1
|
Galstyan DS, Krotova NA, Lebedev AS, Kotova MM, Martynov DD, Golushko NI, Perederiy AS, Zhukov IS, Rosemberg DB, Lim LW, Yang L, de Abreu MS, Gainetdinov RR, Kalueff AV. Trace amine signaling in zebrafish models: CNS pharmacology, behavioral regulation and translational relevance. Eur J Pharmacol 2025; 991:177312. [PMID: 39870233 DOI: 10.1016/j.ejphar.2025.177312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/29/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction. Disrupted trace amine circuits have been implicated in various clinical neuropsychiatric disorders, including schizophrenia, Parkinson's disease, addiction, depression and anxiety. Dysregulated TAAR signaling has been linked in rodents to altered dopamine and serotonin neurotransmission, known to be associated with these psychiatric conditions. Complementing rodent genetic and pharmacological evidence, zebrafish (Danio rerio) are rapidly becoming a novel powerful model system in translational neuropharmacology research. Here, we review trace amine/TAAR neurobiology in zebrafish and discuss their developing translational utility as pharmacological and genetic models for unraveling the role of trace amines in CNS processes and brain disorders.
Collapse
Affiliation(s)
- David S Galstyan
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Natalia A Krotova
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Andrey S Lebedev
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Maria M Kotova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, Russia
| | - Daniil D Martynov
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Nikita I Golushko
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Alexander S Perederiy
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Ilya S Zhukov
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), New Olreans, USA
| | - Lee Wei Lim
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - LongEn Yang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S de Abreu
- Western Caspian University, Baku, Azerbaijan; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), New Olreans, USA; Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neuroscience Program, Sirius University of Science and Technology, Sochi, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
2
|
Oladapo A, Kannan M, Deshetty UM, Singh S, Buch S, Periyasamy P. Methamphetamine-mediated astrocytic pyroptosis and neuroinflammation involves miR-152-NLRP6 inflammasome signaling axis. Redox Biol 2025; 80:103517. [PMID: 39879739 PMCID: PMC11810843 DOI: 10.1016/j.redox.2025.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Methamphetamine is a widely abused drug associated with significant neuroinflammation and neurodegeneration, mainly through the activation of glial cells and neurons in the central nervous system. This study investigates the role of the astrocyte-specific NOD-like receptor family pyrin domain-containing protein 6 (NLRP6) inflammasome in methamphetamine-induced astrocytic pyroptosis and neuroinflammation. Our findings demonstrate that methamphetamine exposure induces NLRP6-dependent pyroptosis, astrocyte activation, and the release of proinflammatory cytokines in mouse primary astrocytes. Gene silencing of NLRP6 reduces methamphetamine-induced pyroptosis and proinflammatory cytokines release. We also identified miR-152 as a critical upstream regulator of NLRP6, which is downregulated in methamphetamine-exposed astrocytes. Overexpression of miR-152 decreases NLRP6 expression, mitigating methamphetamine-induced pyroptosis and inflammation. In vivo and ex vivo studies in methamphetamine-exposed mice confirmed these results and showed that methamphetamine induces anxiety-like, cognitive impairment, and depression-like behavior, further linking astrocyte-specific NLRP6 signaling to methamphetamine-induced neuroinflammation. This study highlights the potential of targeting the NLRP6 inflammasome in astrocytes as a therapeutic approach to alleviate methamphetamine-induced central nervous system pathology. Further research is warranted to explore clinical applications and identify therapeutic targets for methamphetamine-related neurological disorders.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
3
|
Dalvi S, Bhatt LK. Trace amine-associated receptor 1 (TAAR1): an emerging therapeutic target for neurodegenerative, neurodevelopmental, and neurotraumatic disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03757-6. [PMID: 39738834 DOI: 10.1007/s00210-024-03757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Trace amines are physiologically active amines present in all organisms. They are structurally identical to traditional monoamines and are rapidly metabolized by monoamine oxidases. The mammalian neurological system generates these molecules at rates equivalent to traditional monoamines, but because of their short half-life, they are only observable in trace quantities. Their receptors are G protein-coupled receptors present in both the CNS and peripheral locations, with trace amine-associated receptor 1 (TAAR1) being the most researched. TAAR1's capacity to regulate glutamatergic and monoaminergic neurotransmission has made it a viable therapeutic target for neuropsychiatric illnesses. Although the TAAR1 role in schizophrenia and other neuropsychiatric disorders is well established, its role in the pathology of neurodegenerative and neurotraumatic disorders recently got attention. This review discusses the role of TAAR1 in neurodegenerative, neurodevelopment, and neurotraumatic disorders and explores its potential to be a novel therapeutic target in these disorders.
Collapse
Affiliation(s)
- Saher Dalvi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
4
|
Zhukov IS, Alnefeesi Y, Krotova NA, Nemets VV, Demin KA, Karpenko MN, Budygin EA, Kanov EV, Kalueff AV, Shabanov PD, Bader M, Alenina N, Gainetdinov RR. Trace amine-associated receptor 1 agonist reduces aggression in brain serotonin-deficient tryptophan hydroxylase 2 knockout rats. Front Psychiatry 2024; 15:1484925. [PMID: 39748904 PMCID: PMC11693706 DOI: 10.3389/fpsyt.2024.1484925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Aggression and self-harm disproportionately occur in youths preoccupied with social status tracking. These pathological conditions are linked to a serotonin (5-HT) deficit in the brain. Ablation of 5-HT biosynthesis by tryptophan hydroxylase 2 knockout (TPH2-KO) increases aggression in rodents. Remarkably, deletion of the trace amine-associated receptor 1 (TAAR1) results in the same consequences. Unlike the nuanced dynamics of social status cues in young people, the social ranks of rats mainly advance when they dominate larger opponents in combat. Methods This study explored whether the potent TAAR1 agonist RO5263397 reduces aggression caused by 5-HT depletion, and whether social rank advancement motivates this aggression. The resident-intruder paradigm was applied with larger and smaller intruders to evaluate whether social rank advancement motivates aggressive behaviors in TPH2-KO rats. Results When a smaller intruder was introduced, 5-HT-deficient rats did not differ from wild type littermates. However, when the intruders were larger, the mutants extended their aggressive efforts, refusing to submit. Importantly, RO5263397 selectively abolished this abnormal form of aggression in TPH2-KO rats. Discussion Results supported social rank advancement as the main incentive. These data also suggest that TAAR1 is a promising target for the development of new treatments for aggression; independent data also support this conclusion.
Collapse
Affiliation(s)
- Ilya S. Zhukov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Yazen Alnefeesi
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Vsevolod V. Nemets
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Konstantin A. Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University of Science and Technology, Sirius, Russia
| | - Evgeny V. Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V. Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Department of Neurobiology, Sirius University of Science and Technology, Sirius, Russia
- Department of Biosciences and Bioinformatics, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | | | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
5
|
Proulx JM, Park IW, Borgmann K. HIV-1 and methamphetamine co-treatment in primary human astrocytes: TAARgeting ER/UPR dysfunction. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:139-154. [PMID: 39175523 PMCID: PMC11338011 DOI: 10.1515/nipt-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024]
Abstract
Objectives Human immunodeficiency virus 1 (HIV-1) can invade the central nervous system (CNS) early during infection and persist in the CNS for life despite effective antiretroviral treatment. Infection and activation of residential glial cells lead to low viral replication and chronic inflammation, which damage neurons contributing to a spectrum of HIV-associated neurocognitive disorders (HAND). Substance use, including methamphetamine (METH), can increase one's risk and severity of HAND. Here, we investigate HIV-1/METH co-treatment in a key neurosupportive glial cell, astrocytes. Specifically, mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) signaling pathways, such as calcium and the unfolded protein response (UPR), are key mechanisms underlying HAND pathology and arise as potential targets to combat astrocyte dysfunction. Methods Primary human astrocytes were transduced with a pseudotyped HIV-1 model and exposed to low-dose METH for seven days. We assessed changes in astrocyte HIV-1 infection, inflammation, mitochondrial antioxidant and dynamic protein expression, respiratory acitivity, mitochondrial calcium flux, and UPR/MAM mediator expression. We then tested a selective antagonist for METH-binding receptor, trace amine-associated receptor 1 (TAAR1) as a potetnial upstream regulator of METH-induced calcium flux and UPR/MAM mediator expression. Results Chronic METH exposure increased astrocyte HIV-1 infection. Moreover, HIV-1/METH co-treatment suppressed astrocyte antioxidant and metabolic capacity while increasing mitochondrial calcium load and protein expression of UPR messengers and MAM mediators. Notably, HIV-1 increases astrocyte TAAR1 expression, thus, could be a critical regulator of HIV-1/METH co-treatment in astrocytes. Indeed, selective antagonism of TAAR1 significantly inhibited cytosolic calcium flux and induction of UPR/MAM protein expression. Conclusion Altogether, our findings demonstrate HIV-1/METH-induced ER-mitochondrial dysfunction in astrocytes, whereas TAAR1 may be an upstream regulator for HIV-1/METH-mediated astrocyte dysfunction.
