1
|
Zhou H, Sun W, Ning L, Kang J, Jin Y, Dong C. Early exposure to general anesthesia may contribute to later attention-deficit/hyperactivity disorder (ADHD): A systematic review and meta-analysis of cohort studies. J Clin Anesth 2024; 98:111585. [PMID: 39153353 DOI: 10.1016/j.jclinane.2024.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
STUDY OBJECTIVE The association between early childhood exposure to general anesthesia and subsequent risk of developing attention-deficit/hyperactivity disorder remains unknown. DESIGN A systematic review and meta-analysis of cohort studies. PATIENTS Children undergoing general anesthesia. INTERVENTIONS A comparison of any type of general anesthesia exposure, including total intravenous anesthesia, inhalation general anesthesia, and combined intravenous and inhaled anesthesia, with non-anesthetic exposures, which did not receive any exposure to anesthetic drugs, including general anesthetics as well as local anesthetics. MEASUREMENTS The primary outcome measure was the risk of developing attention-deficit/hyperactivity disorder after general anesthesia exposure. MAIN RESULTS The results of the overall meta-analysis showed an increased risk of subsequent attention-deficit/hyperactivity disorder in children exposed to general anesthesia (RR = 1.26, 95% CI, 1.16-1.38; P < 0.001; I2 = 44.6%). Subgroup analysis found that a single exposure to general anesthesia in childhood was associated with an increased risk of developing attention-deficit/hyperactivity disorder (RR = 1.29, 95% CI, 1.19-1.40, P < 0.001; I2 = 2.6%), and the risk of attention-deficit/hyperactivity disorder was further increased after multiple general anesthesia exposures (RR = 1.61, 95% CI, 1.32-1.97, P < 0.001; I2 = 57.6%). Exposure to general anesthesia lasting 1-60 min during childhood is associated with an increased risk of attention-deficit/hyperactivity disorder (ADHD) (RR: 1.38, 95% CI: 1.26-1.51, P < 0.001; I2 = 0.0%). Moreover, with longer durations of exposure (61-120 min), the risk further rises (RR: 1.55, 95% CI: 1.21-1.99, P = 0.001; I2 = 37.8%). However, no additional increase in ADHD risk was observed with exposures exceeding 120 min (RR: 1.55, 95% CI: 1.35-1.79, P < 0.001; I2 = 0.0%). CONCLUSIONS Exposure to general anesthesia during early childhood increases the risk of developing attention-deficit/hyperactivity disorder. In particular, multiple general anesthesia exposures and exposures longer than 60 min significantly increase the risk of developing ADHD.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wenyi Sun
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Liuxian Ning
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yadong Jin
- International School, Jinan University, Guangzhou, Guangdong, China
| | - Chaoxuan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Lubbers K, Hiralal KR, Dieleman GC, Hagenaar DA, Dierckx B, Legerstee JS, de Nijs PFA, Rietman AB, Oostenbrink R, Bindels-de Heus KGCB, de Wit MCY, Hillegers MHJ, Ten Hoopen LW, Mous SE. Autism Spectrum Disorder Symptom Profiles in Fragile X Syndrome, Angelman Syndrome, Tuberous Sclerosis Complex and Neurofibromatosis Type 1. J Autism Dev Disord 2024:10.1007/s10803-024-06557-2. [PMID: 39395123 DOI: 10.1007/s10803-024-06557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/14/2024]
Abstract
Studying Autism Spectrum Disorder (ASD) heterogeneity in biologically homogeneous samples may increase our knowledge of ASD etiology. Fragile X syndrome (FXS), Angelman syndrome (AS), Tuberous Sclerosis Complex (TSC), and Neurofibromatosis type 1 (NF1) are monogenic disorders with high a prevalence of ASD symptomatology. This study aimed to identify ASD symptom profiles in a large group of children and adolescents (0;9-28 years) with FXS, AS, TSC, and NF1. Data on ASD symptomatology (Autism Diagnostic Observation Scale (ADOS-2) & Social Responsiveness Scale (SRS-2)) were collected from children and adolescents with FXS (n = 54), AS (n = 93), TSC (n = 112), and NF1 (n = 278). To identify groups of individuals with similar ASD profiles, we performed two latent profile analyses. We identified a four-profile model based on the ADOS-2, with a (1) 'Non-spectrum symptom profile', (2) 'Social Affect symptom profile', (3)'Restricted/Repetitive Behaviors symptom profile', and (4)'ASD symptom profile'. We also identified a four-profile model based on the SRS, with a (1)'Non-clinical symptom profile', (2)'Mild symptom profile', (3)'Moderate symptom profile', and (4)'Severe symptom profile'. Although each syndrome group exhibited varying degrees of severity, they also displayed heterogeneity in the profiles in which they were classified. We found distinct ASD symptom profiles in a population consisting of children and adolescents with FXS, AS, TSC, and NF1. Our study highlights the importance of a personalized approach to the identification and management of ASD symptoms in rare genetic syndromes. Future studies should aim to include more domains of functioning and investigate the stability of latent profiles over time.
Collapse
Affiliation(s)
- Kyra Lubbers
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Kamil R Hiralal
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Gwendolyn C Dieleman
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Doesjka A Hagenaar
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Bram Dierckx
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen S Legerstee
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Amsterdam University Medical Center/Levvel, Amsterdam, The Netherlands
| | - Pieter F A de Nijs
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - André B Rietman
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Rianne Oostenbrink
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
- Full Member of the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS)-Project ID No 739547, Amsterdam, The Netherlands
| | - Karen G C B Bindels-de Heus
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Marie-Claire Y de Wit
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Manon H J Hillegers
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Leontine W Ten Hoopen
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Sabine E Mous
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands.
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands.
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Santos L, Behrens L, Barbosa C, Tiefensee-Ribeiro C, Rosa-Silva H, Somensi N, Brum PO, Silveira AK, Rodrigues MS, de Oliveira J, Gelain DP, Almeida RF, Moreira JCF. Histone 3 Trimethylation Patterns are Associated with Resilience or Stress Susceptibility in a Rat Model of Major Depression Disorder. Mol Neurobiol 2024; 61:5718-5737. [PMID: 38225513 DOI: 10.1007/s12035-024-03912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Major Depressive Disorder (MDD) is a severe and multifactorial psychiatric condition. Evidence has shown that environmental factors, such as stress, significantly explain MDD pathophysiology. Studies have hypothesized that changes in histone methylation patterns are involved in impaired glutamatergic signaling. Based on this scenario, this study aims to investigate histone 3 involvement in depression susceptibility or resilience in MDD pathophysiology by investigating cellular and molecular parameters related to i) glutamatergic neurotransmission, ii) astrocytic functioning, and iii) neurogenesis. For this, we subjected male Wistar rats to the Chronic Unpredictable Mild Stress (CUMS) model of depression. We propose that by evaluating the sucrose consumption, open field, and object recognition test performance from animals submitted to CUMS, it is possible to predict with high specificity rats with susceptibility to depressive-like phenotype and resilient to the depressive-like phenotype. We also demonstrated, for the first time, that patterns of H3K4me3, H3K9me3, H3K27me3, and H3K36me3 trimethylation are strictly associated with the resilient or susceptible to depressive-like phenotype in a brain-region-specific manner. Additionally, susceptible animals have reduced DCx and GFAP and resilient animals present increase of AQP-4 immunoreactivity. Together, these results provide evidence that H3 trimethylations are related to the development of the resilient or susceptible to depressive-like phenotype, contributing to further advances in the pathophysiology of MDD and the discovery of mechanisms behind resilience.
Collapse
Affiliation(s)
- Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luiza Behrens
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Barbosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee-Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helen Rosa-Silva
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ozorio Brum
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus Scarpatto Rodrigues
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto F Almeida
- Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Jarosiewicz M, Krześlak A. Epigenetic implications of common brominated flame retardants (PBDEs and TBBPA): Understanding the health risks of BFRs exposure. CHEMOSPHERE 2024; 361:142488. [PMID: 38821124 DOI: 10.1016/j.chemosphere.2024.142488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Brominated flame retardants (BFRs) are synthetic chemicals incorporated into a wide variety of products, both for industrial applications and everyday use, with the primary aim of reducing their flammability or reducing the material burning rate. These compounds find widespread use in plastics, textiles, and electrical/electronic devices. However, BFRs can be released from products and, thus are determined in many environmental matrices such as soil, water and air.This review discuss the potential health implications of selected BFRs (PBDEs and TBBPA) exposure arising from their impact on the epigenetic mechanisms. Epigenetic modifications, such as DNA methylation and histone acetylation or methylation, as well as changes in miRNA pattern, play significant roles in gene expression and cell function and can be influenced by environmental factors.The studies indicate that PBDEs exposure can lead to global DNA hypomethylation, disrupting normal gene regulation and contributing to genomic instability. In animal models, PBDEs have been associated with adverse effects on neurodevelopment, including impairments in memory and learning. TBBPA exposure has also been linked to changes in DNA methylation patterns, alterations in histone posttranslational modifications and non-coding RNA expression. These epigenetic changes may contribute to health issues related to growth, development, and endocrine functions.The growing evidence of epigenetic modifications induced by BFRs exposure highlights the importance of understanding their potential risks to human health. Further investigations are needed to fully elucidate the long-term consequences of altered epigenetic marks and their impact on human health.
Collapse
Affiliation(s)
- Monika Jarosiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland.
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| |
Collapse
|
5
|
Pottmeier P, Nikolantonaki D, Lanner F, Peuckert C, Jazin E. Sex-biased gene expression during neural differentiation of human embryonic stem cells. Front Cell Dev Biol 2024; 12:1341373. [PMID: 38764741 PMCID: PMC11101176 DOI: 10.3389/fcell.2024.1341373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Sex differences in the developing human brain are primarily attributed to hormonal influence. Recently however, genetic differences and their impact on the developing nervous system have attracted increased attention. To understand genetically driven sexual dimorphisms in neurodevelopment, we investigated genome-wide gene expression in an in vitro differentiation model of male and female human embryonic stem cell lines (hESC), independent of the effects of human sex hormones. Four male and four female-derived hESC lines were differentiated into a population of mixed neurons over 37 days. Differential gene expression and gene set enrichment analyses were conducted on bulk RNA sequencing data. While similar differentiation tendencies in all cell lines demonstrated the robustness and reproducibility of our differentiation protocol, we found sex-biased gene expression already in undifferentiated ESCs at day 0, but most profoundly after 37 days of differentiation. Male and female cell lines exhibited sex-biased expression of genes involved in neurodevelopment, suggesting that sex influences the differentiation trajectory. Interestingly, the highest contribution to sex differences was found to arise from the male transcriptome, involving both Y chromosome and autosomal genes. We propose 13 sex-biased candidate genes (10 upregulated in male cell lines and 3 in female lines) that are likely to affect neuronal development. Additionally, we confirmed gene dosage compensation of X/Y homologs escaping X chromosome inactivation through their Y homologs and identified a significant overexpression of the Y-linked demethylase UTY and KDM5D in male hESC during neuron development, confirming previous results in neural stem cells. Our results suggest that genetic sex differences affect neuronal differentiation trajectories, which could ultimately contribute to sex biases during human brain development.
