1
|
Khan R, Laumet G, Leinninger GM. Hungry for relief: Potential for neurotensin to address comorbid obesity and pain. Appetite 2024; 200:107540. [PMID: 38852785 DOI: 10.1016/j.appet.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.
Collapse
Affiliation(s)
- Rabail Khan
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoffroy Laumet
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Srivastava S, Mishra S, Babu G, Mohanty B. Neurotensin agonist PD149163 modulates lipopolysaccharide induced inflammation and oxidative stress in the female reproductive system of mice. Reprod Biol 2024; 24:100828. [PMID: 38029502 DOI: 10.1016/j.repbio.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Inflammation-mediated reproductive health problems in females have become an emerging concern. The present investigation was aimed to elucidate the efficacy of the PD149163, agonist of the type I neurotensin receptor, in preventing/ameliorating the lipopolysaccharide (LPS) induced inflammation of the female reproductive system of the mice. Female Swiss Albino Mice (8 weeks old) were maintained in three groups (6/group): Group I as Control, Group II and Group III were exposed to intraperitoneal (i.p) LPS (1 mg/kg bw) for 5 days followed by treatment with PD149163 (100 μg/kg BW i.p.) to Group III (LPS + PD) for 28 days. After termination of the experiment on 29th day, plasma levels of inflammatory cytokines, LH, FSH, estradiol, corticosterone, oxidative stress effects in the ovary and histopathological study of the ovary and uterine horn were done. LPS-induced inflammation of the ovary and uterine horn was ameliorated/prevented by PD149163 as reflected in the reduced histopathological scores, significant elevation of the plasma anti-inflammatory cytokine IL-10 and decrease of the pro inflammatory cytokines TNF-α and IL-6. Significant decrease of lipid peroxide, increase of antioxidant defense enzymes, Superoxide dismutase and Catalase in the ovary indicated reduction of oxidative stress. The plasma levels of the reproduction related hormones and corticosterone were restored. PD149163 acts as an anti-inflammatory and anti-oxidative agent in modulation of inflammation in the female reproductive system (ovary & uterine horn). These findings suggest that the therapeutic potential of the analogs of neurotensin including PD149163 should be explored for the treatment of the female reproductive health issues.
Collapse
Affiliation(s)
- Sonia Srivastava
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Swarnima Mishra
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Gyan Babu
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Babu G, Mohanty B. Neurotensin modulation of lipopolysaccharide induced inflammation of gut-liver axis: Evaluation using neurotensin receptor agonist and antagonist. Neuropeptides 2023; 97:102297. [PMID: 36368076 DOI: 10.1016/j.npep.2022.102297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Lipopolysaccharide (LPS), a toxic component of the cell wall of Gram-negative bacteria, is a potent immune stressor. LPS-induced inflammation of the gut-liver axis is well demonstrated. Neurotensin (NTS), a tri-decapeptide present in the gastrointestinal tract, has anti-inflammatory, anti-oxidative, and growth-promoting properties. This study elucidated the efficacy of PD149163, the type I NTS receptor agonist (NTS1) in the modulation of LPS-induced inflammation of the gut-liver axis of mice. Young-adult female mice (Age: 8 weeks; BW: 25 ± 2.5 g) were maintained in six groups (6/group); Group I as control and Group II, III & IV were exposed to LPS (1 mg/kg BW/Day; i.p.) for five days. LPS pre-exposed Group III and Group IV mice were treated with NTS1 agonist PD149163 (100 μg/kg BW i.p.) and antagonist SR48692 (0.5 mg/kg BW i.p.) respectively for 28 days. Group V and Group VI mice were exposed to only PD149163 and only SR48692 respectively with the doses as mentioned above for 28 days. Group I and LPS-exposed Group II mice were also maintained four weeks without further treatment. Histopathology revealed LPS-induced inflammation of the gut and liver. Significant elevation of plasma TNF-α and IL-6 and serum ALT and AST reflected as biomarkers of inflammation. Oxidative stress on both organs was distinct from decreased glutathione reductase and increased lipid peroxidation. PD149163 but not SR48692 ameliorated LPS-induced inflammation in both gut and liver counteracting inflammatory responses and oxidative stress. The use of NTS agonists including PD149163 could be exploited for therapeutic intervention of inflammatory diseases including that of the gut-liver axis.
Collapse
Affiliation(s)
- Gyan Babu
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India.
| |
Collapse
|
4
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
5
|
Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders. Metabolites 2022; 12:metabo12060562. [PMID: 35736494 PMCID: PMC9230532 DOI: 10.3390/metabo12060562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropeptides play a major role in maintaining normal brain development in children. Dysfunction of some specific neuropeptides can lead to autism spectrum disorders (ASD) in terms of social interaction and repetitive behavior, but the exact underlying etiological mechanisms are still not clear. In this study, we used an animal model of autism to investigate the role of bee pollen and probiotic in maintaining neuropeptide levels in the brain. We measured the Alpha-melanocyte-stimulating hormone (α-MSH), Beta-endorphin (β-End), neurotensin (NT), and substance P (SP) in brain homogenates of six studied groups of rats. Group I served as control, given only PBS for 30 days; Group II as an autistic model treated with 250 mg PPA/kg BW/day for 3 days after being given PBS for 27 days. Groups III-VI were denoted as intervention groups. G-III was treated with bee pollen (BP) 250 mg/kg body weight/day; G-IV with Lactobacillus paracaseii (LB) (109 CFU/mL) suspended in PBS; G-V with 0.2 g/kg body weight/day Protexin®, a mixture of probiotics (MPB); and G-VI was transplanted with stool from normal animals (FT) for 27 days prior to the induction of PPA neurotoxicity on the last 3 days of study (days 28–30). The obtained data were analyzed through the use of principal component analysis (PCA), discriminant analysis (DA), hierarchical clustering, and receiver operating characteristic (ROC) curves as excellent statistical tools in the field of biomarkers. The obtained data revealed that brain levels of the four measured neuropeptides were significantly reduced in PPA-treated animals compared to healthy control animals. Moreover, the findings demonstrate the ameliorative effects of bee pollen as a prebiotic and of the pure or mixed probiotics. This study proves the protective effects of pre and probiotics against the neurotoxic effects of PPA presented as impaired levels of α-MSH, β-End, NT, and SP.
Collapse
|
6
|
Kurt G, Kodur N, Quiles CR, Reynolds C, Eagle A, Mayer T, Brown J, Makela A, Bugescu R, Seo HD, Carroll QE, Daniels D, Robison AJ, Mazei-Robison M, Leinninger G. Time to drink: Activating lateral hypothalamic area neurotensin neurons promotes intake of fluid over food in a time-dependent manner. Physiol Behav 2022; 247:113707. [PMID: 35063424 PMCID: PMC8844224 DOI: 10.1016/j.physbeh.2022.113707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/24/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
The lateral hypothalamic area (LHA) is essential for ingestive behavior but has primarily been studied in modulating feeding, with comparatively scant attention on drinking. This is partly because most LHA neurons simultaneously promote feeding and drinking, suggesting that ingestive behaviors track together. A notable exception are LHA neurons expressing neurotensin (LHANts neurons): activating these neurons promotes water intake but modestly restrains feeding. Here we investigated the connectivity of LHANts neurons, their necessity and sufficiency for drinking and feeding, and how timing and resource availability influence their modulation of these behaviors. LHANts neurons project broadly throughout the brain, including to the lateral preoptic area (LPO), a brain region implicated in modulating drinking behavior. LHANts neurons also receive inputs from brain regions implicated in sensing hydration and energy status. While activation of LHANts neurons is not required to maintain homeostatic water or food intake, it selectively promotes drinking during the light cycle, when ingestive drive is low. Activating LHANts neurons during this period also increases willingness to work for water or palatable fluids, regardless of their caloric content. By contrast, LHANts neuronal activation during the dark cycle does not promote drinking, but suppresses feeding during this time. Finally, we demonstrate that the activation of the LHANts → LPO projection is sufficient to mediate drinking behavior, but does not suppress feeding as observed after generally activating all LHANts neurons. Overall, our work suggests how and when LHANts neurons oppositely modulate ingestive behaviors.