Collapse
Affiliation(s)
- Jessica M. Proulx
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- National Institute on Drug Abuse, North Bethesda, MD, 20852, USA
| |
Collapse
|
6
|
Zhang MX, Hong H, Shi Y, Huang WY, Xia YM, Tan LL, Zhao WJ, Qiao CM, Wu J, Zhao LP, Huang SB, Jia XB, Shen YQ, Cui C. A Pilot Study on a Possible Mechanism behind Olfactory Dysfunction in Parkinson's Disease: The Association of TAAR1 Downregulation with Neuronal Loss and Inflammation along Olfactory Pathway. Brain Sci 2024; 14:300. [PMID: 38671952 PMCID: PMC11048016 DOI: 10.3390/brainsci14040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized not only by motor symptoms but also by non-motor dysfunctions, such as olfactory impairment; the cause is not fully understood. Our study suggests that neuronal loss and inflammation in brain regions along the olfactory pathway, such as the olfactory bulb (OB) and the piriform cortex (PC), may contribute to olfactory dysfunction in PD mice, which might be related to the downregulation of the trace amine-associated receptor 1 (TAAR1) in these areas. In the striatum, although only a decrease in mRNA level, but not in protein level, of TAAR1 was detected, bioinformatic analyses substantiated its correlation with PD. Moreover, we discovered that neuronal death and inflammation in the OB and the PC in PD mice might be regulated by TAAR through the Bcl-2/caspase3 pathway. This manifested as a decrease of anti-apoptotic protein Bcl-2 and an increase of the pro-apoptotic protein cleaved caspase3, or through regulating astrocytes activity, manifested as the increase of TAAR1 in astrocytes, which might lead to the decreased clearance of glutamate and consequent neurotoxicity. In summary, we have identified a possible mechanism to elucidate the olfactory dysfunction in PD, positing neuronal damage and inflammation due to apoptosis and astrocyte activity along the olfactory pathway in conjunction with the downregulation of TAAR1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Chun Cui
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| |
Collapse
|
7
|
Tang F, Yang L, Yang W, Li C, Zhang J, Liu J. The genetic susceptibility analysis of TAAR1 rs8192620 to methamphetamine and heroin abuse and its role in impulsivity. Eur Arch Psychiatry Clin Neurosci 2024; 274:453-459. [PMID: 37145176 DOI: 10.1007/s00406-023-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
Abnormal genetic polymorphism of trace amine-associated receptor 1 (TAAR1) rs8192620 site has been confirmed to induce methamphetamine (MA) use and drug craving. However, the genetic susceptibility difference between MA addicts and heroin addicts is unknown. This study evaluated genetic heterogeneity of TAAR1 rs8192620 between MA and heroin addicts and elucidated whether rs8192620 genotypes associated with discrepancy in emotional impulsivity, which would help to instruct individualized treatment in addiction via acting on TAAR1 and evaluate risk of varied drug addiction. Participants consisting of gender-matched 63 MA and 71 heroin abusers were enrolled in the study. Due to mixed drug usage in some MA addicts, MA users were further subdivided into 41 only-MA (only MA taking) and 22 mixed-drug (Magu composed of about 20% MA and 70% caffeine) abusers. Via inter-individual single nucleotide polymorphism (SNP) analysis and two-sample t tests, respectively, the genotypic and Barratt Impulsiveness Scale-11 (BIS-11) scores differences between groups were completed. With following genotypic stratification, the differences in BIS-11 scores between groups were analyzed through two-sample t test. Individual SNP analysis showed significant differences in alleles distribution of rs8192620 between MA and heroin subjects (p = 0.019), even after Bonferroni correction. The TT homozygotes of rs8192620 dominated in MA participants, while C-containing genotypes in heroin (p = 0.026). There was no association of genotypes of TAAR1 rs8192620 with addicts' impulsivity. Our research indicates that the TAAR1 gene polymorphism might mediate the susceptibility discrepancy between MA and heroin abuse.
Collapse
Affiliation(s)
- Fei Tang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Longtao Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cong Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China.
- Department of Radiology Quality Control Center in Hunan Province, Changsha, China.
| |
Collapse
|
8
|
Polini B, Ricardi C, Bertolini A, Carnicelli V, Rutigliano G, Saponaro F, Zucchi R, Chiellini G. T1AM/TAAR1 System Reduces Inflammatory Response and β-Amyloid Toxicity in Human Microglial HMC3 Cell Line. Int J Mol Sci 2023; 24:11569. [PMID: 37511328 PMCID: PMC10380917 DOI: 10.3390/ijms241411569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Microglial dysfunction is one of the hallmarks and leading causes of common neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD). All these pathologies are characterized by aberrant aggregation of disease-causing proteins in the brain, which can directly activate microglia, trigger microglia-mediated neuroinflammation, and increase oxidative stress. Inhibition of glial activation may represent a therapeutic target to alleviate neurodegeneration. Recently, 3-iodothyronamine (T1AM), an endogenous derivative of thyroid hormone (TH) able to interact directly with a specific GPCR known as trace amine-associated receptor 1 (TAAR1), gained interest for its ability to promote neuroprotection in several models. Nevertheless, T1AM's effects on microglial disfunction remain still elusive. In the present work we investigated whether T1AM could inhibit the inflammatory response of human HMC3 microglial cells to LPS/TNFα or β-amyloid peptide 25-35 (Aβ25-35) stimuli. The results of ELISA and qPCR assays revealed that T1AM was able to reduce microglia-mediated inflammatory response by inhibiting the release of proinflammatory factors, including IL-6, TNFα, NF-kB, MCP1, and MIP1, while promoting the release of anti-inflammatory mediators, such as IL-10. Notably, T1AM anti-inflammatory action in HMC3 cells turned out to be a TAAR1-mediated response, further increasing the relevance of the T1AM/TAAR1 system in the management of NDDs.
Collapse
Affiliation(s)
- Beatrice Polini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Caterina Ricardi
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Andrea Bertolini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Vittoria Carnicelli
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Grazia Rutigliano
- Institute of Clinical Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Federica Saponaro
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Riccardo Zucchi
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| |
Collapse
|
9
|
Barnes DA, Hoener MC, Moore CS, Berry MD. TAAR1 Regulates Purinergic-induced TNF Secretion from Peripheral, But Not CNS-resident, Macrophages. J Neuroimmune Pharmacol 2023; 18:100-111. [PMID: 36380156 DOI: 10.1007/s11481-022-10053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is an established neuroregulatory G protein-coupled receptor with recent studies suggesting additional functions related to immunomodulation. Our lab has previously investigated TAAR1 expression within cells of the innate immune system and herein we aim to further elucidate TAAR1 function in both peripherally-derived and CNS-resident macrophages. The selective TAAR1 agonist RO5256390 was used in combination with common damage associated molecular patterns (ATP and ADP) to observe the effect of TAAR1 agonism on modulating cytokine secretion and metabolic profiles. In mouse bone-marrow derived macrophages, TAAR1 agonism inhibited TNF secretion following ATP stimulation, which appeared to be downstream of an associated pro-inflammatory shift in metabolic profile and transcriptional regulation of TNF synthesis. In contrast, TAAR1 agonism had no effect on ADP-induced TNF and IL-6 secretion in mouse microglia in either the presence or absence of astrocytes. In summary, we report a novel interaction between TAAR1 and purinergic signaling in peripherally-derived, but not CNS-resident, macrophages. These findings provide the first evidence of trace aminergic and purinergic crosstalk, and support the potential for TAAR1 as a novel therapeutic target in inflammatory disorders.
Collapse
Affiliation(s)
- David A Barnes
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, NL, A1B 3X9, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Marius C Hoener
- Neuroscience and Rare Diseases Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070, Basel, Switzerland
| | - Craig S Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Mark D Berry
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
10
|
Shum A, Zaichick S, McElroy G, D’Alessandro K, Alasady M, Novakovic M, Peng W, Grebenik E, Chung D, Flanagan M, Smith R, Morales A, Stumpf L, McGrath K, Krainc D, Mendillo M, Prakriya M, Chandel N, Caraveo G. Octopamine metabolically reprograms astrocytes to confer neuroprotection against α-synuclein. Proc Natl Acad Sci U S A 2023; 120:e2217396120. [PMID: 37068235 PMCID: PMC10151466 DOI: 10.1073/pnas.2217396120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/12/2023] [Indexed: 04/19/2023] Open
Abstract
Octopamine is a well-established invertebrate neurotransmitter involved in fight or flight responses. In mammals, its function was replaced by epinephrine. Nevertheless, it is present at trace amounts and can modulate the release of monoamine neurotransmitters by a yet unidentified mechanism. Here, through a multidisciplinary approach utilizing in vitro and in vivo models of α-synucleinopathy, we uncovered an unprecedented role for octopamine in driving the conversion from toxic to neuroprotective astrocytes in the cerebral cortex by fostering aerobic glycolysis. Physiological levels of neuron-derived octopamine act on astrocytes via a trace amine-associated receptor 1-Orai1-Ca2+-calcineurin-mediated signaling pathway to stimulate lactate secretion. Lactate uptake in neurons via the monocarboxylase transporter 2-calcineurin-dependent pathway increases ATP and prevents neurodegeneration. Pathological increases of octopamine caused by α-synuclein halt lactate production in astrocytes and short-circuits the metabolic communication to neurons. Our work provides a unique function of octopamine as a modulator of astrocyte metabolism and subsequent neuroprotection with implications to α-synucleinopathies.
Collapse
Affiliation(s)
- Andrew Shum
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Sofia Zaichick
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Gregory S. McElroy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Karis D’Alessandro
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Milad J. Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Michaela Novakovic
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, ChicagoIL60611
| | - Wesley Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Ekaterina A. Grebenik
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Daayun Chung
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Margaret E. Flanagan
- Department of Pathology, Northwestern University Feinberg School of Medicine, ChicagoIL60611
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Fienberg School of Medicine, ChicagoIL60611
| | - Roger Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Alejandro Morales
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Laetitia Stumpf
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Kaitlyn McGrath
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, ChicagoIL60611
| | - Navdeep S. Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Gabriela Caraveo
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
11
|
Hámor PU, Knackstedt LA, Schwendt M. The role of metabotropic glutamate receptors in neurobehavioral effects associated with methamphetamine use. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:177-219. [PMID: 36868629 DOI: 10.1016/bs.irn.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are expressed throughout the central nervous system and act as important regulators of drug-induced neuroplasticity and behavior. Preclinical research suggests that mGlu receptors play a critical role in a spectrum of neural and behavioral consequences arising from methamphetamine (meth) exposure. However, an overview of mGlu-dependent mechanisms linked to neurochemical, synaptic, and behavioral changes produced by meth has been lacking. This chapter provides a comprehensive review of the role of mGlu receptor subtypes (mGlu1-8) in meth-induced neural effects, such as neurotoxicity, as well as meth-associated behaviors, such as psychomotor activation, reward, reinforcement, and meth-seeking. Additionally, evidence linking altered mGlu receptor function to post-meth learning and cognitive deficits is critically evaluated. The chapter also considers the role of receptor-receptor interactions involving mGlu receptors and other neurotransmitter receptors in meth-induced neural and behavioral changes. Taken together, the literature indicates that mGlu5 regulates the neurotoxic effects of meth by attenuating hyperthermia and possibly through altering meth-induced phosphorylation of the dopamine transporter. A cohesive body of work also shows that mGlu5 antagonism (and mGlu2/3 agonism) reduce meth-seeking, though some mGlu5-blocking drugs also attenuate food-seeking. Further, evidence suggests that mGlu5 plays an important role in extinction of meth-seeking behavior. In the context of a history of meth intake, mGlu5 also co-regulates aspects of episodic memory, with mGlu5 stimulation restoring impaired memory. Based on these findings, we propose several avenues for the development of novel pharmacotherapies for Methamphetamine Use Disorder based on the selective modulation mGlu receptor subtype activity.
Collapse
Affiliation(s)
- Peter U Hámor
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
12
|
Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci 2023; 46:60-74. [PMID: 36369028 DOI: 10.1016/j.tins.2022.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Schizophrenia remains a major health burden, highlighting the need for new treatment approaches. We consider the potential for targeting the trace amine (TA) system. We first review genetic, preclinical, and clinical evidence for the role of TAs in the aetiopathology of schizophrenia. We then consider how the localisation and function of the trace amine-associated receptor 1 (TAAR1) position it to modulate key brain circuits for the disorder. Studies in rodents using Taar1 knockout (TAAR1-KO) and overexpression models show that TAAR1 agonism inhibits midbrain dopaminergic and serotonergic activity, and enhances prefrontal glutamatergic function. TAAR1 agonists also reduce hyperactivity, attenuate prepulse inhibition (PPI) deficits and social withdrawal, and improve cognitive measures in animal models. Finally, we consider findings from clinical trials of TAAR1 agonists and how this approach may address psychotic and negative symptoms, tolerability issues, and other unmet needs in the treatment of schizophrenia.