Collapse
Affiliation(s)
- Philipp Pottmeier
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Danai Nikolantonaki
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Fredrik Lanner
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Christiane Peuckert
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Bodetko A, Chrzanowska J, Rydzanicz M, Borys-Iwanicka A, Karpinski P, Bladowska J, Ploski R, Smigiel R. Further Delineation of Clinical Phenotype of ZMYND11 Variants in Patients with Neurodevelopmental Dysmorphic Syndrome. Genes (Basel) 2024; 15:256. [PMID: 38397245 PMCID: PMC10888010 DOI: 10.3390/genes15020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Intellectual disability with speech delay and behavioural abnormalities, as well as hypotonia, seizures, feeding difficulties and craniofacial dysmorphism, are the main symptoms associated with pathogenic variants of the ZMYND11 gene. The range of clinical manifestations of the ZMYND phenotype is constantly being expanded by new cases described in the literature. Here, we present two previously unreported paediatric patients with neurodevelopmental challenges, who were diagnosed with missense variants in the ZMYND11 gene. It should be noted that one of the individuals manifested with hyperinsulinaemic hypoglycaemia (HH), a symptom that was not described before in published works. The reason for the occurrence of HH in our proband is not clear, so we try to explain the origin of this symptom in the context of the ZMYND11 syndrome. Thus, this paper contributes to knowledge on the range of possible manifestations of the ZMYND disease and provides further evidence supporting its association with neurodevelopmental challenges.
Collapse
Affiliation(s)
- Aleksandra Bodetko
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.B.); (R.S.)
| | - Joanna Chrzanowska
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.B.); (R.S.)
| | - Malgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (R.P.)
| | - Agnieszka Borys-Iwanicka
- Department of Paediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Joanna Bladowska
- Department of Radiology, Wroclaw 4th Military Clinical Hospital, Faculty of Medicine, Wroclaw University of Science and Technology, 53-114 Wroclaw, Poland;
- Department of Radiology and Imaging Diagnostics, Emergency Medicine Center, Marciniak Lower Silesian Specialist Hospital, 54-049 Wroclaw, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (R.P.)
| | - Robert Smigiel
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.B.); (R.S.)
| |
Collapse
|
7
|
Dunn JT, Guidotti A, Grayson DR. Behavioral and Molecular Characterization of Prenatal Stress Effects on the C57BL/6J Genetic Background for the Study of Autism Spectrum Disorder. eNeuro 2024; 11:ENEURO.0186-23.2024. [PMID: 38262736 PMCID: PMC10897530 DOI: 10.1523/eneuro.0186-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
Stress-inducing events during pregnancy are associated with aberrant neurodevelopment resulting in adverse psychiatric outcomes, including autism spectrum disorder (ASD). While numerous preclinical models for the study of ASD are frequently generated using C57BL/6J mice, few studies have investigated the effects of prenatal stress on this genetic background. In the current manuscript, we stressed C57BL/6 dams during gestation and examined numerous behavioral and molecular endophenotypes in the adult male and female offspring to characterize the resultant phenotype as compared with offspring born from nonstressed (NS) dams. Adult mice born from prenatal restraint stressed (PRS) dams demonstrated reduced sociability and reciprocal social interaction along with increased marble burying behaviors relative to mice born from nonstressed control dams. Differential expression of genes related to excitatory and inhibitory neurotransmission was evaluated in the medial prefrontal cortex, amygdala, hippocampus, nucleus accumbens and caudate putamen via qRT-PCR. The male PRS mouse behavioral phenotype coincided with aberrant expression of glutamate and GABA marker genes (e.g., Grin1, Grin2b, Gls, Gat1, Reln) in neural substrates of social behavior. Rescue of the male PRS sociability deficit by a known antipsychotic with epigenetic properties (i.e., clozapine (5 mg/kg) + 18 hr washout) indicated possible epigenetic regulation of genes that govern sociability. Clozapine treatment increased the expression levels of genes involved in DNA methylation, histone methylation, and histone acetylation in the nucleus accumbens. Identification of etiology-specific mechanisms underlying clinically relevant behavioral phenotypes may ultimately provide novel therapeutic interventions for the treatment of psychiatric disorders including ASD.
Collapse
Affiliation(s)
- Jeffrey T Dunn
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Psychology, University of Illinois Chicago, Chicago, Illinois 60607
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois 60611
| | - Alessandro Guidotti
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
| | - Dennis R Grayson
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
| |
Collapse
|
8
|
Skakum M, Katako A, Mitchell-Dueck J, Ricci MF, Russell K. Risk of attention deficit hyperactivity disorder diagnosis following multiple exposures to general anesthesia in the paediatric population: A systematic review and meta-analysis. Paediatr Child Health 2024; 29:29-35. [PMID: 38332968 PMCID: PMC10848114 DOI: 10.1093/pch/pxad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/13/2023] [Indexed: 02/10/2024] Open
Abstract
Objectives The risk of attention deficit hyperactivity disorder (ADHD) following multiple exposures to anesthesia has been debated. Our objective was to systematically review the literature to examine the association between multiple exposures to general anesthesia before age 5 and subsequent diagnosis of ADHD. Methods A systematic search of EMBASE, PubMed, and SCOPUS was performed using key search terms in February 2022. We included studies that: were published after 1980, included only otherwise healthy children who experienced two or more exposures to general anesthetic before age 5, diagnosed ADHD by a medical professional before age 19 years after exposure to general anesthetic, were cross-sectional, case-control, or cohort study, and were published in English. The results (expressed as hazard ratios [HR] and associated 95% confidence intervals [CI]) were pooled using meta-analytic techniques. Studies which did not present their results as HR and 95% CI were analyzed separately. GRADE was used to determine the certainty of the findings. PRISMA guidelines were followed at each stage of the review. Results Eight studies (196,749 children) were included. Five reported HR and 95% CI and were subsequently pooled for meta-analysis. Multiple exposures to anesthesia were associated with diagnosis of ADHD before the 19th year of life (HR: 1.71; 95% CI: 1.59, 1.84). Two of the three studies not used in the meta-analysis also found an increased risk of ADHD diagnosis following multiple anesthetic exposures. Conclusions There was an association between multiple early exposures to general anesthesia and later diagnosis of ADHD.
Collapse
Affiliation(s)
- Megan Skakum
- University of Manitoba Master of Physician Assistant Studies Program, Department of Family Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Audrey Katako
- University of Manitoba Master of Physician Assistant Studies Program, Department of Family Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - M Florencia Ricci
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Specialized Services for Children and Youth (SSCY) Centre, Winnipeg, Manitoba, Canada
| | - Kelly Russell
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Tatemoto P, Pértille F, Bernardino T, Zanella R, Guerrero-Bosagna C, Zanella AJ. An enriched maternal environment and stereotypies of sows differentially affect the neuro-epigenome of brain regions related to emotionality in their piglets. Epigenetics 2023; 18:2196656. [PMID: 37192378 DOI: 10.1080/15592294.2023.2196656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 05/18/2023] Open
Abstract
Epigenetic mechanisms are important modulators of neurodevelopmental outcomes in the offspring of animals challenged during pregnancy. Pregnant sows living in a confined environment are challenged with stress and lack of stimulation which may result in the expression of stereotypies (repetitive behaviours without an apparent function). Little attention has been devoted to the postnatal effects of maternal stereotypies in the offspring. We investigated how the environment and stereotypies of pregnant sows affected the neuro-epigenome of their piglets. We focused on the amygdala, frontal cortex, and hippocampus, brain regions related to emotionality, learning, memory, and stress response. Differentially methylated regions (DMRs) were investigated in these brain regions of male piglets born from sows kept in an enriched vs a barren environment. Within the latter group of piglets, we compared the brain methylomes of piglets born from sows expressing stereotypies vs sows not expressing stereotypies. DMRs emerged in each comparison. While the epigenome of the hippocampus and frontal cortex of piglets is mainly affected by the maternal environment, the epigenome of the amygdala is mainly affected by maternal stereotypies. The molecular pathways and mechanisms triggered in the brains of piglets by maternal environment or stereotypies are different, which is reflected on the differential gene function associated to the DMRs found in each piglets' brain region . The present study is the first to investigate the neuro-epigenomic effects of maternal enrichment in pigs' offspring and the first to investigate the neuro-epigenomic effects of maternal stereotypies in the offspring of a mammal.
Collapse
Affiliation(s)
- Patricia Tatemoto
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Fábio Pértille
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo - Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thiago Bernardino
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
- Graduation Program in One Health, University of Santo Amaro, São Paulo Brazil
| | - Ricardo Zanella
- Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Carlos Guerrero-Bosagna
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Adroaldo José Zanella
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
10
|
Matrisciano F. Epigenetic regulation of metabotropic glutamate 2/3 receptors: Potential role for ultra-resistant schizophrenia? Pharmacol Biochem Behav 2023:173589. [PMID: 37348609 DOI: 10.1016/j.pbb.2023.173589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder characterized by early cognitive deficits, emotional and behavioral abnormalities resulted by a dysfunctional gene x environment interaction. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons lead to alterations in glutamate-mediated excitatory neurotransmission, synaptic plasticity, and neuronal development. Epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability as well as inflammatory processes which are at the basis of brain pathology. An epigenetic animal model of schizophrenia showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Although antipsychotic medications represent the main treatment for schizophrenia and generally show an optimal efficacy profile for positive symptoms and relatively poor efficacy for negative or cognitive symptoms, a considerable percentage of individuals show poor response, do not achieve a complete remission, and approximately 30 % of patients show treatment-resistance. Here, we explore the potential role of epigenetic abnormalities linked to metabotropic glutamate 2/3 receptors changes in expression and function as key molecular factors underlying the difference in response to antipsychotics.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA.
| |
Collapse
|
11
|
Yin H, Wang Z, Liu J, Li Y, Liu L, Huang P, Wang W, Shan Z, Sun R, Shen J, Duan L. Dysregulation of immune and metabolism pathways in maternal immune activation induces an increased risk of autism spectrum disorders. Life Sci 2023; 324:121734. [PMID: 37105442 DOI: 10.1016/j.lfs.2023.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
AIMS Maternal immune activation (MIA) via infection during pregnancy is known to be an environmental risk factor for neurodevelopmental disorders and the development of autism spectrum disorders (ASD) in the offspring, but it still remains elusive that the molecular relevance between infection-induced abnormal neurodevelopmental events and an increased risk for ASD development. MAIN METHODS Fully considering the extremely high genetic heterogeneity of ASD and the universality of risk-gene with minimal effect-sizes, the gene and pathway-based association analysis was performed with the transcriptomic and DNA methylation landscapes of temporal human embryonic brain development and ASD, and the time-course transcriptional profiling of MIA. We conducted the transcriptional profiling of mouse abnormal neurodevelopment two days following induced MIA via LPS injection at E10.5. KEY FINDINGS A novel evidence was proved that illustrated altering four immune and metabolism-related risk pathways, including starch and sucrose metabolism, ribosome, protein processing in endoplasmic reticulum, and retrograde endocannabinoid signaling pathway, which were prominent involvement in the process of MIA regulating abnormal fetal brain development to induce an increased risk of ASD. Here, we have observed that almost all key genes within these risk pathways are significantly differentially expressed at embryonic days (E) 10.5-12.5, which is considered to be the optimal coincidence window of mouse embryonic brain development to study the intimate association between MIA and ASD using mouse animal models. SIGNIFICANCE There search establishes that MIA causes dysregulation of immune and metabolic pathways, which leads to abnormal embryonic neurodevelopment, thus promoting development of ASD symptoms in offspring.