Collapse
Key Words
- ARC, Arcuate nucleus
- CEA, Central amygdala
- CNO, Clozapine N-Oxide
- CPP, Conditioned place preference
- DR, Dorsal raphe
- DREADD
- DREADD, Designer receptor exclusively activated by designer drugs
- FR-1, Fixed ratio-1
- LHA
- LHA(Nts), Lateral hypothalamic area neuotensin-expressing
- LHA, Lateral hypothalamic area
- LPO, Lateral preoptic area
- LT, Lateral terminalis
- LepRb, Long form of the leptin receptor
- MnPO, Median preoptic area
- ModRabies, Genetically modified rabies virus, EnvA-∆G-Rabies-mCherry
- NTS, Nucleus of solitary tract
- Nts, Neurotensin
- NtsR1, Neurotensin receptor-1
- NtsR2, Neurotensin receptor-2
- OVLT, Organum vasculosum lamina terminalis
- PAG, Periaqueductal gray
- PB, Parabrachial area
- PR, Progressive ratio
- PVH, Paraventricular nucleus of hypothalamus
- SFO, Subfornical organ
- SNc, Substantia nigra compacta
- SO, Supraoptic nucleus
- TVA, avian viral receptor protein
- VEH, Vehicle
- VTA, Ventral tegmental area
- WT, Wild type
- Water
- aCSF, Artificial cerebrospinal fluid
- body weight
- feeding
- homeostasis
- lHb, Lateral habenula
- lateral preoptic area (LPO)
- neurotensin receptor
- reward
Collapse
Affiliation(s)
- Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Nandan Kodur
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Chelsea Reynolds
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Tom Mayer
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Juliette Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Makela
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Harim Delgado Seo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Quinn E Carroll
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo, NY 14226, USA
| | - Derek Daniels
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo, NY 14226, USA
| | - A J Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
7
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
8
|
Svane MS, Øhrstrøm CC, Plamboeck A, Jørgensen NB, Bojsen-Møller KN, Dirksen C, Martinussen C, Vilsbøll T, Hartmann B, Deacon CF, Kristiansen VB, Knop FK, Svendsen LB, Madsbad S, Holst JJ, Veedfald S. Neurotensin secretion after Roux-en-Y gastric bypass, sleeve gastrectomy, and truncal vagotomy with pyloroplasty. Neurogastroenterol Motil 2022; 34:e14210. [PMID: 34378827 DOI: 10.1111/nmo.14210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Neurotensin (NT) is released from enteroendocrine cells and lowers food intake in rodents. We evaluated postprandial NT secretion in humans after surgeries associated with accelerated small intestinal nutrient delivery, and after Roux-en-Y gastric bypass (RYGB) when glucagon-like peptide-1 (GLP-1) signalling and dipeptidyl peptidase 4 (DPP-4) were inhibited, and during pharmacological treatments influencing entero-pancreatic functions. METHODS We measured NT concentrations in plasma from meal studies: (I) after truncal vagotomy with pyloroplasty (TVP), cardia resection +TVP (CTVP), and matched controls (n = 10); (II) after RYGB, sleeve gastrectomy (SG), and in matched controls (n = 12); (III) after RYGB (n = 11) with antagonism of GLP-1 signalling using exendin(9-39) and DPP-4 inhibition using sitagliptin; (IV) after RYGB (n = 11) during a run-in period and subsequent treatment with, sitagliptin, liraglutide (GLP-1 receptor agonist), verapamil (calcium antagonist), acarbose (alpha glucosidase inhibitor), and pasireotide (somatostatin analogue), respectively. RESULTS (I) NT secretion was similar after TVP/CTVP (p = 0.9), but increased vs. controls (p < 0.0001). (II) NT secretion was increased after RYGB vs. SG and controls (p < 0.0001). NT responses were similar in SG and controls (p = 0.3), but early postprandial NT concentrations were higher after SG (p < 0.05). (III) Exendin (9-39) and sitagliptin did not change NT responses vs placebo (p > 0.2), but responses were lower during sitagliptin vs. exendin(9-39) (p = 0.03). (IV) Pasireotide suppressed NT secretion (p = 0.004). Sitagliptin tended to lower NT secretion (p = 0.08). Liraglutide, verapamil, and acarbose had no effect (p > 0.9). CONCLUSION Neurotensin secretion is increased after surgeries associated with accelerated gastric emptying and lowered by pasireotide.
Collapse
Affiliation(s)
- Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Astrid Plamboeck
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nils B Jørgensen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kirstine N Bojsen-Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Christoffer Martinussen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viggo B Kristiansen
- Department of Surgical Gastroenterology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars B Svendsen
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Perez-Bonilla P, Santiago-Colon K, Matasovsky J, Ramirez-Virella J, Khan R, Garver H, Fink G, Dorrance AM, Leinninger GM. Activation of ventral tegmental area neurotensin Receptor-1 neurons promotes weight loss. Neuropharmacology 2021; 195:108639. [PMID: 34116109 DOI: 10.1016/j.neuropharm.2021.108639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 01/31/2023]
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) modulate physical activity and feeding behaviors that are disrupted in obesity. Yet, the heterogeneity of VTA DA neurons has hindered determination of which ones might be leveraged to support weight loss. We hypothesized that increased activity in the subset of VTA DA neurons expressing neurotensin receptor-1 (NtsR1) might promote weight loss behaviors. To test this, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to activate VTA NtsR1 neurons in normal weight and diet-induced obese mice. Acute activation of VTA NtsR1 neurons (24hr) significantly decreased body weight in normal weight and obese mice by reducing food intake and increasing physical activity. Moreover, daily activation of VTA NtsR1 neurons in obese mice sustained weight loss over 7 days. Activating VTA NtsR1 neurons also suppressed how much mice worked to obtain sucrose rewards, even when there was high motivation to consume. However, VTA NtsR1 neural activation was not reinforcing, nor did it invoke liabilities associated with whole-body NtsR1 agonism such as anxiety, vasodepressor response or hypothermia. Activating VTA NtsR1 neurons therefore promotes dual behaviors that support weight loss without causing adverse effects, and is worth further exploration for managing obesity.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, 48114, USA; Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA
| | | | - Jillian Matasovsky
- Department of Physiology and College of Natural Science, Michigan State University, East Lansing, MI, 48114, USA
| | - Jariel Ramirez-Virella
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, 48114, USA; Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA
| | - Rabail Khan
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, 48114, USA
| | - Hannah Garver
- Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA
| | - Gregory Fink
- Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA; College of Osteopathic Medicine, East Lansing, MI, 48114, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA; College of Osteopathic Medicine, East Lansing, MI, 48114, USA
| | - Gina M Leinninger
- Department of Physiology and College of Natural Science, Michigan State University, East Lansing, MI, 48114, USA.
| |
Collapse
|
10
|
Ramirez-Virella J, Leinninger GM. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021; 162:6144574. [PMID: 33599716 PMCID: PMC7951050 DOI: 10.1210/endocr/bqab038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/16/2022]
Abstract
The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.
