1
|
Banaraki AK, Toghi A, Mohammadzadeh A. RDoC Framework Through the Lens of Predictive Processing: Focusing on Cognitive Systems Domain. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2024; 8:178-201. [PMID: 39478691 PMCID: PMC11523845 DOI: 10.5334/cpsy.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024]
Abstract
In response to shortcomings of the current classification system in translating discoveries from basic science to clinical applications, NIMH offers a new framework for studying mental health disorders called Research Domain Criteria (RDoC). This framework holds a multidimensional outlook on psychopathologies focusing on functional domains of behavior and their implementing neural circuits. In parallel, the Predictive Processing (PP) framework stands as a leading theory of human brain function, offering a unified explanation for various types of information processing in the brain. While both frameworks share an interest in studying psychopathologies based on pathophysiology, their integration still needs to be explored. Here, we argued in favor of the explanatory power of PP to be a groundwork for the RDoC matrix in validating its constructs and creating testable hypotheses about mechanistic interactions between molecular biomarkers and clinical traits. Together, predictive processing may serve as a foundation for achieving the goals of the RDoC framework.
Collapse
Affiliation(s)
| | - Armin Toghi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Azar Mohammadzadeh
- Research Center for Cognitive and Behavioral Studies, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Sammons M, Popescu MC, Chi J, Liberles SD, Gogolla N, Rolls A. Brain-body physiology: Local, reflex, and central communication. Cell 2024; 187:5877-5890. [PMID: 39423806 DOI: 10.1016/j.cell.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
Behavior is tightly synchronized with bodily physiology. Internal needs from the body drive behavior selection, while optimal behavior performance requires a coordinated physiological response. Internal state is dynamically represented by the nervous system to influence mood and emotion, and body-brain signals also direct responses to external sensory cues, enabling the organism to adapt and pursue its goals within an ever-changing environment. In this review, we examine the anatomy and function of the brain-body connection, manifested across local, reflex, and central regulation levels. We explore these hierarchical loops in the context of the immune system, specifically through the lens of immunoception, and discuss the impact of its dysregulation on human health.
Collapse
Affiliation(s)
- Megan Sammons
- Rappaport School of Medicine, Technion, Haifa, Israel
| | - Miranda C Popescu
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Jingyi Chi
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Asya Rolls
- Rappaport School of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
3
|
Ben-Simon Y, Hooper M, Narayan S, Daigle T, Dwivedi D, Way SW, Oster A, Stafford DA, Mich JK, Taormina MJ, Martinez RA, Opitz-Araya X, Roth JR, Allen S, Ayala A, Bakken TE, Barcelli T, Barta S, Bendrick J, Bertagnolli D, Bowlus J, Boyer G, Brouner K, Casian B, Casper T, Chakka AB, Chakrabarty R, Chance RK, Chavan S, Departee M, Donadio N, Dotson N, Egdorf T, Gabitto M, Garcia J, Gary A, Gasperini M, Goldy J, Gore BB, Graybuck L, Greisman N, Haeseleer F, Halterman C, Helback O, Hockemeyer D, Huang C, Huff S, Hunker A, Johansen N, Juneau Z, Kalmbach B, Khem S, Kussick E, Kutsal R, Larsen R, Lee C, Lee AY, Leibly M, Lenz GH, Liang E, Lusk N, Malone J, Mollenkopf T, Morin E, Newman D, Ng L, Ngo K, Omstead V, Oyama A, Pham T, Pom CA, Potekhina L, Ransford S, Rette D, Rimorin C, Rocha D, Ruiz A, Sanchez RE, Sedeno-Cortes A, Sevigny JP, Shapovalova N, Shulga L, Sigler AR, Siverts LA, Somasundaram S, Stewart K, Szelenyi E, Tieu M, Trader C, van Velthoven CT, Walker M, Weed N, Wirthlin M, Wood T, Wynalda B, Yao Z, Zhou T, Ariza J, Dee N, Reding M, Ronellenfitch K, Mufti S, Sunkin SM, Smith KA, Esposito L, Waters J, Thyagarajan B, Yao S, Lein ES, Zeng H, Levi BP, Ngai J, Ting J, Tasic B. A suite of enhancer AAVs and transgenic mouse lines for genetic access to cortical cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597244. [PMID: 38915722 PMCID: PMC11195086 DOI: 10.1101/2024.06.10.597244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The mammalian cortex is comprised of cells classified into types according to shared properties. Defining the contribution of each cell type to the processes guided by the cortex is essential for understanding its function in health and disease. We used transcriptomic and epigenomic cortical cell type taxonomies from mouse and human to define marker genes and putative enhancers and created a large toolkit of transgenic lines and enhancer AAVs for selective targeting of cortical cell populations. We report evaluation of fifteen new transgenic driver lines, two new reporter lines, and >800 different enhancer AAVs covering most subclasses of cortical cells. The tools reported here as well as the scaled process of tool creation and modification enable diverse experimental strategies towards understanding mammalian cortex and brain function.