Collapse
Affiliation(s)
- Huamin Yin
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaxin Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Ying Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Peijun Huang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| | - Wenhang Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| | - Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
12
|
Treble-Barna A, Heinsberg LW, Stec Z, Breazeale S, Davis TS, Kesbhat AA, Chattopadhyay A, VonVille HM, Ketchum AM, Yeates KO, Kochanek PM, Weeks DE, Conley YP. Brain-derived neurotrophic factor (BDNF) epigenomic modifications and brain-related phenotypes in humans: A systematic review. Neurosci Biobehav Rev 2023; 147:105078. [PMID: 36764636 PMCID: PMC10164361 DOI: 10.1016/j.neubiorev.2023.105078] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Epigenomic modifications of the brain-derived neurotrophic factor (BDNF) gene have been postulated to underlie the pathogenesis of neurodevelopmental, psychiatric, and neurological conditions. This systematic review summarizes current evidence investigating the association of BDNF epigenomic modifications (DNA methylation, non-coding RNA, histone modifications) with brain-related phenotypes in humans. A novel contribution is our creation of an open access web-based application, the BDNF DNA Methylation Map, to interactively visualize specific positions of CpG sites investigated across all studies for which relevant data were available. Our literature search of four databases through September 27, 2021 returned 1701 articles, of which 153 met inclusion criteria. Our review revealed exceptional heterogeneity in methodological approaches, hindering the identification of clear patterns of robust and/or replicated results. We summarize key findings and provide recommendations for future epigenomic research. The existing literature appears to remain in its infancy and requires additional rigorous research to fulfill its potential to explain BDNF-linked risk for brain-related conditions and improve our understanding of the molecular mechanisms underlying their pathogenesis.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Lacey W Heinsberg
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zachary Stec
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Stephen Breazeale
- Department of Health and Human Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Tara S Davis
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, PA 15261, USA.
| | | | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System, University of Pittsburgh, USA
| | - Helena M VonVille
- Health Sciences Library System, University of Pittsburgh, PA 15261, USA.
| | - Andrea M Ketchum
- Emeritus Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N1N4, Canada.
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Daniel E Weeks
- Department of Human Genetics and Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yvette P Conley
- Department of Human Genetics, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Singh B, Doborjeh M, Doborjeh Z, Budhraja S, Tan S, Sumich A, Goh W, Lee J, Lai E, Kasabov N. Constrained neuro fuzzy inference methodology for explainable personalised modelling with applications on gene expression data. Sci Rep 2023; 13:456. [PMID: 36624117 PMCID: PMC9829920 DOI: 10.1038/s41598-022-27132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future.
Collapse
Affiliation(s)
- Balkaran Singh
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Maryam Doborjeh
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Zohreh Doborjeh
- School of Population Health, The University of Auckland, Auckland, New Zealand
- School of Psychology, The University of Waikato, Hamilton, New Zealand
| | - Sugam Budhraja
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Samuel Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, Singapore
| | - Alexander Sumich
- Department of Psychology, Nottingham Trent University, Nottingham, UK
| | - Wilson Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, Singapore
- Center for Biomedical Informatics, Nanyang Technological University (NTU), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, Singapore
| | - Jimmy Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, Singapore
- Institute for Mental Health, Singapore, Singapore
| | - Edmund Lai
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
- Intelligent Systems Research Center, Ulster University, Derry, UK
- Institute for Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
14
|
Matrisciano F, Pinna G. The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:513-535. [PMID: 36949324 DOI: 10.1007/978-981-19-7376-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Matrisciano F. Functional Nutrition as Integrated Intervention for In- and Outpatient with Schizophrenia. Curr Neuropharmacol 2023; 21:2409-2423. [PMID: 36946488 PMCID: PMC10616917 DOI: 10.2174/1570159x21666230322160259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 03/23/2023] Open
Abstract
Schizophrenia is a chronic and progressive disorder characterized by cognitive, emotional, and behavioral abnormalities associated with neuronal development and synaptic plasticity alterations. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons and consequent alterations in glutamate-mediated excitatory neurotransmission during early neurodevelopment underlie schizophrenia manifestation and progression. Also, epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability and inflammatory processes, which are at the basis of brain pathology and a higher risk of comorbidities, including cardiovascular diseases and metabolic syndrome. In addition, schizophrenia patients adopt an unhealthy lifestyle and poor nutrition, leading to premature death. Here, I explored the role of functional nutrition as an integrated intervention for the long-term management of patients with schizophrenia. Several natural bioactive compounds in plant-based whole foods, including flavonoids, phytonutrients, vitamins, fatty acids, and minerals, modulate brain functioning by targeting neuroinflammation and improving cognitive decline. Although further clinical studies are needed, a functional diet rich in natural bioactive compounds might be effective in synergism with standard treatments to improve schizophrenia symptoms and reduce the risk of comorbidities.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
16
|
Lim M, Carollo A, Neoh MJY, Esposito G. Mapping miRNA Research in Schizophrenia: A Scientometric Review. Int J Mol Sci 2022; 24:ijms24010436. [PMID: 36613876 PMCID: PMC9820708 DOI: 10.3390/ijms24010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Micro RNA (miRNA) research has great implications in uncovering the aetiology of neuropsychiatric conditions due to the role of miRNA in brain development and function. Schizophrenia, a complex yet devastating neuropsychiatric disorder, is one such condition that had been extensively studied in the realm of miRNA. Although a relatively new field of research, this area of study has progressed sufficiently to warrant dozens of reviews summarising findings from past to present. However, as a majority of reviews cannot encapsulate the full body of research, there is still a need to synthesise the diversity of publications made in this area in a systematic but easy-to-understand manner. Therefore, this study adopted bibliometrics and scientometrics, specifically document co-citation analysis (DCA), to review the literature on miRNAs in the context of schizophrenia over the course of history. From a literature search on Scopus, 992 papers were found and analysed with CiteSpace. DCA analysis generated a network of 13 major clusters with different thematic focuses within the subject area. Finally, these clusters are qualitatively discussed. miRNA research has branched into schizophrenia, among other medical and psychiatric conditions, due to previous findings in other forms of non-coding RNA. With the rise of big data, bioinformatics analyses are increasingly common in this field of research. The future of research is projected to rely more heavily on interdisciplinary collaboration. Additionally, it can be expected that there will be more translational studies focusing on the application of these findings to the development of effective treatments.
Collapse
Affiliation(s)
- Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Michelle Jin Yee Neoh
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
- Correspondence:
| |
Collapse
|
17
|
Fernandes V, Sood A, Preeti K, Khatri DK, Singh SB. Neuroepigenetic alterations in the prefrontal cortex of type 2 diabetic mice through DNA hypermethylation. Mol Biol Rep 2022; 49:12017-12028. [DOI: 10.1007/s11033-022-08018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
|
18
|
Griffin A, Mahesh A, Tiwari VK. Disruption of the gene regulatory programme in neurodevelopmental disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194860. [PMID: 36007842 DOI: 10.1016/j.bbagrm.2022.194860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Cortical development consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. It is becoming clear that gene expression programs governing these events rely on the interplay between signalling molecules, transcription factors and epigenetic mechanisms. When genetic or environmental factors disrupt expression of genes involved in important brain development processes, neurodevelopmental disorders can occur. This review aims to highlight how recent advances in technologies have helped uncover and imitate the gene regulatory mechanisms commonly disrupted in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aoife Griffin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast BT9 7BL, United Kingdom
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast BT9 7BL, United Kingdom
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
19
|
Fernandes V, Preeti K, Sood A, Nair KP, Khan S, Rao BSS, Khatri DK, Singh SB. Neuroepigenetic Changes in DNA Methylation Affecting Diabetes-Induced Cognitive Impairment. Cell Mol Neurobiol 2022:10.1007/s10571-022-01278-5. [PMID: 36138280 DOI: 10.1007/s10571-022-01278-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
Chronic diabetic conditions have been associated with certain cerebral complications, that include neurobehavioral dysfunctional patterns and morphological alterations of neurons, especially the hippocampus. Neuroanatomical studies done by the authors have shown decreased total dendritic length, intersections, dendritic length per branch order and nodes in the CA1 hippocampal region of the diabetic brain as compared to its normal control group, indicating reduced dendritic arborization of the hippocampal CA1 neurons. Epigenetic alterations in the brain are well known to affect age-associated disorders, however its association with the evolving diabetes-induced damage in the brain is still not fully understood. DNA hypermethylation within the neurons, tend to silent the gene expression of several regulatory proteins. The findings in the study have shown an increase in global DNA methylation in palmitic acid-induced lipotoxic Neuro-2a cells as well as within the diabetic mice brain. Inhibiting DNA methylation, restored the levels of HSF1 and certain HSPs, suggesting plausible effect of DNMTs in maintaining the proteostasis and synaptic fidelity. Neuroinflammation, as exhibited by the astrocyte activation (GFAP), were further significantly decreased in the 5-azadeoxycytidine group (DNMT inhibitor). This was further evidenced by decrease in proinflammatory cytokines TNF⍺, IL-6, and mediators iNOS and Phospho-NFkB. Our results suggest that changes in DNA methylation advocate epigenetic dysregulation and its involvement in disrupting the synaptic exactitude in the hippocampus of diabetic mice model, providing an insight into the pathophysiology of diabetes-induced neuroepigenetic changes.