Collapse
Affiliation(s)
- Jariel Ramirez-Virella
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
- Correspondence: Gina M. Leinninger, PhD, Department of Physiology, Michigan State University, 5400 ISTB, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
Vivancos M, Fanelli R, Besserer-Offroy É, Beaulieu S, Chartier M, Resua-Rojas M, Mona CE, Previti S, Rémond E, Longpré JM, Cavelier F, Sarret P. Metabolically stable neurotensin analogs exert potent and long-acting analgesia without hypothermia. Behav Brain Res 2021; 405:113189. [PMID: 33607165 DOI: 10.1016/j.bbr.2021.113189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The endogenous tridecapeptide neurotensin (NT) has emerged as an important inhibitory modulator of pain transmission, exerting its analgesic action through the activation of the G protein-coupled receptors, NTS1 and NTS2. Whereas both NT receptors mediate the analgesic effects of NT, NTS1 activation also produces hypotension and hypothermia, which may represent obstacles for the development of new pain medications. In the present study, we implemented various chemical strategies to improve the metabolic stability of the biologically active fragment NT(8-13) and assessed their NTS1/NTS2 relative binding affinities. We then determined their ability to reduce the nociceptive behaviors in acute, tonic, and chronic pain models and to modulate blood pressure and body temperature. To this end, we synthesized a series of NT(8-13) analogs carrying a reduced amide bond at Lys8-Lys9 and harboring site-selective modifications with unnatural amino acids, such as silaproline (Sip) and trimethylsilylalanine (TMSAla). Incorporation of Sip and TMSAla respectively in positions 10 and 13 of NT(8-13) combined with the Lys8-Lys9 reduced amine bond (JMV5296) greatly prolonged the plasma half-life time over 20 h. These modifications also led to a 25-fold peptide selectivity toward NTS2. More importantly, central delivery of JMV5296 was able to induce a strong antinociceptive effect in acute (tail-flick), tonic (formalin), and chronic inflammatory (CFA) pain models without inducing hypothermia. Altogether, these results demonstrate that the chemically-modified NT(8-13) analog JMV5296 exhibits a better therapeutic profile and may thus represent a promising avenue to guide the development of new stable NT agonists and improve pain management.
Collapse
Affiliation(s)
- Mélanie Vivancos
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Roberto Fanelli
- Institut des Biomolécules Max Mousseron (IBMM), UMR-CNRS 5247, Université Montpellier, ENSCM, Montpellier, France.
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Sabrina Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Magali Chartier
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Resua-Rojas
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA.
| | - Santo Previti
- Institut des Biomolécules Max Mousseron (IBMM), UMR-CNRS 5247, Université Montpellier, ENSCM, Montpellier, France.
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron (IBMM), UMR-CNRS 5247, Université Montpellier, ENSCM, Montpellier, France.
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron (IBMM), UMR-CNRS 5247, Université Montpellier, ENSCM, Montpellier, France.
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
12
|
Abstract
Introduction: Neurotensin is a gut-brain peptide hormone, a 13 amino acid neuropeptide found in the central nervous system and in the GI tract. The neurotensinergic system is implicated in various physiological and pathological processes related to neuropsychiatric and metabolic machineries, cancer growth, food, and drug intake. NT mediates its functions through its two G protein-coupled receptors: neurotensin receptor 1 (NTS1/NTSR1) and neurotensin receptor 2 (NTS2/NTSR2). Over the past decade, the role of NTS3/NTSR3/sortilin has also gained importance in human pathologies. Several approaches have appeared dealing with the discovery of compounds able to modulate the functions of this neuropeptide through its receptors for therapeutic gain.Areas covered: The article provides an overview of over four decades of research and details the drug discovery approaches and patented strategies targeting NTSR in the past decade.Expert opinion: Neurotensin is an important neurotransmitter that enables crosstalk with various neurotransmitter and neuroendocrine systems. While significant efforts have been made that have led to selective agonists and antagonists with promising in vitro and in vivo activities, the therapeutic potential of compounds targeting the neurotensinergic system is still to be fully harnessed for successful clinical translation of compounds for the treatment of several pathologies.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
13
|
Tétreault P, Besserer-Offroy É, Brouillette RL, René A, Murza A, Fanelli R, Kirby K, Parent AJ, Dubuc I, Beaudet N, Côté J, Longpré JM, Martinez J, Cavelier F, Sarret P. Pain relief devoid of opioid side effects following central action of a silylated neurotensin analog. Eur J Pharmacol 2020; 882:173174. [DOI: 10.1016/j.ejphar.2020.173174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
|
14
|
Burk BG, Ward AH, Clark B. A case report of acute hypothermia during initial inpatient clozapine titration with review of current literature on clozapine-induced temperature dysregulations. BMC Psychiatry 2020; 20:290. [PMID: 32517724 PMCID: PMC7285439 DOI: 10.1186/s12888-020-02695-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/27/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Here we describe a unique case of clozapine-associated hypothermia during initial titration of this medication in an acute inpatient psychiatry setting. Only a handful of cases on this topic have been published. We discuss possible pharmacologic mechanisms supporting or refuting the propensity of clozapine to induce hypothermia, as well as risk factors for clozapine-induced hypothermia, and a comparison to clozapine-induced hyperthermia. CASE PRESENTATION A 70 year-old African American female with treatment-refractory schizoaffective disorder developed hypothermia with a nadir temperature of 89 °F (31.7 °C) after 7 days on clozapine, on a total dose of 50 mg twice daily. Accompanying symptoms included bradycardia, hypotension, QTc prolongation, tachypnea, hypoxemia, and an absence of shivering. The patient was transferred to the ICU, and rewarmed within 10 h with the discontinuation of her clozapine, ziprasidone, and carvedilol. Broad spectrum antibiotics were initiated, but discontinued shortly after, as the patient had no leukocytosis, and blood cultures were negative. DISCUSSION While hypoglycemia, hypothyroidism, sepsis, and stroke were effectively ruled out, alternative drug-disease (including chronic kidney disease), and drug-drug interactions were considered possible contributing features. Benzodiazepines, valproic acid, ziprasidone, and the numerous antihypertensive agents the patient was taking were considered as either primary or compounding factors for hypothermia. After exclusion or inclusion of these alternative causes, we calculated a score of 4 (possible) for clozapine-induced hypothermia on the Naranjo Scale. CONCLUSIONS Clozapine-induced hypothermia may occur more commonly than clinicians believe. Practitioners should be cognizant of this potentially fatal phenomenon, and monitor for temperature dysregulations while on clozapine, especially during initial titration, in those with multiple comorbid factors, and on additional medications that may contribute to hypothermia.
Collapse
Affiliation(s)
- Bradley G. Burk
- grid.413019.e0000 0000 8951 5123Department of Pharmacy, University of Alabama at Birmingham Medical Center, JT1728 619 19th Street South, Birmingham, AL 35249 USA
| | - Alex H. Ward
- grid.413019.e0000 0000 8951 5123Department of Pharmacy, University of Alabama at Birmingham Medical Center, JT1728 619 19th Street South, Birmingham, AL 35249 USA
| | - Brooke Clark
- Chattanooga College, 5600 Brainerd Road, Chattanooga, TN 37415 USA
| |
Collapse
|
15
|
Previti S, Vivancos M, Rémond E, Beaulieu S, Longpré JM, Ballet S, Sarret P, Cavelier F. Insightful Backbone Modifications Preventing Proteolytic Degradation of Neurotensin Analogs Improve NT S1-Induced Protective Hypothermia. Front Chem 2020; 8:406. [PMID: 32582624 PMCID: PMC7291367 DOI: 10.3389/fchem.2020.00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Therapeutic hypothermia represents a brain-protective strategy for multiple emergency situations, such as stroke or traumatic injury. Neurotensin (NT), which exerts its effects through activation of two G protein-coupled receptors, namely NTS1 and NTS2, induces a strong and long-lasting decrease in core body temperature after its central administration. Growing evidence demonstrates that NTS1 is the receptor subtype mediating the hypothermic action of NT. As such, potent NTS1 agonists designed on the basis of the minimal C-terminal NT(8-13) bioactive fragment have been shown to produce mild hypothermia and exert neuroprotective effects under various clinically relevant conditions. The high susceptibility of NT(8-13) to protease degradation (half-life <2 min) represents, however, a serious limitation for its use in pharmacological therapy. In light of this, we report here a structure-activity relationship study in which pairs of NT(8-13) analogs have been developed, based on the incorporation of a reduced Lys8-Lys9 bond. To further stabilize the peptide bonds, a panel of backbone modifications was also inserted along the peptide sequence, including Sip10, D-Trp11, Dmt11, Tle12, and TMSAla13. Our results revealed that the combination of appropriate chemical modifications leads to compounds exhibiting improved resistance to proteolytic cleavages (>24 h; 16). Among them, the NT(8-13) analogs harboring the reduced amine bond combined with the unnatural amino acids TMSAla13 (4) and Sip10 (6) or the di-substitution Lys11 - TMSAla13 (12), D-Trp11-TMSAla13 (14), and Dmt11-Tle12 (16) produced sustained hypothermic effects (−3°C for at least 1 h). Importantly, we observed that hypothermia was mainly driven by the increased stability of the NT(8-13) derivatives, instead of the high binding-affinity at NTS1. Altogether, these results reveal the importance of the reduced amine bond in optimizing the metabolic properties of the NT(8-13) peptide and support the development of stable NTS1 agonists as first drug candidate in neuroprotective hypothermia.