Collapse
Affiliation(s)
- Yoav Ben-Simon
- Allen Institute for Brain Science, Seattle, WA 98109
- Equivalent contribution
| | - Marcus Hooper
- Allen Institute for Brain Science, Seattle, WA 98109
- Equivalent contribution
| | - Sujatha Narayan
- Allen Institute for Brain Science, Seattle, WA 98109
- Equivalent contribution
| | - Tanya Daigle
- Allen Institute for Brain Science, Seattle, WA 98109
- Equivalent contribution
| | | | - Sharon W. Way
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Aaron Oster
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - John K. Mich
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | | | - Jada R. Roth
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Shona Allen
- University of California, Berkeley, Berkeley, CA 94720
| | - Angela Ayala
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | - Stuard Barta
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | | | | | | | | | - Tamara Casper
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | | | - Sakshi Chavan
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | | | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Jazmin Garcia
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Bryan B. Gore
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Noah Greisman
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | | | | | - Cindy Huang
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Sydney Huff
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Avery Hunker
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Zoe Juneau
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Shannon Khem
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Emily Kussick
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Rana Kutsal
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Angus Y. Lee
- University of California, Berkeley, Berkeley, CA 94720
| | | | | | | | - Nicholas Lusk
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | - Elyse Morin
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Dakota Newman
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Alana Oyama
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | | | - Shea Ransford
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Dean Rette
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Dana Rocha
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Augustin Ruiz
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | | | | | | | - Ana R. Sigler
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | - Kaiya Stewart
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Eric Szelenyi
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | | | - Natalie Weed
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Toren Wood
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Thomas Zhou
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | | | - Luke Esposito
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA 98109
| | | | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Ed S. Lein
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Boaz P. Levi
- Allen Institute for Brain Science, Seattle, WA 98109
| | - John Ngai
- University of California, Berkeley, Berkeley, CA 94720
- Present affiliation: National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109
- Lead contact
| |
Collapse
|
4
|
Shi J, Nutkovich B, Kushinsky D, Rao BY, Herrlinger SA, Tsivourakis E, Mihaila TS, Paredes MEC, Malina KCK, O’Toole CK, Yong HC, Sanner BM, Xie A, Varol E, Losonczy A, Spiegel I. 2P-NucTag: on-demand phototagging for molecular analysis of functionally identified cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586118. [PMID: 38585980 PMCID: PMC10996538 DOI: 10.1101/2024.03.21.586118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neural circuits are characterized by genetically and functionally diverse cell types. A mechanistic understanding of circuit function is predicated on linking the genetic and physiological properties of individual neurons. However, it remains highly challenging to map the transcriptional properties to functionally heterogeneous neuronal subtypes in mammalian cortical circuits in vivo. Here, we introduce a high-throughput two-photon nuclear phototagging (2P-NucTag) approach optimized for on-demand and indelible labeling of single neurons via a photoactivatable red fluorescent protein following in vivo functional characterization in behaving mice. We demonstrate the utility of this function-forward pipeline by selectively labeling and transcriptionally profiling previously inaccessible 'place' and 'silent' cells in the mouse hippocampus. Our results reveal unexpected differences in gene expression between these hippocampal pyramidal neurons with distinct spatial coding properties. Thus, 2P-NucTag opens a new way to uncover the molecular principles that govern the functional organization of neural circuits.