Collapse
|
13
|
Sarkar S, Saika-Voivod I, Berry MD. Modelling of p-tyramine transport across human intestinal epithelial cells predicts the presence of additional transporters. Front Physiol 2022; 13:1009320. [PMID: 36505075 PMCID: PMC9733674 DOI: 10.3389/fphys.2022.1009320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022] Open
Abstract
p-Tyramine (TYR) is an endogenous trace amine, which can also be synthesized by intestinal microbiota, and is present in commonly consumed diets. TYR is an agonist for the intracellular trace amine-associated receptor 1, which has been implicated in psychiatric, metabolic, and immune-related disorders. We have previously demonstrated TYR readily diffuses across lipid bilayers, while transport across Caco-2 cell membranes involves Organic Cation Transporter 2 (OCT2) and a Na+-dependent active transporter. Here we developed mathematical models to determine whether known kinetics for these processes are sufficient to explain observed transcellular TYR passage. Ordinary differential equations were developed for known TYR transport processes to predict concentration-time relationships. Michaelis-Menten kinetics were assumed for all transporter-mediated processes and a one phase exponential function used for simple diffusion. Modelled concentration-time plots were compared to published experimental results. Additional transporter functions were sequentially added to models to improve consistency, and a least squares error minimization approach utilized to determine added transporter kinetics. Finally, possible TYR compartmentalization was also modelled. Following apical loading, transport across the apical, but not the basolateral, membrane was modelled without additional transporters, suggesting a basolateral transporter was missing. Consistent with this, models of basolateral compartment loading did not match experimental observations, indicating missing basolateral transporters were bidirectional. Addition of a transporter with the kinetic characteristics of OCT2 did not improve models. Varying the kinetic parameters of the added transporter improved models of basolateral, but worsened apical, loading models, suggesting the need for either a directional preference in transporters, or intracellular TYR compartmentalization. Experimental parameters were recapitulated by introducing asymmetry into the apical OCT2 (Kt_OCT2_apicaltocell = 110.4 nM, Kt_OCT2_celltoapical = 1,227.9 nM), and a symmetric basolateral facilitated diffusion transporter (Vmax = 6.0 nM/s, Kt = 628.3 nM). The apparent directionality of OCT2 may reflect altered TYR ionization due to known pH differences between compartments. Models for asymmetry and compartmentalization were compared by root mean square deviation from experimental data, and it was found that TYR compartmentalization could only partially replace the need for asymmetry of OCT2. In conclusion, modelling indicates that known TYR transport processes are insufficient to explain experimental concentration-time profiles and that asymmetry of the apical membrane OCT2 combined with additional, low affinity, basolateral membrane facilitated diffusion transporters are required.
Collapse
Affiliation(s)
- Shreyasi Sarkar
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada,*Correspondence: Shreyasi Sarkar,
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mark D. Berry
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
14
|
Jong YI, Harmon SK, O'Malley KL. GPCR
Signaling from Intracellular Membranes. GPCRS AS THERAPEUTIC TARGETS 2022:216-298. [DOI: 10.1002/9781119564782.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
15
|
Chilunda V, Weiselberg J, Martinez-Meza S, Mhamilawa LE, Cheney L, Berman JW. Methamphetamine induces transcriptional changes in cultured HIV-infected mature monocytes that may contribute to HIV neuropathogenesis. Front Immunol 2022; 13:952183. [PMID: 36059515 PMCID: PMC9433802 DOI: 10.3389/fimmu.2022.952183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-associated neurocognitive impairment (HIV-NCI) persists in 15-40% of people with HIV (PWH) despite effective antiretroviral therapy. HIV-NCI significantly impacts quality of life, and there is currently no effective treatment for it. The development of HIV-NCI is complex and is mediated, in part, by the entry of HIV-infected mature monocytes into the central nervous system (CNS). Once in the CNS, these cells release inflammatory mediators that lead to neuroinflammation, and subsequent neuronal damage. Infected monocytes may infect other CNS cells as well as differentiate into macrophages, thus contributing to viral reservoirs and chronic neuroinflammation. Substance use disorders in PWH, including the use of methamphetamine (meth), can exacerbate HIV neuropathogenesis. We characterized the effects of meth on the transcriptional profile of HIV-infected mature monocytes using RNA-sequencing. We found that meth mediated an upregulation of gene transcripts related to viral infection, cell adhesion, cytoskeletal arrangement, and extracellular matrix remodeling. We also identified downregulation of several gene transcripts involved in pathogen recognition, antigen presentation, and oxidative phosphorylation pathways. These transcriptomic changes suggest that meth increases the infiltration of mature monocytes that have a migratory phenotype into the CNS, contributing to dysregulated inflammatory responses and viral reservoir establishment and persistence, both of which contribute to neuronal damage. Overall, our results highlight potential molecules that may be targeted for therapy to limit the effects of meth on HIV neuropathogenesis.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jessica Weiselberg
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Samuel Martinez-Meza
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lwidiko E. Mhamilawa
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Laura Cheney
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
16
|
Leo D, Targa G, Espinoza S, Villers A, Gainetdinov RR, Ris L. Trace Amine Associate Receptor 1 (TAAR1) as a New Target for the Treatment of Cognitive Dysfunction in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23147811. [PMID: 35887159 PMCID: PMC9318502 DOI: 10.3390/ijms23147811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Worldwide, approximately 27 million people are affected by Alzheimer’s disease (AD). AD pathophysiology is believed to be caused by the deposition of the β-amyloid peptide (Aβ). Aβ can reduce long-term potentiation (LTP), a form of synaptic plasticity that is closely associated with learning and memory and involves postsynaptic glutamate receptor phosphorylation and trafficking. Moreover, Aβ seems to be able to reduce glutamatergic transmission by increasing the endocytosis of NMDA receptors. Trace amines (TAs) are biogenic amines that are structurally similar to monoamine neurotransmitters. TAs bind to G protein-coupled receptors, called TAARs (trace amine-associated receptors); the best-studied member of this family, TAAR1, is distributed in the cortical and limbic structures of the CNS. It has been shown that the activation of TAAR1 can rescue glutamatergic hypofunction and that TAAR1 can modulate glutamate NMDA receptor-related functions in the frontal cortex. Several lines of evidence also suggest the pro-cognitive action of TAAR1 agonists in various behavioural experimental protocols. Thus, we studied, in vitro, the role of the TAAR1 agonist RO5256390 on basal cortical glutamatergic transmission and tested its effect on Aβ-induced dysfunction. Furthermore, we investigated, in vivo, the role of TAAR1 in cognitive dysfunction induced by Aβ infusion in Aβ-treated mice. In vitro data showed that Aβ 1–42 significantly decreased NMDA cell surface expression while the TAAR1 agonist RO5256390 promoted their membrane insertion in cortical cells. In vivo, RO5256390 showed a mild pro-cognitive effect, as demonstrated by the better performance in the Y maze test in mice treated with Aβ. Further studies are needed to better understand the interplay between TAAR1/Aβ and glutamatergic signalling, in order to evaluate the eventual beneficial effect in different experimental paradigms and animal models. Taken together, our data indicate that TAAR1 agonism may provide a novel therapeutic approach in the treatments of disorders involving Aβ-induced cognitive impairments, such as AD.
Collapse
Affiliation(s)
- Damiana Leo
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy;
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy;
| | - Agnès Villers
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
- Correspondence: ; Tel.: +32-6537-3570
| |
Collapse
|
17
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
18
|
Protection of the PC12 Cells by Nesfatin-1 Against Methamphetamine-Induced Neurotoxicity. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Sheng L, Luo Q, Chen L. Amino Acid Solute Carrier Transporters in Inflammation and Autoimmunity. Drug Metab Dispos 2022; 50:DMD-AR-2021-000705. [PMID: 35152203 DOI: 10.1124/dmd.121.000705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 02/21/2024] Open
Abstract
The past decade exposed the importance of many homeostasis and metabolism related proteins in autoimmunity disease and inflammation. Solute carriers (SLCs) are a group of membrane channels that can transport amino acids, the building blocks of proteins, nutrients, and neurotransmitters. This review summarizes the role of SLCs amino acid transporters in inflammation and autoimmunity disease. In detail, the importance of Glutamate transporters SLC1A1, SLC1A2, and SLC1A3, mainly expressed in the brain where they help prevent glutamate excitotoxicity, is discussed in the context of central nervous system disorders such as multiple sclerosis. Similarly, the cationic amino acid transporter SLC7A1 (CAT1), which is an important arginine transporter for T cells, and SLC7A2 (CAT2), essential for innate immunity. SLC3 family proteins, which bind with light chains from the SLC7 family (SLC7A5, SLC7A7 and SLC7A11) to form heteromeric amino acid transporters, are also explored to describe their roles in T cells, NK cells, macrophages and tumor immunotherapies. Altogether, the link between SLC amino acid transporters with inflammation and autoimmunity may contribute to a better understanding of underlying mechanism of disease and provide novel potential therapeutic avenues. Significance Statement SIGNIFICANCE STATEMENT In this review, we summarize the link between SLC amino acid transporters and inflammation and immune responses, specially SLC1 family members and SLC7 members. Studying the link may contribute to a better understanding of related diseases and provide potential therapeutic targets and useful to the researchers who have interest in the involvement of amino acids in immunity.