Collapse
Affiliation(s)
- Santo Previti
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Departments of Bioengineering Sciences and Chemistry, Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mélanie Vivancos
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sabrina Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Steven Ballet
- Departments of Bioengineering Sciences and Chemistry, Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
16
|
Perez-Bonilla P, Santiago-Colon K, Leinninger GM. Lateral hypothalamic area neuropeptides modulate ventral tegmental area dopamine neurons and feeding. Physiol Behav 2020; 223:112986. [PMID: 32492498 DOI: 10.1016/j.physbeh.2020.112986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023]
Abstract
Understanding how the brain coordinates energy status with the motivation to eat is crucial to identify strategies to improve disordered body weight. The ventral tegmental area (VTA), known as the core of the mesolimbic system, is of particular interest in this regard because it controls the motivation to consume palatable, calorie-dense foods and to engage in volitional activity. The VTA is largely composed of dopamine (DA) neurons, but modulating these DA neurons has been alternately linked with promoting and suppressing feeding, suggesting heterogeneity in their function. Subsets of VTA DA neurons have recently been described based on their anatomical distribution, electrophysiological features, connectivity and molecular expression, but to date there are no signatures to categorize how DA neurons control feeding. Assessing the neuropeptide receptors expressed by VTA DA neurons may be useful in this regard, as many neuropeptides mediate anorexic or orexigenic responses. In particular, the lateral hypothalamic area (LHA) releases a wide variety of feeding-modulating neuropeptides to the VTA. Since VTA neurons intercept LHA neuropeptides known to either evoke or suppress feeding, expression of the cognate neuropeptide receptors within the VTA may point to VTA DA neuronal mechanisms to promote or suppress feeding, respectively. Here we review the role of the VTA in energy balance and the LHA neuropeptide signaling systems that act in the VTA, whose receptors might be used to classify how VTA DA neurons contribute to energy balance.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, USA; Pharmacology and Toxicology Graduate Program, USA; Michigan State University, East Lansing, MI 48114, USA
| | - Krystal Santiago-Colon
- Department of Biology, University of Puerto Rico - Cayey, USA; Bridge to the PhD in Neuroscience Program, USA
| | - Gina M Leinninger
- Department of Physiology, USA; Michigan State University, East Lansing, MI 48114, USA.
| |
Collapse
|
17
|
Brouillette RL, Besserer-Offroy É, Mona CE, Chartier M, Lavenus S, Sousbie M, Belleville K, Longpré JM, Marsault É, Grandbois M, Sarret P. Cell-penetrating pepducins targeting the neurotensin receptor type 1 relieve pain. Pharmacol Res 2020; 155:104750. [PMID: 32151680 DOI: 10.1016/j.phrs.2020.104750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/12/2020] [Accepted: 03/05/2020] [Indexed: 01/29/2023]
Abstract
Pepducins are cell-penetrating, membrane-tethered lipopeptides designed to target the intracellular region of a G protein-coupled receptor (GPCR) in order to allosterically modulate the receptor's signaling output. In this proof-of-concept study, we explored the pain-relief potential of a pepducin series derived from the first intracellular loop of neurotensin receptor type 1 (NTS1), a class A GPCR that mediates many of the effects of the neurotensin (NT) tridecapeptide, including hypothermia, hypotension and analgesia. We used BRET-based biosensors to determine the pepducins' ability to engage G protein signaling pathways associated with NTS1 activation. We observed partial Gαq and Gα13 activation at a 10 μM concentration, indicating that these pepducins may act as allosteric agonists of NTS1. Additionally, we used surface plasmon resonance (SPR) as a label-free assay to monitor pepducin-induced responses in CHO-K1 cells stably expressing hNTS1. This whole-cell integrated assay enabled us to subdivide our pepducin series into three profile response groups. In order to determine the pepducins' antinociceptive potential, we then screened the series in an acute pain model (tail-flick test) by measuring tail withdrawal latencies to a thermal nociceptive stimulus, following intrathecal (i.t.) pepducin administration (275 nmol/kg). We further evaluated promising pepducins in a tonic pain model (formalin test), as well as in neuropathic (Chronic Constriction Injury) and inflammatory (Complete Freund's Adjuvant) chronic pain models. We report one pepducin, PP-001, that consistently reduced rat nociceptive behaviors, even in chronic pain paradigms. Finally, we designed a TAMRA-tagged version of PP-001 and found by confocal microscopy that the pepducin reached the rat dorsal root ganglia post i.t. injection, thus potentially modulating the activity of NTS1 at this location to produce its analgesic effect. Altogether, these results suggest that NTS1-derived pepducins may represent a promising strategy in pain-relief.
Collapse
Affiliation(s)
- Rebecca L Brouillette
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Élie Besserer-Offroy
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
| | - Christine E Mona
- Ahmanson Translational Theranostic Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Magali Chartier
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Sandrine Lavenus
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marc Sousbie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Karine Belleville
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Éric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Michel Grandbois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
18
|
Saiyasit N, Sripetchwandee J, Chattipakorn N, Chattipakorn SC. Potential roles of neurotensin on cognition in conditions of obese-insulin resistance. Neuropeptides 2018; 72:12-22. [PMID: 30279001 DOI: 10.1016/j.npep.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/29/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023]
Abstract
Neurotensin is an endogenous tridecapeptide that can be found in both central and peripheral nervous systems. Under normal physiological conditions, neurotensin is involved in the regulation of pain, body temperature, physical activity, appetite as well as learning and memory. In addition, it plays an important role in fat metabolism. Previous studies have demonstrated that alterations of neurotensin levels were associated with several neuropathological conditions such as Alzheimer's disease, mood disorders, and obesity associated eating disorders. Obesity has been shown to be associated with low-grade systemic inflammation, brain inflammation, and cognitive decline. Several pieces of evidence suggest that neurotensin might play a role in cognitive decline following obesity. However, the underlying mechanisms of neurotensin on cognition under obese-insulin resistant condition are still unclear. In this review, the current available evidence from in vitro, in vivo and clinical studies regarding the role of neurotensin in the physiological condition and obesity in association with cognition are comprehensively summarized and discussed. The studies which report controversial findings regarding these issues are also presented and discussed.
Collapse
Affiliation(s)
- Napatsorn Saiyasit
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
19
|
Wen S, Wang C, Gong M, Zhou L. An overview of energy and metabolic regulation. SCIENCE CHINA-LIFE SCIENCES 2018; 62:771-790. [PMID: 30367342 DOI: 10.1007/s11427-018-9371-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
The physiology and behaviors related to energy balance are monitored by the nervous and humoral systems. Because of the difficulty in treating diabetes and obesity, elucidating the energy balance mechanism and identifying critical targets for treatment are important research goals. Therefore, the purpose of this article is to describe energy regulation by the central nervous system (CNS) and peripheral humoral pathway. Homeostasis and rewarding are the basis of CNS regulation. Anorexigenic or orexigenic effects reflect the activities of the POMC/CART or NPY/AgRP neurons within the hypothalamus. Neurotransmitters have roles in food intake, and responsive brain nuclei have different functions related to food intake, glucose monitoring, reward processing. Peripheral gut- or adipose-derived hormones are the major source of peripheral humoral regulation systems. Nutrients or metabolites and gut microbiota affect metabolism via a discrete pathway. We also review the role of peripheral organs, the liver, adipose tissue, and skeletal muscle in peripheral regulation. We discuss these topics and how the body regulates metabolism.