Collapse
Affiliation(s)
- Jingcheng Shi
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, United States
| | - Boaz Nutkovich
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Dahlia Kushinsky
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Bovey Y. Rao
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, United States
| | - Stephanie A. Herrlinger
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Emmanouil Tsivourakis
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Tiberiu S. Mihaila
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Margaret E. Conde Paredes
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, United States
- Tandon School of Engineering, New York University, New York, NY, United States
| | - Katayun Cohen-Kashi Malina
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Cliodhna K. O’Toole
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Hyun Choong Yong
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Brynn M. Sanner
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Angel Xie
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Erdem Varol
- Tandon School of Engineering, New York University, New York, NY, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Ivo Spiegel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Granier A, Petrovici MA, Senn W, Wilmes KA. Confidence and second-order errors in cortical circuits. PNAS NEXUS 2024; 3:pgae404. [PMID: 39346625 PMCID: PMC11437657 DOI: 10.1093/pnasnexus/pgae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Minimization of cortical prediction errors has been considered a key computational goal of the cerebral cortex underlying perception, action, and learning. However, it is still unclear how the cortex should form and use information about uncertainty in this process. Here, we formally derive neural dynamics that minimize prediction errors under the assumption that cortical areas must not only predict the activity in other areas and sensory streams but also jointly project their confidence (inverse expected uncertainty) in their predictions. In the resulting neuronal dynamics, the integration of bottom-up and top-down cortical streams is dynamically modulated based on confidence in accordance with the Bayesian principle. Moreover, the theory predicts the existence of cortical second-order errors, comparing confidence and actual performance. These errors are propagated through the cortical hierarchy alongside classical prediction errors and are used to learn the weights of synapses responsible for formulating confidence. We propose a detailed mapping of the theory to cortical circuitry, discuss entailed functional interpretations, and provide potential directions for experimental work.
Collapse
Affiliation(s)
- Arno Granier
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mihai A Petrovici
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| | - Walter Senn
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| | - Katharina A Wilmes
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| |
Collapse
|
6
|
Wang B, Audette NJ, Schneider DM, Aljadeff J. Desegregation of neuronal predictive processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606684. [PMID: 39149380 PMCID: PMC11326200 DOI: 10.1101/2024.08.05.606684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Neural circuits construct internal 'world-models' to guide behavior. The predictive processing framework posits that neural activity signaling sensory predictions and concurrently computing prediction-errors is a signature of those internal models. Here, to understand how the brain generates predictions for complex sensorimotor signals, we investigate the emergence of high-dimensional, multi-modal predictive representations in recurrent networks. We find that robust predictive processing arises in a network with loose excitatory/inhibitory balance. Contrary to previous proposals of functionally specialized cell-types, the network exhibits desegregation of stimulus and prediction-error representations. We confirmed these model predictions by experimentally probing predictive-coding circuits using a rich stimulus-set to violate learned expectations. When constrained by data, our model further reveals and makes concrete testable experimental predictions for the distinct functional roles of excitatory and inhibitory neurons, and of neurons in different layers along a laminar hierarchy, in computing multi-modal predictions. These results together imply that in natural conditions, neural representations of internal models are highly distributed, yet structured to allow flexible readout of behaviorally-relevant information. The generality of our model advances the understanding of computation of internal models across species, by incorporating different types of predictive computations into a unified framework.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - David M Schneider
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Johnatan Aljadeff
- Department of Neurobiology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
7
|
Keller GB, Sterzer P. Predictive Processing: A Circuit Approach to Psychosis. Annu Rev Neurosci 2024; 47:85-101. [PMID: 38424472 DOI: 10.1146/annurev-neuro-100223-121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex. In this review, we summarize these findings and how they might relate to psychosis and to observed cell type-specific effects of antipsychotic drugs. We argue that quantifying the effects of antipsychotic drugs on specific neuronal circuit elements is a promising approach to understanding not only the mechanism of action of antipsychotic drugs but also psychosis. Finally, we outline some of the key experiments that should be done. The aims of this review are to provide an overview of the current circuit-based approaches to psychosis and to encourage further research in this direction.
