1
|
Teegala SB, Sarkar P, Siegel DM, Sheng Z, Hao L, Bello NT, De Lecea L, Beck KD, Routh VH. Lateral hypothalamus hypocretin/orexin glucose-inhibited neurons promote food seeking after calorie restriction. Mol Metab 2023; 76:101788. [PMID: 37536499 PMCID: PMC10448466 DOI: 10.1016/j.molmet.2023.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE The present study tests the hypothesis that changes in the glucose sensitivity of lateral hypothalamus (LH) hypocretin/orexin glucose-inhibited (GI) neurons following weight loss leads to glutamate plasticity on ventral tegmental area (VTA) dopamine neurons and drives food seeking behavior. METHODS C57BL/6J mice were calorie restricted to a 15% body weight loss and maintained at that body weight for 1 week. The glucose sensitivity of LH hypocretin/orexin GI and VTA dopamine neurons was measured using whole cell patch clamp recordings in brain slices. Food seeking behavior was assessed using conditioned place preference (CPP). RESULTS 1-week maintenance of calorie restricted 15% body weight loss reduced glucose inhibition of hypocretin/orexin GI neurons resulting in increased neuronal activation with reduced glycemia. The effect of decreased glucose on hypocretin/orexin GI neuronal activation was blocked by pertussis toxin (inhibitor of G-protein coupled receptor subunit Gαi/o) and Rp-cAMP (inhibitor of protein kinase A, PKA). This suggests that glucose sensitivity is mediated by the Gαi/o-adenylyl cyclase-cAMP-PKA signaling pathway. The excitatory effect of the hunger hormone, ghrelin, on hcrt/ox neurons was also blocked by Rp-cAMP suggesting that hormonal signals of metabolic status may converge on the glucose sensing pathway. Food restriction and weight loss increased glutamate synaptic strength (indexed by increased AMPA/NMDA receptor current ratio) on VTA dopamine neurons and the motivation to seek food (indexed by CPP). Chemogenetic inhibition of hypocretin/orexin neurons during caloric restriction and weight loss prevented these changes in glutamate plasticity and food seeking behavior. CONCLUSIONS We hypothesize that this change in the glucose sensitivity of hypocretin/orexin GI neurons may drive, in part, food seeking behavior following caloric restriction.
Collapse
Affiliation(s)
- Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Zhenyu Sheng
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Lihong Hao
- Department of Animal Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nicholas T Bello
- Department of Animal Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Luis De Lecea
- Department of Psychiatry and Behavioral Sciences. Wu Tsai Neuroscience Institute. 1201 Welch Rd. Stanford, CA 94305, USA
| | - Kevin D Beck
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; Neurobehavioral Research Laboratory, Research Service, Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
2
|
Flores-Ramirez FJ, Varodayan FP, Patel RR, Illenberger JM, Di Ottavio F, Roberto M, Martin-Fardon R. Blockade of orexin receptors in the infralimbic cortex prevents stress-induced reinstatement of alcohol-seeking behaviour in alcohol-dependent rats. Br J Pharmacol 2023; 180:1500-1515. [PMID: 36537731 PMCID: PMC10577928 DOI: 10.1111/bph.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE A major problem managing alcohol use disorder is the high vulnerability to relapse, even after long periods of abstinence. Chronic alcohol use dysregulates stress responsivity, rendering this system hyporesponsive and making individuals vulnerable to relapse. Orexin (hypocretin) plays a role in diverse physiological processes, including stress. Orexin neurons in the hypothalamus, project to the infralimbic cortex. This study asked does infralimbic cortex orexin transmission play a significant role in stress-induced reinstatement of alcohol-seeking behaviour in alcohol-dependent rats. EXPERIMENTAL APPROACH Male and female rats were trained to self-administer 10% alcohol (3 weeks) and then made dependent via chronic intermittent alcohol vapour exposure. Following extinction (5 days·week-1 at 8 h abstinence for 10 sessions), rats received an intra- infralimbic cortex microinfusion of the OX1/2 antagonist TCS 1102 (15 μg/0.5 μl per side) and then tested for footshock stress-induced reinstatement of alcohol seeking. In a separate cohort, orexin regulation of infralimbic cortex neuronal activity at the time of reinstatement was investigated using ex vivo electrophysiology. KEY RESULTS TCS 1102 prevented reinstatement in dependent animals only. Moreover, Hcrtr mRNA expression in the hypothalamus and Hcrtr1/2 in the infralimbic cortex increased in alcohol-dependent animals at the time of testing. Dependence dampened basal orexin/OX receptor influence over infralimbic cortex GABAergic synapses (using TCS 1102) allow for greater stimulated orexin effects. CONCLUSION AND IMPLICATIONS Infralimbic cortex transmission is implicate in stress-induced reinstatement of alcohol-seeking behaviour in subjects with a history of alcohol dependence and show maladaptive recruitment of infralimbic cortex transmission by alcohol dependence.
Collapse
Affiliation(s)
| | - Florence P. Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Reesha R. Patel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Francesca Di Ottavio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
3
|
Flores-Ramirez FJ, Matzeu A, Sánchez-Marín L, Martin-Fardon R. Blockade of corticotropin-releasing factor-1 receptors in the infralimbic cortex prevents stress-induced reinstatement of alcohol seeking in male Wistar rats: Evidence of interaction between CRF 1 and orexin receptor signaling. Neuropharmacology 2022; 210:109046. [PMID: 35341789 PMCID: PMC9176217 DOI: 10.1016/j.neuropharm.2022.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Alcohol use dysregulates responsivity to stress, which is mediated by corticotropin-releasing factor (CRF). With repeated cycles of alcohol use, the hypothalamic-pituitary-adrenal axis becomes hyporesponsive, rendering individuals vulnerable to the reinstatement of alcohol-seeking behavior during stressful episodes. Orexin (Orx; also called hypocretin) plays a well-established role in regulating diverse physiological processes, including stress, and interacts with CRF. The infralimbic cortex (IL) is a CRF-rich region. Anatomical evidence suggests that CRF and Orx interact in this area. To test the behavioral implication of CRF and Orx transmission in the IL during the stress-induced reinstatement of alcohol-seeking behavior, male Wistar rats were trained to self-administer 10% alcohol for 3 weeks. The rats then underwent two weeks of extinction training (identical to the alcohol self-administration sessions, but alcohol was withheld). The day after the last extinction session, the rats received a bilateral intra-IL injection of the CRF1 receptor antagonist CP154,526 (0.6 μg/0.5 μl/side), the dual Orx receptor antagonist TCS1102 (15 μg/0.5 μl/side), or their combination and then were tested for the footshock stress-induced reinstatement of alcohol-seeking behavior. CP154,526 significantly prevented reinstatement, but TCS1102 did not produce such an effect. Interestingly, the co-administration of TCS1102 and CP154,526 reversed the effect of CP154,526 alone, and footshock stress induced a significant increase in Crhr1 and Hcrtr2 mRNA expression in the IL. These results demonstrate a functional interaction between Orx receptor and CRF1 receptor signaling and suggest that CRF1 receptor antagonism may ameliorate stress-induced alcohol-seeking behavior.
Collapse
Affiliation(s)
| | - Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Laura Sánchez-Marín
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
4
|
Drug-Evoked Synaptic Plasticity of Excitatory Transmission in the Ventral Tegmental Area. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039701. [PMID: 32341062 DOI: 10.1101/cshperspect.a039701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cocaine leads to a strong euphoria, which is at the origin of its recreational use. Past the acute effects, the drug leaves traces in the brain that persist long after it has been cleared from the body. These traces eventually shape behavior such that drug use may become compulsive, and addiction develops. Here, we discuss cocaine-evoked synaptic plasticity of glutamatergic transmission onto dopamine (DA) neurons of the ventral tegmental area (VTA) as one of the earliest traces after a first injection of cocaine. We review the literature that has examined the induction requirements, as well as the expression mechanism of this form of plasticity, and ask the question about its functional significance.