Collapse
Affiliation(s)
- Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kala P Nair
- Department of Neurophysiology, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Sabiya Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
20
|
Changes in Stereotypies: Effects over Time and over Generations. Animals (Basel) 2022; 12:ani12192504. [PMID: 36230246 PMCID: PMC9559266 DOI: 10.3390/ani12192504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Herein, we propose that there should be discussion about the function and effects of stereotypies in relation to the time during which they are shown. In the first stages, stereotypies may help animals deal with challenges. However, behavior can potentially alter the brain, impairing its function due the absence of a diverse repertory, and change brain connections, neurophysiology and later neuroanatomy. The neuroanatomical changes in individuals showing stereotypies could be an effect rather than a cause of the stereotypy. As a consequence, studies showing different outcomes for animal welfare from stereotypy expression could be due to variation in a timeline of expression. Stereotypies are widely used as an animal welfare indicator, and their expression can tell us about psychological states. However, there are questions about the longer-term consequences if animals express stereotypies: do the stereotypies help in coping? During the prenatal period, stereotypic behavior expressed by the mother can change the phenotype of the offspring, especially regarding emotionality, one mechanism acting via methylation in the limbic system in the brain. Are individuals that show stereotypies for shorter or longer periods all better adjusted, and hence have better welfare, or is the later welfare of some worse than that of individuals that do not show the behavior? Abstract Stereotypies comprise a wide range of repeated and apparently functionless behaviors that develop in individuals whose neural condition or environment results in poor welfare. While stereotypies are an indicator of poor welfare at the time of occurrence, they may have various consequences. Environmental enrichment modifies causal factors and reduces the occurrence of stereotypies, providing evidence that stereotypies are an indicator of poor welfare. However, stereotypy occurrence and consequences change over time. Furthermore, there are complex direct and epigenetic effects when mother mammals that are kept in negative conditions do or do not show stereotypies. It is proposed that, when trying to deal with challenging situations, stereotypies might initially help animals to cope. After further time in the conditions, the performance of the stereotypy may impair brain function and change brain connections, neurophysiology and eventually neuroanatomy. It is possible that reported neuroanatomical changes are an effect of the stereotypy rather than a cause.
Collapse
|
21
|
Cell-type-specific epigenetic effects of early life stress on the brain. Transl Psychiatry 2022; 12:326. [PMID: 35948532 PMCID: PMC9365848 DOI: 10.1038/s41398-022-02076-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
Early life stress (ELS) induces long-term phenotypic adaptations that contribute to increased vulnerability to a host of neuropsychiatric disorders. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, are a proposed link between environmental stressors, alterations in gene expression, and phenotypes. Epigenetic modifications play a primary role in shaping functional differences between cell types and can be modified by environmental perturbations, especially in early development. Together with contributions from genetic variation, epigenetic mechanisms orchestrate patterns of gene expression within specific cell types that contribute to phenotypic variation between individuals. To date, many studies have provided insights into epigenetic changes resulting from ELS. However, most of these studies have examined heterogenous brain tissue, despite evidence of cell-type-specific epigenetic modifications in phenotypes associated with ELS. In this review, we focus on rodent and human studies that have examined epigenetic modifications induced by ELS in select cell types isolated from the brain or associated with genes that have cell-type-restricted expression in neurons, microglia, astrocytes, and oligodendrocytes. Although significant challenges remain, future studies using these approaches can enable important mechanistic insight into the role of epigenetic variation in the effects of ELS on brain function.
Collapse
|
22
|
Brennan K, Zheng H, Fahrner JA, Shin JH, Gentles AJ, Schaefer B, Sunwoo JB, Bernstein JA, Gevaert O. NSD1 mutations deregulate transcription and DNA methylation of bivalent developmental genes in Sotos syndrome. Hum Mol Genet 2022; 31:2164-2184. [PMID: 35094088 PMCID: PMC9262396 DOI: 10.1093/hmg/ddac026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Sotos syndrome (SS), the most common overgrowth with intellectual disability (OGID) disorder, is caused by inactivating germline mutations of NSD1, which encodes a histone H3 lysine 36 methyltransferase. To understand how NSD1 inactivation deregulates transcription and DNA methylation (DNAm), and to explore how these abnormalities affect human development, we profiled transcription and DNAm in SS patients and healthy control individuals. We identified a transcriptional signature that distinguishes individuals with SS from controls and was also deregulated in NSD1-mutated cancers. Most abnormally expressed genes displayed reduced expression in SS; these downregulated genes consisted mostly of bivalent genes and were enriched for regulators of development and neural synapse function. DNA hypomethylation was strongly enriched within promoters of transcriptionally deregulated genes: overexpressed genes displayed hypomethylation at their transcription start sites while underexpressed genes featured hypomethylation at polycomb binding sites within their promoter CpG island shores. SS patients featured accelerated molecular aging at the levels of both transcription and DNAm. Overall, these findings indicate that NSD1-deposited H3K36 methylation regulates transcription by directing promoter DNA methylation, partially by repressing polycomb repressive complex 2 (PRC2) activity. These findings could explain the phenotypic similarity of SS to OGID disorders that are caused by mutations in PRC2 complex-encoding genes.
Collapse
Affiliation(s)
- Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - June Ho Shin
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Andrew J Gentles
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bradley Schaefer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - John B Sunwoo
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Musolino E, Pagiatakis C, Serio S, Borgese M, Gamberoni F, Gornati R, Bernardini G, Papait R. The Yin and Yang of epigenetics in the field of nanoparticles. NANOSCALE ADVANCES 2022; 4:979-994. [PMID: 36131763 PMCID: PMC9419747 DOI: 10.1039/d1na00682g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/30/2021] [Indexed: 05/02/2023]
Abstract
Nanoparticles (NPs) have become a very exciting research avenue, with multitudinous applications in various fields, including the biomedical one, whereby they have been gaining considerable interest as drug carriers able to increase bioavailability, therapeutic efficiency and specificity of drugs. Epigenetics, a complex network of molecular mechanisms involved in gene expression regulation, play a key role in mediating the effect of environmental factors on organisms and in the etiology of several diseases (e.g., cancers, neurological disorders and cardiovascular diseases). For many of these diseases, epigenetic therapies have been proposed, whose application is however limited by the toxicity of epigenetic drugs. In this review, we will analyze two aspects of epigenetics in the field of NPs: the first is the role that epigenetics play in mediating nanotoxicity, and the second is the possibility of using NPs for delivery of "epi-drugs" to overcome their limitations. We aim to stimulate discussion among specialists, specifically on the potential contribution of epigenetics to the field of NPs, and to inspire newcomers to this exciting technology.
Collapse
Affiliation(s)
- Elettra Musolino
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
| | - Christina Pagiatakis
- Department of Cardiovascular Medicine, Humanitas Research Hospital Rozzano MI Italy
| | - Simone Serio
- Department of Cardiovascular Medicine, Humanitas Research Hospital Rozzano MI Italy
- Department of Biomedical Sciences, Humanitas University Via Rita Levi Montalcini 4 20090 Pieve Emanuele MI Italy
| | - Marina Borgese
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
| | - Federica Gamberoni
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
| | - Rosalba Gornati
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
| | - Giovanni Bernardini
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
| | - Roberto Papait
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
- Department of Cardiovascular Medicine, Humanitas Research Hospital Rozzano MI Italy
| |
Collapse
|
24
|
Lubbers K, Stijl EM, Dierckx B, Hagenaar DA, Ten Hoopen LW, Legerstee JS, de Nijs PFA, Rietman AB, Greaves-Lord K, Hillegers MHJ, Dieleman GC, Mous SE. Autism Symptoms in Children and Young Adults With Fragile X Syndrome, Angelman Syndrome, Tuberous Sclerosis Complex, and Neurofibromatosis Type 1: A Cross-Syndrome Comparison. Front Psychiatry 2022; 13:852208. [PMID: 35651825 PMCID: PMC9149157 DOI: 10.3389/fpsyt.2022.852208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The etiology of autism spectrum disorder (ASD) remains unclear, due to genetic heterogeneity and heterogeneity in symptoms across individuals. This study compares ASD symptomatology between monogenetic syndromes with a high ASD prevalence, in order to reveal syndrome specific vulnerabilities and to clarify how genetic variations affect ASD symptom presentation. METHODS We assessed ASD symptom severity in children and young adults (aged 0-28 years) with Fragile X Syndrome (FXS, n = 60), Angelman Syndrome (AS, n = 91), Neurofibromatosis Type 1 (NF1, n = 279) and Tuberous Sclerosis Complex (TSC, n = 110), using the Autism Diagnostic Observation Schedule and Social Responsiveness Scale. Assessments were part of routine clinical care at the ENCORE expertise center in Rotterdam, the Netherlands. First, we compared the syndrome groups on the ASD classification prevalence and ASD severity scores. Then, we compared individuals in our syndrome groups with an ASD classification to a non-syndromic ASD group (nsASD, n = 335), on both ASD severity scores and ASD symptom profiles. Severity scores were compared using MANCOVAs with IQ and gender as covariates. RESULTS Overall, ASD severity scores were highest for the FXS group and lowest for the NF1 group. Compared to nsASD, individuals with an ASD classification in our syndrome groups showed less problems on the instruments' social domains. We found a relative strength in the AS group on the social cognition, communication and motivation domains and a relative challenge in creativity; a relative strength of the NF1 group on the restricted interests and repetitive behavior scale; and a relative challenge in the FXS and TSC groups on the restricted interests and repetitive behavior domain. CONCLUSION The syndrome-specific strengths and challenges we found provide a frame of reference to evaluate an individual's symptoms relative to the larger syndromic population and to guide treatment decisions. Our findings support the need for personalized care and a dimensional, symptom-based diagnostic approach, in contrast to a dichotomous ASD diagnosis used as a prerequisite for access to healthcare services. Similarities in ASD symptom profiles between AS and FXS, and between NF1 and TSC may reflect similarities in their neurobiology. Deep phenotyping studies are required to link neurobiological markers to ASD symptomatology.