Collapse
Affiliation(s)
- Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- Faculty of Natural Science, University of Basel, Basel, Switzerland
| | - Philipp Sterzer
- Department of Psychiatry, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
O'Toole SM, Keller GB. Sample collection protocol for single-cell RNA sequencing of functionally identified neuronal populations in vivo. STAR Protoc 2024; 5:103135. [PMID: 38875113 PMCID: PMC11225893 DOI: 10.1016/j.xpro.2024.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Here, we present a sample collection protocol for single-cell RNA sequencing of functionally identified neuronal populations in vivo with a virally delivered activity-dependent labeling tool (CaMPARI2). We describe steps for photoconversion in mice during the onset of computationally relevant events in a virtual reality environment, followed by removal and dissociation of the photo-labeled tissue, and separation of differentially labeled groups with fluorescence-activated cell sorting (FACS). We then detail procedures for characterizing and examining functionally relevant groups using standard bioinformatic techniques. For complete details on the use and execution of this protocol, please refer to O'Toole et al.1.
Collapse
Affiliation(s)
- Sean M O'Toole
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Yagishita H, Sasaki T. Integrating physiological and transcriptomic analyses at the single-neuron level. Neurosci Res 2024:S0168-0102(24)00065-8. [PMID: 38821412 DOI: 10.1016/j.neures.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024]
Abstract
Neurons generate various spike patterns to execute different functions. Understanding how these physiological neuronal spike patterns are related to their molecular characteristics is a long-standing issue in neuroscience. Herein, we review the results of recent studies that have addressed this issue by integrating physiological and transcriptomic techniques. A sequence of experiments, including in vivo recording and/or labeling, brain tissue slicing, cell collection, and transcriptomic analysis, have identified the gene expression profiles of brain neurons at the single-cell level, with activity patterns recorded in living animals. Although these techniques are still in the early stages, this methodological idea is principally applicable to various brain regions and neuronal activity patterns. Accumulating evidence will contribute to a deeper understanding of neuronal characteristics by integrating insights from molecules to cells, circuits, and behaviors.
Collapse
Affiliation(s)
- Haruya Yagishita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; Department of Neuropharmacology, Tohoku University School of Medicine, 4-1 Seiryo-machi, Aoba-Ku, Sendai 980-8575, Japan.
| |
Collapse
|
10
|
Maass W. How can neuromorphic hardware attain brain-like functional capabilities? Natl Sci Rev 2024; 11:nwad301. [PMID: 38577672 PMCID: PMC10989294 DOI: 10.1093/nsr/nwad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/22/2023] [Accepted: 11/30/2023] [Indexed: 04/06/2024] Open
Abstract
The author provides 4 design principles of how to make cortical microcircuits into neuromorphic hardwares, shedding light for the next generation neuromorphic hardware design.
Collapse
Affiliation(s)
- Wolfgang Maass
- Computer Science and Biomedical Engineering, Graz University of Technology, Austria
| |
Collapse
|
11
|
Yagishita H, Go Y, Okamoto K, Arimura N, Ikegaya Y, Sasaki T. A method to analyze gene expression profiles from hippocampal neurons electrophysiologically recorded in vivo. Front Neurosci 2024; 18:1360432. [PMID: 38694898 PMCID: PMC11061373 DOI: 10.3389/fnins.2024.1360432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Hippocampal pyramidal neurons exhibit diverse spike patterns and gene expression profiles. However, their relationships with single neurons are not fully understood. In this study, we designed an electrophysiology-based experimental procedure to identify gene expression profiles using RNA sequencing of single hippocampal pyramidal neurons whose spike patterns were recorded in living mice. This technique involves a sequence of experiments consisting of in vivo juxtacellular recording and labeling, brain slicing, cell collection, and transcriptome analysis. We demonstrated that the expression levels of a subset of genes in individual hippocampal pyramidal neurons were significantly correlated with their spike burstiness, submillisecond-level spike rise times or spike rates, directly measured by in vivo electrophysiological recordings. Because this methodological approach can be applied across a wide range of brain regions, it is expected to contribute to studies on various neuronal heterogeneities to understand how physiological spike patterns are associated with gene expression profiles.