Collapse
|
5
|
Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020; 14:599710. [PMID: 33240054 PMCID: PMC7683390 DOI: 10.3389/fnint.2020.599710] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Neural systems involved in processing natural rewards and drugs of abuse overlap and exposure to drugs of abuse induce neuroadaptations that can cause compulsive-like behavior. For example, the recruitment of the orexin (Orx) system by drugs of abuse has been proposed to induce neuroadaptations that in turn alter its function, reflected by maladaptive, compulsive, and addictive behavior. Orexin neurons project to the paraventricular nucleus of the thalamus (PVT)—particularly the posterior part (pPVT), a structure that plays a key role in stress regulation. This study investigated whether Orx transmission in the pPVT plays a role in stress-induced reinstatement of reward-seeking behavior toward ethanol (EtOH) and a highly palatable food reward [sweetened condensed milk (SCM)] in rats and whether this role changes with EtOH dependence. After being trained to orally self-administer EtOH or SCM, the rats were made dependent (EtOHD and SCMD) by chronic intermittent EtOH vapor exposure. The control nondependent groups (EtOHND and SCMND) were exposed to air. Following extinction, the rats were tested for stress-induced reinstatement of EtOH- and SCM-seeking behavior. Stress reinstated EtOH- and SCM-seeking behavior in all groups (EtOHD/ND and SCMD/ND). Administration of the dual Orx receptor (OrxR) antagonist TCS1102 (15 μg) in the pPVT prevented stress-induced reinstatement only in dependent rats (EtOHD and SCMD). In parallel, the qPCR analysis showed that Orx mRNA expression in the hypothalamus and OrxR1/R2 mRNA expression in the pPVT were increased at the time of testing in the EtOHD and SCMD groups. These results are the first to implicate Orx transmission in the pPVT in the stress-induced reinstatement of reward-seeking behavior in EtOH dependent rats and indicate the maladaptive recruitment of Orx transmission in the pPVT by EtOH dependence.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
6
|
Hirschberg PR, Sarkar P, Teegala SB, Routh VH. Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis? J Neuroendocrinol 2020; 32:e12773. [PMID: 31329314 PMCID: PMC7074896 DOI: 10.1111/jne.12773] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022]
Abstract
The ventromedial hypothalamus (VMH) plays a complex role in glucose and energy homeostasis. The VMH is necessary for the counter-regulatory response to hypoglycaemia (CRR) that increases hepatic gluconeogenesis to restore euglycaemia. On the other hand, the VMH also restrains hepatic glucose production during euglycaemia and stimulates peripheral glucose uptake. The VMH is also important for the ability of oestrogen to increase energy expenditure. This latter function is mediated by VMH modulation of the lateral/perifornical hypothalamic area (lateral/perifornical hypothalamus) orexin neurones. Activation of VMH AMP-activated protein kinase (AMPK) is necessary for the CRR. By contrast, VMH AMPK inhibition favours decreased basal glucose levels and is required for oestrogen to increase energy expenditure. Specialised VMH glucose-sensing neurones confer the ability to sense and respond to changes in blood glucose levels. Glucose-excited (GE) neurones increase and glucose-inhibited (GI) neurones decrease their activity as glucose levels rise. VMH GI neurones, in particular, appear to be important in the CRR, although a role for GE neurones cannot be discounted. AMPK mediates glucose sensing in VMH GI neurones suggesting that, although activation of these neurones is important for the CRR, it is necessary to silence them to lower basal glucose levels and enable oestrogen to increase energy expenditure. In support of this, we found that oestrogen reduces activation of VMH GI neurones in low glucose by inhibiting AMPK. In this review, we present the evidence underlying the role of the VMH in glucose and energy homeostasis. We then discuss the role of VMH glucose-sensing neurones in mediating these effects, with a strong emphasis on oestrogenic regulation of glucose sensing and how this may affect glucose and energy homeostasis.
Collapse
Affiliation(s)
- Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
7
|
Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2019; 164:107906. [PMID: 31841797 DOI: 10.1016/j.neuropharm.2019.107906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
Abstract
Prescription opioids, such as oxycodone, are potent analgesics that are used to treat and manage pain. However, oxycodone is one of the most commonly abused prescription drugs. Finding an effective strategy to prevent prescription opioid use disorder is urgent. Orexin receptors (OrxR1 and OrxR2) have been implicated in the regulation of motivation, arousal, and stress, making them possible targets for the treatment of substance use disorder. To study the significance of environmental stimuli in maintaining the vulnerability to relapse to oxycodone use, resistance to the extinction of oxycodone-seeking behavior that was elicited by an oxycodone-related stimulus was examined. Rats were trained to self-administer oxycodone in the presence of a contextual/discriminative stimulus (SD). Using this procedure, the rats readily acquired oxycodone self-administration and exhibited increases in physical signs of opioid withdrawal. Following extinction, response-reinstating effects of re-exposure to the SD perseverated. We then tested whether OrxR blockade prevents oxycodone intake and relapse. The effects of the OrxR1 antagonist SB334867 and OrxR2 antagonist TCSOX229 on oxycodone self-administration were tested. SB334867 significantly decreased oxycodone self-administration, whereas TCSOX229 did not produce any effect. To investigate whether OrxR1 and OrxR2 blockade prevents oxycodone seeking, the rats were tested for the ability of SB334867 and TCSOX229 to prevent the SD-induced conditioned reinstatement of oxycodone-seeking behavior. SB334867 decreased oxycodone-seeking behavior, whereas TCSOX229 was ineffective. These results suggest that OrxR1 antagonism prevents excessive prescription opioid use and relapse and might be beneficial for the treatment of prescription opioid use disorder.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
8
|
Multiple Sclerosis: Melatonin, Orexin, and Ceramide Interact with Platelet Activation Coagulation Factors and Gut-Microbiome-Derived Butyrate in the Circadian Dysregulation of Mitochondria in Glia and Immune Cells. Int J Mol Sci 2019; 20:ijms20215500. [PMID: 31694154 PMCID: PMC6862663 DOI: 10.3390/ijms20215500] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Recent data highlight the important roles of the gut microbiome, gut permeability, and alterations in mitochondria functioning in the pathophysiology of multiple sclerosis (MS). This article reviews such data, indicating two important aspects of alterations in the gut in the modulation of mitochondria: (1) Gut permeability increases toll-like receptor (TLR) activators, viz circulating lipopolysaccharide (LPS), and exosomal high-mobility group box (HMGB)1. LPS and HMGB1 increase inducible nitric oxide synthase and superoxide, leading to peroxynitrite-driven acidic sphingomyelinase and ceramide. Ceramide is a major driver of MS pathophysiology via its impacts on glia mitochondria functioning; (2) Gut dysbiosis lowers production of the short-chain fatty acid, butyrate. Butyrate is a significant positive regulator of mitochondrial function, as well as suppressing the levels and effects of ceramide. Ceramide acts to suppress the circadian optimizers of mitochondria functioning, viz daytime orexin and night-time melatonin. Orexin, melatonin, and butyrate increase mitochondria oxidative phosphorylation partly via the disinhibition of the pyruvate dehydrogenase complex, leading to an increase in acetyl-coenzyme A (CoA). Acetyl-CoA is a necessary co-substrate for activation of the mitochondria melatonergic pathway, allowing melatonin to optimize mitochondrial function. Data would indicate that gut-driven alterations in ceramide and mitochondrial function, particularly in glia and immune cells, underpin MS pathophysiology. Aryl hydrocarbon receptor (AhR) activators, such as stress-induced kynurenine and air pollutants, may interact with the mitochondrial melatonergic pathway via AhR-induced cytochrome P450 (CYP)1b1, which backward converts melatonin to N-acetylserotonin (NAS). The loss of mitochnodria melatonin coupled with increased NAS has implications for altered mitochondrial function in many cell types that are relevant to MS pathophysiology. NAS is increased in secondary progressive MS, indicating a role for changes in the mitochondria melatonergic pathway in the progression of MS symptomatology. This provides a framework for the integration of diverse bodies of data on MS pathophysiology, with a number of readily applicable treatment interventions, including the utilization of sodium butyrate.
Collapse
|
9
|
Matzeu A, Martin-Fardon R. Drug Seeking and Relapse: New Evidence of a Role for Orexin and Dynorphin Co-transmission in the Paraventricular Nucleus of the Thalamus. Front Neurol 2018; 9:720. [PMID: 30210441 PMCID: PMC6121102 DOI: 10.3389/fneur.2018.00720] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023] Open
Abstract
The long-lasting vulnerability to relapse remains the main challenge for the successful treatment of drug addiction. Neural systems that are involved in processing natural rewards and drugs of abuse overlap. However, neuroplasticity that is caused by drug exposure may be responsible for maladaptive, compulsive, and addictive behavior. The orexin (Orx) system participates in regulating numerous physiological processes, including energy metabolism, arousal, and feeding, and is recruited by drugs of abuse. The Orx system is differentially recruited by drugs and natural rewards. Specifically, we found that the Orx system is more engaged by drugs than by non-drugs, such as sweetened condensed milk (SCM) or a glucose saccharin solution (GSS), in an operant model of reward seeking. Although stimuli (S+) that are conditioned to cocaine (COC), ethanol, and SCM/GSS equally elicited reinstatement, Orx receptor blockade reversed conditioned reinstatement for drugs vs. non-drugs. Moreover, the hypothalamic recruitment of Orx cells was greater in rats that were tested with the COC S+ vs. SCM S+, indicating of a preferential role for the Orx system in perseverative, compulsive-like COC seeking and not behavior that is motivated by palatable food. Accumulating evidence indicates that the paraventricular nucleus of the thalamus (PVT), which receives major Orx projections, mediates drug-seeking behavior. All Orx neurons contain dynorphin (Dyn), and Orx and Dyn are co-released. In the VTA, they play opposing roles in reward and motivation. To fully understand the physiological and behavioral roles of Orx transmission in the PVT, one important consideration is that Orx neurons that project to the PVT may co-release Orx with another peptide, such as Dyn. The PVT expresses both Orx receptors and κ opioid receptors, suggesting that Orx and Dyn act in tandem when released in the PVT, in addition to the VTA. The present review discusses recent findings that suggest the maladaptive recruitment of Orx/Dyn-PVT neurotransmission by drugs of abuse vs. a highly palatable food reward.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
10
|
Carboni L, Romoli B, Bate ST, Romualdi P, Zoli M. Increased expression of CRF and CRF-receptors in dorsal striatum, hippocampus, and prefrontal cortex after the development of nicotine sensitization in rats. Drug Alcohol Depend 2018; 189:12-20. [PMID: 29857328 DOI: 10.1016/j.drugalcdep.2018.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nicotine addiction supports tobacco smoking, a main preventable cause of disease and death in Western countries. It develops through long-term neuroadaptations in the brain reward circuit by modulating intracellular pathways and regulating gene expression. This study assesses the regional expression of the transcripts of the CRF transmission in a nicotine sensitization model, since it is hypothesised that the molecular neuroadaptations that mediate the development of sensitization contribute to the development of addiction. METHODS Rats received intraperitoneal nicotine administrations (0.4 mg/kg) once daily for either 1 day or over 5 days. Locomotor activity was assessed to evaluate the development of sensitization. The mRNA expression of CRF and CRF1 and CRF2 receptors was measured by qPCR in the ventral mesencephalon, ventral striatum, dorsal striatum (DS), prefrontal cortex (PFCx), and hippocampus (Hip). RESULTS Acute nicotine administration increased locomotor activity in rats. In the sub-chronic group, locomotor activity progressively increased and reached a clear sensitization. Significant effects of sensitization on CRF mRNA levels were detected in the DS (increasing effect). Significantly higher CRF1 and CRF2 receptor levels after sensitization were detected in the Hip. Additionally, CRF2 receptor levels were augmented by sensitization in the PFCx, and treatment and time-induced increases were detected in the DS. Nicotine treatment effects were observed on CRF1R levels in the DS. CONCLUSIONS This study suggests that the CRF transmission, in addition to its role in increasing withdrawal-related anxiety, may be involved in the development of nicotine-habituated behaviours through reduced control of impulses and the aberrant memory plasticity characterising addiction.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Benedetto Romoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy; Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Simon T Bate
- Statistical Sciences, GlaxoSmithKline, 980 Great West Rd, Brentford, Middlesex, TW8 9GS, UK
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy
| |
Collapse
|
11
|
Sahafzadeh M, Karimi-Haghighi S, Mousavi Z, Haghparast A. Role of the orexin receptors within the nucleus accumbens in the drug priming-induced reinstatement of morphine seeking in the food deprived rats. Brain Res Bull 2017; 137:217-224. [PMID: 29258865 DOI: 10.1016/j.brainresbull.2017.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/29/2022]
Abstract
Orexin plays a key role in mediating stress-induced drug relapse. However, the role of different types of orexinergic receptors that modulate stress-induced drug seeking remains unknown. The nucleus accumbens (NAc) has an important role in the reward system and receives orexinergic projections of the lateral hypothalamus. In addition, orexin interacts with other receptors that are involved in drug reinstatement. Therefore, in the present study, the role of orexin receptors in the NAc in morphine priming- induced reinstatement and the effect of food deprivation (FD) on drug reinstatement were examined. The extinguished morphine preference rats were tested for reinstatement following the 24-h FD condition after conditioning was induced. In the other groups, the animals were given intra-accumbal administration of SB334867 (01, 1 and 10 nM/0.5 μl DMSO) as an orexin-1 receptor antagonist and TCSOX229 (1, 5 and 25 nM/0.5 μl DMSO), as an orexin-2 receptor antagonist. The results showed that the blockade of two types of orexin receptors in the NAc remarkably attenuated the effect of FD on the drug reinstatement; however, they were more effective in FD condition. These findings indicate that the NAc is a brain area within which orexin has a fundamental role in the effect of stress on morphine-induced reinstatement and the effect of food deprivation- on the reinstatement of morphine.