Collapse
Affiliation(s)
- Kyra Lubbers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eefje M Stijl
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bram Dierckx
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Doesjka A Hagenaar
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of General Paediatrics, Erasmus MC, Rotterdam, Netherlands
| | - Leontine W Ten Hoopen
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen S Legerstee
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pieter F A de Nijs
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - André B Rietman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kirstin Greaves-Lord
- Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Clinical Psychology and Experimental Psychopathology Unit, Department of Psychology, Rijksuniversiteit Groningen, Groningen, Netherlands.,Yulius Mental Health, Dordrecht, Netherlands.,Jonx Autism Team Northern-Netherlands, Lentis Mental Health, Groningen, Netherlands
| | - Manon H J Hillegers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gwendolyn C Dieleman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sabine E Mous
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
25
|
Bilecki W, Wawrzczak-Bargieła A, Majcher-Maślanka I, Chmelova M, Maćkowiak M. Inhibition of BET Proteins during Adolescence Affects Prefrontal Cortical Development: Relevance to Schizophrenia. Int J Mol Sci 2021; 22:ijms22168710. [PMID: 34445411 PMCID: PMC8395847 DOI: 10.3390/ijms22168710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background: The present study investigated the role of proteins from the bromodomain and extra-terminal (BET) family in schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia induced by prenatal methylazoxymethanol (MAM) administration (MAM-E17). Methods: An inhibitor of BET proteins, JQ1, was administered during adolescence on postnatal days (P) 23–P29, and behavioural responses (sensorimotor gating, recognition memory) and prefrontal cortical (mPFC) function (long-term potentiation (LTP), molecular and proteomic analyses) studies were performed in adult males and females. Results: Deficits in sensorimotor gating and recognition memory were observed only in MAM-treated males. However, adolescent JQ1 treatment affected animals of both sexes in the control but not MAM-treated groups and reduced behavioural responses in both sexes. An electrophysiological study showed LTP impairments only in male MAM-treated animals, and JQ1 did not affect LTP in the mPFC. In contrast, MAM did not affect activity-dependent gene expression, but JQ1 altered gene expression in both sexes. A proteomic study revealed alterations in MAM-treated groups mainly in males, while JQ1 affected both sexes. Conclusions: MAM-induced schizophrenia-like abnormalities were observed only in males, while adolescent JQ1 treatment affected memory recognition and altered the molecular and proteomic landscape in the mPFC of both sexes. Thus, transient adolescent inhibition of the BET family might prompt permanent alterations in the mPFC.
Collapse
|
26
|
Patients with PWS and related syndromes display differentially methylated regions involved in neurodevelopmental and nutritional trajectory. Clin Epigenetics 2021; 13:159. [PMID: 34389046 PMCID: PMC8361855 DOI: 10.1186/s13148-021-01143-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background Prader–Willi syndrome is a rare genetic neurodevelopmental disorder caused by a paternal deficiency of maternally imprinted gene expression located in the chromosome 15q11–q13 region. Previous studies have demonstrated that several classes of neurodevelopmental disorders can be attributed to either over- or under-expression of specific genes that may lead to impairments in neuronal generation, differentiation, maturation and growth. Epigenetic changes that modify gene expression have been highlighted in these disorders. One recent study focused on epigenetic analysis and compared patients with PWS with patients with other imprinting disorders. No study, however, has yet focused on epigenetics in patients with PWS specifically by comparing the mutations associated with this syndrome. Objective This study investigated the epigenetic modifications in patients with PWS and patients with PWS-related disorders caused by inactivation of two genes of the PWS chromosomal region, SNORD116 and MAGEL2. Our approach also aimed to compare the epigenetic modifications in PWS and PWS-related disorders. Methods We compared genome-wide methylation analysis (GWAS) in seven blood samples from patients with PWS phenotype (five with deletions of the PWS locus, one with a microdeletion of SNORD116 and one with a frameshift mutation of MAGEL2 presenting with Schaaf–Yang syndrome), as well as two control patients. Controls were infants that had been studied for suspicion of genetic diseases that was not confirmed by the genetic analysis and the clinical follow-up. Results The analysis identified 29,234 differentially methylated cytosines, corresponding to 5,308 differentially methylated regions (DMRs), which matched with 2,280 genes. The DMRs in patients with PWS were associated with neurodevelopmental pathways, endocrine dysfunction and social and addictive processes consistent with the key features of the PWS phenotype. In addition, the separate analysis for the SNORD116 and MAGEL2 deletions revealed that the DMRs associated with the SNORD116 microdeletion were found in genes implicated in metabolic pathways and nervous system development, whereas MAGEL2 mutations mostly concerned genes involved in macromolecule biosynthesis. Conclusion The PWS is associated with epigenetic modifications with differences in SNORD116 and MAGEL2 mutations, which seem to be relevant to the different associated phenotypes.
Collapse
|
27
|
Rygiel CA, Dolinoy DC, Bakulski KM, Aung MT, Perng W, Jones TR, Solano-González M, Hu H, Tellez-Rojo MM, Schnaas L, Marcela E, Peterson KE, Goodrich JM. DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab005. [PMID: 34141453 PMCID: PMC8206046 DOI: 10.1093/eep/dvab005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 05/08/2023]
Abstract
Early-life lead (Pb) exposure has been linked to adverse neurodevelopmental outcomes. Recent evidence has indicated a critical role of DNA methylation (DNAm) in cognition, and Pb exposure has also been shown to alter DNAm. However, it is unknown whether DNAm is part of the mechanism of Pb neurotoxicity. This longitudinal study investigated the associations between trimester-specific (T1, T2, and T3) maternal blood Pb concentrations, gene-specific DNAm in umbilical cord blood, and infant neurodevelopmental outcomes at 12 and 24 months of age (mental development index, psychomotor development index, and behavioral rating scale of orientation/engagement and emotional regulation) among 85 mother-infant pairs from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) study. In the mediation analysis for this pilot study, P < 0.1 was considered significant. DNAm at a locus in CCSER1 (probe ID cg02901723) mediated the association between T2 Pb on 24-month orientation/engagement [indirect effect estimate 4.44, 95% confidence interval (-0.09, 10.68), P = 0.06] and emotional regulation [3.62 (-0.05, 8.69), P = 0.05]. Cg18515027 (GCNT1) DNAm mediated the association of T1 Pb [-4.94 (-10.6, -0.77), P = 0.01] and T2 Pb [-3.52 (-8.09, -0.36), P = 0.02] with 24-month EMOCI, but there was a positive indirect effect estimate between T2 Pb and 24-month psychomotor development index [1.25 (-0.11, 3.32), P = 0.09]. The indirect effect was significant for cg19703494 (TRAPPC6A) DNAm in the association between T2 Pb and 24-month mental development index [1.54 (0, 3.87), P = 0.05]. There was also an indirect effect of cg23280166 (VPS11) DNAm on T3 Pb and 24-month EMOCI [2.43 (-0.16, 6.38), P = 0.08]. These associations provide preliminary evidence for gene-specific DNAm as mediators between prenatal Pb and adverse cognitive outcomes in offspring.
Collapse
Affiliation(s)
- Christine A Rygiel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Max T Aung
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 490 Illinois Street, San Francisco, CA 94143, USA
| | - Wei Perng
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Epidemiology and the Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center Colorado School of Public Health, University of Colorado Denver Anschutz Medical Center, 12474 East 19th Avenue, Aurora, CO 80045, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Maritsa Solano-González
- Center for Nutrition and Health Research, National Institute of Public Health, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera C.P. 62100, Cuernavaca, Morelos, México
| | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto St., Los Angeles, CA 90033, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera C.P. 62100, Cuernavaca, Morelos, México
| | - Lourdes Schnaas
- National Institute of Perinatology, Mexico City, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Secc, Miguel Hidalgo, 11000 Ciudad de México, CDMX, Mexico
| | - Erika Marcela
- National Institute of Perinatology, Mexico City, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Secc, Miguel Hidalgo, 11000 Ciudad de México, CDMX, Mexico
| | - Karen E Peterson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Pickersgill M. Negotiating Novelty: Constructing the Novel within Scientific Accounts of Epigenetics. SOCIOLOGY 2021; 55:600-618. [PMID: 34163091 PMCID: PMC8188992 DOI: 10.1177/0038038520954752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Epigenetics is regarded by many as a compelling domain of biomedicine. The purported novelty of epigenetics has begun to have various societal ramifications, particularly in relation to processes of responsibilisation. Within sociology, it has stimulated hopeful debate about conceptual rapprochements between the biomedical and social sciences. This article is concerned with how novelty is socially produced and negotiated. The article engages directly with scientists' talk and writings about epigenetics (as process and field of study). I aim to advance an explicitly sociological analysis about the novelty of epigenetics that underscores its social production rather than an account which participates in its reification. I attend to definitional skirmishes, comparisons with genetics, excitement and intrigue, and considerations of the ethical dimensions of epigenetics. Any assertions that epigenetics is exciting or important should not inadvertently elide reflexive consideration of how such characterisations might be part of the machinery by which they become real.
Collapse
|
29
|
Chua RXY, Tay MJY, Ooi DSQ, Siah KTH, Tham EH, Shek LPC, Meaney MJ, Broekman BFP, Loo EXL. Understanding the Link Between Allergy and Neurodevelopmental Disorders: A Current Review of Factors and Mechanisms. Front Neurol 2021; 11:603571. [PMID: 33658968 PMCID: PMC7917177 DOI: 10.3389/fneur.2020.603571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Both allergic diseases and neurodevelopmental disorders are non-communicable diseases (NCDs) that not only impact on the quality of life and but also result in substantial economic burden. Immune dysregulation and inflammation are typical hallmarks in both allergic and neurodevelopmental disorders, suggesting converging pathophysiology. Epidemiological studies provided convincing evidence for the link between allergy and neurodevelopmental diseases such as attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Possible factors influencing the development of these disorders include maternal depression and anxiety, gestational diabetes mellitus, maternal allergic status, diet, exposure to environmental pollutants, microbiome dysbiosis, and sleep disturbances that occur early in life. Moreover, apart from inflammation, epigenetics, gene expression, and mitochondrial dysfunction have emerged as possible underlying mechanisms in the pathogenesis of these conditions. The exploration and understanding of these shared factors and possible mechanisms may enable us to elucidate the link in the comorbidity.
