1
|
Martínez-Rivera A, Fetcho RN, Birmingham L, Xu J, Yang R, Foord C, Scala-Chávez D, Mekawy N, Pleil K, Pickel VM, Liston C, Castorena CM, Levitz J, Pan YX, Briand LA, Rajadhyaksha AM, Lee FS. Elevating levels of the endocannabinoid 2-arachidonoylglycerol blunts opioid reward but not analgesia. SCIENCE ADVANCES 2024; 10:eadq4779. [PMID: 39612328 PMCID: PMC11606496 DOI: 10.1126/sciadv.adq4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments as a complement to opioid-based treatments. Here, we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by cannabinoid receptor 1 (CB1R) within the VTA, as VTA CB1R conditional knockout counteracts JZL184's effects. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together, these findings reveal that 2-AG diminishes the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Robert N. Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lizzie Birmingham
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Diego Scala-Chávez
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Narmin Mekawy
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristen Pleil
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlos M. Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lisa A. Briand
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Anjali M. Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Francis S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
2
|
Iyer V, Saberi SA, Pacheco R, Sizemore EF, Stockman S, Kulkarni A, Cantwell L, Thakur GA, Hohmann AG. Negative allosteric modulation of CB 1 cannabinoid receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. Neuropharmacology 2024; 257:110052. [PMID: 38936657 PMCID: PMC11261750 DOI: 10.1016/j.neuropharm.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
The direct blockade of CB1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB1. We recently reported that GAT358, a CB1-NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB1-allosteric mechanism of action. Whether a CB1-NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted opioid side-effects remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine in male rats. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar spinal cord. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors in male mice. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception and reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 also produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal cord. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB1-NAM.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Shahin A Saberi
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Romario Pacheco
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Emily Fender Sizemore
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Sarah Stockman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
3
|
Carrascosa AJ, García-Gutiérrez MS, Saldaña R, Manzanares J. Additive antinociceptive action of intrathecal anandamide reuptake inhibitor and morphine in the management of post-incisional pain in rats. Biomed Pharmacother 2024; 177:117054. [PMID: 38943991 DOI: 10.1016/j.biopha.2024.117054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Spinal opioids have mixed efficacy and their adverse effects force treatment cessation of postoperative pain. Consequently, there is an ongoing search for new therapeutic strategies. Here, we evaluated the analgesic efficacy of intrathecal UCM707, an anandamide reuptake inhibitor, and morphine combination. Firstly, we assessed the effects of morphine (1, 5 and 10 μg), UCM707 (75 μg) and its combination in the hot plate. Then, morphine + UCM707 at sub-effective doses was evaluated in a rat post-incisional pain model. In addition, μ-, CB1r-, CB2r- and TRPV1-antagonists were pre-administered before the combination. Activation of μ-opioid and CB1r, and Cnr1, Cnr2, Oprm1 and TRPV1 expressions were evaluated in the lumbar sacra and periaqueductal grey by [35 S]-GTPγS binding autoradiography and qPCR studies. In the hot plate, morphine (1 μg) and UCM707 (75 μg) induced a more robust analgesic effect than each drug alone. Morphine plus UCM707 did not modify μ-opioid nor CB1 receptor function in the PAG or LS. Cnr1 and TRPV1 expression increased in the lumbar sacra (LS). Morphine plus UCM707 significantly reduced post-incisional pain at 1 and 4 days after surgery. Cnr1, Cnr2 and TRPV1 expressions increased in the LS. Blockade of μ-opioid receptor reduced combination effects on days 1 and 4. CB1r- and CB2r-antagonism reduced morphine + UCM707 effects on days 1 and 4, respectively. CB1r and TRPV1-antagonism improved their antinociceptive effects on day 4. These results revealed a synergistic/additive analgesic effect of UCM707 and morphine combination controlling postincisional pain. CB1r, CB2r and TRPV1 contribute differently as central sensitization occurs.