Collapse
Affiliation(s)
- Marjan Sahafzadeh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Nutritional and Food Sciences, Faculty of Agriculture, Rheinische Friedrich-Wilhelm University of Bonn, Bonn, Germany
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Ostroumov A, Dani JA. Convergent Neuronal Plasticity and Metaplasticity Mechanisms of Stress, Nicotine, and Alcohol. Annu Rev Pharmacol Toxicol 2017; 58:547-566. [PMID: 28977763 DOI: 10.1146/annurev-pharmtox-010617-052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress and tobacco smoking are risk factors for alcoholism, but the underlying neural mechanisms are not well understood. Although stress, nicotine, and alcohol have broad, individual effects in the brain, some of their actions converge onto the same mechanisms and circuits. Stress and nicotine augment alcohol-related behaviors, in part via modulation of alcohol-evoked neuronal plasticity and metaplasticity mechanisms. Stress modulates alcohol-evoked plasticity via the release of signaling molecules that influence synaptic transmission. Nicotine also activates some of the same signaling molecules, cells, and circuits, producing a convergence of both stress and nicotine onto common plasticity mechanisms that influence alcohol self-administration. We describe several forms of alcohol-induced plasticity, including classic Hebbian plasticity at glutamatergic synapses, and we highlight less appreciated forms, such as non-Hebbian and GABAergic synaptic plasticity. Risk factors such as stress and nicotine initiate lasting neural changes that modify subsequent alcohol-induced synaptic plasticity and increase the vulnerability to alcohol addiction.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
13
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2017; 68:816-71. [PMID: 27363441 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
14
|
Henckens MJAG, Deussing JM, Chen A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 2016; 17:636-51. [PMID: 27586075 DOI: 10.1038/nrn.2016.94] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dysregulation of the corticotropin-releasing factor (CRF)-urocortin (UCN) system has been implicated in stress-related psychopathologies such as depression and anxiety. It has been proposed that CRF-CRF receptor type 1 (CRFR1) signalling promotes the stress response and anxiety-like behaviour, whereas UCNs and CRFR2 activation mediate stress recovery and the restoration of homeostasis. Recent findings, however, provide clear evidence that this view is overly simplistic. Instead, a more complex picture has emerged that suggests that there are brain region- and cell type-specific effects of CRFR signalling that are influenced by the individual's prior experience and that shape molecular, cellular and ultimately behavioural responses to stressful challenges.
Collapse
Affiliation(s)
- Marloes J A G Henckens
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
15
|
Garcia-Keller C, Kupchik Y, Gipson CD, Brown RM, Spencer S, Bollati F, Esparza MA, Roberts-Wolfe D, Heinsbroek J, Bobadilla AC, Cancela LM, Kalivas PW. Glutamatergic mechanisms of comorbidity between acute stress and cocaine self-administration. Mol Psychiatry 2016; 21:1063-9. [PMID: 26821978 PMCID: PMC4823171 DOI: 10.1038/mp.2015.151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining whether the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress, and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate-mediated synaptic currents and dendritic spine morphology. We also determined whether acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders.
Collapse
Affiliation(s)
- Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yonatan Kupchik
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel 9112102
| | - Cassandra D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Robyn M Brown
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | - Sade Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Flavia Bollati
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria A Esparza
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Doug Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jasper Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Liliana M Cancela
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,Corresponding Author. Peter Kalivas, Ph.D., , Phone: 843-876-2340, FAX: 843-792-4423
| |
Collapse
|
16
|
Avegno EM, Salling MC, Borgkvist A, Mrejeru A, Whitebirch AC, Margolis EB, Sulzer D, Harrison NL. Voluntary adolescent drinking enhances excitation by low levels of alcohol in a subset of dopaminergic neurons in the ventral tegmental area. Neuropharmacology 2016; 110:386-395. [PMID: 27475082 DOI: 10.1016/j.neuropharm.2016.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/24/2022]
Abstract
Enhanced dopamine (DA) neurotransmission from the ventral tegmental area (VTA) to the ventral striatum is thought to drive drug self-administration and mediate positive reinforcement. We examined neuronal firing rates in slices of mouse midbrain following adolescent binge-like alcohol drinking and find that prior alcohol experience greatly enhanced the sensitivity to excitation by ethanol itself (10-50 mM) in a subset of ventral midbrain DA neurons located in the medial VTA. This enhanced response after drinking was not associated with alterations of firing rate or other measures of intrinsic excitability. In addition, the phenomenon appears to be specific to adolescent drinking, as mice that established a drinking preference only after the onset of adulthood showed no change in alcohol sensitivity. Here we demonstrate not only that drinking during adolescence induces enhanced alcohol sensitivity, but also that this DA neuronal response occurs over a range of alcohol concentrations associated with social drinking in humans.
Collapse
Affiliation(s)
- Elizabeth M Avegno
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Michael C Salling
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Anders Borgkvist
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Ana Mrejeru
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Alexander C Whitebirch
- Department of Neurobiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Elyssa B Margolis
- Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, Alcoholism and Addiction Research Group, University of California, San Francisco, CA 94143, United States
| | - David Sulzer
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, New York, NY 10032, United States.
| | - Neil L Harrison
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
17
|
LeBlanc DM, McGinn MA, Itoga CA, Edwards S. The affective dimension of pain as a risk factor for drug and alcohol addiction. Alcohol 2015; 49:803-9. [PMID: 26008713 PMCID: PMC4628900 DOI: 10.1016/j.alcohol.2015.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/11/2015] [Accepted: 04/18/2015] [Indexed: 01/27/2023]
Abstract
Addiction, or substance use disorder (SUD), is a devastating psychiatric disease composed of multiple elemental features. As a biobehavioral disorder, escalation of drug and/or alcohol intake is both a cause and consequence of molecular neuroadaptations in central brain reinforcement circuitry. Multiple mesolimbic areas mediate a host of negative affective and motivational symptoms that appear to be central to the addiction process. Brain stress- and reinforcement-related regions such as the central amygdala (CeA), prefrontal cortex (PFC), and nucleus accumbens (NAc) also serve as central processors of ascending nociceptive input. We hypothesize that a sensitization of brain mechanisms underlying the processing of persistent and maladaptive pain contributes to a composite negative affective state to drive the enduring, relapsing nature of addiction, particularly in the case of alcohol and opioid use disorder. At the neurochemical level, pain activates central stress-related neuropeptide signaling, including the dynorphin and corticotropin-releasing factor (CRF) systems, and by this process may facilitate negative affect and escalated drug and alcohol use over time. Importantly, the widespread prevalence of unresolved pain and associated affective dysregulation in clinical populations highlights the need for more effective analgesic medications with reduced potential for tolerance and dependence. The burgeoning epidemic of prescription opioid abuse also demands a closer investigation into the neurobiological mechanisms of how pain treatment could potentially represent a significant risk factor for addiction in vulnerable populations. Finally, the continuing convergence of sensory and affective neuroscience fields is expected to generate insight into the critical balance between pain relief and addiction liability, as well as provide more effective therapeutic strategies for chronic pain and addiction.
