparatus in mature spines and contributes to synaptic plasticity. Our super-resolution imaging using expansion microscopy demonstrates that SYNPO is indeed embedded into the ER network of dendritic spines and that KLHL17 is closely adjacent to the ER/SYNPO complex. Using mouse genetic models, we further show that Klhl17 haploinsufficiency and knockout result in fewer dendritic spines containing ER clusters and an alteration of calcium events at dendritic spines. Accordingly, activity-dependent dendritic spine enlargement and neuronal activation (reflected by extracellular signal-regulated kinase (ERK) phosphorylation and C-FOS expression) are impaired. In addition, we show that the effect of disrupting the KLHL17 and SYNPO association is similar to the results of Klhl17 haploinsufficiency and knockout, further strengthening the evidence that KLHL17 and SYNPO act together to regulate synaptic plasticity. In conclusion, our findings unravel a role for KLHL17 in controlling synaptic plasticity via its regulation of SYNPO and synaptic ER clustering and imply that impaired synaptic plasticity contributes to the etiology of KLHL17-related disorders.
Collapse
Affiliation(s)
- Hsiao-Tang Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yung-Jui Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ueh-Ting Tim Wang
- Affiliated Senior High School of National Taiwan Normal University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
28
|
Forston MD, Wei G, Chariker JH, Stephenson T, Andres K, Glover C, Rouchka EC, Whittemore SR, Hetman M. Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cord injury. RESEARCH SQUARE 2023:rs.3.rs-3164618. [PMID: 37546871 PMCID: PMC10402259 DOI: 10.21203/rs.3.rs-3164618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.
Collapse
Affiliation(s)
| | - George Wei
- University of Louisville School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Schieweck R, Ciccopiedi G, Klau K, Popper B. Monosomes buffer translational stress to allow for active ribosome elongation. Front Mol Biosci 2023; 10:1158043. [PMID: 37304066 PMCID: PMC10253174 DOI: 10.3389/fmolb.2023.1158043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: The synthesis of proteins is a fundamental process in the life-span of all cells. The activation of ribosomes on transcripts is the starting signal for elongation and, in turn, the translation of an mRNA. Thereby, most mRNAs circulate between single (monosomes) and multi ribosomal particles (polysomes), a process that defines their translational activity. The interplay between monosomes and polysomes is thought to crucially impact translation rate. How monosomes and polysomes are balanced during stress remains, however, elusive. Methods: Here, we set out to investigate the monosome and polysome levels as well as their kinetics under different translational stress conditions including mTOR inhibition, downregulation of the eukaryotic elongation factor 2 (eEF2) and amino acid depletion. Results: By using a timed ribosome runoff approach in combination with polysome profiling, we found that the used translational stressors show very distinct effects on translation. However, they all had in common that the activity of monosomes was preferentially affected. This adaptation seems to be needed for sufficient translation elongation. Even under harsh conditions such as amino acid starvation, we detected active polysomes while monosomes were mostly inactive. Hence, it is plausible that cells compensate the reduced availability of essential factors during stress by adapting the levels of active monosomes to favor sufficient elongation. Discussion: These results suggest that monosome and polysome levels are balanced under stress conditions. Together, our data argue for the existence of translational plasticity that ensure sufficient protein synthesis under stress conditions, a process that is necessary for cell survival and recovery.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Giuliana Ciccopiedi
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Kenneth Klau
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
30
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
31
|
Shao B, Yan J, Zhang J, Buskirk AR. Riboformer: A Deep Learning Framework for Predicting Context-Dependent Translation Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538053. [PMID: 37163112 PMCID: PMC10168224 DOI: 10.1101/2023.04.24.538053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Translation elongation is essential for maintaining cellular proteostasis, and alterations in the translational landscape are associated with a range of diseases. Ribosome profiling allows detailed measurement of translation at genome scale. However, it remains unclear how to disentangle biological variations from technical artifacts and identify sequence determinant of translation dysregulation. Here we present Riboformer, a deep learning-based framework for modeling context-dependent changes in translation dynamics. Riboformer leverages the transformer architecture to accurately predict ribosome densities at codon resolution. It corrects experimental artifacts in previously unseen datasets, reveals subtle differences in synonymous codon translation and uncovers a bottleneck in protein synthesis. Further, we show that Riboformer can be combined with in silico mutagenesis analysis to identify sequence motifs that contribute to ribosome stalling across various biological contexts, including aging and viral infection. Our tool offers a context-aware and interpretable approach for standardizing ribosome profiling datasets and elucidating the regulatory basis of translation kinetics.