Collapse
MESH Headings
- Animals
- Morphine/pharmacology
- Morphine/administration & dosage
- Male
- Pain, Postoperative/drug therapy
- Pain, Postoperative/metabolism
- Endocannabinoids/metabolism
- Injections, Spinal
- Rats
- Arachidonic Acids/pharmacology
- Arachidonic Acids/administration & dosage
- Polyunsaturated Alkamides/pharmacology
- Polyunsaturated Alkamides/administration & dosage
- Drug Synergism
- Analgesics/pharmacology
- Analgesics/administration & dosage
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Receptors, Opioid, mu/metabolism
- TRPV Cation Channels/metabolism
- Rats, Wistar
- Drug Therapy, Combination
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Antonio J Carrascosa
- Department of Anesthesiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María S García-Gutiérrez
- Instituto de Neurociencias, Campus de San Juan, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Raquel Saldaña
- Department of Anesthesiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Campus de San Juan, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
4
|
Galaj E, Bi GH, Xi ZX. β-caryophyllene inhibits heroin self-administration, but does not alter opioid-induced antinociception in rodents. Neuropharmacology 2024; 252:109947. [PMID: 38631564 DOI: 10.1016/j.neuropharm.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
A growing body of research indicates that β-caryophyllene (BCP), a constituent present in a large number of plants, possesses significant therapeutic properties against CNS disorders, including alcohol and psychostimulant use disorders. However, it is unknown whether BCP has similar therapeutic potential for opioid use disorders. In this study, we found that systemic administration of BCP dose-dependently reduced heroin self-administration in rats under an FR2 schedule of reinforcement and partially blocked heroin-enhanced brain stimulation reward in DAT-cre mice, maintained by optical stimulation of midbrain dopamine neurons at high frequencies. Acute administration of BCP failed to block heroin conditioned place preference (CPP) in male mice, but attenuated heroin-induced CPP in females. Furthermore, repeated dosing with BCP for 5 days facilitated the extinction of CPP in female but not male mice. In the hot plate assay, pretreatment with the same doses of BCP failed to enhance or prolong opioid antinociception. Lastly, in a substitution test, BCP replacement for heroin failed to maintain intravenous BCP self-administration, suggesting that BCP itself has no reinforcing properties. These findings suggest that BCP may have certain therapeutic effects against opioid use disorders with fewer unwanted side-effects by itself.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
5
|
Hebert FO, Mongeau-Pérusse V, Rizkallah E, Mahroug A, Bakouni H, Morissette F, Brissette S, Bruneau J, Dubreucq S, Jutras-Aswad D. Absence of Evidence for Sustained Effects of Daily Cannabidiol Administration on Anandamide Plasma Concentration in Individuals with Cocaine Use Disorder: Exploratory Findings from a Randomized Controlled Trial. Cannabis Cannabinoid Res 2024. [PMID: 38770686 DOI: 10.1089/can.2023.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Background: Cannabidiol (CBD) has been proposed to have a therapeutic potential over a wide range of neuropsychiatric disorders, including substance use disorders. Pre-clinical evidence suggests that CBD can increase anandamide (AEA) plasma concentration, possibly mediating some of its therapeutic properties. Whether CBD exerts such an effect on AEA in individuals with cocaine use disorder (CUD) remains unknown. Aims: To explore the sustained effects of daily CBD administration on AEA plasma concentrations compared with placebo in CUD. Methods: We used data from a randomized, double-blind, placebo-controlled trial evaluating CBD's efficacy in CUD. Seventy-eight individuals were randomized to receive a daily oral dose of 800 mg CBD (n = 40) or a placebo (n = 38). Participants stayed in an inpatient detoxification setting for 10 days, after which they were followed in an outpatient setting for 12 weeks. AEA plasma concentration was measured at baseline and at 23-h post CBD ingestion on day 8 and week 4. A generalized estimating equation model was used to assess CBD's effects on AEA, and sensitivity analyses were computed using Bayesian linear regressions. Results: Sixty-four participants were included in the analysis. Similar mean AEA plasma concentrations in both treatment groups (p = 0.357) were observed. At day 8, mean AEA plasma concentrations (± standard deviation) were 0.26 (± 0.07) ng/mL in the CBD group and 0.29 (± 0.08) ng/mL in the placebo group (p = 0.832; Bayes factor [BF] = 0.190). At week 4, they were 0.27 (± 0.09) ng/mL in the CBD group and 0.30 (± 0.09) ng/mL in the placebo group (p = 0.181; BF = 0.194). Conclusion: While not excluding any potential acute and short-term effect, daily CBD administration did not exert a sustained impact on AEA plasma concentrations in individuals with CUD compared with placebo. Registration: clinicaltrials.gov (NCT02559167).