Collapse
Affiliation(s)
- Regena Xin Yi Chua
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Jia Yu Tay
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Delicia Shu Qin Ooi
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Kewin Tien Ho Siah
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Gastroenterology & Hepatology, University Medicine Cluster, National University Hospital, Singapore, Singapore
| | - Elizabeth Huiwen Tham
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Lynette Pei-Chi Shek
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael J Meaney
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Psychiatry, Onze Lieve Vrouwe Gasthuis and Amsterdam University Medical Centre, VU University Medical Center, Amsterdam, Netherlands
| | - Evelyn Xiu Ling Loo
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
30
|
Singh M, Singh SP, Yadav D, Agarwal M, Agarwal S, Agarwal V, Swargiary G, Srivastava S, Tyagi S, Kaur R, Mani S. Targeted Delivery for Neurodegenerative Disorders Using Gene Therapy Vectors: Gene Next Therapeutic Goals. Curr Gene Ther 2021; 21:23-42. [PMID: 32811395 DOI: 10.2174/1566523220999200817164907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
The technique of gene therapy, ever since its advent nearly fifty years ago, has been utilized by scientists as a potential treatment option for various disorders. This review discusses some of the major neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's Disease (PD), Motor neuron diseases (MND), Spinal Muscular Atrophy (SMA), Huntington's Disease (HD), Multiple Sclerosis (MS), etc. and their underlying genetic mechanisms along with the role that gene therapy can play in combating them. The pathogenesis and the molecular mechanisms specifying the altered gene expression of each of these NDDs have also been discussed in elaboration. The use of gene therapy vectors can prove to be an effective tool in the field of curative modern medicine for the generations to come. Therefore, consistent efforts and progressive research towards its implementation can provide us with powerful treatment options for disease conditions that have so far been considered as incurable.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P, India
| | - Surinder P Singh
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Shriya Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Geeta Swargiary
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Sahil Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Sakshi Tyagi
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Ramneek Kaur
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| |
Collapse
|
31
|
Fallah MS, Szarics D, Robson CM, Eubanks JH. Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders. Front Genet 2021; 11:613098. [PMID: 33488679 PMCID: PMC7820808 DOI: 10.3389/fgene.2020.613098] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic processes are critical for governing the complex spatiotemporal patterns of gene expression in neurodevelopment. One such mechanism is the dynamic network of post-translational histone modifications that facilitate recruitment of transcription factors or even directly alter chromatin structure to modulate gene expression. This is a tightly regulated system, and mutations affecting the function of a single histone-modifying enzyme can shift the normal epigenetic balance and cause detrimental developmental consequences. In this review, we will examine select neurodevelopmental conditions that arise from mutations in genes encoding enzymes that regulate histone methylation and acetylation. The methylation-related conditions discussed include Wiedemann-Steiner, Kabuki, and Sotos syndromes, and the acetylation-related conditions include Rubinstein-Taybi, KAT6A, genitopatellar/Say-Barber-Biesecker-Young-Simpson, and brachydactyly mental retardation syndromes. In particular, we will discuss the clinical/phenotypic and genetic basis of these conditions and the model systems that have been developed to better elucidate cellular and systemic pathological mechanisms.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Dora Szarics
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clara M Robson
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Schenkel LC, Aref-Eshghi E, Rooney K, Kerkhof J, Levy MA, McConkey H, Rogers RC, Phelan K, Sarasua SM, Jain L, Pauly R, Boccuto L, DuPont B, Cappuccio G, Brunetti-Pierri N, Schwartz CE, Sadikovic B. DNA methylation epi-signature is associated with two molecularly and phenotypically distinct clinical subtypes of Phelan-McDermid syndrome. Clin Epigenetics 2021; 13:2. [PMID: 33407854 PMCID: PMC7789817 DOI: 10.1186/s13148-020-00990-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background Phelan-McDermid syndrome is characterized by a range of neurodevelopmental phenotypes with incomplete penetrance and variable expressivity. It is caused by a variable size and breakpoint microdeletions in the distal long arm of chromosome 22, referred to as 22q13.3 deletion syndrome, including the SHANK3 gene. Genetic defects in a growing number of neurodevelopmental genes have been shown to cause genome-wide disruptions in epigenomic profiles referred to as epi-signatures in affected individuals. Results In this study we assessed genome-wide DNA methylation profiles in a cohort of 22 individuals with Phelan-McDermid syndrome, including 11 individuals with large (2 to 5.8 Mb) 22q13.3 deletions, 10 with small deletions (< 1 Mb) or intragenic variants in SHANK3 and one mosaic case. We describe a novel genome-wide DNA methylation epi-signature in a subset of individuals with Phelan-McDermid syndrome. Conclusion We identified the critical region including the BRD1 gene as responsible for the Phelan-McDermid syndrome epi-signature. Metabolomic profiles of individuals with the DNA methylation epi-signature showed significantly different metabolomic profiles indicating evidence of two molecularly and phenotypically distinct clinical subtypes of Phelan-McDermid syndrome.
Collapse
Affiliation(s)
- L C Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A3K7, Canada
| | - E Aref-Eshghi
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - K Rooney
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - J Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - M A Levy
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - H McConkey
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada
| | - R C Rogers
- Greenville Office, Greenwood Genetic Center, Greenville, SC, 29605, USA
| | - K Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, 33816, USA
| | | | - L Jain
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.,Clemson University, Clemson, SC, 29634, USA
| | - R Pauly
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - L Boccuto
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.,Clemson University, Clemson, SC, 29634, USA
| | - B DuPont
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - G Cappuccio
- Department of Translational Medicine, University Federico II, 80131, Naples, NA, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, NA, Italy
| | - N Brunetti-Pierri
- Department of Translational Medicine, University Federico II, 80131, Naples, NA, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, NA, Italy
| | - C E Schwartz
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.
| | - B Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, N6A5W9, Canada. .,Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A3K7, Canada.
| |
Collapse
|
33
|
Chen R, Chen J, Gao C, Wu C, Pan D, Zhang J, Zhou J, Wang K, Zhang Q, Yang Q, Jian X, Zhao Y, Wen Y, Wang Z, Shi Y, Li Z. Association analysis of potentially functional variants within 8p12 with schizophrenia in the Han Chinese population. World J Biol Psychiatry 2021; 22:27-33. [PMID: 32129128 DOI: 10.1080/15622975.2020.1738550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Chromosome 8p12 was first identified as a schizophrenia (SCZ) risk locus in Chinese populations and replicated in European populations. However, the underlying functional variants still need to be further explored. In this study, we sought to identify plausible causal variants within this locus. METHODS A total of 386 potentially functional variants from 29 genes within the 8p12 locus were analysed in 2403 SCZ cases and 2594 control subjects in the Han Chinese population using Affymetrix customised genotyping assays. SHEsisplus was used for association analysis. A multiple testing corrected p value (false discovery rate (FDR)) < .05 was considered significant, and an unadjusted p value < .05 was considered nominal evidence of an association. RESULTS We did not find significant associations between the tested variants and SCZ. However, nominal associations were found for rs201292574 (unadjusted p = .033, FDR p = .571; 95% confidence interval (CI): 0.265-0.945; TACC1, NP_006274.2:p.Ala211Thr) and rs45563241 (unadjusted p = .039, FDR p = .571; 95% CI: 1.023-1.866; a synonymous mutation in ADRB3). CONCLUSIONS Our results provide limited evidence for the associations between variants from protein coding regions in 8p12 and SCZ in the Chinese population. Analyses of both coding and regulatory variants in larger sample sizes are required to further clarify the causal variants for SCZ with this risk locus.
Collapse
Affiliation(s)
- Ruirui Chen
- School of Basic Medicine, Qingdao University, Qingdao, China.,Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chengwen Gao
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Chuanhong Wu
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jinmai Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhang
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yalin Zhao
- School of Basic Medicine, Qingdao University, Qingdao, China.,Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yanqin Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- School of Basic Medicine, Qingdao University, Qingdao, China.,Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- School of Basic Medicine, Qingdao University, Qingdao, China.,Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Pua EPK, Thomson P, Yang JYM, Craig JM, Ball G, Seal M. Individual Differences in Intrinsic Brain Networks Predict Symptom Severity in Autism Spectrum Disorders. Cereb Cortex 2021; 31:681-693. [PMID: 32959054 DOI: 10.1093/cercor/bhaa252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
The neurobiology of heterogeneous neurodevelopmental disorders such as Autism Spectrum Disorders (ASD) is still unknown. We hypothesized that differences in subject-level properties of intrinsic brain networks were important features that could predict individual variation in ASD symptom severity. We matched cases and controls from a large multicohort ASD dataset (ABIDE-II) on age, sex, IQ, and image acquisition site. Subjects were matched at the individual level (rather than at group level) to improve homogeneity within matched case-control pairs (ASD: n = 100, mean age = 11.43 years, IQ = 110.58; controls: n = 100, mean age = 11.43 years, IQ = 110.70). Using task-free functional magnetic resonance imaging, we extracted intrinsic functional brain networks using projective non-negative matrix factorization. Intrapair differences in strength in subnetworks related to the salience network (SN) and the occipital-temporal face perception network were robustly associated with individual differences in social impairment severity (T = 2.206, P = 0.0301). Findings were further replicated and validated in an independent validation cohort of monozygotic twins (n = 12; 3 pairs concordant and 3 pairs discordant for ASD). Individual differences in the SN and face-perception network are centrally implicated in the neural mechanisms of social deficits related to ASD.
Collapse
Affiliation(s)
- Emmanuel Peng Kiat Pua
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville VIC 3010, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Medicine, Austin Health, University of Melbourne, Parkville VIC 3010, Australia
| | - Phoebe Thomson
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Suite (NACIS), The Royal Children's Hospital, Parkville VIC 3052, Australia
| | - Jeffrey M Craig
- Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia.,Molecular Epidemiology, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong VIC 3220, Australia
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia
| | - Marc Seal
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia
| |
Collapse
|
35
|
Ohsawa S, Umemura T, Terada T, Muto Y. Network and Evolutionary Analysis of Human Epigenetic Regulators to Unravel Disease Associations. Genes (Basel) 2020; 11:genes11121457. [PMID: 33291839 PMCID: PMC7761991 DOI: 10.3390/genes11121457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
We carried out a system-level analysis of epigenetic regulators (ERs) and detailed the protein–protein interaction (PPI) network characteristics of disease-associated ERs. We found that most diseases associated with ERs can be clustered into two large groups, cancer diseases and developmental diseases. ER genes formed a highly interconnected PPI subnetwork, indicating a high tendency to interact and agglomerate with one another. We used the disease module detection (DIAMOnD) algorithm to expand the PPI subnetworks into a comprehensive cancer disease ER network (CDEN) and developmental disease ER network (DDEN). Using the transcriptome from early mouse developmental stages, we identified the gene co-expression modules significantly enriched for the CDEN and DDEN gene sets, which indicated the stage-dependent roles of ER-related disease genes during early embryonic development. The evolutionary rate and phylogenetic age distribution analysis indicated that the evolution of CDEN and DDEN genes was mostly constrained, and these genes exhibited older evolutionary age. Our analysis of human polymorphism data revealed that genes belonging to DDEN and Seed-DDEN were more likely to show signs of recent positive selection in human history. This finding suggests a potential association between positive selection of ERs and risk of developmental diseases through the mechanism of antagonistic pleiotropy.