Collapse
Affiliation(s)
- Bin Shao
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Present address: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jiawei Yan
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
| | - Allen R. Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
32
|
Bujdoso R, Smith A, Fleck O, Spiropoulos J, Andréoletti O, Thackray AM. Prion disease modelled in Drosophila. Cell Tissue Res 2023; 392:47-62. [PMID: 35092497 PMCID: PMC10113284 DOI: 10.1007/s00441-022-03586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are fatal neurodegenerative conditions of humans and various vertebrate species that are transmissible between individuals of the same or different species. A novel infectious moiety referred to as a prion is considered responsible for transmission of these conditions. Prion replication is believed to be the cause of the neurotoxicity that arises during prion disease pathogenesis. The prion hypothesis predicts that the transmissible prion agent consists of PrPSc, which is comprised of aggregated misfolded conformers of the normal host protein PrPC. It is important to understand the biology of transmissible prions and to identify genetic modifiers of prion-induced neurotoxicity. This information will underpin the development of therapeutic and control strategies for human and animal prion diseases. The most reliable method to detect prion infectivity is by in vivo transmission in a suitable experimental host, which to date have been mammalian species. Current prion bioassays are slow, cumbersome and relatively insensitive to low titres of prion infectivity, and do not lend themselves to rapid genetic analysis of prion disease. Here, we provide an overview of our novel studies that have led to the establishment of Drosophila melanogaster, a genetically well-defined invertebrate host, as a sensitive, versatile and economically viable animal model for the detection of mammalian prion infectivity and genetic modifiers of prion-induced toxicity.
Collapse
Affiliation(s)
- Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| | - Andrew Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - Oliver Fleck
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - John Spiropoulos
- Pathology Department, Animal and Plant Health Agency (APHA), Weybridge, Woodham Lane, New Haw, Surrey, KT15 3NB, Addlestone, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alana M Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| |
Collapse
|
33
|
Yan C, Meng Y, Yang J, Chen J, Jiang W. Translational landscape in human early neural fate determination. Development 2023; 150:297188. [PMID: 36846898 DOI: 10.1242/dev.201177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/19/2023] [Indexed: 03/01/2023]
Abstract
Gene expression regulation in eukaryotes is a multi-level process, including transcription, mRNA translation and protein turnover. Many studies have reported sophisticated transcriptional regulation during neural development, but the global translational dynamics are still ambiguous. Here, we differentiate human embryonic stem cells (ESCs) into neural progenitor cells (NPCs) with high efficiency and perform ribosome sequencing and RNA sequencing on both ESCs and NPCs. Data analysis reveals that translational controls engage in many crucial pathways and contribute significantly to regulation of neural fate determination. Furthermore, we show that the sequence characteristics of the untranslated region (UTR) might regulate translation efficiency. Specifically, genes with short 5'UTR and intense Kozak sequence are associated with high translation efficiency in human ESCs, whereas genes with long 3'UTR are related to high translation efficiency in NPCs. In addition, we have identified four biasedly used codons (GAC, GAT, AGA and AGG) and dozens of short open reading frames during neural progenitor differentiation. Thus, our study reveals the translational landscape during early human neural differentiation and provides insights into the regulation of cell fate determination at the translational level.