Collapse
Affiliation(s)
- Haruya Yagishita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Go
- Graduate School of Information Science, University of Hyogo, Hyogo, Japan
- Department of System Neuroscience, Division of Behavioral Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Kazuki Okamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Neuroanatomy, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Nariko Arimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Lee K, Dora S, Mejias JF, Bohte SM, Pennartz CMA. Predictive coding with spiking neurons and feedforward gist signaling. Front Comput Neurosci 2024; 18:1338280. [PMID: 38680678 PMCID: PMC11045951 DOI: 10.3389/fncom.2024.1338280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/14/2024] [Indexed: 05/01/2024] Open
Abstract
Predictive coding (PC) is an influential theory in neuroscience, which suggests the existence of a cortical architecture that is constantly generating and updating predictive representations of sensory inputs. Owing to its hierarchical and generative nature, PC has inspired many computational models of perception in the literature. However, the biological plausibility of existing models has not been sufficiently explored due to their use of artificial neurons that approximate neural activity with firing rates in the continuous time domain and propagate signals synchronously. Therefore, we developed a spiking neural network for predictive coding (SNN-PC), in which neurons communicate using event-driven and asynchronous spikes. Adopting the hierarchical structure and Hebbian learning algorithms from previous PC neural network models, SNN-PC introduces two novel features: (1) a fast feedforward sweep from the input to higher areas, which generates a spatially reduced and abstract representation of input (i.e., a neural code for the gist of a scene) and provides a neurobiological alternative to an arbitrary choice of priors; and (2) a separation of positive and negative error-computing neurons, which counters the biological implausibility of a bi-directional error neuron with a very high baseline firing rate. After training with the MNIST handwritten digit dataset, SNN-PC developed hierarchical internal representations and was able to reconstruct samples it had not seen during training. SNN-PC suggests biologically plausible mechanisms by which the brain may perform perceptual inference and learning in an unsupervised manner. In addition, it may be used in neuromorphic applications that can utilize its energy-efficient, event-driven, local learning, and parallel information processing nature.
Collapse
Affiliation(s)
- Kwangjun Lee
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Shirin Dora
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Department of Computer Science, School of Science, Loughborough University, Loughborough, United Kingdom
| | - Jorge F. Mejias
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Sander M. Bohte
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Machine Learning Group, Centre of Mathematics and Computer Science, Amsterdam, Netherlands
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Galván Fraile J, Scherr F, Ramasco JJ, Arkhipov A, Maass W, Mirasso CR. Modeling circuit mechanisms of opposing cortical responses to visual flow perturbations. PLoS Comput Biol 2024; 20:e1011921. [PMID: 38452057 PMCID: PMC10950248 DOI: 10.1371/journal.pcbi.1011921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
In an ever-changing visual world, animals' survival depends on their ability to perceive and respond to rapidly changing motion cues. The primary visual cortex (V1) is at the forefront of this sensory processing, orchestrating neural responses to perturbations in visual flow. However, the underlying neural mechanisms that lead to distinct cortical responses to such perturbations remain enigmatic. In this study, our objective was to uncover the neural dynamics that govern V1 neurons' responses to visual flow perturbations using a biologically realistic computational model. By subjecting the model to sudden changes in visual input, we observed opposing cortical responses in excitatory layer 2/3 (L2/3) neurons, namely, depolarizing and hyperpolarizing responses. We found that this segregation was primarily driven by the competition between external visual input and recurrent inhibition, particularly within L2/3 and L4. This division was not observed in excitatory L5/6 neurons, suggesting a more prominent role for inhibitory mechanisms in the visual processing of the upper cortical layers. Our findings share similarities with recent experimental studies focusing on the opposing influence of top-down and bottom-up inputs in the mouse primary visual cortex during visual flow perturbations.