Collapse
Affiliation(s)
- Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| |
Collapse
|
20
|
Kurt G, Woodworth HL, Fowler S, Bugescu R, Leinninger GM. Activation of lateral hypothalamic area neurotensin-expressing neurons promotes drinking. Neuropharmacology 2018; 154:13-21. [PMID: 30266601 DOI: 10.1016/j.neuropharm.2018.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
Animals must ingest water via drinking to maintain fluid homeostasis, yet the neurons that specifically promote drinking behavior are incompletely characterized. The lateral hypothalamic area (LHA) as a whole is essential for drinking behavior but most LHA neurons indiscriminately promote drinking and feeding. By contrast, activating neurotensin (Nts)-expressing LHA neurons (termed LHA Nts neurons) causes mice to immediately drink water with a delayed suppression of feeding. We therefore hypothesized that LHA Nts neurons are sufficient to induce drinking behavior and that these neurons specifically bias for fluid intake over food intake. To test this hypothesis we used designer receptors exclusively activated by designer drugs (DREADDs) to selectively activate LHA Nts neurons and studied the impact on fluid intake, fluid preference and feeding. Activation of LHA Nts neurons stimulated drinking in water-replete and dehydrated mice, indicating that these neurons are sufficient to promote water intake regardless of homeostatic need. Interestingly, mice with activated LHA Nts neurons drank any fluid that was provided regardless of its palatability, but if given a choice they preferred water or palatable solutions over unpalatable (quinine) or dehydrating (hypertonic saline) solutions. Notably, acute activation of LHA Nts neurons robustly promoted fluid but not food intake. Overall, our study confirms that activation of LHA Nts neurons is sufficient to induce drinking behavior and biases for fluid intake. Hence, LHA Nts neurons may be important targets for orchestrating the appropriate ingestive behavior necessary to maintain fluid homeostasis. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Hillary L Woodworth
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Sabrina Fowler
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA.
| |
Collapse
|
21
|
Bliss ES, Whiteside E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front Physiol 2018; 9:900. [PMID: 30050464 PMCID: PMC6052131 DOI: 10.3389/fphys.2018.00900] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global epidemic, placing socioeconomic strain on public healthcare systems, especially within the so-called Western countries, such as Australia, United States, United Kingdom, and Canada. Obesity results from an imbalance between energy intake and energy expenditure, where energy intake exceeds expenditure. Current non-invasive treatments lack efficacy in combating obesity, suggesting that obesity is a multi-faceted and more complex disease than previously thought. This has led to an increase in research exploring energy homeostasis and the discovery of a complex bidirectional communication axis referred to as the gut-brain axis. The gut-brain axis is comprised of various neurohumoral components that allow the gut and brain to communicate with each other. Communication occurs within the axis via local, paracrine and/or endocrine mechanisms involving a variety of gut-derived peptides produced from enteroendocrine cells (EECs), including glucagon-like peptide 1 (GLP1), cholecystokinin (CCK), peptide YY3-36 (PYY), pancreatic polypeptide (PP), and oxyntomodulin. Neural networks, such as the enteric nervous system (ENS) and vagus nerve also convey information within the gut-brain axis. Emerging evidence suggests the human gut microbiota, a complex ecosystem residing in the gastrointestinal tract (GIT), may influence weight-gain through several inter-dependent pathways including energy harvesting, short-chain fatty-acids (SCFA) signalling, behaviour modifications, controlling satiety and modulating inflammatory responses within the host. Hence, the gut-brain axis, the microbiota and the link between these elements and the role each plays in either promoting or regulating energy and thereby contributing to obesity will be explored in this review.
Collapse
Affiliation(s)
- Edward S. Bliss
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | | |
Collapse
|
22
|
Woodworth HL, Batchelor HM, Beekly BG, Bugescu R, Brown JA, Kurt G, Fuller PM, Leinninger GM. Neurotensin Receptor-1 Identifies a Subset of Ventral Tegmental Dopamine Neurons that Coordinates Energy Balance. Cell Rep 2018; 20:1881-1892. [PMID: 28834751 DOI: 10.1016/j.celrep.2017.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/19/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023] Open
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) are heterogeneous and differentially regulate ingestive and locomotor behaviors that affect energy balance. Identification of which VTA DA neurons mediate behaviors that limit weight gain has been hindered, however, by the lack of molecular markers to distinguish VTA DA populations. Here, we identified a specific subset of VTA DA neurons that express neurotensin receptor-1 (NtsR1) and preferentially comprise mesolimbic, but not mesocortical, DA neurons. Genetically targeted ablation of VTA NtsR1 neurons uncouples motivated feeding and physical activity, biasing behavior toward energy expenditure and protecting mice from age-related and diet-induced weight gain. VTA NtsR1 neurons thus represent a molecularly defined subset of DA neurons that are essential for the coordination of energy balance. Modulation of VTA NtsR1 neurons may therefore be useful to promote behaviors that prevent the development of obesity.
Collapse
Affiliation(s)
- Hillary L Woodworth
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Hannah M Batchelor
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Bethany G Beekly
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA
| | - Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Patrick M Fuller
- Department of Neurology, Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
23
|
Schroeder LE, Leinninger GM. Role of central neurotensin in regulating feeding: Implications for the development and treatment of body weight disorders. Biochim Biophys Acta Mol Basis Dis 2017; 1864:900-916. [PMID: 29288794 DOI: 10.1016/j.bbadis.2017.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
The peptide neurotensin (Nts) was discovered within the brain over 40years ago and is implicated in regulating analgesia, body temperature, blood pressure, locomotor activity and feeding. Recent evidence suggests, however, that these disparate processes may be controlled via specific populations of Nts neurons and receptors. The neuronal mediators of Nts anorectic action are now beginning to be understood, and, as such, modulating specific Nts pathways might be useful in treating feeding and body weight disorders. This review considers mechanisms through which Nts normally regulates feeding and how disruptions in Nts signaling might contribute to the disordered feeding and body weight of schizophrenia, Parkinson's disease, anorexia nervosa, and obesity. Defining how Nts specifically mediates feeding vs. other aspects of physiology will inform the design of therapeutics that modify body weight without disrupting other important Nts-mediated physiology.
Collapse
Affiliation(s)
- Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48823, United States
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48823, United States.
| |
Collapse
|
24
|
Woodworth HL, Beekly BG, Batchelor HM, Bugescu R, Perez-Bonilla P, Schroeder LE, Leinninger GM. Lateral Hypothalamic Neurotensin Neurons Orchestrate Dual Weight Loss Behaviors via Distinct Mechanisms. Cell Rep 2017; 21:3116-3128. [PMID: 29241540 PMCID: PMC5734099 DOI: 10.1016/j.celrep.2017.11.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/14/2017] [Accepted: 11/19/2017] [Indexed: 01/20/2023] Open
Abstract
The central mechanism by which neurotensin (Nts) potentiates weight loss has remained elusive. We leveraged chemogenetics to reveal that Nts-expressing neurons of the lateral hypothalamic area (LHA) promote weight loss in mice by increasing volitional activity and restraining food intake. Intriguingly, these dual weight loss behaviors are mediated by distinct signaling pathways: Nts action via NtsR1 is essential for the anorectic effect of the LHA Nts circuit, but not for regulation of locomotor or drinking behavior. Furthermore, although LHA Nts neurons cannot reduce intake of freely available obesogenic foods, they effectively restrain motivated feeding in hungry, weight-restricted animals. LHA Nts neurons are thus vital mediators of central Nts action, particularly in the face of negative energy balance. Enhanced action via LHA Nts neurons may, therefore, be useful to suppress the increased appetitive drive that occurs after lifestyle-mediated weight loss and, hence, to prevent weight regain.