Collapse
Affiliation(s)
- Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yajing Meng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jie Yang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jian Chen
- Chinese Institute for Brain Research (Beijing), Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan 430071, China
| |
Collapse
|
34
|
Nittari G, Tomassoni D, Roy P, Martinelli I, Tayebati SK, Amenta F. Batten disease through different in vivo and in vitro models: A review. J Neurosci Res 2023; 101:298-315. [PMID: 36434776 DOI: 10.1002/jnr.25147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Batten disease consists of a family of primarily autosomal recessive, progressive neuropediatric disorders, also known as neuronal ceroid lipofuscinoses (NCLs). These pathologies are characterized by seizures and visual, cognitive and motor decline, and premature death. The pathophysiology of this rare disease is still unclear despite the years of trials and financial aids. This paper has reviewed advantages and limits of in vivo and in vitro models of Batten disease from murine and larger animal models to primitive unicellular models, until the most recently developed patient-derived induced pluripotent stem cells. For each model advantages, limits and applications were analyzed. The first prototypes investigated were murine models that due to their limits were replaced by larger animals. In vitro models gradually replaced animal models for practical, cost, and ethical reasons. Using induced pluripotent stem cells to study neurodegeneration is a new way of studying the disease, since they can be distinguished into differentiating elements like neurons, which are susceptible to neurodegeneration. In vivo and in vitro models have contributed to clarifying to some extent the pathophysiology of the disease. The collection and sharing of suitable human bio samples likely through biobanks can contribute to a better understanding, prevention, and to identify possible treatment strategies of Batten disease.
Collapse
Affiliation(s)
- Giulio Nittari
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Ilenia Martinelli
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| |
Collapse
|
35
|
Lant JT, Hasan F, Briggs J, Heinemann IU, O’Donoghue P. Genetic Interaction of tRNA-Dependent Mistranslation with Fused in Sarcoma Protein Aggregates. Genes (Basel) 2023; 14:518. [PMID: 36833445 PMCID: PMC9956149 DOI: 10.3390/genes14020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
High-fidelity protein synthesis requires properly aminoacylated transfer RNAs (tRNAs), yet diverse cell types, from bacteria to humans, show a surprising ability to tolerate errors in translation resulting from mutations in tRNAs, aminoacyl-tRNA synthetases, and other components of protein synthesis. Recently, we characterized a tRNASerAGA G35A mutant (tRNASerAAA) that occurs in 2% of the human population. The mutant tRNA decodes phenylalanine codons with serine, inhibits protein synthesis, and is defective in protein and aggregate degradation. Here, we used cell culture models to test our hypothesis that tRNA-dependent mistranslation will exacerbate toxicity caused by amyotrophic lateral sclerosis (ALS)-associated protein aggregation. Relative to wild-type tRNA, we found cells expressing tRNASerAAA showed slower but effective aggregation of the fused in sarcoma (FUS) protein. Despite reduced levels in mistranslating cells, wild-type FUS aggregates showed similar toxicity in mistranslating cells and normal cells. The aggregation kinetics of the ALS-causative FUS R521C variant were distinct and more toxic in mistranslating cells, where rapid FUS aggregation caused cells to rupture. We observed synthetic toxicity in neuroblastoma cells co-expressing the mistranslating tRNA mutant and the ALS-causative FUS R521C variant. Our data demonstrate that a naturally occurring human tRNA variant enhances cellular toxicity associated with a known causative allele for neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy T. Lant
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julia Briggs
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
36
|
Bourke AM, Schwarz A, Schuman EM. De-centralizing the Central Dogma: mRNA translation in space and time. Mol Cell 2023; 83:452-468. [PMID: 36669490 DOI: 10.1016/j.molcel.2022.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.
Collapse
Affiliation(s)
- Ashley M Bourke
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
37
|
Sekulovski S, Trowitzsch S. What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia? Bioessays 2023; 45:e2200130. [PMID: 36517085 DOI: 10.1002/bies.202200130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023]
Abstract
Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
38
|
Towards a Cure for HARS Disease. Genes (Basel) 2023; 14:genes14020254. [PMID: 36833180 PMCID: PMC9956352 DOI: 10.3390/genes14020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Histidyl-tRNA synthetase (HARS) ligates histidine to its cognate transfer RNA (tRNAHis). Mutations in HARS cause the human genetic disorders Usher syndrome type 3B (USH3B) and Charcot-Marie-Tooth syndrome type 2W (CMT2W). Treatment for these diseases remains symptomatic, and no disease specific treatments are currently available. Mutations in HARS can lead to destabilization of the enzyme, reduced aminoacylation, and decreased histidine incorporation into the proteome. Other mutations lead to a toxic gain-of-function and mistranslation of non-cognate amino acids in response to histidine codons, which can be rescued by histidine supplementation in vitro. We discuss recent advances in characterizing HARS mutations and potential applications of amino acid and tRNA therapy for future gene and allele specific therapy.