Collapse
Affiliation(s)
- J. Galván Fraile
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), UIB-CSIC, Palma de Mallorca, Spain
| | - Franz Scherr
- Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria
| | - José J. Ramasco
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), UIB-CSIC, Palma de Mallorca, Spain
| | - Anton Arkhipov
- Allen Institute, Seattle, Washington, United States of America
| | - Wolfgang Maass
- Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria
| | - Claudio R. Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), UIB-CSIC, Palma de Mallorca, Spain
| |
Collapse
|
14
|
Seignette K, Jamann N, Papale P, Terra H, Porneso RO, de Kraker L, van der Togt C, van der Aa M, Neering P, Ruimschotel E, Roelfsema PR, Montijn JS, Self MW, Kole MHP, Levelt CN. Experience shapes chandelier cell function and structure in the visual cortex. eLife 2024; 12:RP91153. [PMID: 38192196 PMCID: PMC10963032 DOI: 10.7554/elife.91153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Detailed characterization of interneuron types in primary visual cortex (V1) has greatly contributed to understanding visual perception, yet the role of chandelier cells (ChCs) in visual processing remains poorly characterized. Using viral tracing we found that V1 ChCs predominantly receive monosynaptic input from local layer 5 pyramidal cells and higher-order cortical regions. Two-photon calcium imaging and convolutional neural network modeling revealed that ChCs are visually responsive but weakly selective for stimulus content. In mice running in a virtual tunnel, ChCs respond strongly to events known to elicit arousal, including locomotion and visuomotor mismatch. Repeated exposure of the mice to the virtual tunnel was accompanied by reduced visual responses of ChCs and structural plasticity of ChC boutons and axon initial segment length. Finally, ChCs only weakly inhibited pyramidal cells. These findings suggest that ChCs provide an arousal-related signal to layer 2/3 pyramidal cells that may modulate their activity and/or gate plasticity of their axon initial segments during behaviorally relevant events.
Collapse
Affiliation(s)
- Koen Seignette
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Nora Jamann
- Department of Axonal Signaling, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Biology Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Paolo Papale
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Huub Terra
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Ralph O Porneso
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Leander de Kraker
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Chris van der Togt
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Maaike van der Aa
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Paul Neering
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Emma Ruimschotel
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la VisionParisFrance
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Jorrit S Montijn
- Department of Cortical Structure & Function, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Maarten HP Kole
- Department of Axonal Signaling, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Biology Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Christiaan N Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University AmsterdamAmsterdamNetherlands
| |
Collapse
|
15
|
Shipp S. Computational components of visual predictive coding circuitry. Front Neural Circuits 2024; 17:1254009. [PMID: 38259953 PMCID: PMC10800426 DOI: 10.3389/fncir.2023.1254009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
If a full visual percept can be said to be a 'hypothesis', so too can a neural 'prediction' - although the latter addresses one particular component of image content (such as 3-dimensional organisation, the interplay between lighting and surface colour, the future trajectory of moving objects, and so on). And, because processing is hierarchical, predictions generated at one level are conveyed in a backward direction to a lower level, seeking to predict, in fact, the neural activity at that prior stage of processing, and learning from errors signalled in the opposite direction. This is the essence of 'predictive coding', at once an algorithm for information processing and a theoretical basis for the nature of operations performed by the cerebral cortex. Neural models for the implementation of predictive coding invoke specific functional classes of neuron for generating, transmitting and receiving predictions, and for producing reciprocal error signals. Also a third general class, 'precision' neurons, tasked with regulating the magnitude of error signals contingent upon the confidence placed upon the prediction, i.e., the reliability and behavioural utility of the sensory data that it predicts. So, what is the ultimate source of a 'prediction'? The answer is multifactorial: knowledge of the current environmental context and the immediate past, allied to memory and lifetime experience of the way of the world, doubtless fine-tuned by evolutionary history too. There are, in consequence, numerous potential avenues for experimenters seeking to manipulate subjects' expectation, and examine the neural signals elicited by surprising, and less surprising visual stimuli. This review focuses upon the predictive physiology of mouse and monkey visual cortex, summarising and commenting on evidence to date, and placing it in the context of the broader field. It is concluded that predictive coding has a firm grounding in basic neuroscience and that, unsurprisingly, there remains much to learn.