Collapse
Affiliation(s)
- Shinji Ohsawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; (S.O.); (T.T.)
- Department of Nursing, Ogaki Women’s College, 1-109, Nishinokawa-cho, Ogaki 503-8554, Japan
| | - Toshiaki Umemura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan;
| | - Tomoyoshi Terada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; (S.O.); (T.T.)
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yoshinori Muto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; (S.O.); (T.T.)
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3241
| |
Collapse
|
36
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
37
|
Gatta E, Saudagar V, Auta J, Grayson DR, Guidotti A. Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:127-183. [PMID: 33461662 PMCID: PMC7942223 DOI: 10.1016/bs.irn.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress throughout lifespan alters brain structure and function, inducing a maladaptive response to environmental stimuli, that can contribute to the development of a pathological phenotype. Studies have shown that hypothalamic-pituitary-adrenal (HPA) axis dysfunction is associated with various neuropsychiatric disorders, including major depressive, alcohol use and post-traumatic stress disorders. Downstream actors of the HPA axis, glucocorticoids are critical mediators of the stress response and exert their function through specific receptors, i.e., the glucocorticoid receptor (GR), highly expressed in stress/reward-integrative pathways. GRs are ligand-activated transcription factors that recruit epigenetic actors to regulate gene expression via DNA methylation, altering chromatin structure and thus shaping the response to stress. The dynamic interplay between stress response and epigenetic modifiers suggest DNA methylation plays a key role in the development of stress surfeit disorders.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
38
|
Poston RG, Murphy L, Rejepova A, Ghaninejad-Esfahani M, Segales J, Mulligan K, Saha RN. Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes. J Biol Chem 2020; 295:6120-6137. [PMID: 32229587 PMCID: PMC7196656 DOI: 10.1074/jbc.ra119.011138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH-BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH-BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK-ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand-protein docking suggested that 6-OH-BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH-BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH-BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β-lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK-ERK signaling, and axonal guidance.
Collapse
Affiliation(s)
- Robert G Poston
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Lillian Murphy
- Department of Biological Sciences, Center for Interdisciplinary Molecular Biology: Education, Research and Advancement (CIMERA), California State University, Sacramento, California 95819
| | - Ayna Rejepova
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Mina Ghaninejad-Esfahani
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Joshua Segales
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343
| | - Kimberly Mulligan
- Department of Biological Sciences, Center for Interdisciplinary Molecular Biology: Education, Research and Advancement (CIMERA), California State University, Sacramento, California 95819
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, California 95343.
| |
Collapse
|
39
|
Wang J, Li GL, Ming SL, Wang CF, Shi LJ, Su BQ, Wu HT, Zeng L, Han YQ, Liu ZH, Jiang DW, Du YK, Li XD, Zhang GP, Yang GY, Chu BB. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. PLoS Pathog 2020; 16:e1008429. [PMID: 32208449 PMCID: PMC7122826 DOI: 10.1371/journal.ppat.1008429] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/03/2020] [Accepted: 02/23/2020] [Indexed: 12/25/2022] Open
Abstract
Chromatin dynamics regulated by epigenetic modification is crucial in genome stability and gene expression. Various epigenetic mechanisms have been identified in the pathogenesis of human diseases. Here, we examined the effects of ten epigenetic agents on pseudorabies virus (PRV) infection by using GFP-reporter assays. Inhibitors of bromodomain protein 4 (BRD4), which receives much more attention in cancer than viral infection, was found to exhibit substantial anti-viral activity against PRV as well as a range of DNA and RNA viruses. We further demonstrated that BRD4 inhibition boosted a robust innate immune response. BRD4 inhibition also de-compacted chromatin structure and induced the DNA damage response, thereby triggering the activation of cGAS-mediated innate immunity and increasing host resistance to viral infection both in vitro and in vivo. Mechanistically, the inhibitory effect of BRD4 inhibition on viral infection was mainly attributed to the attenuation of viral attachment. Our findings reveal a unique mechanism through which BRD4 inhibition restrains viral infection and points to its potent therapeutic value for viral infectious diseases. BRD4 has been well investigated in tumorigenesis for its contribution to chromatin remodeling and gene transcription. BRD4 inhibitors are used as promising chemotherapeutic drugs for cancer therapy. Here, we show a unique mechanism through which BRD4 inhibition broadly inhibits attachment of DNA and RNA viruses through DNA damage-dependent antiviral innate immune activation via the cGAS-STING pathway, in both cell culture and an animal model. STING-associated innate immune signaling has been considered to be a new possibility for cancer therapy, and STING agonists have been tested in early clinical trials. Our data identify BRD4 inhibitors as a potent therapy not only for viral infection but also for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guo-Li Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Sheng-Li Ming
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Chun-Feng Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Li-Juan Shi
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Bing-Qian Su
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Hong-Tao Wu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Lei Zeng
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Ying-Qian Han
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Zhong-Hu Liu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Da-Wei Jiang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yong-Kun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Xiang-Dong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Jiangsu Province, P.R. China
| | - Gai-Ping Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guo-Yu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
- * E-mail: (GYY); (BBC)
| | - Bei-Bei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
- * E-mail: (GYY); (BBC)
| |
Collapse
|
40
|
Caracci F, Harary J, Simkovic S, Pasinetti GM. Grape-Derived Polyphenols Ameliorate Stress-Induced Depression by Regulating Synaptic Plasticity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1808-1815. [PMID: 31532659 DOI: 10.1021/acs.jafc.9b01970] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Major depressive disorder (MDD) is associated with stress-induced immune dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels in sensitive brain regions associated with depression. Elevated levels of proinflammatory cytokines and reduced BDNF levels lead to impaired synaptic plasticity mechanisms that contribute to the pathophysiology of MDD. There is accumulating evidence that the administration of polyphenols at doses ranging from 5 to 180 mg/kg of body weight can normalize elevated levels of proinflammatory cytokines and abnormal levels of BDNF and, thus, restore impaired synaptic plasticity mechanisms that mediate depressive behavior in animal models of stress. This review will focus on the mechanisms by which grape-derived polyphenols normalize impaired synaptic plasticity and reduce depressive behavior in animal models of stress.
Collapse
Affiliation(s)
- Francesca Caracci
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
| | - Joyce Harary
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
| | - Sherry Simkovic
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
| | - Giulio Maria Pasinetti
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
- Geriatrics Research, Education and Clinical Center , JJ Peters VA Medical Center , Bronx , New York 10468 , United States
| |
Collapse
|
41
|
Amiri S, Davie JR, Rastegar M. Chronic Ethanol Exposure Alters DNA Methylation in Neural Stem Cells: Role of Mouse Strain and Sex. Mol Neurobiol 2020; 57:650-667. [PMID: 31414368 DOI: 10.1007/s12035-019-01728-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) is considered as a risk factor for the development of fetal alcohol spectrum disorders (FASD). Evidence indicates that PAE affects epigenetic mechanisms (such as DNA methylation) and alters the normal differentiation and development of neural stem cells (NSC) in the fetal brain. However, PAE effects depend on several factors such as sex and strain of the studied subjects. Here, we investigated whether murine sex and strain contribute to the effects of chronic ethanol exposure on DNA methylation machinery of differentiating NSC. Further, the effects of PAE on glial lineage (including both astrocytes and oligodendrocytes) in a sex- and strain-dependent manner have not been studied yet. To examine the effects of chronic ethanol exposure on gliogenesis, we exposed differentiating NSC to glio-inductive culture conditions. Applying a standard in vitro model system, we treated male and female differentiating NSC (obtained from the forebrain of CD1 and C57BL/6 embryos at embryonic day 14.5) with chronic ethanol exposure (70 mM) for 8 days. We show that ethanol induces global DNA hypomethylation, while altering the expression of DNA methylation-related genes in a sex- and strain-specific manner. The observed change in cellular DNA methylation levels was associated with altered expression of glial markers CNPASE, GFAP, and OLIG2 in CD1 (but not C57BL/6) cells. We conclude that the impact of ethanol effect on DNA methylation is dependent on cellular sex and strain. Also, ethanol impact on neural stem cell fate commitment was only detected in cells isolated from CD1 mouse strain, but not in C57BL/6 cells. The results of the current study provide evidence that sex and strain of rodents (C57BL/6 and CD1) during gestation are important factors, which affect alcohol effects on NSC differentiation and DNA methylation. Results of this study may also help in interpreting data on the developmental toxicity of many compounds during the gestational period.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
42
|
Aizawa S, Yamamuro Y. Possible involvement of DNA methylation in hippocampal synaptophysin gene expression during postnatal development of mice. Neurochem Int 2020; 132:104587. [DOI: 10.1016/j.neuint.2019.104587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023]
|
43
|
Ristanovic I, Vargas T, Cowan HR, Mittal VA. Consistent Exposure to Psychosocial Stressors and Progressive Intolerance to Stress in Individuals at Clinical High Risk for Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2020; 1:sgaa004. [PMID: 37601822 PMCID: PMC10438911 DOI: 10.1093/schizbullopen/sgaa004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A body of evidence suggests that exposure to psychosocial stressors and stress sensitivity are involved in psychosis pathogenesis. However, little is known about the temporal course of these domains in those with psychosis-risk syndromes. Furthermore, to date, there have been no studies examining associations between psychosocial stressors and impaired stress tolerance, or how these factors might be implicated in symptom progression prior to psychosis onset. A total of 73 clinical high-risk (CHR) participants and 78 healthy controls (HCs) completed baseline measures of life event (LE) exposure and impaired stress tolerance. Additionally, 54 CHR and 57 HC participants returned to complete the same procedures at a 12-month follow-up assessment. Results indicated that when compared to HCs, CHR individuals exhibited increased LE exposure and impaired stress tolerance at baseline. Longitudinal analyses compared subgroups of CHR participants who exhibited positive symptoms worsening over the 1-year course (CHR-Prog), improved or steady (CHR-Remiss/Persist), and HCs. CHR-Prog individuals showed consistently elevated independent LEs exposure while CHR-Remiss/Persist reported a decline and HCs a steady low level across time. Furthermore, CHR-Prog exhibited increased stress intolerance, while the CHR-Remiss/Persist improved and HCs displayed consistently low levels over time. Analyses examining interrelationships between these domains showed a trend level interaction effect predicting follow-up symptoms. Taken together, results from the present study indicate an important role for exposure to stressors and increasing stress intolerance during psychosis pathogenesis. Additionally, findings indicating that decreases in stress exposure may lead to more favorable outcomes provide a promising target for novel targeted interventions.