Collapse
Affiliation(s)
- Hillary L Woodworth
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Bethany G Beekly
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah M Batchelor
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Patricia Perez-Bonilla
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
25
|
PD149163 induces hypothermia to protect against brain injury in acute cerebral ischemic rats. J Pharmacol Sci 2017; 135:105-113. [PMID: 29113791 DOI: 10.1016/j.jphs.2017.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022] Open
Abstract
Therapeutic hypothermia is a promising strategy for acute cerebral ischemia via physical or pharmacological methods. In this study, we pharmacologically induced hypothermia on Sprague Dawley rats by intraperitoneally injecting PD149163. We found that mild hypothermia was induced by PD149163 treatment without local cerebral blood flow (LCBF) alteration. To evaluate the neuroprotective effects of PD149163, TTC staining, HE staining and Nissl's staining were performed in our study. We found that PD149163 could prevent neuronal damage, and inhibit proliferation and activation of glial cells induced by ischemia. Simultaneously, we observed PD149163 ameliorated apoptosis characterized by down-regulated caspase-3 and Bax, but elevated Bcl-2. Moreover, PD149163 dramatically reduced JNK and AMPK/mTOR signaling pathway activation, and thereby inhibited autophagy by increased P62 expression, decreased the ratio of LC3-Ⅱ to LC3-Ⅰ and the expression of Beclin. Taken together, the present findings reveal the therapeutic effects of PD149163-induced hypothermia in brain ischemia, and provide a new strategy for stroke treatment.
Collapse
|
26
|
Besserer-Offroy É, Brouillette RL, Lavenus S, Froehlich U, Brumwell A, Murza A, Longpré JM, Marsault É, Grandbois M, Sarret P, Leduc R. The signaling signature of the neurotensin type 1 receptor with endogenous ligands. Eur J Pharmacol 2017; 805:1-13. [DOI: 10.1016/j.ejphar.2017.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
|
27
|
Tarahovsky YS, Fadeeva IS, Komelina NP, Khrenov MO, Zakharova NM. Antipsychotic inductors of brain hypothermia and torpor-like states: perspectives of application. Psychopharmacology (Berl) 2017; 234:173-184. [PMID: 27933367 DOI: 10.1007/s00213-016-4496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/26/2016] [Indexed: 12/12/2022]
Abstract
Hypothermia and hypometabolism (hypometabothermia) normally observed during natural hibernation and torpor, allow animals to protect their body and brain against the damaging effects of adverse environment. A similar state of hypothermia can be achieved under artificial conditions through physical cooling or pharmacological effects directed at suppression of metabolism and the processes of thermoregulation. In these conditions called torpor-like states, the mammalian ability to recover from stroke, heart attack, and traumatic injuries greatly increases. Therefore, the development of therapeutic methods for different pathologies is a matter of great concern. With the discovery of the antipsychotic drug chlorpromazine in the 1950s of the last century, the first attempts to create a pharmacologically induced state of hibernation for therapeutic purposes were made. That was the beginning of numerous studies in animals and the broad use of therapeutic hypothermia in medicine. Over the last years, many new agents have been discovered which were capable of lowering the body temperature and inhibiting the metabolism. The psychotropic agents occupy a significant place among them, which, in our opinion, is not sufficiently recognized in the contemporary literature. In this review, we summarized the latest achievements related to the ability of modern antipsychotics to target specific receptors in the brain, responsible for the initiation of hypometabothermia.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290. .,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.
| | - Irina S Fadeeva
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Natalia P Komelina
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Maxim O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Nadezhda M Zakharova
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| |
Collapse
|
28
|
|
29
|
Tabe-Bordbar S, Anastasio TJ. Computational Analysis of the Hypothalamic Control of Food Intake. Front Comput Neurosci 2016; 10:27. [PMID: 27199725 PMCID: PMC4844610 DOI: 10.3389/fncom.2016.00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/14/2016] [Indexed: 12/01/2022] Open
Abstract
Food-intake control is mediated by a heterogeneous network of different neural subtypes, distributed over various hypothalamic nuclei and other brain structures, in which each subtype can release more than one neurotransmitter or neurohormone. The complexity of the interactions of these subtypes poses a challenge to understanding their specific contributions to food-intake control, and apparent consistencies in the dataset can be contradicted by new findings. For example, the growing consensus that arcuate nucleus neurons expressing Agouti-related peptide (AgRP neurons) promote feeding, while those expressing pro-opiomelanocortin (POMC neurons) suppress feeding, is contradicted by findings that low AgRP neuron activity and high POMC neuron activity can be associated with high levels of food intake. Similarly, the growing consensus that GABAergic neurons in the lateral hypothalamus suppress feeding is contradicted by findings suggesting the opposite. Yet the complexity of the food-intake control network admits many different network behaviors. It is possible that anomalous associations between the responses of certain neural subtypes and feeding are actually consistent with known interactions, but their effect on feeding depends on the responses of the other neural subtypes in the network. We explored this possibility through computational analysis. We made a computer model of the interactions between the hypothalamic and other neural subtypes known to be involved in food-intake control, and optimized its parameters so that model behavior matched observed behavior over an extensive test battery. We then used specialized computational techniques to search the entire model state space, where each state represents a different configuration of the responses of the units (model neural subtypes) in the network. We found that the anomalous associations between the responses of certain hypothalamic neural subtypes and feeding are actually consistent with the known structure of the food-intake control network, and we could specify the ways in which the anomalous configurations differed from the expected ones. By analyzing the temporal relationships between different states we identified the conditions under which the anomalous associations can occur, and these stand as model predictions.
Collapse
Affiliation(s)
- Shayan Tabe-Bordbar
- Computational Neurobiology Laboratory, Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Thomas J Anastasio
- Computational Neurobiology Laboratory, Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
30
|
Feifel D, Shilling PD, Fazlinejad AA, Melendez G. Antipsychotic drug-like facilitation of latent inhibition by a brain-penetrating neurotensin-1 receptor agonist. J Psychopharmacol 2016; 30:312-7. [PMID: 26783230 DOI: 10.1177/0269881115625360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Latent inhibition (LI) is a measure of cognitive gating and refers to reduced conditioned learning when there is pre-exposure to the conditioned stimulus (CS) before it is paired with the unconditioned stimulus (US). Dysregulation of LI is associated with some neuropsychiatric disorders, including schizophrenia, and the ability to facilitate LI in rodents is a reasonably good predictive test for antipsychotic drugs. Converging evidence supports neurotensin-1 receptor (NTS1) agonists as novel drugs for schizophrenia. Therefore, we investigated the ability of a brain-penetrating, selective NTS1 agonist, PD149163, to facilitate LI in heterozygous Brattleboro rats, a strain that exhibits naturally low LI. Conditioned taste aversion to flavored water (FW; 0.1% saccharin) was induced by pairing it with malaise-inducing injections of lithium chloride (LiCl). Prior to LiCl-FW pairing, rats received subcutaneous injections of saline, or PD149163 (100 µg/kg or 200 µg/kg). Half the rats in each drug group had been allowed to drink FW the day before the LiCl-FW pairing (pre-exposed rats). Two days after pairing, the amount of FW each rat consumed was recorded. LI, defined as significantly greater FW drinking in the pre-exposed group compared with the non pre-exposed group, was exhibited only among rats that received 200 µg/kg of PD149163. These results further support NTS1 agonists as potentially novel drugs for the treatment of schizophrenia.