Collapse
Affiliation(s)
- Stewart Shipp
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
16
|
Davidson CJ, Mascarin AT, Yahya MA, Rubio FJ, Gheidi A. Approaches and considerations of studying neuronal ensembles: a brief review. Front Cell Neurosci 2023; 17:1310724. [PMID: 38155864 PMCID: PMC10752959 DOI: 10.3389/fncel.2023.1310724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
First theorized by Hebb, neuronal ensembles have provided a framework for understanding how the mammalian brain operates, especially regarding learning and memory. Neuronal ensembles are discrete, sparsely distributed groups of neurons that become activated in response to a specific stimulus and are thought to provide an internal representation of the world. Beyond the study of region-wide or projection-wide activation, the study of ensembles offers increased specificity and resolution to identify and target specific memories or associations. Neuroscientists interested in the neurobiology of learning, memory, and motivated behavior have used electrophysiological-, calcium-, and protein-based proxies of neuronal activity in preclinical models to better understand the neurobiology of learned and motivated behaviors. Although these three approaches may be used to pursue the same general goal of studying neuronal ensembles, technical differences lead to inconsistencies in the output and interpretation of data. This mini-review highlights some of the methodologies used in electrophysiological-, calcium-, and protein-based studies of neuronal ensembles and discusses their strengths and weaknesses.
Collapse
Affiliation(s)
- Cameron J. Davidson
- William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - Alixandria T. Mascarin
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Majd A. Yahya
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - F. Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Bethesda, MD, United States
| | - Ali Gheidi
- Department of Biomedical Sciences, Mercer University, Macon, GA, United States
| |
Collapse
|
17
|
Sorensen SA, Gouwens NW, Wang Y, Mallory M, Budzillo A, Dalley R, Lee B, Gliko O, Kuo HC, Kuang X, Mann R, Ahmadinia L, Alfiler L, Baftizadeh F, Baker K, Bannick S, Bertagnolli D, Bickley K, Bohn P, Brown D, Bomben J, Brouner K, Chen C, Chen K, Chvilicek M, Collman F, Daigle T, Dawes T, de Frates R, Dee N, DePartee M, Egdorf T, El-Hifnawi L, Enstrom R, Esposito L, Farrell C, Gala R, Glomb A, Gamlin C, Gary A, Goldy J, Gu H, Hadley K, Hawrylycz M, Henry A, Hill D, Hirokawa KE, Huang Z, Johnson K, Juneau Z, Kebede S, Kim L, Lee C, Lesnar P, Li A, Glomb A, Li Y, Liang E, Link K, Maxwell M, McGraw M, McMillen DA, Mukora A, Ng L, Ochoa T, Oldre A, Park D, Pom CA, Popovich Z, Potekhina L, Rajanbabu R, Ransford S, Reding M, Ruiz A, Sandman D, Siverts L, Smith KA, Stoecklin M, Sulc J, Tieu M, Ting J, Trinh J, Vargas S, Vumbaco D, Walker M, Wang M, Wanner A, Waters J, Williams G, Wilson J, Xiong W, Lein E, Berg J, Kalmbach B, Yao S, Gong H, Luo Q, Ng L, Sümbül U, Jarsky T, Yao Z, Tasic B, Zeng H. Connecting single-cell transcriptomes to projectomes in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.25.568393. [PMID: 38168270 PMCID: PMC10760188 DOI: 10.1101/2023.11.25.568393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we reconstructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic variations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.
Collapse
Affiliation(s)
| | | | - Yun Wang
- Allen Institute for Brain Science
| | | | | | | | | | | | | | - Xiuli Kuang
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | - Chao Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Kai Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | - Nick Dee
- Allen Institute for Brain Science
| | | | | | | | | | | | | | | | | | | | | | | | - Hong Gu
- Allen Institute for Brain Science
| | | | | | | | | | | | - Zili Huang
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | | | | | | | - Lisa Kim
- Allen Institute for Brain Science
| | | | | | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | | | - Yaoyao Li
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | - Zoran Popovich
- University of Washington, Dept. of Computer Science and Engineering
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wei Xiong
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Ed Lein
- Allen Institute for Brain Science
| | - Jim Berg
- Allen Institute for Brain Science
| | | | | | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Lydia Ng
- Allen Institute for Brain Science
| | | | | | | | | | | |
Collapse
|