Collapse
Affiliation(s)
- Dana M LeBlanc
- Department of Pediatrics, Division of Hematology and Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - M Adrienne McGinn
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christy A Itoga
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Scott Edwards
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
18
|
Carvajal F, Alcaraz-Iborra M, Lerma-Cabrera JM, Valor LM, de la Fuente L, Sanchez-Amate MDC, Cubero I. Orexin receptor 1 signaling contributes to ethanol binge-like drinking: Pharmacological and molecular evidence. Behav Brain Res 2015; 287:230-7. [DOI: 10.1016/j.bbr.2015.03.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/03/2015] [Accepted: 03/22/2015] [Indexed: 12/27/2022]
|
19
|
Rao PSS, Bell RL, Engleman EA, Sari Y. Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci 2015; 9:144. [PMID: 25954150 PMCID: PMC4407613 DOI: 10.3389/fnins.2015.00144] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 04/07/2015] [Indexed: 01/05/2023] Open
Abstract
Alcoholism is a serious public health concern that is characterized by the development of tolerance to alcohol's effects, increased consumption, loss of control over drinking and the development of physical dependence. This cycle is often times punctuated by periods of abstinence, craving and relapse. The development of tolerance and the expression of withdrawal effects, which manifest as dependence, have been to a great extent attributed to neuroadaptations within the mesocorticolimbic and extended amygdala systems. Alcohol affects various neurotransmitter systems in the brain including the adrenergic, cholinergic, dopaminergic, GABAergic, glutamatergic, peptidergic, and serotonergic systems. Due to the myriad of neurotransmitter and neuromodulator systems affected by alcohol, the efficacies of current pharmacotherapies targeting alcohol dependence are limited. Importantly, research findings of changes in glutamatergic neurotransmission induced by alcohol self- or experimenter-administration have resulted in a focus on therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Glutamatergic receptors implicated in the effects of ethanol include the ionotropic glutamate receptors (AMPA, Kainate, and NMDA) and some metabotropic glutamate receptors. Regarding glutamatergic homeostasis, ceftriaxone, MS-153, and GPI-1046, which upregulate glutamate transporter 1 (GLT1) expression in mesocorticolimbic brain regions, reduce alcohol intake in genetic animal models of alcoholism. Given the hyperglutamatergic/hyperexcitable state of the central nervous system induced by chronic alcohol abuse and withdrawal, the evidence thus far indicates that a restoration of glutamatergic concentrations and activity within the mesocorticolimbic system and extended amygdala as well as multiple memory systems holds great promise for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- P S S Rao
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| | - Youssef Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| |
Collapse
|
20
|
Wheeler DS, Wan S, Miller A, Angeli N, Adileh B, Hu W, Holland PC. Role of lateral hypothalamus in two aspects of attention in associative learning. Eur J Neurosci 2014; 40:2359-77. [PMID: 24750426 PMCID: PMC4641454 DOI: 10.1111/ejn.12592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 11/28/2022]
Abstract
Orexin (hypocretin) and melanin-concentrating hormone (MCH) neurons are unique to the lateral hypothalamic (LH) region, but project throughout the brain. These cell groups have been implicated in a variety of functions, including reward learning, responses to stimulants, and the modulation of attention, arousal and the sleep/wakefulness cycle. Here, we examined roles for LH in two aspects of attention in associative learning shown previously to depend on intact function in major targets of orexin and MCH neurons. In experiments 1 and 2, unilateral orexin-saporin lesions of LH impaired the acquisition of conditioned orienting responses (ORs) and bilaterally suppressed FOS expression in the amygdala central nucleus (CeA) normally observed in response to food cues that provoke conditioned ORs. Those cues also induced greater FOS expression than control cues in LH orexin neurons, but not in MCH neurons. In experiment 3, unilateral orexin-saporin lesions of LH eliminated the cue associability enhancements normally produced by the surprising omission of an expected event. The magnitude of that impairment was positively correlated with the amount of LH damage and with the loss of orexin neurons in particular, but not with the loss of MCH neurons. We suggest that the effects of the LH orexin-saporin lesions were mediated by their effect on information processing in the CeA, known to be critical to both behavioral phenomena examined here. The results imply close relations between LH motivational amplification functions and attention, and may inform our understanding of disorders in which motivational and attentional impairments co-occur.
Collapse
Affiliation(s)
- Daniel S Wheeler
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Quarta D, Smolders I. Rewarding, reinforcing and incentive salient events involve orexigenic hypothalamic neuropeptides regulating mesolimbic dopaminergic neurotransmission. Eur J Pharm Sci 2014; 57:2-10. [DOI: 10.1016/j.ejps.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/19/2014] [Indexed: 12/22/2022]
|
22
|
Matzeu A, Zamora-Martinez ER, Martin-Fardon R. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front Behav Neurosci 2014; 8:117. [PMID: 24765071 PMCID: PMC3982054 DOI: 10.3389/fnbeh.2014.00117] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/20/2014] [Indexed: 01/12/2023] Open
Abstract
A major challenge for the successful treatment of drug addiction is the long-lasting susceptibility to relapse and multiple processes that have been implicated in the compulsion to resume drug intake during abstinence. Recently, the orexin/hypocretin (Orx/Hcrt) system has been shown to play a role in drug-seeking behavior. The Orx/Hcrt system regulates a wide range of physiological processes, including feeding, energy metabolism, and arousal. It has also been shown to be recruited by drugs of abuse. Orx/Hcrt neurons are predominantly located in the lateral hypothalamus that projects to the paraventricular nucleus of the thalamus (PVT), a region that has been identified as a "way-station" that processes information and then modulates the mesolimbic reward and extrahypothalamic stress systems. Although not thought to be part of the "drug addiction circuitry", recent evidence indicates that the PVT is involved in the modulation of reward function in general and drug-directed behavior in particular. Evidence indicates a role for Orx/Hcrt transmission in the PVT in the modulation of reward function in general and drug-directed behavior in particular. One hypothesis is that following repeated drug exposure, the Orx/Hcrt system acquires a preferential role in mediating the effects of drugs vs. natural rewards. The present review discusses recent findings that suggest maladaptive recruitment of the PVT by drugs of abuse, specifically Orx/Hcrt-PVT neurotransmission.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Eva R. Zamora-Martinez
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Rémi Martin-Fardon
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
23
|
Plaza-Zabala A, Li X, Milovanovic M, Loweth JA, Maldonado R, Berrendero F, Wolf ME. An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure. Neurosci Lett 2013; 557 Pt B:101-6. [PMID: 24262606 DOI: 10.1016/j.neulet.2013.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 11/17/2022]
Abstract
Hypocretin peptides are critical for the effects of cocaine on excitatory synaptic strength in the ventral tegmental area (VTA). However, little is known about their role in cocaine-induced synaptic plasticity in the nucleus accumbens (NAc). First, we tested whether hypocretin-1 by itself could acutely modulate glutamate receptor surface expression in the NAc, given that hypocretin-1 in the VTA reproduces cocaine's effects on glutamate transmission. We found no effect of hypocretin-1 infusion on AMPA or NMDA receptor surface expression in the NAc, measured by biotinylation, either 30 min or 3h after the infusion. Second, we were interested in whether changes in hypocretin receptor-2 (Hcrtr-2) expression contribute to cocaine-induced plasticity in the NAc. As a first step towards addressing this question, Hcrtr-2 surface expression was compared in the NAc after withdrawal from extended-access self-administration of saline (control) versus cocaine. We found that surface Hcrtr-2 levels remain unchanged following 14, 25 or 48 days of withdrawal from cocaine, a time period in which high conductance GluA2-lacking AMPA receptors progressively emerge in the NAc. Overall, our results fail to support a role for hypocretins in acute modulation of glutamate receptor levels in the NAc or a role for altered Hcrtr-2 expression in withdrawal-dependent synaptic adaptations in the NAc following cocaine self-administration.
Collapse
Affiliation(s)
- Ainhoa Plaza-Zabala
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Intravenous prenatal nicotine exposure increases orexin expression in the lateral hypothalamus and orexin innervation of the ventral tegmental area in adult male rats. Drug Alcohol Depend 2013; 132:562-70. [PMID: 23664126 PMCID: PMC3770778 DOI: 10.1016/j.drugalcdep.2013.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/19/2013] [Accepted: 04/02/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Approximately 18% of pregnant women continue to smoke tobacco cigarettes throughout pregnancy. Offspring exposed to tobacco smoke in utero exhibit a higher incidence of drug use in later stages of development relative to non-exposed children. Animal models indicate that prenatal nicotine (PN) exposure alone alters the development of the mesocorticolimbic dopamine (DA) system, which, in part, organizes motivated behavior and reward. The orexin/hypocretin neuropeptide system, which originates in the lateral hypothalamus (LH), projects to key areas of the mesocorticolimbic DA pathway. Previous research suggests that orexin exerts a major influence on motivation and reward. METHODS The present experiments determined if intravenous (IV) PN exposure alters (1) the expression of orexin neurons and melanin-concentrating hormone (MCH; positive control) in the LH; and (2) orexin projections from the LH onto DA neurons in the ventral tegmental area (VTA). Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline 3×/day during gestational days 8-21. Tissues from adult male offspring (∼130 days) were examined using immunohistochemistry. RESULTS Relative to controls, offspring of IV PN exposure showed (1) increased numbers of orexin neurons in the LH, and no changes in the expression of MCH; and (2) increased orexin appositions on DA cells in the VTA. CONCLUSION The findings indicate that the influence of PN exposure is enduring, and suggests that the PN-induced modification of orexin expression on mesolimbic circuitry may contribute to the reported changes in motivated behaviors related to food and drug reward observed in offspring prenatally exposed to nicotine.