Collapse
Affiliation(s)
| | - Violaine Mongeau-Pérusse
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Elie Rizkallah
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Amani Mahroug
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Hamzah Bakouni
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Florence Morissette
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Suzanne Brissette
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Family and Emergency Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Julie Bruneau
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Family and Emergency Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Simon Dubreucq
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Didier Jutras-Aswad
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
6
|
Martínez-Rivera A, Fetcho RN, Birmingham L, Jiu JX, Yang R, Foord C, Scala-Chávez D, Mekawy N, Pleil K, Pickel VM, Liston C, Castorena CM, Levitz J, Pan YX, Briand LA, Rajadhyaksha AM, Lee FS. Elevating levels of the endocannabinoid 2-arachidonoylglycerol blunts opioid reward but not analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.585967. [PMID: 38766079 PMCID: PMC11101127 DOI: 10.1101/2024.04.02.585967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments for pain as a complement to opioid-based treatments. Here we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in male and female mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by CB1 receptors (CB1Rs) within the VTA as VTA CB1R conditional knockout, counteracts JZL184's effects. Conversely, pharmacologically enhancing the levels of the other eCB, anandamide (AEA), by inhibition of fatty acid amide hydrolase (FAAH) has no effect on opioid reward or analgesia. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together these findings reveal that 2-AG counteracts the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Robert N. Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lizzie Birmingham
- Department of Psychology, Temple University; Neuroscience Program, Temple University, 19122, USA
| | - Jin X Jiu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Diego Scala-Chávez
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Narmin Mekawy
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristen Pleil
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlos M. Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lisa A. Briand
- Department of Psychology, Temple University; Neuroscience Program, Temple University, 19122, USA
| | - Anjali M. Rajadhyaksha
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francis S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
7
|
Pota V, Sansone P, De Sarno S, Aurilio C, Coppolino F, Barbarisi M, Barbato F, Fiore M, Cosenza G, Passavanti MB, Pace MC. Amyotrophic Lateral Sclerosis and Pain: A Narrative Review from Pain Assessment to Therapy. Behav Neurol 2024; 2024:1228194. [PMID: 38524401 PMCID: PMC10960655 DOI: 10.1155/2024/1228194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent neurodegenerative disease of the motor system that affects upper and lower motor neurons, leading to progressive muscle weakness, spasticity, atrophy, and respiratory failure, with a life expectancy of 2-5 years after symptom onset. In addition to motor symptoms, patients with ALS have a multitude of nonmotor symptoms; in fact, it is currently considered a multisystem disease. The purpose of our narrative review is to evaluate the different types of pain, the correlation between pain and the disease's stages, the pain assessment tools in ALS patients, and the available therapies focusing above all on the benefits of cannabis use. Pain is an underestimated and undertreated symptom that, in the last few years, has received more attention from research because it has a strong impact on the quality of life of these patients. The prevalence of pain is between 15% and 85% of ALS patients, and the studies on the type and intensity of pain are controversial. The absence of pain assessment tools validated in the ALS population and the dissimilar study designs influence the knowledge of ALS pain and consequently the pharmacological therapy. Several studies suggest that ALS is associated with changes in the endocannabinoid system, and the use of cannabis could slow the disease progression due to its neuroprotective action and act on pain, spasticity, cramps, sialorrhea, and depression. Our research has shown high patients' satisfaction with the use of cannabis for the treatment of spasticity and related pain. However, especially due to the ethical problems and the lack of interest of pharmaceutical companies, further studies are needed to ensure the most appropriate care for ALS patients.
Collapse
Affiliation(s)
- Vincenzo Pota
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Pasquale Sansone
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Sara De Sarno
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Caterina Aurilio
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Francesco Coppolino
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Manlio Barbarisi
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Naples, Italy
| | | | - Marco Fiore
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gianluigi Cosenza
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Maria Caterina Pace
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
8
|
Iyer V, Saberi SA, Pacheco R, Sizemore EF, Stockman S, Kulkarni A, Cantwell L, Thakur GA, Hohmann AG. Negative allosteric modulation of cannabinoid CB 1 receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574477. [PMID: 38260598 PMCID: PMC10802405 DOI: 10.1101/2024.01.06.574477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The direct blockade of CB 1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB 1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB 1 . We recently reported that GAT358, a CB 1 -NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB 1 -allosteric mechanism of action. Whether a CB 1 -NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted side-effects of opioids remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar dorsal horn. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception. GAT358 also reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal dorsal horn. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing in mice. Our results support the therapeutic potential of CB 1 -NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB 1 -NAMs. Highlights CB 1 negative allosteric modulator (NAM) GAT358 attenuated morphine tolerance GAT358 reduced morphine-induced slowing of colonic motility but not fecal productionGAT358 was antinociceptive for formalin pain alone and when combined with morphineGAT358 reduced formalin-evoked Fos protein expression in the lumbar spinal cordGAT358 mitigated naloxone precipitated withdrawal after chronic morphine dosing.