Collapse
|
39
|
Goldkamp AK, Li Y, Rivera RM, Hagen DE. Differentially expressed tRNA-derived fragments in bovine fetuses with assisted reproduction induced congenital overgrowth syndrome. Front Genet 2022; 13:1055343. [PMID: 36457750 PMCID: PMC9705782 DOI: 10.3389/fgene.2022.1055343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Background: As couples struggle with infertility and livestock producers wish to rapidly improve genetic merit in their herd, assisted reproductive technologies (ART) have become increasingly popular in human medicine as well as the livestock industry. Utilizing ART can cause an increased risk of congenital overgrowth syndromes, such as Large Offspring Syndrome (LOS) in ruminants. A dysregulation of transcripts has been observed in bovine fetuses with LOS, which is suggested to be a cause of the phenotype. Our recent study identified variations in tRNA expression in LOS individuals, leading us to hypothesize that variations in tRNA expression can influence the availability of their processed regulatory products, tRNA-derived fragments (tRFs). Due to their resemblance in size to microRNAs, studies suggest that tRFs target mRNA transcripts and regulate gene expression. Thus, we have sequenced small RNA isolated from skeletal muscle and liver of day 105 bovine fetuses to elucidate the mechanisms contributing to LOS. Moreover, we have utilized our previously generated tRNA sequencing data to analyze the contribution of tRNA availability to tRF abundance. Results: 22,289 and 7,737 unique tRFs were predicted in the liver and muscle tissue respectively. The greatest number of reads originated from 5' tRFs in muscle and 5' halves in liver. In addition, mitochondrial (MT) and nuclear derived tRF expression was tissue-specific with most MT-tRFs and nuclear tRFs derived from LysUUU and iMetCAU in muscle, and AsnGUU and GlyGCC in liver. Despite variation in tRF abundance within treatment groups, we identified differentially expressed (DE) tRFs across Control-AI, ART-Normal, and ART-LOS groups with the most DE tRFs between ART-Normal and ART-LOS groups. Many DE tRFs target transcripts enriched in pathways related to growth and development in the muscle and tumor development in the liver. Finally, we found positive correlation coefficients between tRNA availability and tRF expression in muscle (R = 0.47) and liver (0.6). Conclusion: Our results highlight the dysregulation of tRF expression and its regulatory roles in LOS. These tRFs were found to target both imprinted and non-imprinted genes in muscle as well as genes linked to tumor development in the liver. Furthermore, we found that tRNA transcription is a highly modulated event that plays a part in the biogenesis of tRFs. This study is the first to investigate the relationship between tRNA and tRF expression in combination with ART-induced LOS.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Darren E. Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
40
|
Beiser T, Lisniansky E, Weitz M, Bingor A, Grad E, Rosenblum K, Thornton C, Yaka R. A functional eEF2K-eEF2 pathway in the NAc is critical for the expression of cocaine-induced psychomotor sensitisation and conditioned place preference. Transl Psychiatry 2022; 12:460. [PMID: 36319619 PMCID: PMC9626485 DOI: 10.1038/s41398-022-02232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 01/24/2023] Open
Abstract
Recent evidence links synaptic plasticity and mRNA translation, via the eukaryotic elongation factor 2 kinase (eEF2K) and its only known substrate, eEF2. However, the involvement of the eEF2 pathway in cocaine-induced neuroadaptations and cocaine-induced behaviours is not known. Knock-in (KI) mice and shRNA were used to globally and specifically reduce eEF2K expression. Cocaine psychomotor sensitization and conditioned place preference were used to evaluate behavioural outcome. Changes in eEF2 phosphorylation were determined by western blot analyses. No effect was observed on the AMPA/NMDA receptor current ratio in the ventral tegmental area, 24 h after cocaine injection in eEF2K-KI mice compared with WT. However, development and expression of cocaine psychomotor sensitization were decreased in KI mice. Phosphorylated eEF2 was decreased one day after psychomotor sensitization and returned to baseline at seven days in the nucleus accumbens (NAc) of WT mice, but not in eEF2K-KI mice. However, one day following cocaine challenge, phosphorylated eEF2 decreased in WT but not KI mice. Importantly, specific targeting of eEF2K expression by shRNA in the NAc decreased cocaine condition place preference. These results suggest that the eEF2 pathway play a role in cocaine-induced locomotor sensitization and conditioned place preference.