Collapse
Affiliation(s)
- D Feifel
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - P D Shilling
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - A A Fazlinejad
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - G Melendez
- Department of Psychiatry, University of California, San Diego, CA, USA
| |
Collapse
|
31
|
Grunddal KV, Ratner CF, Svendsen B, Sommer F, Engelstoft MS, Madsen AN, Pedersen J, Nøhr MK, Egerod KL, Nawrocki AR, Kowalski T, Howard AD, Poulsen SS, Offermanns S, Bäckhed F, Holst JJ, Holst B, Schwartz TW. Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP-1 and PYY in Enteroendocrine Control of Metabolism. Endocrinology 2016; 157:176-94. [PMID: 26469136 DOI: 10.1210/en.2015-1600] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 2 gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are well known to be coexpressed, costored, and released together to coact in the control of key metabolic target organs. However, recently, it became clear that several other gut hormones can be coexpressed in the intestinal-specific lineage of enteroendocrine cells. Here, we focus on the anatomical and functional consequences of the coexpression of neurotensin with GLP-1 and PYY in the distal small intestine. Fluorescence-activated cell sorting analysis, laser capture, and triple staining demonstrated that GLP-1 cells in the crypts become increasingly multihormonal, ie, coexpressing PYY and neurotensin as they move up the villus. Proglucagon promoter and pertussis toxin receptor-driven cell ablation and reappearance studies indicated that although all the cells die, the GLP-1 cells reappear more quickly than PYY- and neurotensin-positive cells. High-resolution confocal fluorescence microscopy demonstrated that neurotensin is stored in secretory granules distinct from GLP-1 and PYY storing granules. Nevertheless, the 3 peptides were cosecreted from both perfused small intestines and colonic crypt cultures in response to a series of metabolite, neuropeptide, and hormonal stimuli. Importantly, neurotensin acts synergistically, ie, more than additively together with GLP-1 and PYY to decrease palatable food intake and inhibit gastric emptying, but affects glucose homeostasis in a more complex manner. Thus, neurotensin is a major gut hormone deeply integrated with GLP-1 and PYY, which should be taken into account when exploiting the enteroendocrine regulation of metabolism pharmacologically.
Collapse
Affiliation(s)
- Kaare V Grunddal
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Cecilia F Ratner
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Berit Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Felix Sommer
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Maja S Engelstoft
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andreas N Madsen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jens Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mark K Nøhr
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andrea R Nawrocki
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Timothy Kowalski
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andrew D Howard
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Steen Seier Poulsen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Stefan Offermanns
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Birgitte Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.V.G., C.F.R., B.S., M.S.E., A.N.M., J.P., M.K.N., K.L.E., F.B., J.J.H., B.H., T.W.S.), Section for Metabolic Receptology and Enteroendocrinology; Laboratory for Molecular Pharmacology (K.V.G., C.F.R., M.S.E., A.N.M., M.K.N., K.L.E., B.H., T.W.S.), Department of Neuroscience and Pharmacology; and Department of Biomedical Sciences (B.S., J.P., S.S.P., J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Department of Molecular and Clinical Medicine (F.S., F.B.), Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; Merck Research Laboratories (A.R.N., T.K., A.D.H.), Kenilworth, NJ 07033; and Department of Pharmacology (S.O.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
32
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
33
|
High on food: the interaction between the neural circuits for feeding and for reward. ACTA ACUST UNITED AC 2015; 10:165-176. [PMID: 29750082 DOI: 10.1007/s11515-015-1348-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hunger, mostly initiated by a deficiency in energy, induces food seeking and intake. However, the drive toward food is not only regulated by physiological needs, but is motivated by the pleasure derived from ingestion of food, in particular palatable foods. Therefore, feeding is viewed as an adaptive motivated behavior that involves integrated communication between homeostatic feeding circuits and reward circuits. The initiation and termination of a feeding episode are instructed by a variety of neuronal signals, and maladaptive plasticity in almost any component of the network may lead to the development of pathological eating disorders. In this review we will summarize the latest understanding of how the feeding circuits and reward circuits in the brain interact. We will emphasize communication between the hypothalamus and the mesolimbic dopamine system and highlight complexities, discrepancies, open questions and future directions for the field.
Collapse
|
34
|
Zhang M, Wang H, Zhao J, Chen C, Leak RK, Xu Y, Vosler P, Chen J, Gao Y, Zhang F. Drug-induced hypothermia in stroke models: does it always protect? CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:371-80. [PMID: 23469851 DOI: 10.2174/1871527311312030010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/06/2012] [Accepted: 11/11/2012] [Indexed: 12/19/2022]
Abstract
Ischemic stroke is a common neurological disorder lacking a cure. Recent studies show that therapeutic hypothermia is a promising neuroprotective strategy against ischemic brain injury. Several methods to induce therapeutic hypothermia have been established; however, most of them are not clinically feasible for stroke patients. Therefore, pharmacological cooling is drawing increasing attention as a neuroprotective alternative worthy of further clinical development. We begin this review with a brief introduction to the commonly used methods for inducing hypothermia; we then focus on the hypothermic effects of eight classes of hypothermia-inducing drugs: the cannabinoids, opioid receptor activators, transient receptor potential vanilloid, neurotensins, thyroxine derivatives, dopamine receptor activators, hypothermia-inducing gases, adenosine, and adenine nucleotides. Their neuroprotective effects as well as the complications associated with their use are both considered. This article provides guidance for future clinical trials and animal studies on pharmacological cooling in the setting of acute stroke.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model. J Neurosci 2014; 34:7027-42. [PMID: 24828655 DOI: 10.1523/jneurosci.0408-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotensin (NT) is a tridecapeptide distributed in the CNS, including the entorhinal cortex (EC), a structure that is crucial for learning and memory and undergoes the earliest pathological alterations in Alzheimer's disease (AD). Whereas NT has been implicated in modulating cognition, the cellular and molecular mechanisms by which NT modifies cognitive processes and the potential therapeutic roles of NT in AD have not been determined. Here we examined the effects of NT on neuronal excitability and spatial learning in the EC, which expresses high density of NT receptors. Brief application of NT induced persistent increases in action potential firing frequency, which could last for at least 1 h. NT-induced facilitation of neuronal excitability was mediated by downregulation of TREK-2 K(+) channels and required the functions of NTS1, phospholipase C, and protein kinase C. Microinjection of NT or NTS1 agonist, PD149163, into the EC increased spatial learning as assessed by the Barnes Maze Test. Activation of NTS1 receptors also induced persistent increases in action potential firing frequency and significantly improved the memory status in APP/PS1 mice, an animal model of AD. Our study identifies a cellular substrate underlying learning and memory and suggests that NTS1 agonists may exert beneficial actions in an animal model of AD.
Collapse
|
36
|
Elucidating the role of neurotensin in the pathophysiology and management of major mental disorders. Behav Sci (Basel) 2014; 4:125-153. [PMID: 25379273 PMCID: PMC4219245 DOI: 10.3390/bs4020125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
Neurotensin (NT) is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders.
Collapse
|
37
|
Prus AJ, Hillhouse TM, LaCrosse AL. Acute, but not repeated, administration of the neurotensin NTS1 receptor agonist PD149163 decreases conditioned footshock-induced ultrasonic vocalizations in rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 49:78-84. [PMID: 24275076 PMCID: PMC3923471 DOI: 10.1016/j.pnpbp.2013.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/11/2022]
Abstract
Neurotensin is an endogenous neuropeptide that has significant interactions with monoamine neurotransmitter systems. To date, neurotensin NTS1 receptor agonists, such as PD149163, have been primarily evaluated for the treatment for schizophrenia, drug addiction, and pain. Recently, PD149163 was found to attenuate fear-potentiated startle in rats, an experimental procedure used for screening anxiolytic drugs. The present study sought to assess these findings through testing PD149163 in a conditioned footshock-induced ultrasonic vocalization (USV) model. Conditioning was conducted in male Wistar rats using chambers equipped with shock grid floors and an ultrasonic vocalization detector. PD149163 and the 5-HT1A receptor partial agonist buspirone produced a statistically significant reduction of 22kHz USV counts. The typical antipsychotic haloperidol also reduced 22kHz USV counts, but did so at cataleptic doses. Ten days of repeated administration of PD149163 abolished the inhibitory effects of PD149163 on 22kHz USVs. These findings further support an anxiolytic profile for PD149163. However, tolerance to these effects may limit the utility of these drugs for the treatment of anxiety.