Collapse
Affiliation(s)
| | - Teresa Vargas
- Department of Psychology, Northwestern University, Evanston, IL
| | - Henry R. Cowan
- Department of Psychology, Northwestern University, Evanston, IL
| | - Vijay Anand Mittal
- Department of Psychology, Northwestern University, Evanston, IL
- Department of Psychiatry, Northwestern University, Chicago, IL
- Department of Medical Social Sciences, Northwestern University, Chicago, IL
- Institute for Policy Research, Northwestern University, Evanston, IL
| |
Collapse
|
44
|
Latusz J, Maćkowiak M. Early-life blockade of NMDA receptors induces epigenetic abnormalities in the adult medial prefrontal cortex: possible involvement in memory impairment in trace fear conditioning. Psychopharmacology (Berl) 2020; 237:231-248. [PMID: 31654083 PMCID: PMC6952333 DOI: 10.1007/s00213-019-05362-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE Several findings indicate that early-life dysfunction of N-methyl-D-aspartate (NMDA) receptors might cause schizophrenia-like abnormalities in adulthood that might be induced by impairments in epigenetic regulation. OBJECTIVES In the present study, we investigated whether postnatal blockade of NMDA receptors (within the first 3 weeks of life) by the competitive antagonist CGP 37849 (CGP) might affect some epigenetic markers in the adult medial prefrontal cortex (mPFC). METHODS Histone H3 phosphorylation at serine 10 (H3S10ph), histone H3 acetylation at lysine 9 or 14 (H3K9ac or H3K14ac, respectively), or expression of histone deacetylase (HDAC) 2, HDAC5, myocyte enhancer factor (MEF) 2D and activity-regulated cytoskeleton-associated protein (Arc) were analysed. Moreover, we also evaluated whether the deacetylase inhibitor sodium butyrate (SB; 1.2 mg/kg, ip) could prevent behavioural and neurochemical changes in the mPFC induced by CGP during memory retrieval in the trace fear conditioning paradigm. RESULTS The results showed that CGP administration increased the number of H3S10ph nuclei but did not affect H3K9ac and H3K14ac or HDAC2 protein levels. However, CGP administration altered the HDAC5 mRNA and protein levels and increased the mRNA and protein levels of MEF2D. CGP also increased Arc mRNA, which was correlated with an increase in the amount of Arc DNA bound to MEF2D. SB given 2 h after training prevented impairment of the freezing response and disruption of epigenetic markers (H3S10ph, HDAC5, MEF2D) and Arc expression during memory retrieval induced by CGP administration. CONCLUSIONS The early-life blockade of NMDA receptors impairs some epigenetic regulatory processes in the mPFC that are involved in fear memory formation.
Collapse
Affiliation(s)
- Joachim Latusz
- grid.413454.30000 0001 1958 0162Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343, Kraków, Poland.
| |
Collapse
|
45
|
Zhang C, Rong H. Genetic Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:19-57. [PMID: 31784956 DOI: 10.1007/978-981-32-9271-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorder (BPD) are both chronic, severe mood disorder with high misdiagnosis rate, leading to substantial health and economic burdens to patients around the world. There is a high misdiagnosis rate of bipolar depression (BD) just based on symptomology in depressed patients whose previous manic or mixed episodes have not been well recognized. Therefore, it is important for psychiatrists to identify these two major psychiatric disorders. Recently, with the accumulation of clinical sample sizes and the advances of methodology and technology, certain progress in the genetics of major depression and bipolar disorder has been made. This article reviews the candidate genes for MDD and BD, genetic variation loci, chromosome structural variation, new technologies, and new methods.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Han Rong
- Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
46
|
Methylmercury Epigenetics. TOXICS 2019; 7:toxics7040056. [PMID: 31717489 PMCID: PMC6958348 DOI: 10.3390/toxics7040056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Methylmercury (MeHg) has conventionally been investigated for effects on nervous system development. As such, epigenetic modifications have become an attractive mechanistic target, and research on MeHg and epigenetics has rapidly expanded in the past decade. Although, these inquiries are a recent advance in the field, much has been learned in regards to MeHg-induced epigenetic modifications, particularly in the brain. In vitro and in vivo controlled exposure studies illustrate that MeHg effects microRNA (miRNA) expression, histone modifications, and DNA methylation both globally and at individual genes. Moreover, some effects are transgenerationally inherited, as organisms not directly exposed to MeHg exhibited biological and behavioral alterations. miRNA expression generally appears to be downregulated consequent to exposure. Further, global histone acetylation also seems to be reduced, persist at distinct gene promoters, and is contemporaneous with enhanced histone methylation. Moreover, global DNA methylation appears to decrease in brain-derived tissues, but not in the liver; however, selected individual genes in the brain are hypermethylated. Human epidemiological studies have also identified hypo- or hypermethylated individual genes, which correlated with MeHg exposure in distinct populations. Intriguingly, several observed epigenetic modifications can be correlated with known mechanisms of MeHg toxicity. Despite this knowledge, however, the functional consequences of these modifications are not entirely evident. Additional research will be necessary to fully comprehend MeHg-induced epigenetic modifications and the impact on the toxic response.
Collapse
|
47
|
Park SY, Seo J, Chun YS. Targeted Downregulation of kdm4a Ameliorates Tau-engendered Defects in Drosophila melanogaster. J Korean Med Sci 2019; 34:e225. [PMID: 31436053 PMCID: PMC6706347 DOI: 10.3346/jkms.2019.34.e225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tauopathies, a class of neurodegenerative diseases that includes Alzheimer's disease (AD), are characterized by the deposition of neurofibrillary tangles composed of hyperphosphorylated tau protein in the human brain. As abnormal alterations in histone acetylation and methylation show a cause and effect relationship with AD, we investigated the role of several Jumonji domain-containing histone demethylase (JHDM) genes, which have yet to be studied in AD pathology. METHODS To examine alterations of several JHDM genes in AD pathology, we performed bioinformatics analyses of JHDM gene expression profiles in brain tissue samples from deceased AD patients. Furthermore, to investigate the possible relationship between alterations in JHDM gene expression profiles and AD pathology in vivo, we examined whether tissue-specific downregulation of JHDM Drosophila homologs (kdm) can affect tauR406W-induced neurotoxicity using transgenic flies containing the UAS-Gal4 binary system. RESULTS The expression levels of JHDM1A, JHDM2A/2B, and JHDM3A/3B were significantly higher in postmortem brain tissue from patients with AD than from non-demented controls, whereas JHDM1B mRNA levels were downregulated in the brains of patients with AD. Using transgenic flies, we revealed that knockdown of kdm2 (homolog to human JHDM1), kdm3 (homolog to human JHDM2), kdm4a (homolog to human JHDM3A), or kdm4b (homolog to human JHDM3B) genes in the eye ameliorated the tauR406W-engendered defects, resulting in less severe phenotypes. However, kdm4a knockdown in the central nervous system uniquely ameliorated tauR406W-induced locomotion defects by restoring heterochromatin. CONCLUSION Our results suggest that downregulation of kdm4a expression may be a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Sung Yeon Park
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jieun Seo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yang Sook Chun
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
48
|
Poston RG, Saha RN. Epigenetic Effects of Polybrominated Diphenyl Ethers on Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152703. [PMID: 31362383 PMCID: PMC6695782 DOI: 10.3390/ijerph16152703] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022]
Abstract
Disruption of epigenetic regulation by environmental toxins is an emerging area of focus for understanding the latter's impact on human health. Polybrominated diphenyl ethers (PBDEs), one such group of toxins, are an environmentally pervasive class of brominated flame retardants that have been extensively used as coatings on a wide range of consumer products. Their environmental stability, propensity for bioaccumulation, and known links to adverse health effects have evoked extensive research to characterize underlying biological mechanisms of toxicity. Of particular concern is the growing body of evidence correlating human exposure levels to behavioral deficits related to neurodevelopmental disorders. The developing nervous system is particularly sensitive to influence by environmental signals, including dysregulation by toxins. Several major modes of actions have been identified, but a clear understanding of how observed effects relate to negative impacts on human health has not been established. Here, we review the current body of evidence for PBDE-induced epigenetic disruptions, including DNA methylation, chromatin dynamics, and non-coding RNA expression while discussing the potential relationship between PBDEs and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Robert G Poston
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
49
|
Freedman D, Zaami S. Neuroscience and mental state issues in forensic assessment. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2019; 65:101437. [PMID: 30952490 DOI: 10.1016/j.ijlp.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Neuroscience has already changed how the law understands an individual's cognitive processes, how those processes shape behavior, and how bio-psychosocial history and neurodevelopmental approaches provide information, which is critical to understanding mental states underlying behavior, including criminal behavior. In this paper, we briefly review the state of forensic assessment of mental conditions in the relative culpability of criminal defendants, focused primarily on the weaknesses of current approaches. We then turn to focus on neuroscience approaches and how they have the potential to improve assessment, but with significant risks and limitations.
Collapse
Affiliation(s)
- David Freedman
- International Academy of Law and Mental Health, PO Box 205, New York, NY 10276, United States of America.
| | - Simona Zaami
- Forensic Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
50
|
Márquez F, Yassa MA. Neuroimaging Biomarkers for Alzheimer's Disease. Mol Neurodegener 2019; 14:21. [PMID: 31174557 PMCID: PMC6555939 DOI: 10.1186/s13024-019-0325-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
Currently, over five million Americans suffer with Alzheimer's disease (AD). In the absence of a cure, this number could increase to 13.8 million by 2050. A critical goal of biomedical research is to establish indicators of AD during the preclinical stage (i.e. biomarkers) allowing for early diagnosis and intervention. Numerous advances have been made in developing biomarkers for AD using neuroimaging approaches. These approaches offer tremendous versatility in terms of targeting distinct age-related and pathophysiological mechanisms such as structural decline (e.g. volumetry, cortical thinning), functional decline (e.g. fMRI activity, network correlations), connectivity decline (e.g. diffusion anisotropy), and pathological aggregates (e.g. amyloid and tau PET). In this review, we survey the state of the literature on neuroimaging approaches to developing novel biomarkers for the amnestic form of AD, with an emphasis on combining approaches into multimodal biomarkers. We also discuss emerging methods including imaging epigenetics, neuroinflammation, and synaptic integrity using PET tracers. Finally, we review the complementary information that neuroimaging biomarkers provide, which highlights the potential utility of composite biomarkers as suitable outcome measures for proof-of-concept clinical trials with experimental therapeutics.
Collapse
Affiliation(s)
- Freddie Márquez
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, 92697, USA.
| | - Michael A Yassa
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|