Collapse
Affiliation(s)
| | - Qi Luo
- Tsinghua University, China
| | | |
Collapse
|
20
|
Fields JA, Swinton MK, Montilla-Perez P, Ricciardelli E, Telese F. The Cannabinoid Receptor Agonist, WIN-55212-2, Suppresses the Activation of Proinflammatory Genes Induced by Interleukin 1 Beta in Human Astrocytes. Cannabis Cannabinoid Res 2022; 7:78-92. [PMID: 33998879 PMCID: PMC8864424 DOI: 10.1089/can.2020.0128] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Alterations of astrocyte function play a crucial role in neuroinflammatory diseases due to either the loss of their neuroprotective role or the gain of their toxic inflammatory properties. Accumulating evidence highlights that cannabinoids and cannabinoid receptor agonists, such as WIN55,212-2 (WIN), reduce inflammation in cellular and animal models. Thus, the endocannabinoid system has become an attractive target to attenuate chronic inflammation in neurodegenerative diseases. However, the mechanism of action of WIN in astrocytes remains poorly understood. Objective: We studied the immunosuppressive property of WIN by examining gene expression patterns that were modulated by WIN in reactive astrocytes. Materials and Methods: Transcriptomic analysis by RNA-seq was carried out using primary human astrocyte cultures stimulated by the proinflammatory cytokine interleukin 1 beta (IL1β) in the presence or absence of WIN. Real-time quantitative polymerase chain reaction analysis was conducted on selected transcripts to characterize the dose-response effects of WIN, and to test the effect of selective antagonists of cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptors (PPAR). Results: Transcriptomic analysis showed that the IL1β-induced inflammatory response is robustly inhibited by WIN pretreatment. WIN treatment alone also induced substantial gene expression changes. Pathway analysis revealed that the anti-inflammatory properties of WIN were linked to the regulation of kinase pathways and gene targets of neuroprotective transcription factors, including PPAR and SMAD (mothers against decapentaplegic homolog). The inhibitory effect of WIN was dose-dependent, but it was not affected by selective antagonists of CB1 or PPAR. Conclusions: This study suggests that targeting the endocannabinoid system may be a promising strategy to disrupt inflammatory pathways in reactive astrocytes. The anti-inflammatory activity of WIN is independent of CB1, suggesting that alternative receptors mediate the effects of WIN. These results provide mechanistic insights into the anti-inflammatory activity of WIN and highlight that astrocytes are a potential therapeutic target to ameliorate neuroinflammation in the brain.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry and University of California San Diego, La Jolla, California, USA
| | - Mary K. Swinton
- Department of Psychiatry and University of California San Diego, La Jolla, California, USA
| | | | - Eugenia Ricciardelli
- Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Francesca Telese
- Department of Medicine, University of California San Diego, La Jolla, California, USA.,*Address correspondence to: Francesca Telese, PhD, Department of Medicine, University of California San Diego, La Jolla, CA 93093, USA,
| |
Collapse
|
21
|
Dedic N, Dworak H, Zeni C, Rutigliano G, Howes OD. Therapeutic Potential of TAAR1 Agonists in Schizophrenia: Evidence from Preclinical Models and Clinical Studies. Int J Mol Sci 2021; 22:ijms222413185. [PMID: 34947997 PMCID: PMC8704992 DOI: 10.3390/ijms222413185] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) has emerged as a promising therapeutic target for neuropsychiatric disorders due to its ability to modulate monoaminergic and glutamatergic neurotransmission. In particular, agonist compounds have generated interest as potential treatments for schizophrenia and other psychoses due to TAAR1-mediated regulation of dopaminergic tone. Here, we review unmet needs in schizophrenia, the current state of knowledge in TAAR1 circuit biology and neuropharmacology, including preclinical behavioral, imaging, and cellular evidence in glutamatergic, dopaminergic and genetic models linked to the pathophysiology of psychotic, negative and cognitive symptoms. Clinical trial data for TAAR1 drug candidates are reviewed and contrasted with antipsychotics. The identification of endogenous TAAR1 ligands and subsequent development of small-molecule agonists has revealed antipsychotic-, anxiolytic-, and antidepressant-like properties, as well as pro-cognitive and REM-sleep suppressing effects of TAAR1 activation in rodents and non-human primates. Ulotaront, the first TAAR1 agonist to progress to randomized controlled clinical trials, has demonstrated efficacy in the treatment of schizophrenia, while another, ralmitaront, is currently being evaluated in clinical trials in schizophrenia. Coupled with the preclinical findings, this provides a rationale for further investigation and development of this new pharmacological class for the treatment of schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Nina Dedic
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
- Correspondence:
| | - Heather Dworak
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
| | - Courtney Zeni
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
| | - Grazia Rutigliano
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Oliver D. Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London SE5 8AF, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
22
|
Miller DR, Bu M, Gopinath A, Martinez LR, Khoshbouei H. Methamphetamine Dysregulation of the Central Nervous System and Peripheral Immunity. J Pharmacol Exp Ther 2021; 379:372-385. [PMID: 34535563 PMCID: PMC9351721 DOI: 10.1124/jpet.121.000767] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.
Collapse
Affiliation(s)
- Douglas R Miller
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Mengfei Bu
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Adithya Gopinath
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Luis R Martinez
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
Canedo T, Portugal CC, Socodato R, Almeida TO, Terceiro AF, Bravo J, Silva AI, Magalhães JD, Guerra-Gomes S, Oliveira JF, Sousa N, Magalhães A, Relvas JB, Summavielle T. Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacology 2021; 46:2358-2370. [PMID: 34400780 PMCID: PMC8581027 DOI: 10.1038/s41386-021-01139-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Methamphetamine (Meth) is a powerful illicit psychostimulant, widely used for recreational purposes. Besides disrupting the monoaminergic system and promoting oxidative brain damage, Meth also causes neuroinflammation, contributing to synaptic dysfunction and behavioral deficits. Aberrant activation of microglia, the largest myeloid cell population in the brain, is a common feature in neurological disorders triggered by neuroinflammation. In this study, we investigated the mechanisms underlying the aberrant activation of microglia elicited by Meth in the adult mouse brain. We found that binge Meth exposure caused microgliosis and disrupted risk assessment behavior (a feature that usually occurs in individuals who abuse Meth), both of which required astrocyte-to-microglia crosstalk. Mechanistically, Meth triggered a detrimental increase of glutamate exocytosis from astrocytes (in a process dependent on TNF production and calcium mobilization), promoting microglial expansion and reactivity. Ablating TNF production, or suppressing astrocytic calcium mobilization, prevented Meth-elicited microglia reactivity and re-established risk assessment behavior as tested by elevated plus maze (EPM). Overall, our data indicate that glial crosstalk is critical to relay alterations caused by acute Meth exposure.
Collapse
Affiliation(s)
- Teresa Canedo
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Camila Cabral Portugal
- Glial Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Renato Socodato
- grid.5808.50000 0001 1503 7226Glial Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tiago Oliveira Almeida
- grid.5808.50000 0001 1503 7226Glial Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Filipa Terceiro
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Joana Bravo
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Isabel Silva
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - João Duarte Magalhães
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sónia Guerra-Gomes
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - João Filipe Oliveira
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.410922.c0000 0001 0180 6901IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence, Barcelos, Portugal
| | - Nuno Sousa
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Magalhães
- grid.5808.50000 0001 1503 7226Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- grid.5808.50000 0001 1503 7226Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal ,grid.5808.50000 0001 1503 7226Glial Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Teresa Summavielle
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. .,ESS.PP, Escola Superior de Saúde do Politécnico do Porto, Porto, Portugal.
| |
Collapse
|
24
|
Trace Amine-Associated Receptor 1 as a Target for the Development of New Antipsychotics: Current Status of Research and Future Directions. CNS Drugs 2021; 35:1153-1161. [PMID: 34655036 DOI: 10.1007/s40263-021-00864-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia is a mental illness associated with an array of symptoms that often result in disability. The primary treatments for schizophrenia are termed antipsychotics. Although antipsychotics modulate a number of different receptor types and subtypes, all currently regulatory agency-approved antipsychotics share in common direct or functional antagonism at the dopamine type 2 receptor (D2R). The majority of people with schizophrenia do not achieve full resolution of their symptoms with antipsychotics, suggesting the need for alternative or complementary approaches. The primary focus of this review is to assess the evidence for the role of the trace amine-associated receptor 1 (TAAR-1) in schizophrenia and the role of TAAR-1 modulators as novel-mechanism antipsychotics. Topics include an overview of TAAR-1 physiology and pathophysiology in schizophrenia, interaction with other neurotransmitter systems, including the dopaminergic, glutamatergic and serotonergic system, and finally, a review of investigational TAAR-1 compounds that have reached Phase II clinical studies in schizophrenia: SEP-363856 (ulotaront) and RO6889450 (ralmitaront). Thus far, results are publicly available only for ulotaront in a relatively young (18-40 years) and acutely exacerbated cohort. These results showed positive effects for overall schizophrenia symptoms without significant tolerability concerns. An ongoing study of ralmitaront will assess specific efficacy in patients with persistent negative symptoms. If trials of TAAR-1 modulators, and other novel-mechanism targets for schizophrenia that are under active study, continue to show positive results, the definition of an antipsychotic may need to be expanded beyond the D2R target in the near future.
Collapse
|
25
|
Wu R, Liu J, Seaman R, Johnson B, Zhang Y, Li JX. The selective TAAR1 partial agonist RO5263397 promoted novelty recognition memory in mice. Psychopharmacology (Berl) 2021; 238:3221-3228. [PMID: 34291306 PMCID: PMC8605990 DOI: 10.1007/s00213-021-05937-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
RATIONALE Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that has a particular role in regulating dopaminergic, serotonergic, and glutamatergic transmission. TAAR1 agonists have shown pro-cognitive activities. However, it remains largely unknown of the effects of TAAR1 agonists on memory performance. OBJECTIVES Here, by using the mice novel object recognition (NOR) test, we examined the effects of the selective TAAR1 partial agonist RO5263397 on recognition memory. RESULTS We found that RO5263397 significantly enhanced the retrieval of short-term memory (STM; 20 min after training) both in male and female mice. RO5263397 promoted the retrieval of STM in the wild-type (WT) littermates but not TAAR1-KO mice, indicating that the effects of RO5263397 were dependent on TAAR1. Interestingly, compared to their WT litters, TAAR1-KO mice showed similar levels of STM, suggesting that genetic deletion of taar1 gene did not affect the STM retrieval. Furthermore, RO5263397 also promoted the retrieval of long-term NOR memory (24 h after training). CONCLUSIONS These results indicate that TAAR1 activation promotes NOR memory retrieval. Consistent with previous studies, our finding further suggests that TAAR1 agonists have pro-cognitive properties.
Collapse
Affiliation(s)
- Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA.,Medical college of Yangzhou University, Yangzhou, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Robert Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Bernard Johnson
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University At Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14214, USA.
| |
Collapse
|
26
|
Barnes DA, Galloway DA, Hoener MC, Berry MD, Moore CS. TAAR1 Expression in Human Macrophages and Brain Tissue: A Potential Novel Facet of MS Neuroinflammation. Int J Mol Sci 2021; 22:ijms222111576. [PMID: 34769007 PMCID: PMC8584001 DOI: 10.3390/ijms222111576] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
TAAR1 is a neuroregulator with emerging evidence suggesting a role in immunomodulation. Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. Here, we investigate TAAR1 expression in human primary monocytes, peripherally-derived macrophages, and MS brain tissue. RT-qPCR was used to assess TAAR1 levels in MS monocytes. Using a previously validated anti-human TAAR1 antibody and fluorescence microscopy, TAAR1 protein was visualized in lipopolysaccharide-stimulated or basal human macrophages, as well as macrophage/microglia populations surrounding, bordering, and within a mixed active/inactive MS lesion. In vivo, TAAR1 mRNA expression was significantly lower in MS monocytes compared to age- and sex-matched healthy controls. In vitro, TAAR1 protein showed a predominant nuclear localization in quiescent/control macrophages with a shift to a diffuse intracellular distribution following lipopolysaccharide-induced activation. In brain tissue, TAAR1 protein was predominantly expressed in macrophages/microglia within the border region of mixed active/inactive MS lesions. Considering that TAAR1-mediated anti-inflammatory effects have been previously reported, decreased mRNA in MS patients suggests possible pathophysiologic relevance. A shift in TAAR1 localization following pro-inflammatory activation suggests its function is altered in pro-inflammatory states, while TAAR1-expressing macrophages/microglia bordering an MS lesion supports TAAR1 as a novel pharmacological target in cells directly implicated in MS neuroinflammation.