Collapse
|
25
|
Different levels in orexin concentrations and risk factors associated with higher orexin levels: comparison between detoxified opiate and methamphetamine addicts in 5 Chinese cities. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282641. [PMID: 24102051 PMCID: PMC3786501 DOI: 10.1155/2013/282641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/01/2013] [Indexed: 11/17/2022]
Abstract
This study sought to explore the degree of orexin levels in Chinese opiate and methamphetamine addicts and the differences between them. The cross-sectional study was conducted among detoxified drug addicts from Mandatory Detoxification Center (MDC) in five Chinese cities. Orexin levels were assayed with radioimmunoassay (RIA). Mann-Whitney U test and Kruskal-Wallis test were used to detect differences across groups, and logistic regression was used to explore the association between orexin levels and characteristics of demographic and drug abuse. Between November 2009 and January 2011, 285 opiates addicts, 112 methamphetamine addicts, and 79 healthy controls were enrolled. At drug withdrawal period, both opiate and methamphetamine addicts had lower median orexin levels than controls, and median orexin levels in opiate addicts were higher than those in methamphetamine addicts (all above P < 0.05). Adjusted odds of the above median concentration of orexin were higher for injection than "chasing the dragon" (AOR = 3.1, 95% CI = 1.2-7.9). No significant factors associated with orexin levels of methamphetamine addicts were found. Development of intervention method on orexin system by different administration routes especially for injected opiate addicts at detoxification phase may be significant and was welcome.
Collapse
|
26
|
Cadet JL, Jayanthi S, McCoy MT, Ladenheim B, Saint-Preux F, Lehrmann E, De S, Becker KG, Brannock C. Genome-wide profiling identifies a subset of methamphetamine (METH)-induced genes associated with METH-induced increased H4K5Ac binding in the rat striatum. BMC Genomics 2013; 14:545. [PMID: 23937714 PMCID: PMC3751638 DOI: 10.1186/1471-2164-14-545] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND METH is an illicit drug of abuse that influences gene expression in the rat striatum. Histone modifications regulate gene transcription. METHODS We therefore used microarray analysis and genome-scale approaches to examine potential relationships between the effects of METH on gene expression and on DNA binding of histone H4 acetylated at lysine 4 (H4K5Ac) in the rat dorsal striatum of METH-naïve and METH-pretreated rats. RESULTS Acute and chronic METH administration caused differential changes in striatal gene expression. METH also increased H4K5Ac binding around the transcriptional start sites (TSSs) of genes in the rat striatum. In order to relate gene expression to histone acetylation, we binned genes of similar expression into groups of 100 genes and proceeded to relate gene expression to H4K5Ac binding. We found a positive correlation between gene expression and H4K5Ac binding in the striatum of control rats. Similar correlations were observed in METH-treated rats. Genes that showed acute METH-induced increased expression in saline-pretreated rats also showed METH-induced increased H4K5Ac binding. The acute METH injection caused similar increases in H4K5Ac binding in METH-pretreated rats, without affecting gene expression to the same degree. Finally, genes that showed METH-induced decreased expression exhibited either decreases or no changes in H4K5Ac binding. CONCLUSION Acute METH injections caused increased gene expression of genes that showed increased H4K5Ac binding near their transcription start sites.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rutten BPF, Hammels C, Geschwind N, Menne-Lothmann C, Pishva E, Schruers K, van den Hove D, Kenis G, van Os J, Wichers M. Resilience in mental health: linking psychological and neurobiological perspectives. Acta Psychiatr Scand 2013; 128:3-20. [PMID: 23488807 PMCID: PMC3746114 DOI: 10.1111/acps.12095] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To review the literature on psychological and biological findings on resilience (i.e. the successful adaptation and swift recovery after experiencing life adversities) at the level of the individual, and to integrate findings from animal and human studies. METHOD Electronic and manual literature search of MEDLINE, EMBASE and PSYCHINFO, using a range of search terms around biological and psychological factors influencing resilience as observed in human and experimental animal studies, complemented by review articles and cross-references. RESULTS The term resilience is used in the literature for different phenomena ranging from prevention of mental health disturbance to successful adaptation and swift recovery after experiencing life adversities, and may also include post-traumatic psychological growth. Secure attachment, experiencing positive emotions and having a purpose in life are three important psychological building blocks of resilience. Overlap between psychological and biological findings on resilience in the literature is most apparent for the topic of stress sensitivity, although recent results suggest a crucial role for reward experience in resilience. CONCLUSION Improving the understanding of the links between genetic endowment, environmental impact and gene-environment interactions with developmental psychology and biology is crucial for elucidating the neurobiological and psychological underpinnings of resilience.
Collapse
Affiliation(s)
- B P F Rutten
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - C Hammels
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands
| | - N Geschwind
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands,Research Group on Health Psychology, CLEP, Department of Psychology, University of LeuvenLeuven, Belgium
| | - C Menne-Lothmann
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands
| | - E Pishva
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands
| | - K Schruers
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands,Center for Learning and Experimental Psychology, Catholic University of LeuvenLeuven, Belgium
| | - D van den Hove
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands,Department of Psychiatry, Psychosomatics and Psychotherapy, University of WürzburgWürzburg, Germany
| | - G Kenis
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands
| | - J van Os
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands,King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, King's College LondonLondon, UK
| | - M Wichers
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands
| |
Collapse
|
28
|
Lüscher C. Cocaine-evoked synaptic plasticity of excitatory transmission in the ventral tegmental area. Cold Spring Harb Perspect Med 2013; 3:a012013. [PMID: 23637310 DOI: 10.1101/cshperspect.a012013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cocaine leads to a strong euphoria, which is at the origin of its recreational use. Past the acute effects, the drug leaves traces in the brain that persist long after it has been cleared from the body. These traces eventually shape behavior such that drug use may become compulsive and addiction develops. Here we discuss cocaine-evoked synaptic plasticity of glutamatergic transmission onto dopamine (DA) neurons of the ventral tegmental area (VTA) as one of the earliest traces after a first injection of cocaine. We review the literature that has examined the induction requirements as well as the expression mechanism of this form of plasticity and ask the question about its functional significance.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
29
|
Rao Y, Mineur YS, Gan G, Wang AH, Liu ZW, Wu X, Suyama S, de Lecea L, Horvath TL, Picciotto MR, Gao XB. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice. J Physiol 2013; 591:1951-66. [PMID: 23318871 DOI: 10.1113/jphysiol.2012.246983] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypocretin (orexin), a neuropeptide synthesized exclusively in the perifornical/lateral hypothalamus, is critical for drug seeking and relapse, but it is not clear how the circuitry centred on hypocretin-producing neurons (hypocretin neurons) is modified by drugs of abuse and how changes in this circuit might alter behaviours related to drug addiction. In this study, we show that repeated, but not single, in vivo cocaine administration leads to a long-lasting, experience-dependent potentiation of glutamatergic synapses on hypocretin neurons in mice following a cocaine-conditioned place preference (CPP) protocol. The synaptic potentiation occurs postsynaptically and probably involves up-regulation of AMPA-type glutamate receptors on hypocretin neurons. Phosphorylation of cAMP response element-binding protein (CREB) is also significantly increased in hypocretin neurons in cocaine-treated animals, suggesting that CREB-mediated pathways may contribute to synaptic potentiation in these cells. Furthermore, the potentiation of synaptic efficacy in hypocretin neurons persists during cocaine withdrawal, but reverses to baseline levels after prolonged abstinence. Finally, the induction of long-term potentiation (LTP) triggered by a high-frequency stimulation is facilitated in hypocretin neurons in cocaine-treated mice, suggesting that long-lasting changes in synapses onto hypocretin neurons would probably be further potentiated by other stimuli (such as concurrent environmental cues) paired with the drug. In summary, we show here that hypocretin neurons undergo experience-dependent synaptic potentiation that is distinct from that reported in other reward systems, such as the ventral tegmental area, following exposure to cocaine. These findings support the idea that the hypocretin system is important for behavioural changes associated with cocaine administration in animals and humans.
Collapse
Affiliation(s)
- Yan Rao
- Department of 1OB/GYN and Reproductive Science, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martin-Fardon R, Boutrel B. Orexin/hypocretin (Orx/Hcrt) transmission and drug-seeking behavior: is the paraventricular nucleus of the thalamus (PVT) part of the drug seeking circuitry? Front Behav Neurosci 2012; 6:75. [PMID: 23162448 PMCID: PMC3494007 DOI: 10.3389/fnbeh.2012.00075] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/19/2012] [Indexed: 11/17/2022] Open
Abstract
The orexin/hypocretin (Orx/Hcrt) system has long been considered to regulate a wide range of physiological processes, including feeding, energy metabolism, and arousal. More recently, concordant observations have demonstrated an important role for these peptides in the reinforcing properties of most drugs of abuse. Orx/Hcrt neurons arise in the lateral hypothalamus (LH) and project to all brain structures implicated in the regulation of arousal, stress, and reward. Although Orx/Hcrt neurons have been shown to massively project to the paraventricular nucleus of the thalamus (PVT), only recent evidence suggested that the PVT may be a key relay of Orx/Hcrt-coded reward-related communication between the LH and both the ventral and dorsal striatum. While this thalamic region was not thought to be part of the “drug addiction circuitry,” an increasing amount of evidence demonstrated that the PVT—particularly PVT Orx/Hcrt transmission—was implicated in the modulation of reward function in general and several aspects of drug-directed behaviors in particular. The present review discusses recent findings that suggest that maladaptive recruitment of PVT Orx/Hcrt signaling by drugs of abuse may promote persistent compulsive drug-seeking behavior following a period of protracted abstinence and as such may represent a relevant target for understanding the long-term vulnerability to drug relapse after withdrawal.