Collapse
|
9
|
Slivicki RA, Wang JG, Nhat VTT, Kravitz AV, Creed MC, Gereau RW. Impact of Δ 9-Tetrahydrocannabinol and oxycodone co-administration on measures of antinociception, dependence, circadian activity, and reward in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569809. [PMID: 38105953 PMCID: PMC10723318 DOI: 10.1101/2023.12.04.569809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oxycodone is commonly prescribed for moderate to severe pain disorders. While efficacious, long-term use can result in tolerance, physical dependence, and the development of opioid use disorder. Cannabis and its derivatives such as Δ9-Tetrahydrocannabinol (Δ9-THC) have been reported to enhance oxycodone analgesia in animal models and in humans. However, it remains unclear if Δ9-THC may facilitate unwanted aspects of oxycodone intake, such as tolerance, dependence, and reward at analgesic doses. This study sought to evaluate the impact of co-administration of Δ9-THC and oxycodone across behavioral measures related to antinociception, dependence, circadian activity, and reward in both male and female mice. Oxycodone and Δ9-THC produced dose-dependent antinociceptive effects in the hotplate assay that were similar between sexes. Repeated treatment (twice daily for 5 days) resulted in antinociceptive tolerance. Combination treatment of oxycodone and Δ9-THC produced a greater antinociceptive effect than either administered alone, and delayed the development of antinociceptive tolerance. Repeated treatment with oxycodone produced physical dependence and alterations in circadian activity, neither of which were exacerbated by co-treatment with Δ9-THC. Combination treatment of oxycodone and Δ9-THC produced CPP when co-administered at doses that did not produce preference when administered alone. These data indicate that Δ9-THC may facilitate oxycodone-induced antinociception without augmenting certain unwanted features of opioid intake (e.g. dependence, circadian rhythm alterations). However, our findings also indicate that Δ9-THC may facilitate rewarding properties of oxycodone at therapeutically relevant doses which warrant consideration when evaluating this combination for its potential therapeutic utility.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
| | - Justin G. Wang
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University, St. Louis, MO
| | - Vy Trinh Tran Nhat
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
| | - Alexxai V. Kravitz
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Psychiatry, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
| | - Meaghan C. Creed
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| |
Collapse
|
10
|
Lee MT, Mackie K, Chiou LC. Alternative pain management via endocannabinoids in the time of the opioid epidemic: Peripheral neuromodulation and pharmacological interventions. Br J Pharmacol 2023; 180:894-909. [PMID: 34877650 PMCID: PMC9170838 DOI: 10.1111/bph.15771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/18/2023] Open
Abstract
The use of opioids in pain management is hampered by the emergence of analgesic tolerance, which leads to increased dosing and side effects, both of which have contributed to the opioid epidemic. One promising potential approach to limit opioid analgesic tolerance is activating the endocannabinoid system in the CNS, via activation of CB1 receptors in the descending pain inhibitory pathway. In this review, we first discuss preclinical and clinical evidence revealing the potential of pharmacological activation of CB1 receptors in modulating opioid tolerance, including activation by phytocannabinoids, synthetic CB1 receptor agonists, endocannabinoid degradation enzyme inhibitors, and recently discovered positive allosteric modulators of CB1 receptors. On the other hand, as non-pharmacological pain relief is advocated by the US-NIH to combat the opioid epidemic, we also discuss contributions of peripheral neuromodulation, involving the electrostimulation of peripheral nerves, in addressing chronic pain and opioid tolerance. The involvement of supraspinal endocannabinoid systems in peripheral neuromodulation-induced analgesia is also discussed. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Grants
- MOST 108-2321-B-002-005 Ministry of Science and Technology, Taiwan
- MOST 107-2811-B-002-008 Ministry of Science and Technology, Taiwan
- R01 DA041229 NIDA NIH HHS
- MOST 107-2321-B-002-010 Ministry of Science and Technology, Taiwan
- R01 DA047858 NIDA NIH HHS
- 107M4022-3 Ministry of Education, Taiwan
- MOST 106-2321-B-002-019 Ministry of Science and Technology, Taiwan
- NHRI-EX111-11114NI National Health Research Institutes, Taiwan
- FRGS/1/2021/WAB13/UCSI/02/1 Ministry of Higher Education, Malaysia
- R21 DA042584 NIDA NIH HHS