Collapse
Affiliation(s)
- Tehila Beiser
- grid.9619.70000 0004 1937 0538Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elvira Lisniansky
- grid.9619.70000 0004 1937 0538Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moriya Weitz
- grid.9619.70000 0004 1937 0538Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexey Bingor
- grid.9619.70000 0004 1937 0538Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Etty Grad
- grid.9619.70000 0004 1937 0538Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kobi Rosenblum
- grid.18098.380000 0004 1937 0562Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Claire Thornton
- grid.20931.390000 0004 0425 573XDepartment of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Rami Yaka
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
41
|
Wang X, Rimal S, Tantray I, Geng J, Bhurtel S, Khaket TP, Li W, Han Z, Lu B. Prevention of ribosome collision-induced neuromuscular degeneration by SARS CoV-2-encoded Nsp1. Proc Natl Acad Sci U S A 2022; 119:e2202322119. [PMID: 36170200 PMCID: PMC9586304 DOI: 10.1073/pnas.2202322119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
An overarching goal of aging and age-related neurodegenerative disease research is to discover effective therapeutic strategies applicable to a broad spectrum of neurodegenerative diseases. Little is known about the extent to which targetable pathogenic mechanisms are shared among these seemingly diverse diseases. Translational control is critical for maintaining proteostasis during aging. Gaining control of the translation machinery is also crucial in the battle between viruses and their hosts. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Here, we show that overexpression of SARS-CoV-2-encoded nonstructural protein 1 (Nsp1) robustly rescued neuromuscular degeneration and behavioral phenotypes in Drosophila models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These diseases share a common mechanism: the accumulation of aberrant protein species due to the stalling and collision of translating ribosomes, leading to proteostasis failure. Our genetic and biochemical analyses revealed that Nsp1 acted in a multipronged manner to resolve collided ribosomes, abort stalled translation, and remove faulty translation products causative of disease in these models, at least in part through the ribosome recycling factor ABCE1, ribosome-associated quality-control factors, autophagy, and AKT signaling. Nsp1 exhibited exquisite specificity in its action, as it did not modify other neurodegenerative conditions not known to be associated with ribosome stalling. These findings uncover a previously unrecognized mechanism of Nsp1 in manipulating host translation, which can be leveraged for combating age-related neurodegenerative diseases that are affecting millions of people worldwide and currently without effective treatment.
Collapse
Affiliation(s)
- Xingjun Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Ji Geng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Sunil Bhurtel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Tejinder Pal Khaket
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Wen Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
- Programs of Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94350
| |
Collapse
|
42
|
Duffy EE, Finander B, Choi G, Carter AC, Pritisanac I, Alam A, Luria V, Karger A, Phu W, Sherman MA, Assad EG, Pajarillo N, Khitun A, Crouch EE, Ganesh S, Chen J, Berger B, Sestan N, O'Donnell-Luria A, Huang EJ, Griffith EC, Forman-Kay JD, Moses AM, Kalish BT, Greenberg ME. Developmental dynamics of RNA translation in the human brain. Nat Neurosci 2022; 25:1353-1365. [PMID: 36171426 PMCID: PMC10198132 DOI: 10.1038/s41593-022-01164-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/12/2022] [Indexed: 01/27/2023]
Abstract
The precise regulation of gene expression is fundamental to neurodevelopment, plasticity and cognitive function. Although several studies have profiled transcription in the developing human brain, there is a gap in understanding of accompanying translational regulation. In this study, we performed ribosome profiling on 73 human prenatal and adult cortex samples. We characterized the translational regulation of annotated open reading frames (ORFs) and identified thousands of previously unknown translation events, including small ORFs that give rise to human-specific and/or brain-specific microproteins, many of which we independently verified using proteomics. Ribosome profiling in stem-cell-derived human neuronal cultures corroborated these findings and revealed that several neuronal activity-induced non-coding RNAs encode previously undescribed microproteins. Physicochemical analysis of brain microproteins identified a class of proteins that contain arginine-glycine-glycine (RGG) repeats and, thus, may be regulators of RNA metabolism. This resource expands the known translational landscape of the human brain and illuminates previously unknown brain-specific protein products.