Collapse
Affiliation(s)
- David A. Barnes
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, NL A1B 3X9, Canada; (D.A.B.); (M.D.B.)
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada;
| | - Dylan A. Galloway
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada;
| | - Marius C. Hoener
- Neuroscience, Ophthalmology and Rare Diseases DTA, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland;
| | - Mark D. Berry
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, NL A1B 3X9, Canada; (D.A.B.); (M.D.B.)
| | - Craig S. Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada;
- Correspondence: ; Tel.: +1-709-864-4955
| |
Collapse
|
27
|
Alessio N, Squillaro T, Lettiero I, Galano G, De Rosa R, Peluso G, Galderisi U, Di Bernardo G. Biomolecular Evaluation of Piceatannol's Effects in Counteracting the Senescence of Mesenchymal Stromal Cells: A New Candidate for Senotherapeutics? Int J Mol Sci 2021; 22:ijms222111619. [PMID: 34769049 PMCID: PMC8583715 DOI: 10.3390/ijms222111619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Several investigations on senescence and its causative role in aging have underscored the importance of developing senotherapeutics, a field focused on killing senescent cells and/or preventing their accumulation within tissues. Using polyphenols in counteracting senescence may facilitate the development of senotherapeutics given their presence in the human diet, their confirmed tolerability and absence of severe side effects, and their role in preventing senescence and inducing the death of senescent cells. Against that background, we evaluated the effect of piceatannol, a natural polyphenol, on the senescence of mesenchymal stromal cells (MSCs), which play a key role in the body's homeostasis. Among our results, piceatannol reduced the number of senescent cells both after genotoxic stress that induced acute senescence and in senescent replicative cultures. Such senotherapeutics activity, moreover, promoted the recovery of cell proliferation and the stemness properties of MSCs. Altogether, our findings demonstrate piceatannol's effectiveness in counteracting senescence by targeting its associated pathways and detecting and affecting P53-dependent and P53-independent senescence. Our study thus suggests that, given piceatannol's various mechanisms to accomplish its pleiotropic activities, it may be able to counteract any senescent phenotypes.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (N.A.); (T.S.); (I.L.)
| | - Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (N.A.); (T.S.); (I.L.)
| | - Ida Lettiero
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (N.A.); (T.S.); (I.L.)
| | - Giovanni Galano
- ASL Napoli 1 Centro P.S.I. Napoli Est-Barra, 80147 Naples, Italy; (G.G.); (R.D.R.)
| | - Roberto De Rosa
- ASL Napoli 1 Centro P.S.I. Napoli Est-Barra, 80147 Naples, Italy; (G.G.); (R.D.R.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems, CNR, 80131 Naples, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (N.A.); (T.S.); (I.L.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (U.G.); (G.D.B.)
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (N.A.); (T.S.); (I.L.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (U.G.); (G.D.B.)
| |
Collapse
|
28
|
Cisneros IE, Cunningham KA. Covid-19 interface with drug misuse and substance use disorders. Neuropharmacology 2021; 198:108766. [PMID: 34454912 PMCID: PMC8388132 DOI: 10.1016/j.neuropharm.2021.108766] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
The coronavirus disease 2019 (Covid-19) pandemic intensified the already catastrophic drug overdose and substance use disorder (SUD) epidemic, signaling a syndemic as social isolation, economic and mental health distress, and disrupted treatment services disproportionally impacted this vulnerable population. Along with these social and societal factors, biological factors triggered by intense stress intertwined with incumbent overactivity of the immune system and the resulting inflammatory outcomes may impact the functional status of the central nervous system (CNS). We review the literature concerning SARS-CoV2 infiltration and infection in the CNS and the prospects of synergy between stress, inflammation, and kynurenine pathway function during illness and recovery from Covid-19. Taken together, inflammation and neuroimmune signaling, a consequence of Covid-19 infection, may dysregulate critical pathways and underlie maladaptive changes in the CNS, to exacerbate the development of neuropsychiatric symptoms and in the vulnerability to develop SUD. This article is part of the special Issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- I E Cisneros
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA.
| | - K A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
29
|
Singal CMS, Jaiswal P, Mehta A, Saleem K, Seth P. Role of EphrinA3 in HIV-1 Neuropathogenesis. ASN Neuro 2021; 13:17590914211044359. [PMID: 34618621 PMCID: PMC8504696 DOI: 10.1177/17590914211044359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glial cells perform important supporting functions for neurons through a dynamic crosstalk. Neuron–glia communication is the major phenomenon to sustain homeostatic functioning of the brain. Several interactive pathways between neurons and astrocytes are critical for the optimal functioning of neurons, and one such pathway is the ephrinA3–ephA4 signaling. The role of this pathway is essential in maintaining the levels of extracellular glutamate by regulating the excitatory amino acid transporters, EAAT1 and EAAT2 on astrocytes. Human immunodeficiency virus-1 (HIV-1) and its proteins cause glutamate excitotoxicity due to excess glutamate levels at sites of high synaptic activity. This study unravels the effects of HIV-1 transactivator of transcription (Tat) from clade B on ephrinA3 and its role in regulating glutamate levels in astrocyte–neuron co-cultures of human origin. It was observed that the expression of ephrinA3 increases in the presence of HIV-1 Tat B, while the expression of EAAT1 and EAAT2 was attenuated. This led to reduced glutamate uptake and therefore high neuronal death due to glutamate excitotoxicity. Knockdown of ephrinA3 using small interfering RNA, in the presence of HIV-1 Tat B reversed the neurotoxic effects of HIV-1 Tat B via increased expression of glutamate transporters that reduced the levels of extracellular glutamate. The in vitro findings were validated in autopsy brain sections from acquired immunodeficiency syndrome patients and we found ephrinA3 to be upregulated in the case of HIV-1-infected patients. This study offers valuable insights into astrocyte-mediated neuronal damage in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
| | - Paritosh Jaiswal
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| | - Anuradha Mehta
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| | - Kanza Saleem
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| |
Collapse
|
30
|
Trace amine-associated receptor 1 (TAAR1): Potential application in mood disorders: A systematic review. Neurosci Biobehav Rev 2021; 131:192-210. [PMID: 34537265 DOI: 10.1016/j.neubiorev.2021.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
There is a need for innovation with respect to therapeutics in psychiatry. Available evidence indicates that the trace amine-associated receptor 1 (TAAR1) agonist SEP-363856 is promising, as it improves measures of cognitive and reward function in schizophrenia. Hedonic and cognitive impairments are transdiagnostic and constitute major burdens in mood disorders. Herein, we systematically review the behavioural and genetic literature documenting the role of TAAR1 in reward and cognitive function, and propose a mechanistic model of TAAR1's functions in the brain. Notably, TAAR1 activity confers antidepressant-like effects, enhances attention and response inhibition, and reduces compulsive reward seeking without impairing normal function. Further characterization of the responsible mechanisms suggests ion-homeostatic, metabolic, neurotrophic, and anti-inflammatory enhancements in the limbic system. Multiple lines of evidence establish the viability of TAAR1 as a biological target for the treatment of mood disorders. Furthermore, the evidence suggests a role for TAAR1 in reward and cognitive function, which is attributed to a cascade of events that are relevant to the cellular integrity and function of the central nervous system.
Collapse
|
31
|
Mantas I, Vallianatou T, Yang Y, Shariatgorji M, Kalomoiri M, Fridjonsdottir E, Millan MJ, Zhang X, Andrén PE, Svenningsson P. TAAR1-Dependent and -Independent Actions of Tyramine in Interaction With Glutamate Underlie Central Effects of Monoamine Oxidase Inhibition. Biol Psychiatry 2021; 90:16-27. [PMID: 33579534 DOI: 10.1016/j.biopsych.2020.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Monoamine oxidase inhibitors (MAOIs) exert therapeutic actions by elevating extracellular levels of monoamines in the brain. Irreversible MAOIs cause serious hypertensive crises owing to peripheral accumulation of tyramine, but the role of tyramine in the central effects of MAOIs remains elusive, an issue addressed herein. To achieve robust inhibition of MAOA/B, the clinically used antidepressant tranylcypromine (TCP) was employed. METHODS Behavioral, histological, mass spectrometry imaging, and biosensor-mediated measures of glutamate were conducted with MAOIs in wild-type and TAAR1-knockout (KO) mice. RESULTS Both antidepressant and locomotion responses to TCP were enhanced in TAAR1-KO mice. A recently developed fluoromethylpyridinium-based mass spectrometry imaging method revealed robust accumulation of striatal tyramine on TCP administration. Furthermore, tyramine accumulation was higher in TAAR1-KO versus wild-type mice, suggesting a negative feedback mechanism for TAAR1 in sensing tyramine levels. Combined histoenzymological and immunohistological studies revealed hitherto unknown TAAR1 localization in brain areas projecting to the substantia nigra/ventral tegmental area. Using an enzyme-based biosensor technology, we found that both TCP and tyramine reduced glutamate release in the substantia nigra in wild-type but not in TAAR1-KO mice. Moreover, glutamate measures in freely moving animals treated with TCP demonstrated that TAAR1 prevents glutamate accumulation in the substantia nigra during hyperlocomotive states. CONCLUSIONS These observations suggest that tyramine, in interaction with glutamate, is involved in centrally mediated behavioral, transcriptional, and neurochemical effects of MAOIs.