- REIG-FPS-2020/065 UCSI University Research Excellence and Innovation Grant, Malaysia
- NHRI-EX109-10733NI National Health Research Institutes, Taiwan
- MOST 104-2745-B-002-004 Ministry of Science and Technology, Taiwan
- MOST 109-2320-B-002-042-MY3 Ministry of Science and Technology, Taiwan
- MOST 107-2811-B-002 -008 Ministry of Science and Technology, Taiwan
- MOST 108-2320-B-002-029-MY3 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Ming Tatt Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Ken Mackie
- Gill Center for Biomolecular Research, Indiana University, Bloomington, Indiana 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Lih-Chu Chiou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
11
|
Wang Y, Singh A, Li G, Yue S, Hertel K, Wang ZJ. Opioid induces increased DNA damage in prefrontal cortex and nucleus accumbens. Pharmacol Biochem Behav 2023; 224:173535. [PMID: 36907467 DOI: 10.1016/j.pbb.2023.173535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
Opioid use disorder (OUD) is a chronic disease characterized by compulsive opioid taking and seeking, affecting millions of people worldwide. The high relapse rate is one of the biggest challenges in treating opioid addiction. However, the cellular and molecular mechanisms underlying relapse to opioid seeking are still unclear. Recent studies have shown that DNA damage and repair processes are implicated in a broad spectrum of neurodegenerative diseases as well as in substance use disorders. In the present study, we hypothesized that DNA damage is related to relapse to heroin seeking. To test our hypothesis, we aim to examine the overall DNA damage level in prefrontal cortex (PFC) and nucleus accumbens (NAc) after heroin exposure, as well as whether manipulating DNA damage levels can alter heroin seeking. First, we observed increased DNA damage in postmortem PFC and NAc tissues from OUD individuals compared to healthy controls. Next, we found significantly increased levels of DNA damage in the dorsomedial PFC (dmPFC) and NAc from mice that underwent heroin self-administration. Moreover, increased accumulation of DNA damage persisted after prolonged abstinence in mouse dmPFC, but not in NAc. This persistent DNA damage was ameliorated by the treatment of reactive oxygen species (ROS) scavenger N-acetylcysteine, along with attenuated heroin-seeking behavior. Furthermore, intra-PFC infusions of topotecan and etoposide during abstinence, which trigger DNA single-strand breaks and double-strand breaks respectively, potentiated heroin-seeking behavior. These findings provide direct evidence that OUD is associated with the accumulation of DNA damage in the brain (especially in the PFC), which may lead to opioid relapse.
Collapse
Affiliation(s)
- Yunwanbin Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Archana Singh
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Guohui Li
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuwen Yue
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Kegan Hertel
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Zi-Jun Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
12
|
Mangiatordi GF, Cavalluzzi MM, Delre P, Lamanna G, Lumuscio MC, Saviano M, Majoral JP, Mignani S, Duranti A, Lentini G. Endocannabinoid Degradation Enzyme Inhibitors as Potential Antipsychotics: A Medicinal Chemistry Perspective. Biomedicines 2023; 11:biomedicines11020469. [PMID: 36831006 PMCID: PMC9953700 DOI: 10.3390/biomedicines11020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The endocannabinoid system (ECS) plays a very important role in numerous physiological and pharmacological processes, such as those related to the central nervous system (CNS), including learning, memory, emotional processing, as well pain control, inflammatory and immune response, and as a biomarker in certain psychiatric disorders. Unfortunately, the half-life of the natural ligands responsible for these effects is very short. This perspective describes the potential role of the inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL), which are mainly responsible for the degradation of endogenous ligands in psychic disorders and related pathologies. The examination was carried out considering both the impact that the classical exogenous ligands such as Δ9-tetrahydrocannabinol (THC) and (-)-trans-cannabidiol (CBD) have on the ECS and through an analysis focused on the possibility of predicting the potential toxicity of the inhibitors before they are subjected to clinical studies. In particular, cardiotoxicity (hERG liability), probably the worst early adverse reaction studied during clinical studies focused on acute toxicity, was predicted, and some of the most used and robust metrics available were considered to select which of the analyzed compounds could be repositioned as possible oral antipsychotics.