Collapse
Affiliation(s)
- Erin E Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | | | - GiHun Choi
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ava C Carter
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Iva Pritisanac
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Aqsa Alam
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, USA
| | - William Phu
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Maxwell A Sherman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elena G Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naomi Pajarillo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexandra Khitun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Sanika Ganesh
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Anne O'Donnell-Luria
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Pathology Service 113B, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Brian T Kalish
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- Department of Paediatrics, Division of Neonatology, Hospital for Sick Children, Toronto, ON, Canada.
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada.
| | | |
Collapse
|
43
|
Romaus-Sanjurjo D, Saikia JM, Kim HJ, Tsai KM, Le GQ, Zheng B. Overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins to promote corticospinal axon repair after injury. Cell Death Discov 2022; 8:390. [PMID: 36123349 PMCID: PMC9485247 DOI: 10.1038/s41420-022-01186-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Although protein synthesis is hypothesized to have a pivotal role in axonal repair after central nervous system (CNS) injury, the role of core components of the protein synthesis machinery has not been examined. Notably, some elongation factors possess non-canonical functions that may further impact axonal repair. Here, we examined whether overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins enhances the collateral sprouting of corticospinal tract (CST) neurons after unilateral pyramidotomy, along with the underlying molecular mechanisms. We found that overexpressing eEF1A proteins in CST neurons increased the levels of pS6, an indicator for mTOR activity, but not pSTAT3 and pAKT levels, in neuronal somas. Strikingly, overexpressing eEF1A2 alone, but neither eEF1A1 alone nor both factors simultaneously, increased protein synthesis and actin rearrangement in CST neurons. While eEF1A1 overexpression only slightly enhanced CST sprouting after pyramidotomy, eEF1A2 overexpression substantially enhanced this sprouting. Surprisingly, co-overexpression of both eEF1A1 and eEF1A2 led to a sprouting phenotype similar to wild-type controls, suggesting an antagonistic effect of overexpressing both proteins. These data provide the first evidence that overexpressing a core component of the translation machinery, eEF1A2, enhances CST sprouting, likely by a combination of increased protein synthesis, mTOR signaling and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Junmi M Saikia
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hugo J Kim
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kristen M Tsai
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Geneva Q Le
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- VA San Diego Research Service, San Diego, CA, 92161, USA.
| |
Collapse
|
44
|
Sehrawat U, Haimov O, Weiss B, Tamarkin-Ben Harush A, Ashkenazi S, Plotnikov A, Noiman T, Leshkowitz D, Stelzer G, Dikstein R. Inhibitors of eIF4G1-eIF1 uncover its regulatory role of ER/UPR stress-response genes independent of eIF2α-phosphorylation. Proc Natl Acad Sci U S A 2022; 119:e2120339119. [PMID: 35857873 PMCID: PMC9335335 DOI: 10.1073/pnas.2120339119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/27/2022] [Indexed: 01/22/2023] Open
Abstract
During translation initiation, eIF4G1 dynamically interacts with eIF4E and eIF1. While the role of eIF4E-eIF4G1 is well established, the regulatory functions of eIF4G1-eIF1 are poorly understood. Here, we report the identification of the eIF4G1-eIF1 inhibitors i14G1-10 and i14G1-12. i14G1s directly bind eIF4G1 and inhibit translation in vitro and in the cell, and their effects on translation are dependent on eIF4G1 levels. Translatome analyses revealed that i14G1s mimic eIF1 and eIF4G1 perturbations on the stringency of start codon selection and the opposing roles of eIF1-eIF4G1 in scanning-dependent and scanning-independent short 5' untranslated region (UTR) translation. Remarkably, i14G1s activate ER/unfolded protein response (UPR) stress-response genes via enhanced ribosome loading, elevated 5'UTR translation at near-cognate AUGs, and unexpected concomitant up-regulation of coding-region translation. These effects are, at least in part, independent of eIF2α-phosphorylation. Interestingly, eIF4G1-eIF1 interaction itself is negatively regulated by ER stress and mTOR inhibition. Thus, i14G1s uncover an unknown mechanism of ER/UPR translational stress response and are valuable research tools and potential drugs against diseases exhibiting dysregulated translation.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ora Haimov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ana Tamarkin-Ben Harush