Collapse
Affiliation(s)
- Rémi Martin-Fardon
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|
31
|
Haass-Koffler CL, Bartlett SE. Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity. Front Mol Neurosci 2012; 5:91. [PMID: 22973190 PMCID: PMC3434418 DOI: 10.3389/fnmol.2012.00091] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/15/2012] [Indexed: 12/22/2022] Open
Abstract
Corticotropin releasing factor (CRF) has been shown to induce various behavioral changes related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a variety of psychiatric disorders, including substance use disorders (SUDs). CRF has been associated with stress-induced drug reinforcement. Extensive literature has identified CRF to play an important role in the molecular mechanisms that lead to an increase in susceptibility that precipitates relapse to SUDs. The CRF system has a heterogeneous role in SUDs. It enhances the acute effects of drugs of abuse and is also responsible for the potentiation of drug-induced neuroplasticity evoked during the withdrawal period. We present in this review the brain regions and circuitries where CRF is expressed and may participate in stress-induced drug abuse. Finally, we attempt to evaluate the role of modulating the CRF system as a possible therapeutic strategy for treating the dysregulation of emotional behaviors that result from the acute positive reinforcement of substances of abuse as well as the negative reinforcement produced by withdrawal.
Collapse
Affiliation(s)
- Carolina L Haass-Koffler
- Ernest Gallo Clinic and Research Center at the University of California San Francisco Emeryville, CA, USA
| | | |
Collapse
|
32
|
|
33
|
Piccoli L, Micioni Di Bonaventura MV, Cifani C, Costantini VJA, Massagrande M, Montanari D, Martinelli P, Antolini M, Ciccocioppo R, Massi M, Merlo-Pich E, Di Fabio R, Corsi M. Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacology 2012; 37:1999-2011. [PMID: 22569505 PMCID: PMC3398727 DOI: 10.1038/npp.2012.48] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Orexins (OX) and their receptors (OXR) modulate feeding, arousal, stress, and drug abuse. Neural systems that motivate and reinforce drug abuse may also underlie compulsive food seeking and intake. Therefore, the effects of GSK1059865 (5-bromo-N-[(2S,5S)-1-(3-fluoro-2-methoxybenzoyl)-5-methylpiperidin-2-yl]methyl-pyridin-2-amine), a selective OX(1)R antagonist, JNJ-10397049 (N-(2,4-dibromophenyl)-N'-[(4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl]urea), a selective OX(2)R antagonist, and SB-649868 (N-[((2S)-1-{[5-(4-fluorophenyl)-2-methyl-1,3-thiazol-4-yl]carbonyl}-2-piperidinyl)methyl]-1-benzofuran-4-carboxamide), a dual OX(1)/OX(2)R antagonist were evaluated in a binge eating (BE) model in female rats. BE of highly palatable food (HPF) was evoked by three cycles of food restriction followed by stress, elicited by exposing rats to HPF, but preventing them from having access to it for 15 min. Pharmacokinetic assessments of all compounds were obtained under the same experimental conditions used for the behavioral experiments. Topiramate was used as the reference compound as it selectively blocks BE in rats and humans. Dose-related thresholds for sleep-inducing effects of the OXR antagonists were measured using polysomnography in parallel experiments. SB-649868 and GSK1059865, but not JNJ-10397049, selectively reduced BE for HPF without affecting standard food pellet intake, at doses that did not induce sleep. These results indicate, for the first time, a major role of OX(1)R mechanisms in BE, suggesting that selective antagonism at OX(1)R could represent a novel pharmacological treatment for BE and possibly other eating disorders with a compulsive component.
Collapse
Affiliation(s)
- Laura Piccoli
- GlaxoSmithKline, Medicines Research Centre, Verona, Italy
| | - Maria Vittoria Micioni Di Bonaventura
- Pharmacology Unit, School of Pharmacy, University of Camerino, Macerata, Italy,Pharmacology Unit, School of Pharmacy, University of Camerino, via Madonna delle Carceri, 9, Camerino, Macerata 62032, Italy, Tel: +39 3287041244, Fax: +39 0737403325, E-mail:
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Macerata, Italy
| | | | | | - Dino Montanari
- GlaxoSmithKline, Medicines Research Centre, Verona, Italy
| | | | | | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Macerata, Italy
| | - Maurizio Massi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Macerata, Italy
| | - Emilio Merlo-Pich
- Neuronal Target Discovery Performance Unit, GlaxoSmithKline, King of Prussia, PA, USA
| | | | - Mauro Corsi
- GlaxoSmithKline, Medicines Research Centre, Verona, Italy
| |
Collapse
|
34
|
Smith RJ, Aston-Jones G. Orexin / hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. Eur J Neurosci 2012; 35:798-804. [PMID: 22356621 DOI: 10.1111/j.1460-9568.2012.08013.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The orexin/hypocretin system is involved in several addiction-related behaviors. In the present experiments, we examined the involvement of orexin in heroin reinforcement and relapse by administering the orexin 1 receptor antagonist SB-334867 prior to heroin self-administration or prior to cue-induced or heroin-induced reinstatement of extinguished heroin seeking in male Sprague Dawley rats. SB-334867 (30 mg/kg, intraperitoneal) reduced heroin intake during self-administration under fixed ratio-1 and progressive ratio schedules. SB-334867 also attenuated reinstatement of heroin seeking elicited by cues, but not reinstatement elicited by a heroin prime. These results indicate that orexin antagonism reduces heroin self-administration, and they support a role for orexin in cue-triggered drug relapse.
Collapse
Affiliation(s)
- Rachel J Smith
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
| | | |
Collapse
|
35
|
von der Goltz C, Koopmann A, Dinter C, Richter A, Grosshans M, Fink T, Wiedemann K, Kiefer F. Involvement of orexin in the regulation of stress, depression and reward in alcohol dependence. Horm Behav 2011; 60:644-50. [PMID: 21945150 DOI: 10.1016/j.yhbeh.2011.08.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/16/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
There is growing evidence from preclinical studies for an involvement of orexins (ORX) in the regulation of stress, affectivity and addictive behavior. The aim of our study was to gather corresponding clinical data and to elucidate the relationships between alcohol withdrawal stress, ORX plasma concentration and psychopathology. A consecutive sample of thirty-four alcohol-dependent inpatients was included in the study. Blood was drawn at onset of withdrawal and following 2 weeks of controlled abstinence in order to assess ORX, ACTH and cortisol plasma concentrations. In parallel, we assessed clinically relevant psychological distress symptoms applying the Brief Symptom Inventory (BSI). We found a significant positive correlation between ORX and global distress indices of the BSI (p ≤ 0.05). In a regression model, ORX concentration during acute withdrawal explained 24% of the variance of symptom severity (p<0.01). No association with craving, ACTH or cortisol plasma concentration was detected. Our results suggest an involvement of ORX in the affective dysregulation seen commonly in alcohol dependent patients during alcohol withdrawal. Moreover, the effects on global distress indices as well as the earlier studied effects on reinstatement of drug seeking behaviors may point on an involvement of ORX in impaired brain stress systems.
Collapse
Affiliation(s)
- Christoph von der Goltz
- Dept of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, J5, 68159 Mannheim, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gysling K. Relevance of both type-1 and type-2 corticotropin releasing factor receptors in stress-induced relapse to cocaine seeking behaviour. Biochem Pharmacol 2011; 83:1-5. [PMID: 21843515 DOI: 10.1016/j.bcp.2011.07.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
The essential role of corticotropin releasing factor (CRF) and its type-1 receptor (CRF1) in stress-induced relapse to drug seeking has been demonstrated. The bed nucleus of the stria terminalis is the major anatomical substrate for this CRF/CRF1 receptor action. More recently, the role of type-2 CRF (CRF2) receptors in stress-induced relapse to cocaine seeking has also has been documented. The ventral tegmental area is the anatomical substrate for this CRF/CRF2 receptor action. The new information involving CRF2 receptors in stress-induced relapse to cocaine seeking has generated a need for a reappraisal of the existing anatomical and pharmacological evidence that have been used to support the critical role of CRF1 receptors. The role of CRF2 receptors in stress-induced relapse to drug seeking also opens the question of the putative role of the other peptides of the CRH family (urocotin-1, urocortin-2 and urocortin-3) that have high affinity for CRF2 receptors. In this commentary, the available evidence supporting the role of both CRF1 and CRF2 receptors in stress-induced relapse to drug seeking is reviewed.