Collapse
Affiliation(s)
- Ioannis Mantas
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Theodosia Vallianatou
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Yunting Yang
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mohammadreza Shariatgorji
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden; National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Kalomoiri
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elva Fridjonsdottir
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Mark J Millan
- Centre for Therapeutic Innovation-CNS, Institut de Recherches Servier, Centre de Recherches de Croissy, Paris, France
| | - Xiaoqun Zhang
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden; National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Kong Q, Zhang H, Wang M, Zhang J, Zhang Y. The TAAR1 inhibitor EPPTB suppresses neuronal excitability and seizure activity in mice. Brain Res Bull 2021; 171:142-149. [PMID: 33811954 DOI: 10.1016/j.brainresbull.2021.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Epilepsy is a common neurological disease. G protein-coupled receptors (GPCRs) are extensively distributed and play an important role in human health by serving as therapeutic targets for various diseases. As one of the GPCRs, trace amine-associated receptor 1 (TAAR1) has recently aroused increasing interest as a potential therapeutic target for psychiatric disorders. However, the effect of TAAR1 on epileptic seizures remains unclear. We hypothesized that TAAR1 plays an important role in epilepsy and might represent a potential therapeutic target. In this study, we analyzed a mouse epilepsy model and patients with temporal lobe epilepsy (TLE) and observed substantially increased TAAR1 expression compared with the control group. In recordings of hippocampal slices, the TAAR1-specific inhibitor N-(3-ethoxyphenyl)-4-(pyrrolidin-1-yl)-3-(trifluoromethyl) benzamide (EPPTB) suppressed the excitability of hippocampal pyramidal neurons. EPPTB also reduced seizure-like events (SLEs) and seizure activity. Our results suggest that EPPTB attenuates seizure activity and that TAAR1 might be a potential drug target for individuals with epilepsy.
Collapse
Affiliation(s)
- Qingxia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China; Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Hao Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Min Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China; Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Junchen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China.
| | - Yanke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China; Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China.
| |
Collapse
|
33
|
Role of trace amine‑associated receptor 1 in the medial prefrontal cortex in chronic social stress-induced cognitive deficits in mice. Pharmacol Res 2021; 167:105571. [PMID: 33753244 DOI: 10.1016/j.phrs.2021.105571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Emerging evidence supports an essential role of trace amine-associated receptor 1 (TAAR1) in neuropsychiatric disorders such as depression and schizophrenia. Stressful events are critical contributors to various neuropsychiatric disorders. This study examined the role of TAAR1 in mediating the negative outcomes of stressful events. In mice that experienced chronic social defeat stress but not acute stress, a significant reduction in the TAAR1 mRNA level was found in the medial prefrontal cortex (mPFC), a brain region that is known to be vulnerable to stress experience. Conditional TAAR1 knockout in the mPFC mimicked the cognitive deficits induced by chronic stress. In addition, chronic treatment with the selective TAAR1 partial agonist RO5263397 ameliorated chronic stress-induced changes in cognitive function, dendritic arborization, and the synapse number of pyramidal neurons in the mPFC but did not affect chronic stress-induced anxiety-like behaviors. Biochemically, chronic stress reduced the ratio of vesicular transporters of glutamate-1 (VGluT1) / vesicular GABA transporter (VGAT) in the mPFC,most prominently in the prelimbic cortex, and RO5263397 restored the excitatory-inhibitory (E/I) imbalance. Together, the results of this study reveal an essential role of TAAR1 in mediating chronic stress-induced cognitive impairments and suggest that TAAR1 agonists may be uniquely useful to treat MDD-related cognitive impairments.
Collapse
|
34
|
Dang J, Tiwari SK, Agrawal K, Hui H, Qin Y, Rana TM. Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids. Mol Psychiatry 2021; 26:1194-1207. [PMID: 32051547 PMCID: PMC7423603 DOI: 10.1038/s41380-020-0676-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 11/26/2022]
Abstract
Methamphetamine (METH) is a potent stimulant that induces a euphoric state but also causes cognitive impairment, neurotoxicity and neurodevelopmental deficits. Yet, the molecular mechanisms by which METH causes neurodevelopmental defects have remained elusive. Here we utilized human cerebral organoids and single-cell RNA sequencing (scRNA-seq) to study the effects of prenatal METH exposure on fetal brain development. We analyzed 20,758 cells from eight untreated and six METH-treated cerebral organoids and found that the organoids developed from embryonic stem cells contained a diverse array of glial and neuronal cell types. We further identified transcriptionally distinct populations of astrocytes and oligodendrocytes within cerebral organoids. Treatment of organoids with METH-induced marked changes in transcription in multiple cell types, including astrocytes and neural progenitor cells. METH also elicited novel astrocyte-specific gene expression networks regulating responses to cytokines, and inflammasome. Moreover, upregulation of immediate early genes, complement factors, apoptosis, and immune response genes suggests a neuroinflammatory program induced by METH regulating neural stem cell proliferation, differentiation, and cell death. Finally, we observed marked METH-induced changes in neuroinflammatory and cytokine gene expression at the RNA and protein levels. Our data suggest that human cerebral organoids represent a model system to study drug-induced neuroinflammation at single-cell resolution.
Collapse
Affiliation(s)
- Jason Dang
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| | - Shashi Kant Tiwari
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| | - Kriti Agrawal
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Biology, Bioinformatics Program, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| | - Hui Hui
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Biology, Bioinformatics Program, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| | - Yue Qin
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Biology, Bioinformatics Program, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| | - Tariq M. Rana
- grid.266100.30000 0001 2107 4242Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093 USA
| |
Collapse
|
35
|
Zhukov DA, Vinogradova EP. Trace Amines and Behavior. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Cisneros IE, Ghorpade A, Borgmann K. Methamphetamine Activates Trace Amine Associated Receptor 1 to Regulate Astrocyte Excitatory Amino Acid Transporter-2 via Differential CREB Phosphorylation During HIV-Associated Neurocognitive Disorders. Front Neurol 2020; 11:593146. [PMID: 33324330 PMCID: PMC7724046 DOI: 10.3389/fneur.2020.593146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Methamphetamine (METH) use, referred to as methamphetamine use disorder (MUD), results in neurocognitive decline, a characteristic shared with HIV-associated neurocognitive disorders (HAND). MUD exacerbates HAND partly through glutamate dysregulation. Astrocyte excitatory amino acid transporter (EAAT)-2 is responsible for >90% of glutamate uptake from the synaptic environment and is significantly decreased with METH and HIV-1. Our previous work demonstrated astrocyte trace amine associated receptor (TAAR) 1 to be involved in EAAT-2 regulation. Astrocyte EAAT-2 is regulated at the transcriptional level by cAMP responsive element binding (CREB) protein and NF-κB, transcription factors activated by cAMP, calcium and IL-1β. Second messengers, cAMP and calcium, are triggered by TAAR1 activation, which is upregulated by IL-1β METH-mediated increases in these second messengers and signal transduction pathways have not been shown to directly decrease astrocyte EAAT-2. We propose CREB activation serves as a master regulator of EAAT-2 transcription, downstream of METH-induced TAAR1 activation. To investigate the temporal order of events culminating in CREB activation, genetically encoded calcium indicators, GCaMP6s, were used to visualize METH-induced calcium signaling in primary human astrocytes. RNA interference and pharmacological inhibitors targeting or blocking cAMP-dependent protein kinase A and calcium/calmodulin kinase II confirmed METH-induced regulation of EAAT-2 and resultant glutamate clearance. Furthermore, we investigated METH-mediated CREB phosphorylation at both serine 133 and 142, the co-activator and co-repressor forms, respectively. Overall, this work revealed METH-induced differential CREB phosphorylation is a critical regulator for EAAT-2 function and may thus serve as a mechanistic target for the attenuation of METH-induced excitotoxicity in the context of HAND.
Collapse
Affiliation(s)
- Irma E Cisneros
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
37
|
Dodd S, F Carvalho A, Puri BK, Maes M, Bortolasci CC, Morris G, Berk M. Trace Amine-Associated Receptor 1 (TAAR1): A new drug target for psychiatry? Neurosci Biobehav Rev 2020; 120:537-541. [PMID: 33031817 DOI: 10.1016/j.neubiorev.2020.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
There are nine subfamilies of TAARs. They are predominantly intracellular, located in the central nervous system and peripherally. They have a role in homeostasis and rheostasis, and also in olfaction. They demonstrate significant cross-talk with the monoamine system and are involved in the regulation of cAMP signalling and K+ channels. There is evidence to suggest that TAAR1 may be a promising therapeutic target for the treatment of schizophrenia, psychosis in Parkinson's disease, substance use disorders, and the metabolic syndrome and obesity. TAAR1 expression may also be a prognostic biomarker for cancers. A number of TAAR modulators have been identified, including endogenous ligands and new chemical entities. Some of these agents have shown efficacy in animal models of addiction behaviours, depression and anxiety. Only one agent, SEP-363856, has progressed to randomised clinical trials in humans; however further, larger studies with SEP-363856 are required to clarify its suitability as a new treatment for schizophrenia spectrum disorders. SEP-363856 is an agonist of TAAR1 and 5HT1A and it is not clear to what extent its efficacy can be attributed to TAAR1 rather than to other drug targets. However, current research suggests that TAAR1 has an important role in human physiology and pathophysiology. TAAR1 modulators may become an important new drug class for the management of a wide array of mental disorders in the future.
Collapse
Affiliation(s)
- Seetal Dodd
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia; University Hospital Geelong, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.
| | - André F Carvalho
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, Toronto, ON, Canada
| | | | - Michael Maes
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Chiara C Bortolasci
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia; University Hospital Geelong, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia
| |
Collapse
|
38
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
39
|
Shi X, Swanson TL, Miner NB, Eshleman AJ, Janowsky A. Activation of Trace Amine-Associated Receptor 1 Stimulates an Antiapoptotic Signal Cascade via Extracellular Signal-Regulated Kinase 1/2. Mol Pharmacol 2019; 96:493-504. [PMID: 31409621 PMCID: PMC6744391 DOI: 10.1124/mol.119.116798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/30/2022] Open
Abstract
Methamphetamine (MA) is highly addictive and neurotoxic, causing cell death in humans and in rodent models. MA, along with many of its analogs, is an agonist at the G protein-coupled trace amine-associated receptor 1 (TAAR1). TAAR1 activation protects against MA-induced degeneration of dopaminergic neurons, suggesting that TAAR1 plays a role in regulating MA-induced neurotoxicity. However, the mechanisms involved in TAAR1's role in neurotoxicity and cell death have not been described in detail. In this study, we investigated the apoptosis pathway in Taar1 wild-type (WT) and knockout (KO) mice and in cells expressing the recombinant receptor. Bcl-2, an antiapoptotic protein, was upregulated ∼3-fold in the midbrain area (substantial nigra and ventral tegmental area) in Taar1 KO compared with WT mice, and MA significantly increased Bcl-2 expression in WT mice but decreased Bcl-2 expression in KO mice. The proapoptotic protein Bax did not differ across genotype or in response to MA. Bcl-2 expression was significantly upregulated by the TAAR1 agonist RO5166017 ((S)-4-[(ethyl-phenyl-amino)-methyl]-4,5-dihydro-oxazol-2-ylamine) in cells expressing the recombinant mouse TAAR1. Additionally, activation of TAAR1 by RO5166017 increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, and protein kinase B (AKT), but only inhibition of ERK1/2 phosphorylation prevented TAAR1-induced increases in Bcl-2 levels, indicating that TAAR1 activation increases Bcl-2 through an ERK1/2-dependent pathway. All changes to ERK1/2 pathway intermediates were blocked by the TAAR1 antagonist, N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl) benzamide. These findings suggest that TAAR1 activation protects against MA-induced cell apoptosis and TAAR1 may play a role in cell death in neurodegenerative diseases. SIGNIFICANCE STATEMENT: Methamphetamine stimulates TAAR1, a G protein-coupled receptor. The role and mechanisms for TAAR1 in methamphetamine-induced neurotoxicity are not known. Here, we report that, in genetic mouse models and cells expressing the recombinant receptor, TAAR1 activates the ERK1/2 pathway but not the AKT pathway to upregulate the antiapoptotic protein Bcl-2, which protects cells from drug-induced toxicity.