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shaked Ashkenazi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Plotnikov
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tzahi Noiman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dena Leshkowitz
- Department of Life Sciences Core Facilities, Bioinformatics Unit, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Stelzer
- Department of Life Sciences Core Facilities, Bioinformatics Unit, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
45
|
Marlin E, Viu-Idocin C, Arrasate M, Aragón T. The Role and Therapeutic Potential of the Integrated Stress Response in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23147823. [PMID: 35887167 PMCID: PMC9321386 DOI: 10.3390/ijms23147823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
In amyotrophic lateral sclerosis (ALS) patients, loss of cellular homeostasis within cortical and spinal cord motor neurons triggers the activation of the integrated stress response (ISR), an intracellular signaling pathway that remodels translation and promotes a gene expression program aimed at coping with stress. Beyond its neuroprotective role, under regimes of chronic or excessive stress, ISR can also promote cell/neuronal death. Given the two-edged sword nature of ISR, many experimental attempts have tried to establish the therapeutic potential of ISR enhancement or inhibition in ALS. This review discusses the complex interplay between ISR and disease progression in different models of ALS, as well as the opportunities and limitations of ISR modulation in the hard quest to find an effective therapy for ALS.
Collapse
Affiliation(s)
- Elías Marlin
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | | | - Montserrat Arrasate
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (M.A.); (T.A.)
| | - Tomás Aragón
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (M.A.); (T.A.)
| |
Collapse
|
46
|
Ogura Y, Sahashi K, Hirunagi T, Iida M, Miyata T, Katsuno M. Mid1 is associated with androgen-dependent axonal vulnerability of motor neurons in spinal and bulbar muscular atrophy. Cell Death Dis 2022; 13:601. [PMID: 35821212 PMCID: PMC9276699 DOI: 10.1038/s41419-022-05001-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an adult-onset hereditary neurodegenerative disease caused by the expansions of CAG repeats in the androgen receptor (AR) gene. Androgen-dependent nuclear accumulation of pathogenic AR protein causes degeneration of lower motor neurons, leading to progressive muscle weakness and atrophy. While the successful induction of SBMA-like pathology has been achieved in mouse models, mechanisms underlying motor neuron vulnerability remain unclear. In the present study, we performed a transcriptome-based screening for genes expressed exclusively in motor neurons and dysregulated in the spinal cord of SBMA mice. We found upregulation of Mid1 encoding a microtubule-associated RNA binding protein which facilitates the translation of CAG-expanded mRNAs. Based on the finding that lower motor neurons begin expressing Mid1 during embryonic stages, we developed an organotypic slice culture system of the spinal cord obtained from SBMA mouse fetuses to study the pathogenic role of Mid1 in SBMA motor neurons. Impairment of axonal regeneration arose in the spinal cord culture in SBMA mice in an androgen-dependent manner, but not in mice with non-CAG-expanded AR, and was either exacerbated or ameliorated by Mid1 overexpression or knockdown, respectively. Hence, an early Mid1 expression confers vulnerability to motor neurons, at least by inducing axonogenesis defects, in SBMA.
Collapse
Affiliation(s)
- Yosuke Ogura
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kentaro Sahashi
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Hirunagi
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Madoka Iida
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaki Miyata
- grid.27476.300000 0001 0943 978XDepartment of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
47
|
Wolzak K, Nölle A, Farina M, Abbink TE, van der Knaap MS, Verhage M, Scheper W. Neuron-specific translational control shift ensures proteostatic resilience during ER stress. EMBO J 2022; 41:e110501. [PMID: 35791631 PMCID: PMC9379547 DOI: 10.15252/embj.2021110501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Proteostasis is essential for cellular survival and particularly important for highly specialised post‐mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R‐like endoplasmic reticulum (ER) kinase (PERK)‐mediated phosphorylation of eukaryotic translation initiation factor 2α (p‐eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type‐specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK‐deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK‐deficient neurons. Haem‐regulated inhibitor (HRI) mediates p‐eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back‐up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.