Collapse
Affiliation(s)
- Katia Gysling
- Millennium Science Nucleus in Stress and Addiction and Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
37
|
Voorhees CM, Cunningham CL. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacology (Berl) 2011; 214:805-18. [PMID: 21107540 PMCID: PMC3063857 DOI: 10.1007/s00213-010-2082-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 10/30/2010] [Indexed: 12/20/2022]
Abstract
RATIONALE Recent studies suggest that orexin/hypocretin is involved in drug reward and drug-seeking behaviors, including ethanol self-administration. However, orexin's role in ethanol-induced seeking behaviors remains unclear. OBJECTIVE These studies examined the role of orexin in the acquisition and expression of ethanol conditioned place preference (CPP) using the orexin 1 receptor (OX1R) antagonist SB-334867. METHODS Effects of SB-334867 (0-30 mg/kg) on locomotor activity were determined in DBA/2J mice (Experiment 1). SB-334867 (0-30 mg/kg) was administered during acquisition of ethanol (2 g/kg) CPP to determine whether orexin signaling is required (Experiment 2). Blood ethanol concentrations (BECs) were measured after ethanol (2 g/kg) injection to determine whether SB-334867 (30 mg/kg) pretreatment altered ethanol pharmacokinetics (Experiment 3). Finally, SB-334867 (0-40 mg/kg) was given before ethanol-free preference testing (Experiments 4 and 5). RESULTS SB-334867 did not alter basal locomotor activity (Experiment 1). SB-334867 (30 mg/kg) reduced ethanol-induced locomotor stimulation, but did not affect the acquisition of ethanol CPP (Experiment 2) or BEC, suggesting no alteration in ethanol pharmacokinetics (Experiment 3). Although OX1R antagonism blocked expression of a weak ethanol CPP (Experiment 4), it did not affect expression of a moderate to strong CPP (Experiment 5). CONCLUSIONS Blockade of OX1R by systemic administration of SB-334867 reduced ethanol-stimulated activity, but did not affect acquisition or expression of ethanol-induced CPP, suggesting that orexin does not influence ethanol's primary or conditioned rewarding effects. Other neurotransmitter systems may be sufficient to support acquisition and expression of CPP despite alterations in orexin signaling.
Collapse
Affiliation(s)
- Charlene M. Voorhees
- Department of Behavioral Neuroscience, L470 Portland Alcohol Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Christopher L. Cunningham
- Department of Behavioral Neuroscience, L470 Portland Alcohol Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| |
Collapse
|
38
|
Lerner TN, Kreitzer AC. Neuromodulatory control of striatal plasticity and behavior. Curr Opin Neurobiol 2011; 21:322-7. [PMID: 21333525 DOI: 10.1016/j.conb.2011.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/25/2011] [Indexed: 11/19/2022]
Abstract
Excitatory synapses onto projection neurons in the striatum, the input nucleus of the basal ganglia, play a key role in regulating basal ganglia circuit function and are a major site of long-term synaptic plasticity. Here, we review the mechanisms and regulation of both long-term potentiation and long-term depression at these synapses. In particular, we highlight the role that neuromodulators play in determining the strength and direction of plasticity, which ultimately shapes the balance of activity in basal ganglia circuits and regulates motor behavior.
Collapse
Affiliation(s)
- Talia N Lerner
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | |
Collapse
|
39
|
Niehaus JL, Murali M, Kauer JA. Drugs of abuse and stress impair LTP at inhibitory synapses in the ventral tegmental area. Eur J Neurosci 2011; 32:108-17. [PMID: 20608969 DOI: 10.1111/j.1460-9568.2010.07256.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synaptic plasticity in the ventral tegmental area (VTA) is modulated by drugs of abuse and stress and is hypothesized to contribute to specific aspects of addiction. Both excitatory and inhibitory synapses on dopamine neurons in the VTA are capable of undergoing long-term changes in synaptic strength. While the strengthening or weakening of excitatory synapses in the VTA has been widely examined, the role of inhibitory synaptic plasticity in brain reward circuitry is less established. Here, we investigated the effects of drugs of abuse, as well as acute stress, on long-term potentiation of GABAergic synapses onto VTA dopamine neurons (LTP(GABA)). Morphine (10 mg/kg i.p.) reduced the ability of inhibitory synapses in midbrain slices to express LTP(GABA) both at 2 and 24 h after drug exposure but not after 5 days. Cocaine (15 mg/kg i.p.) impaired LTP(GABA) 24 h after exposure, but not at 2 h. Nicotine (0.5 mg/kg i.p.) impaired LTP(GABA) 2 h after exposure, but not after 24 h. Furthermore, LTP(GABA) was completely blocked 24 h following brief exposure to a stressful stimulus, a forced swim task. Our data suggest that drugs of abuse and stress trigger a common modification to inhibitory plasticity, synergizing with their collective effect at excitatory synapses. Together, the net effect of addictive substances or stress is expected to increase excitability of VTA dopamine neurons, potentially contributing to the early stages of addiction.
Collapse
Affiliation(s)
- Jason L Niehaus
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
40
|
Guan X, Wang L, Chen CL, Guan Y, Li S. Roles of two subtypes of corticotrophin-releasing factor receptor in the corticostriatal long-term potentiation under cocaine withdrawal condition. J Neurochem 2010; 115:795-803. [PMID: 20807310 DOI: 10.1111/j.1471-4159.2010.06981.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of two subtypes of corticotrophin-releasing factor (CRF) receptor in corticostriatal synaptic plasticity under cocaine withdrawal condition were examined in this study. Neither the resting membrane potential and input resistance of striatal neurons nor the long-term potentiation (LTP) of corticostriatal slices were affected by cocaine withdrawal. CRF dose-dependently enhanced in vitro corticostriatal LTP in rats from both cocaine-withdrawal and saline-control groups. Yet, the enhancement of corticostriatal LTP by CRF (20, 40, 80 nM) was significantly greater in the cocaine-withdrawal group than in the control group. CRF(1)-selective antagonist (NBI 27914, 100 nM) attenuated the CRF-induced enhancement of corticostriatal LTP in both groups, whereas the CRF(2)-selective antagonist (astression2B, 100 nM) attenuated the enhanced corticostriatal LTP only in the cocaine-withdrawal group. Importantly, urocortin2 (a CRF(2)-selective agonist, 40 nM) selectively increased corticostriatal LTP in the cocaine-withdrawal group, but not in the saline controls. The urocortin2-induced enhancement of LTP was totally blocked by astression2B (100 nM). These results suggest that the CRF system modulate neuroadaptive changes in the corticostriatal circuit during cocaine withdrawal, and the CRF(2) in this area mediate an important mechanism that contributes to the relapse of cocaine addiction.
Collapse
Affiliation(s)
- Xiaowei Guan
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
41
|
Medication overuse headache: Neurobiological, behavioural and therapeutic aspects. Pain 2010; 150:222-224. [DOI: 10.1016/j.pain.2010.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/25/2010] [Accepted: 05/05/2010] [Indexed: 11/19/2022]
|
42
|
López M, Tena-Sempere M, Diéguez C. Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front Neuroendocrinol 2010; 31:113-27. [PMID: 19654017 DOI: 10.1016/j.yfrne.2009.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 02/06/2023]
Abstract
Lesioning and electrical stimulation experiments carried out during the first half of the twentieth century showed that the lateral hypothalamic area (LHA) is involved in the neuroendocrine control of hormone secretion. However, the molecular basis of this phenomenon remained unclear until fifty years later when in 1998, two different laboratories discovered a new family of hypothalamic neuropeptides, the orexins or hypocretins (OX-A/Hcrt1 and OX-B/Hcrt2). Since then, remarkable evidence has revealed that orexins/hypocretins play a prominent role in regulating virtually all the neuroendocrine axes, acting as pivotal signals in the coordination of endocrine responses with regards to sleep, arousal and energy homeostasis. The clinical relevance of these actions is supported by human data showing impairment of virtually all the neuroendocrine axes in orexin/hypocretin-deficient narcoleptic patients. Here, we summarize more than ten years of knowledge about the orexins/hypocretins with particular focus on their role as neuroendocrine regulators. Understanding this aspect of orexin/hypocretin physiology could open new therapeutic possibilities in the treatment of sleep, energy homeostasis and endocrine pathologies.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela - Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain.
| | | | | |
Collapse
|
43
|
Nicotine self-administration in the rat: effects of hypocretin antagonists and changes in hypocretin mRNA. Psychopharmacology (Berl) 2010; 209:203-12. [PMID: 20177882 PMCID: PMC3141337 DOI: 10.1007/s00213-010-1792-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE The hypocretin (hcrt) system has been implicated in addiction-relevant effects of several drugs, but its role in nicotine dependence has been little studied. OBJECTIVES These experiments examined the role of the hcrt system in nicotine reinforcement. METHODS Rats were trained for nicotine self-administration (NSA) on fixed-ratio schedules. The effects of acute, presession treatments with the hcrtR1 antagonist SB334867 and the hcrtR1/2 antagonist almorexant were examined on NSA maintained on a fixed-ratio (FR) 5 schedule. Gene expression for the hcrt system (mRNA for hcrt, hcrtR1, and hcrtR2) was measured in animals following NSA on a FR 1 schedule for a 19-day period. RESULTS The hcrtR1 antagonist SB334867 and the hcrtR1/2 antagonist almorexant both reduced NSA dose-dependently (significantly at doses of 30 and 300 mg/kg, respectively); SB334867 did not affect food-maintained responding whereas almorexant (at the 300 mg/kg) did. Tissue from animals collected 5 h after self-administration showed an increase in hcrtR1 mRNA in the arcuate nucleus compared to control subjects. In tissue collected immediately after a similar 19-day self-administration period, mRNA for hcrtR1 was decreased in the rostral lateral hypothalamus compared to controls. CONCLUSIONS These data confirm a previous report (Hollander et al., Proc Natl Acad Sci U S A 105:19480-19485, 2008) that the hypocretin receptor hcrtR1 is activated in nicotine reinforcement and in addition show that both the arcuate nucleus and lateral hypothalamus are sites at which hcrt receptor mechanisms may influence reinforcement. Different patterns of mRNA expression at different times after NSA suggest that changes in the hcrt system may be labile with time.