Collapse
Affiliation(s)
- Adam J. Prus
- Psychology Department, Northern Michigan University, Marquette, MI USA,Corresponding author, Adam J. Prus, Ph.D., Associate Professor, Psychology Department, Northern Michigan University, 1401 Presque Isle Ave., Marquette, MI 49855 USA, , Phone: 906-227-2941, Fax: 906-227-2954
| | - Todd M. Hillhouse
- Department of Psychology, Virginia Commonwealth University, Richmond VA, USA
| | | |
Collapse
|
38
|
Wei S, Sun J, Li J, Wang L, Hall CL, Dix TA, Mohamad O, Wei L, Yu SP. Acute and delayed protective effects of pharmacologically induced hypothermia in an intracerebral hemorrhage stroke model of mice. Neuroscience 2013; 252:489-500. [PMID: 23912033 DOI: 10.1016/j.neuroscience.2013.07.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
Hemorrhagic stroke, including intracerebral hemorrhage (ICH), is a devastating subtype of stroke; yet, effective clinical treatment is very limited. Accumulating evidence has shown that mild to moderate hypothermia is a promising intervention for ischemic stroke and ICH. Current physical cooling methods, however, are less efficient and often impractical for acute ICH patients. The present investigation tested pharmacologically induced hypothermia (PIH) using the second-generation neurotensin receptor (NTR) agonist HPI-201 (formerly known as ABS-201) in an adult mouse model with ICH. Acute or delayed administrations of HPI-201 (2mg/kg bolus injection followed by 2 injections of 1mg/kg, i.p.) were initiated at 1 or 24h after ICH. HPI-201 induced mild hypothermia within 30 min and body and brain temperatures were maintained at 32.7 ± 0.4°C for at least 6h without causing observable shivering. With the 1-h delayed treatment, HPI-201-induced PIH significantly reduced ICH-induced cell death and brain edema compared to saline-treated ICH animals. When HPI-201-induced hypothermia was initiated 24h after the onset of ICH, it still significantly attenuated brain edema, cell death and blood-brain barrier breakdown. HPI-201 significantly decreased the expression of matrix metallopeptidase-9 (MMP-9), reduced caspase-3 activation, and increased Bcl-2 expression in the ICH brain. Moreover, ICH mice received 1-h delayed HPI-201 treatment performed significantly better in the neurological behavior test 48 h after ICH. All together, these data suggest that systemic injection of HPI-201 is an effective hypothermic strategy that protects the brain from ICH injury with a wide therapeutic window. The protective effect of this PIH therapy is partially mediated through the alleviation of apoptosis and neurovascular damage. We suggest that pharmacological hypothermia using the newly developed neurotensin analogs is a promising therapeutic treatment for ICH.
Collapse
Affiliation(s)
- S Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Tétreault P, Beaudet N, Perron A, Belleville K, René A, Cavelier F, Martinez J, Stroh T, Jacobi AM, Rose SD, Behlke MA, Sarret P. Spinal NTS2 receptor activation reverses signs of neuropathic pain. FASEB J 2013; 27:3741-52. [DOI: 10.1096/fj.12-225540] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pascal Tétreault
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Nicolas Beaudet
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Amélie Perron
- Institute for Integrated Cell‐Material SciencesKyoto UniversityKyotoJapan
| | - Karine Belleville
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Adeline René
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Florine Cavelier
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Jean Martinez
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Thomas Stroh
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontréalQuébecCanada
| | | | | | | | - Philippe Sarret
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| |
Collapse
|
41
|
Boules M, Li Z, Smith K, Fredrickson P, Richelson E. Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne) 2013; 4:36. [PMID: 23526754 PMCID: PMC3605594 DOI: 10.3389/fendo.2013.00036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/06/2013] [Indexed: 01/10/2023] Open
Abstract
Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson's disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
- *Correspondence: Mona Boules, Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. e-mail:
| | - Zhimin Li
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Kristin Smith
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Paul Fredrickson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Elliott Richelson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| |
Collapse
|
42
|
Kalafatakis K, Triantafyllou K. Contribution of neurotensin in the immune and neuroendocrine modulation of normal and abnormal enteric function. ACTA ACUST UNITED AC 2011; 170:7-17. [DOI: 10.1016/j.regpep.2011.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 03/22/2011] [Accepted: 04/16/2011] [Indexed: 12/19/2022]
|
43
|
Holly EN, Ebrecht B, Prus AJ. The neurotensin-1 receptor agonist PD149163 inhibits conditioned avoidance responding without producing catalepsy in rats. Eur Neuropsychopharmacol 2011; 21:526-31. [PMID: 21277173 PMCID: PMC3110992 DOI: 10.1016/j.euroneuro.2010.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/27/2010] [Accepted: 12/18/2010] [Indexed: 12/12/2022]
Abstract
Agonists for neurotensin (NT)-1 receptors have produced antipsychotic-like effects in many animals, including reversal of prepulse inhibition deficits and psychostimulant-induced increases in spontaneous activity. The present study sought to provide a basic assessment of the putative antipsychotic effects of PD149163 in rats using a two way conditioned avoidance response task, which is highly validated for screening antipsychotic drugs, and an inclined grid assessment, which is used to assess extrapyramidal side effect liability. PD149163 (0.0625-8.0 mg/kg) significantly suppressed conditioned avoidance responding (CAR) following administration of a 1.0 or 8.0 mg/kg dose. PD149163 failed to significantly increase catalepsy scores. The typical antipsychotic drug haloperidol (0.01-1.0 mg/kg) significantly suppressed CAR at a 0.1, 0.3, and 1.0 mg/kg dose, and a significant increase in catalepsy scores was found at the 1.0 mg/kg dose. The atypical antipsychotic drug clozapine (2.5-10.0 mg/kg) also produced a significant inhibition of CAR, which occurred following administration of a 10.0 mg/kg dose. Clozapine failed to significantly increase catalepsy scores. Finally, D-amphetamine (1.0 mg/kg), serving as a negative control, failed to suppress CAR or increase catalepsy scores. These data further suggest that PD149163 may have atypical antipsychotic-like properties.
Collapse
Affiliation(s)
- Elizabeth N Holly
- Psychology Department, Northern Michigan University, 1401 Presque Isle Ave., Marquette, Michigan, USA
| | | | | |
Collapse
|
44
|
Mustain WC, Rychahou PG, Evers BM. The role of neurotensin in physiologic and pathologic processes. Curr Opin Endocrinol Diabetes Obes 2011; 18:75-82. [PMID: 21124211 DOI: 10.1097/med.0b013e3283419052] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW Neurotensin is a 13-amino acid peptide found in the central nervous system central nervous system and the gastrointestinal tract. Since its initial discovery in 1973, neurotensin has been shown to play a role in a wide range of physiologic and pathologic processes throughout the body. Ongoing research efforts continue to clarify the role of neurotensin in various central nervous system and gastrointestinal processes, as well as how disruption of these normal mechanisms may lead to diseases ranging from schizophrenia to colorectal cancer. The goal of this review is to provide an overview of the most recent advances in the field of neurotensin research, in the context of what has been previously published. RECENT FINDINGS Because of the seemingly unrelated functions of neurotensin in the central nervous system and the periphery, the scope of the articles reviewed is rather broad. Contributions continue to be made to our understanding of the downstream effects of neurotensin signaling and the complex feedback loops between neurotensin and other signaling molecules. By selective targeting or blockade of specific neurotensin receptors, investigators have identified potential drugs for use in the treatment of schizophrenia, alcoholism, chronic pain, or cancer. Neurotensin-based pharmacologic agents are being used successfully in animal models for a number of these conditions. SUMMARY The review highlights the wide array of biological processes in which neurotensin has a role, and summarizes the most recent advances in various fields of neurotensin research. The knowledge gained through this research has led to the development of first-in-class drugs for the treatment of various medical conditions, and it is clear that in the coming years some of these agents will be ready to move from the bench to the bedside in clinical trials.
Collapse
Affiliation(s)
- W Conan Mustain
- Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|