Collapse
Affiliation(s)
- Xiao Shi
- Research Service, Veterans Affairs Portland Health Care System, Portland, Oregon (X.S., T.L.S., N.B.M., A.J.E., A.J.); and The Methamphetamine Abuse Research Center (X.S., A.J.) and Departments of Psychiatry (X.S., T.L.S., A.J.E., A.J.) and Behavioral Neuroscience (N.B.M., A.J.E., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Tracy L Swanson
- Research Service, Veterans Affairs Portland Health Care System, Portland, Oregon (X.S., T.L.S., N.B.M., A.J.E., A.J.); and The Methamphetamine Abuse Research Center (X.S., A.J.) and Departments of Psychiatry (X.S., T.L.S., A.J.E., A.J.) and Behavioral Neuroscience (N.B.M., A.J.E., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Nicholas B Miner
- Research Service, Veterans Affairs Portland Health Care System, Portland, Oregon (X.S., T.L.S., N.B.M., A.J.E., A.J.); and The Methamphetamine Abuse Research Center (X.S., A.J.) and Departments of Psychiatry (X.S., T.L.S., A.J.E., A.J.) and Behavioral Neuroscience (N.B.M., A.J.E., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Amy J Eshleman
- Research Service, Veterans Affairs Portland Health Care System, Portland, Oregon (X.S., T.L.S., N.B.M., A.J.E., A.J.); and The Methamphetamine Abuse Research Center (X.S., A.J.) and Departments of Psychiatry (X.S., T.L.S., A.J.E., A.J.) and Behavioral Neuroscience (N.B.M., A.J.E., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Aaron Janowsky
- Research Service, Veterans Affairs Portland Health Care System, Portland, Oregon (X.S., T.L.S., N.B.M., A.J.E., A.J.); and The Methamphetamine Abuse Research Center (X.S., A.J.) and Departments of Psychiatry (X.S., T.L.S., A.J.E., A.J.) and Behavioral Neuroscience (N.B.M., A.J.E., A.J.), Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
40
|
TAAR1 levels and sub-cellular distribution are cell line but not breast cancer subtype specific. Histochem Cell Biol 2019; 152:155-166. [PMID: 31111198 DOI: 10.1007/s00418-019-01791-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Trace amine-associated receptors are G protein-coupled receptors of which TAAR1 is the most well-studied. Recently, Vattai et al. (J Cancer Res Clin Oncol 143:1637-1647 https://doi.org/10.1007/s00432-017-2420-8 , 2017) reported that expression of TAAR1 may be a marker of breast cancer (BC) survival, with a positive correlation also suggested between TAAR1 expression and HER2 positivity. Neither a role for TAAR1 in breast tissue, nor in cancer, had previously been suspected. We, therefore, sought to provide independent validation and to further examine these putative relationships. First, a bioinformatic analysis on 58 total samples including normal breast tissue, BC-related cell lines, and tumour samples representing different BC sub-types found no clear correlation between TAAR1 mRNA levels and any BC subtype, including HER2 + . We next confirmed the bioinformatics data correlated to protein expression using a well validated anti-human TAAR1 antibody. TAAR1 mRNA levels correlated with the relative intensity of immunofluorescence staining in six BC cell lines (MCF-7, T47D, MDA-MB-231, SKBR3, MDA-MB-468, BT-474), but not in the MCF-10A immortalized mammary gland line, which had high mRNA but low protein levels. As expected, TAAR1 protein was intracellular in all cell lines. Surprisingly MCF-7, SKBR3, and MDA-MB-468 showed pronounced nuclear localization. The relative protein expression in MCF-7, MDA-MB-231, and MCF-10A lines was further confirmed by semi-quantitative flow cytometry. Finally, we demonstrate that the commercially available anti-TAAR1 antibody has poor selectivity, which likely explains the lack of correlation with the previous study. Therefore, while we clearly demonstrate variable expression and sub-cellular localization of TAAR1 across BC cell lines, we find no evidence for association with BC subtype.
Collapse
|
41
|
Belozor OS, Yakovleva DA, Potapenko IV, Shuvaev AN, Smolnikova MV, Vasilev A, Pozhilenkova EA, Shuvaev AN. Extracellular S100β Disrupts Bergman Glia Morphology and Synaptic Transmission in Cerebellar Purkinje Cells. Brain Sci 2019; 9:brainsci9040080. [PMID: 31013844 PMCID: PMC6523464 DOI: 10.3390/brainsci9040080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Astrogliosis is a pathological process that affects the density, morphology, and function of astrocytes. It is a common feature of brain trauma, autoimmune diseases, and neurodegeneration including spinocerebellar ataxia type 1 (SCA1), a poorly understood neurodegenerative disease. S100β is a Ca2+ binding protein. In SCA1, excessive excretion of S100β by reactive astrocytes and its uptake by Purkinje cells has been demonstrated previously. Under pathological conditions, excessive extracellular concentration of S100β stimulates the production of proinflammatory cytokines and induces apoptosis. We modeled astrogliosis by S100β injections into cerebellar cortex in mice. Injections of S100β led to significant changes in Bergmann glia (BG) cortical organization and affected their processes. S100β also changed morphology of the Purkinje cells (PCs), causing a significant reduction in the dendritic length. Moreover, the short-term synaptic plasticity and depolarization-induced suppression of synaptic transmission were disrupted after S100β injections. We speculate that these effects are the result of Ca2+-chelating properties of S100β protein. In summary, exogenous S100β induced astrogliosis in cerebellum could lead to neuronal dysfunction, which resembles a natural neurodegenerative process. We suggest that astrocytes play an essential role in SCA1 pathology, and that astrocytic S100β is an important contributor to this process.
Collapse
Affiliation(s)
- Olga S Belozor
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Department of Biological Chemistry, Medical Pharmaceutical and Toxicological Chemistry, Partizan Zheleznyak st. 1, 660022 Krasnoyarsk, Russia.
| | - Dariya A Yakovleva
- Siberian Federal University, Svobodny pr., 79, 660041 Krasnoyarsk, Russia.
| | - Ilya V Potapenko
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry, Partizan Zheleznyak st. 1, 660022 Krasnoyarsk, Russia.
| | - Andrey N Shuvaev
- Siberian Federal University, Svobodny pr., 79, 660041 Krasnoyarsk, Russia.
| | - Marina V Smolnikova
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry, Partizan Zheleznyak st. 1, 660022 Krasnoyarsk, Russia.
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, Partizan Zheleznyak st., 3G, 660022 Krasnoyarsk, Russia.
| | - Alex Vasilev
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Universitetskaya st., 2, 236041 Kaliningrad, Russia.
| | - Elena A Pozhilenkova
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Department of Biological Chemistry, Medical Pharmaceutical and Toxicological Chemistry, Partizan Zheleznyak st. 1, 660022 Krasnoyarsk, Russia.
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry, Partizan Zheleznyak st. 1, 660022 Krasnoyarsk, Russia.
| | - Anton N Shuvaev
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry, Partizan Zheleznyak st. 1, 660022 Krasnoyarsk, Russia.
| |
Collapse
|
42
|
Daneshparvar H, Sadat-Shirazi MS, Fekri M, Khalifeh S, Ziaie A, Esfahanizadeh N, Vousooghi N, Zarrindast MR. NMDA receptor subunits change in the prefrontal cortex of pure-opioid and multi-drug abusers: a post-mortem study. Eur Arch Psychiatry Clin Neurosci 2019; 269:309-315. [PMID: 29766293 DOI: 10.1007/s00406-018-0900-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Abstract
Addiction is a chronic relapsing disorder and is one of the most important issues in the world. Changing the level of neurotransmitters and the activities of their receptors, play a major role in the pathophysiology of substance abuse disorders. It is well-established that N-methyl-D-aspartate receptors (NMDARs) play a significant role in the molecular basis of addiction. NMDAR has two obligatory GluN1 and two regionally localized GluN2 subunits. This study investigated changes in the protein level of GluN1, GluN2A, and GluN2B in the prefrontal cortex of drug abusers. The medial prefrontal cortex (mPFC), lateral prefrontal cortex (lPFC), and orbitofrontal cortex (OFC) were dissected from the brain of 101 drug addicts brains and were compared with the brains of non-addicts (N = 13). Western blotting technique was used to show the alteration in NMDAR subunits level. Data obtained using Western blotting technique showed a significant increase in the level of GluN1 and GluN2B, but not in GluN2A subunits in all the three regions (mPFC, lPFC, and OFC) of men whom suffered from addiction as compared to the appropriate controls. These findings showed a novel role for GluN1, GluN2B subunits, rather than the GluN2A subunit of NMDARs, in the pathophysiology of addiction and suggested their role in the drug-induced plasticity of NMDARs.