Collapse
|
44
|
Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J Neurosci 2010; 30:2300-10. [PMID: 20147556 DOI: 10.1523/jneurosci.5724-09.2010] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Emerging evidence suggests that the hypocretinergic system is involved in addictive behavior. In this study, we investigated the role of these hypothalamic neuropeptides in anxiety-like responses of nicotine and stress-induced reinstatement of nicotine-seeking behavior. Acute nicotine (0.8 mg/kg, s.c.) induced anxiogenic-like effects in the elevated plus-maze and activated the paraventricular nucleus of the hypothalamus (PVN) as revealed by c-Fos expression. Pretreatment with the hypocretin receptor 1 (Hcrtr-1) antagonist SB334867 or preprohypocretin gene deletion blocked both nicotine effects. In the PVN, SB334867 also prevented the activation of corticotrophin releasing factor (CRF) and arginine-vasopressin (AVP) neurons, which expressed Hcrtr-1. In addition, an increase of the percentage of c-Fos-positive hypocretin cells in the perifornical and dorsomedial hypothalamic (PFA/DMH) areas was found after nicotine (0.8 mg/kg, s.c.) administration. Intracerebroventricular infusion of hypocretin-1 (Hcrt-1) (0.75 nmol/1 mul) or footshock stress reinstated a previously extinguished nicotine-seeking behavior. The effects of Hcrt-1 were blocked by SB334867, but not by the CRF1 receptor antagonist antalarmin. Moreover, SB334867 did not block CRF-dependent footshock-induced reinstatement of nicotine-seeking while antalarmin was effective in preventing this nicotine motivational response. Therefore, the Hcrt system interacts with CRF and AVP neurons in the PVN and modulates the anxiogenic-like effects of nicotine whereas Hcrt and CRF play a different role in the reinstatement of nicotine-seeking. Indeed, Hcrt-1 reinstates nicotine-seeking through a mechanism independent of CRF activation whereas CRF mediates the reinstatement induced by stress.
Collapse
|
45
|
Selbach O, Bohla C, Barbara A, Doreulee N, Eriksson KS, Sergeeva OA, Haas HL. Orexins/hypocretins control bistability of hippocampal long-term synaptic plasticity through co-activation of multiple kinases. Acta Physiol (Oxf) 2010; 198:277-85. [PMID: 19624551 DOI: 10.1111/j.1748-1716.2009.02021.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM Orexins/hypocretins (OX/Hcrt) are hypothalamic neuropeptides linking sleep-wakefulness, appetite and neuroendocrine control. Their role and mechanisms of action on higher brain functions, such as learning and memory, are not clear. METHODS We used field recordings of excitatory post-synaptic potentials (fEPSP) in acute mouse brain slice preparations to study the effects of orexins and pharmacological inhibitors of multiple kinases on long-term synaptic plasticity in the hippocampus. RESULTS Orexin-A (OX-A) but not orexin-B (OX-B) induces a state-dependent long-term potentiation of synaptic transmission (LTP(OX)) at Schaffer collateral-CA1 synapses in hippocampal slices from adult (8- to 12-week-old) mice. In contrast, OX-A applied to slices from juvenile (3- to 4-week-old) animals causes a long-term depression (LTD(OX)) in the same pathway. LTP(OX) is blocked by pharmacological inhibition of orexin receptor-1 (OX1R) and plasticity-related kinases, including serine/threonine- (CaMKII, PKC, PKA, MAPK), lipid- (PI3K), and receptor tyrosine kinases (Trk). Inhibition of OX1R, CaMKII, PKC, PKA and Trk unmasks LTD(OX) in adult animals. CONCLUSION Orexins control not only the bistability of arousal states and threshold for appetitive behaviours but, in an age- and kinase-dependent manner, also bidirectional long-term synaptic plasticity in the hippocampus, providing a possible link between behavioural state and memory functions.
Collapse
Affiliation(s)
- O Selbach
- Department of Neurophysiology, Heinrich-Heine-University, Dusseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Shalev U, Erb S, Shaham Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res 2010; 1314:15-28. [PMID: 19631614 PMCID: PMC2819550 DOI: 10.1016/j.brainres.2009.07.028] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/03/2009] [Accepted: 07/11/2009] [Indexed: 11/17/2022]
Abstract
A central problem in the treatment of drug addiction is high rates of relapse to drug use after periods of forced or self-imposed abstinence. This relapse is often provoked by exposure to stress. Stress-induced relapse to drug seeking can be modeled in laboratory animals using a reinstatement procedure. In this procedure, drug-taking behaviors are extinguished and then reinstated by acute exposure to stressors like intermittent unpredictable footshock, restraint, food deprivation, and systemic injections of yohimbine, an alpha-2 adrenoceptor antagonist that induces stress-like responses in humans and nonhumans. For this special issue entitled "The role of neuropeptides in stress and addiction", we review results from studies on the role of corticotropin-releasing factor (CRF) and several other peptides in stress-induced reinstatement of drug seeking in laboratory animals. The results of the studies reviewed indicate that extrahypothalamic CRF plays a critical role in stress-induced reinstatement of drug seeking; this role is largely independent of drug class, experimental procedure, and type of stressor. There is also limited evidence for the role of dynorphins, hypocretins (orexins), nociceptin (orphanin FQ), and leptin in stress-induced reinstatement of drug seeking.
Collapse
Affiliation(s)
- Uri Shalev
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, Quebec, Canada
| | - Suzanne Erb
- Center for Neurobiology of Stress, Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Yavin Shaham
- Behavioral Neuroscience Branch, NIDA/IRP, NIH, Baltimore, MD, USA
| |
Collapse
|
47
|
Martin-Fardon R, Zorrilla EP, Ciccocioppo R, Weiss F. Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Res 2010; 1314:145-61. [PMID: 20026088 PMCID: PMC2819635 DOI: 10.1016/j.brainres.2009.12.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 11/25/2022]
Abstract
Stress-like symptoms are an integral part of acute and protracted drug withdrawal, and several lines of evidence have shown that dysregulation of brain stress systems, including the extrahypothalamic corticotropin-releasing factor (CRF) system, following long-term drug use is of major importance in maintaining drug and alcohol addiction. Recently, two other neuropeptide systems have attracted interest, the nociceptin/orphanin FQ (N/OFQ) and orexin/hypocretin (Orx/Hcrt) systems. N/OFQ participates in a wide range of physiological responses, and the hypothalamic Orx/Hcrt system helps regulate several physiological processes, including feeding, energy metabolism, and arousal. Moreover, these two systems have been suggested to participate in psychiatric disorders, including anxiety and drug addiction. Dysregulation of these systems by chronic drug exposure has been hypothesized to play a role in the maintenance of addiction and dependence. Recent evidence demonstrated that interactions between CRF-N/OFQ and CRF-Orx/Hcrt systems may be functionally relevant for the control of stress-related addictive behavior. The present review discusses recent findings that support the hypotheses of the participation and dysregulation of these systems in drug addiction and evaluates the current understanding of interactions among these stress-regulatory peptides.
Collapse
Affiliation(s)
- Rémi Martin-Fardon
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, SP30-2120, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
48
|
Winrow CJ, Tanis KQ, Reiss DR, Rigby AM, Uslaner JM, Uebele VN, Doran SM, Fox SV, Garson SL, Gotter AL, Levine DM, Roecker AJ, Coleman PJ, Koblan KS, Renger JJ. Orexin receptor antagonism prevents transcriptional and behavioral plasticity resulting from stimulant exposure. Neuropharmacology 2010; 58:185-94. [DOI: 10.1016/j.neuropharm.2009.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 12/20/2022]
|
49
|
Orexin/hypocretin in psychiatric disorders: present state of knowledge and future potential. Neuropsychopharmacology 2010; 35:353-4. [PMID: 20010719 PMCID: PMC3055428 DOI: 10.1038/npp.2009.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Francesconi W, Berton F, Koob GF, Sanna PP. Intrinsic neuronal plasticity in the juxtacapsular nucleus of the bed nuclei of the stria terminalis (jcBNST). Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1347-55. [PMID: 19683025 PMCID: PMC2935256 DOI: 10.1016/j.pnpbp.2009.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 08/04/2009] [Accepted: 08/04/2009] [Indexed: 11/30/2022]
Abstract
The juxtacapsular nucleus of the anterior division of the BNST (jcBNST) receives robust glutamatergic projections from the basolateral nucleus of the amygdala (BLA), the postpiriform transition area, and the insular cortex as well as dopamine (DA) inputs from the midbrain. In turn the jcBNST sends GABAergic projections to the medial division of the central nucleus of the amygdala (CEAm) as well as other brain regions. We recently described a form of long-term potentiation of the intrinsic excitability (LTP-IE) of neurons of the juxtacapsular nucleus of BNST (jcBNST) in response to high-frequency stimulation (HFS) of the stria terminalis that was impaired during protracted withdrawal from alcohol, cocaine, and heroin and in rats chronically treated with corticotropin-releasing factor (CRF) intracerebroventricularly. Here we show that DAergic neurotransmission is required for the induction of LTP-IE of jcBNST neurons through dopamine (DA) D1 receptors. Thus, activation of the central CRF stress system and altered DAergic neurotransmission during protracted withdrawal from alcohol and drugs of abuse may contribute to the disruption of LTP-IE in the jcBNST. Impairment of this form of intrinsic neuronal plasticity in the jcBNST could result in inadequate neuronal integration and reduced inhibition of the CEA, contributing to the negative affective state that characterizes protracted abstinence in post-dependent individuals. These results provide a novel neurobiological target for vulnerability to alcohol and drug dependence.
Collapse
Affiliation(s)
- Walter Francesconi
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037, USA.
| | - Fulvia Berton
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037, USA
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037, USA
| | - Pietro Paolo Sanna
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037, USA,Correspondence: W. Francesconi () or P.P. Sanna ()
| |
Collapse
|