Collapse
Affiliation(s)
- Kimberly Wolzak
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Nölle
- Department of Pathology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Margherita Farina
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Truus Em Abbink
- Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Drongitis D, Caterino M, Verrillo L, Santonicola P, Costanzo M, Poeta L, Attianese B, Barra A, Terrone G, Lioi MB, Paladino S, Di Schiavi E, Costa V, Ruoppolo M, Miano MG. Deregulation of microtubule organization and RNA metabolism in Arx models for lissencephaly and developmental epileptic encephalopathy. Hum Mol Genet 2022; 31:1884-1908. [PMID: 35094084 PMCID: PMC9169459 DOI: 10.1093/hmg/ddac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Loredana Poeta
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Adriano Barra
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Child Neurology Unit, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| |
Collapse
|
49
|
Malone TJ, Kaczmarek LK. The role of altered translation in intellectual disability and epilepsy. Prog Neurobiol 2022; 213:102267. [PMID: 35364140 PMCID: PMC10583652 DOI: 10.1016/j.pneurobio.2022.102267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
A very high proportion of cases of intellectual disability are genetic in origin and are associated with the occurrence of epileptic seizures during childhood. These two disorders together effect more than 5% of the world's population. One feature linking the two diseases is that learning and memory require the synthesis of new synaptic components and ion channels, while maintenance of overall excitability also requires synthesis of similar proteins in response to altered neuronal stimulation. Many of these disorders result from mutations in proteins that regulate mRNA processing, translation initiation, translation elongation, mRNA stability or upstream translation modulators. One theme that emerges on reviewing this field is that mutations in proteins that regulate changes in translation following neuronal stimulation are more likely to result in epilepsy with intellectual disability than general translation regulators with no known role in activity-dependent changes. This is consistent with the notion that activity-dependent translation in neurons differs from that in other cells types in that the changes in local cellular composition, morphology and connectivity that occur generally in response to stimuli are directly coupled to local synaptic activity and persist for months or years after the original stimulus.
Collapse
Affiliation(s)
- Taylor J Malone
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA.
| |
Collapse
|
50
|
Eisen TJ, Li JJ, Bartel DP. The interplay between translational efficiency, poly(A) tails, microRNAs, and neuronal activation. RNA (NEW YORK, N.Y.) 2022; 28:808-831. [PMID: 35273099 PMCID: PMC9074895 DOI: 10.1261/rna.079046.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Neurons provide a rich setting for studying post-transcriptional control. Here, we investigate the landscape of translational control in neurons and search for mRNA features that explain differences in translational efficiency (TE), considering the interplay between TE, mRNA poly(A)-tail lengths, microRNAs, and neuronal activation. In neurons and brain tissues, TE correlates with tail length, and a few dozen mRNAs appear to undergo cytoplasmic polyadenylation upon light or chemical stimulation. However, the correlation between TE and tail length is modest, explaining <5% of TE variance, and even this modest relationship diminishes when accounting for other mRNA features. Thus, tail length appears to affect TE only minimally. Accordingly, miRNAs, which accelerate deadenylation of their mRNA targets, primarily influence target mRNA levels, with no detectable effect on either steady-state tail lengths or TE. Larger correlates with TE include codon composition and predicted mRNA folding energy. When combined in a model, the identified correlates explain 38%-45% of TE variance. These results provide a framework for considering the relative impact of factors that contribute to translational control in neurons. They indicate that when examined in bulk, translational control in neurons largely resembles that of other types of post-embryonic cells. Thus, detection of more specialized control might require analyses that can distinguish translation occurring in neuronal processes from that occurring in cell bodies.
Collapse
Affiliation(s)
- Timothy J Eisen
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jingyi Jessica Li
- Department of Statistics, Department of Biostatistics, Department of Computational Medicine, and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| |
Collapse
|