Collapse
Affiliation(s)
| | - Mitra-Sadat Sadat-Shirazi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Monir Fekri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience research Center (CNRC), Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | | | - Nasrin Esfahanizadeh
- Department of Periodontics, Tehran Dental Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Vousooghi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Wu N, Feng Z, He X, Kwon W, Wang J, Xie XQ. Insight of Captagon Abuse by Chemogenomics Knowledgebase-guided Systems Pharmacology Target Mapping Analyses. Sci Rep 2019; 9:2268. [PMID: 30783122 PMCID: PMC6381188 DOI: 10.1038/s41598-018-35449-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/10/2018] [Indexed: 12/26/2022] Open
Abstract
Captagon, known by its genetic name Fenethylline, is an addictive drug that complicates the War on Drugs. Captagon has a strong CNS stimulating effect than its primary metabolite, Amphetamine. However, multi-targets issues associated with the drug and metabolites as well as its underlying mechanisms have not been fully defined. In the present work, we applied our established drug-abuse chemogenomics-knowledgebase systems pharmacology approach to conduct targets/off-targets mapping (SP-Targets) investigation of Captagon and its metabolites for hallucination addiction, and also analyzed the cell signaling pathways for both Amphetamine and Theophylline with data mining of available literature. Of note, Amphetamine, an agonist for trace amine-associated receptor 1 (TAAR1) with enhancing dopamine signaling (increase of irritability, aggression, etc.), is the main cause of Captagon addiction; Theophylline, an antagonist that blocks adenosine receptors (e.g. A2aR) in the brain responsible for restlessness and painlessness, may attenuate the behavioral sensitization caused by Amphetamine. We uncovered that Theophylline's metabolism and elimination could be retarded due to competition and/or blockage of the CYP2D6 enzyme by Amphetamine; We also found that the synergies between these two metabolites cause Captagon's psychoactive effects to act faster and far more potently than those of Amphetamine alone. We carried out further molecular docking modeling and molecular dynamics simulation to explore the molecular interactions between Amphetamine and Theophylline and their important GPCRs targets, including TAAR1 and adenosine receptors. All of the systems pharmacology analyses and results will shed light insight into a better understanding of Captagon addiction and future drug abuse prevention.
Collapse
Affiliation(s)
- Nan Wu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
| | - William Kwon
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States.
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States.
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States.
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States.
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States.
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States.
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States.
| |
Collapse
|
44
|
Zhou Z, Ikegaya Y, Koyama R. The Astrocytic cAMP Pathway in Health and Disease. Int J Mol Sci 2019; 20:E779. [PMID: 30759771 PMCID: PMC6386894 DOI: 10.3390/ijms20030779] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are major glial cells that play critical roles in brain homeostasis. Abnormalities in astrocytic functions can lead to brain disorders. Astrocytes also respond to injury and disease through gliosis and immune activation, which can be both protective and detrimental. Thus, it is essential to elucidate the function of astrocytes in order to understand the physiology of the brain to develop therapeutic strategies against brain diseases. Cyclic adenosine monophosphate (cAMP) is a major second messenger that triggers various downstream cellular machinery in a wide variety of cells. The functions of astrocytes have also been suggested as being regulated by cAMP. Here, we summarize the possible roles of cAMP signaling in regulating the functions of astrocytes. Specifically, we introduce the ways in which cAMP pathways are involved in astrocyte functions, including (1) energy supply, (2) maintenance of the extracellular environment, (3) immune response, and (4) a potential role as a provider of trophic factors, and we discuss how these cAMP-regulated processes can affect brain functions in health and disease.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
- Center for Information and Neural Networks, Suita City, Osaka 565-0871, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
45
|
Chen L, Yu P, Zhang L, Zou Y, Zhang Y, Jiang L, Gao R, Xiao H, Qian Y, Wang J. Methamphetamine exposure induces neuropathic protein β-Amyloid expression. Toxicol In Vitro 2019; 54:304-309. [DOI: 10.1016/j.tiv.2018.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
|
46
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
47
|
Dave S, Chen L, Yu C, Seaton M, Khodr CE, Al-Harthi L, Hu XT. Methamphetamine decreases K + channel function in human fetal astrocytes by activating the trace amine-associated receptor type-1. J Neurochem 2018; 148:29-45. [PMID: 30295919 DOI: 10.1111/jnc.14606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Methamphetamine (Meth) is a potent and commonly abused psychostimulant. Meth alters neuron and astrocyte activity; yet the underlying mechanism(s) is not fully understood. Here we assessed the impact of acute Meth on human fetal astrocytes (HFAs) using whole-cell patch-clamping. We found that HFAs displayed a large voltage-gated K+ efflux (IKv ) through Kv /Kv -like channels during membrane depolarization, and a smaller K+ influx (Ikir ) via inward-rectifying Kir /Kir -like channels during membrane hyperpolarization. Meth at a 'recreational' (20 μM) or toxic/fatal (100 μM) concentration depolarized resting membrane potential (RMP) and suppressed IKv/Kv-like . These changes were associated with a decreased time constant (Ƭ), and mimicked by blocking the two-pore domain K+ (K2P )/K2P -like and Kv /Kv -like channels, respectively. Meth also diminished IKir/Kir-like , but only at toxic/fatal levels. Given that Meth is a potent agonist for the trace amine-associated receptor type-1 (TAAR1), and TAAR1-coupled cAMP/cAMP-activated protein kinase (PKA) cascade, we further evaluated whether the Meth impact on K+ efflux was mediated by this pathway. We found that antagonizing TAAR1 with N-(3-Ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl)benzamide (EPPTB) reversed Meth-induced suppression of IKv/Kv-like ; and inhibiting PKA activity by H89 abolished Meth effects on suppressing IKv/Kv-like . Antagonizing TAAR1 might also attenuate Meth-induced RMP depolarization. Voltage-gated Ca2+ currents were not detected in HFAs. These novel findings demonstrate that Meth suppresses IKv/Kv-like by facilitating the TAAR1/Gs /cAMP/PKA cascade and altering the kinetics of Kv /Kv -like channel gating, but reduces K2P /K2P -like channel activity through other pathway(s), in HFAs. Given that Meth-induced decrease in astrocytic K+ efflux through K2P /K2P -like and Kv /Kv -like channels reduces extracellular K+ levels, such reduction could consequently contribute to a decreased excitability of surrounding neurons. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonya Dave
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Lihua Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Chunjiang Yu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Melanie Seaton
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Christina E Khodr
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
48
|
Du SH, Zhang W, Yue X, Luo XQ, Tan XH, Liu C, Qiao DF, Wang H. Role of CXCR1 and Interleukin-8 in Methamphetamine-Induced Neuronal Apoptosis. Front Cell Neurosci 2018; 12:230. [PMID: 30123110 PMCID: PMC6085841 DOI: 10.3389/fncel.2018.00230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (METH), an extremely and widely abused illicit drug, can cause serious nervous system damage and social problems. Previous research has shown that METH use causes dopaminergic neuron apoptosis and astrocyte-related neuroinflammation. However, the relationship of astrocytes and neurons in METH-induced neurotoxicity remains unclear. We hypothesized that chemokine interleukin (IL) eight released by astrocytes and C-X-C motif chemokine receptor 1 (CXCR1) in neurons are involved in METH-induced neuronal apoptosis. We tested our hypothesis by examining the changes of CXCR1 in SH-SY5Y cells and in the brain of C57BL/6 mice exposed to METH by western blotting and immunolabeling. We also determined the effects of knocking down CXCR1 expression with small interfering ribonucleic acid (siRNA) on METH-exposed SH-SY5Y cells. Furthermore, we detected the expression levels of IL-8 and the nuclear factor-kappa B (NF-κB) pathway in U87MG cells and then co-cultured the two cell types to determine the role of CXCR1 and IL-8 in neuronal apoptosis. Our results indicated that METH exposure increased CXCR1 expression both in vitro and in vivo, with the effects obtained in vitro being dose-dependent. Silencing of CXCR1 expression with siRNAs reduced the expression of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), and other related proteins. In addition, IL-8 expression and release were increased in METH-exposed U87MG cells, which is regulated by NF-κB pathway. Neuronal apoptosis was attenuated by siCXCR1 after METH treatment in the co-cultured cells, which can be reversed after exposure to recombinant IL-8. These results demonstrate that CXCR1 plays an important role in neuronal apoptosis induced by METH and may be a potential target for METH-induced neurotoxicity therapy. Highlights -Methamphetamine exposure upregulated the expression of CXCR1.-Methamphetamine exposure increased the expression of interleukin-8 through nuclear factor-kappa B pathway.-Activation of CXCR1 by interleukin-8 induces an increase in methamphetamine-related neuronal apoptosis.
Collapse
Affiliation(s)
- Si-Hao Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Qing Luo
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Hui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou Public Security Bureau, Guangzhou, China
| | - Dong-Fang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Christian SL, Berry MD. Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front Pharmacol 2018; 9:680. [PMID: 30013475 PMCID: PMC6036138 DOI: 10.3389/fphar.2018.00680] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Trace amines and their receptors (trace amine-associated receptors; TAARs) are an emerging pharmacological target for the treatment of human disorders. While most studies have focused on their therapeutic potential for neurologic and psychiatric disorders, TAARs are also expressed throughout the periphery, including prominent expression in human leukocytes. Furthermore, recent independent, unbiased metabolomic studies have consistently identified one or more TAAR ligands as potential etiologic factors in inflammatory bowel disease (IBD). The putative role of TAARs in diseases such as IBD that are associated with hyperactive immune responses has not, however, previously been systematically addressed. Here, we review the current state of the knowledge of the effects of TAARs on leukocyte function, in particular in the context of mucosal epithelial cells that interface with the environment; developing a model whereby TAARs may be considered as a novel therapeutic target for disorders associated with dysregulated immune responses to environmental factors. In this model, we hypothesize that altered trace amine homeostasis results in hyperactivity of the immune system. Such loss of homeostasis can occur through many different mechanisms including TAAR polymorphisms and altered trace amine load due to changes in host synthesis and/or degradative enzymes, diet, or microbial dysbiosis. The resulting alterations in TAAR functioning can then lead to a loss of homeostasis of leukocyte chemotaxis, differentiation, and activation, as well as an altered ability of members of the microbiota to adhere to and penetrate the epithelial cell layers. Such changes would generate a pro-inflammatory state at mucosal epithelial barrier layers that can manifest as clinical symptomatology such as that seen in IBD. These alterations may also have the potential to induce systemic effects, which could possibly contribute to immunomodulatory disorders in other systems, including neurological diseases.
Collapse
|
50
|
Fleischer LM, Somaiya RD, Miller GM. Review and Meta-Analyses of TAAR1 Expression in the Immune System and Cancers. Front Pharmacol 2018; 9:683. [PMID: 29997511 PMCID: PMC6029583 DOI: 10.3389/fphar.2018.00683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
Since its discovery in 2001, the major focus of TAAR1 research has been on its role in monoaminergic regulation, drug-induced reward and psychiatric conditions. More recently, TAAR1 expression and functionality in immune system regulation and immune cell activation has become a topic of emerging interest. Here, we review the immunologically-relevant TAAR1 literature and incorporate open-source expression and cancer survival data meta-analyses. We provide strong evidence for TAAR1 expression in the immune system and cancers revealed through NCBI GEO datamining and discuss its regulation in a spectrum of immune cell types as well as in numerous cancers. We discuss connections and logical directions for further study of TAAR1 in immunological function, and its potential role as a mediator or modulator of immune dysregulation, immunological effects of psychostimulant drugs of abuse, and cancer progression.
Collapse
Affiliation(s)
- Lisa M Fleischer
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Rachana D Somaiya
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Center for Drug Discovery, Northeastern University, Boston, MA, United States
| |
Collapse
|