Collapse
Affiliation(s)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Giuseppe Lamanna
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Cristina Lumuscio
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council of Italy, Via Vivaldi 43, 81100 Caserta, Italy
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Serge Mignani
- CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Université de Caen, 14032 Caen, France
- CQM—Centro de Química da Madeira, MMRG (Molecular Materials Research Group), Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
- Correspondence: ; Tel.: +39-0722-303501
| | - Giovanni Lentini
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
13
|
Obeng S, Leon F, Patel A, Zuarth Gonzalez JD, Chaves Da Silva L, Restrepo LF, Gamez-Jimenez LR, Ho NP, Guerrero Calvache MP, Pallares VLC, Helmes JA, Shiomitsu SK, Soto PL, McCurdy CR, McMahon LR, Wilkerson JL, Hiranita T. Interactive Effects of µ-Opioid and Adrenergic- α 2 Receptor Agonists in Rats: Pharmacological Investigation of the Primary Kratom Alkaloid Mitragynine and Its Metabolite 7-Hydroxymitragynine. J Pharmacol Exp Ther 2022; 383:182-198. [PMID: 36153006 PMCID: PMC9667981 DOI: 10.1124/jpet.122.001192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023] Open
Abstract
The primary kratom alkaloid mitragynine is proposed to act through multiple mechanisms, including actions at µ-opioid receptors (MORs) and adrenergic-α 2 receptors (Aα 2Rs), as well as conversion in vivo to a MOR agonist metabolite (i.e., 7-hydroxymitragynine). Aα 2R and MOR agonists can produce antinociceptive synergism. Here, contributions of both receptors to produce mitragynine-related effects were assessed by measuring receptor binding in cell membranes and, in rats, pharmacological behavioral effect antagonism studies. Mitragynine displayed binding affinity at both receptors, whereas 7-hydroxymitragynine only displayed MOR binding affinity. Compounds were tested for their capacity to decrease food-maintained responding and rectal temperature and to produce antinociception in a hotplate test. Prototypical MOR agonists and 7-hydroxymitragynine, but not mitragynine, produced antinociception. MOR agonist and 7-hydroxymitragynine rate-deceasing and antinociceptive effects were antagonized by the opioid antagonist naltrexone but not by the Aα 2R antagonist yohimbine. Hypothermia only resulted from reference Aα 2R agonists. The rate-deceasing and hypothermic effects of reference Aα 2R agonists were antagonized by yohimbine but not naltrexone. Neither naltrexone nor yohimbine antagonized the rate-decreasing effects of mitragynine. Mitragynine and 7-hydroxymitragynine increased the potency of the antinociceptive effects of Aα 2R but not MOR reference agonists. Only mitragynine produced hypothermic effects. Isobolographic analyses for the rate-decreasing effects of the reference Aα 2R and MOR agonists were also conducted. These results suggest mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα 2R and MOR agonists. When combined with Aα 2R agonists, mitragynine could also produce hypothermic synergism. SIGNIFICANCE STATEMENT: Mitragynine is proposed to target the µ-opioid receptor (MOR) and adrenergic-α2 receptor (Aα2R) and to produce behavioral effects through conversion to its MOR agonist metabolite 7-hydroxymitragynine. Isobolographic analyses indicated supra-additivity in some dose ratio combinations. This study suggests mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα2R and MOR agonists. When combined with Aα2R agonists, mitragynine could also produce hypothermic synergism.
Collapse
Affiliation(s)
- Samuel Obeng
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Francisco Leon
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Avi Patel
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Julio D Zuarth Gonzalez
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Lucas Chaves Da Silva
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Luis F Restrepo
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Lea R Gamez-Jimenez
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Nicholas P Ho
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Maria P Guerrero Calvache
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Victoria L C Pallares
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Justin A Helmes
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Sakura K Shiomitsu
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Paul L Soto
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Christopher R McCurdy
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Lance R McMahon
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Jenny L Wilkerson
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Takato Hiranita
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| |
Collapse
|
14
|
Evaluation of the terpenes β-caryophyllene, α-terpineol, and γ-terpinene in the mouse chronic constriction injury model of neuropathic pain: possible cannabinoid receptor involvement. Psychopharmacology (Berl) 2022; 239:1475-1486. [PMID: 34846548 DOI: 10.1007/s00213-021-06031-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Pain is one of the most common reasons to seek medical attention, and chronic pain is a worldwide epidemic. Anecdotal reports suggest cannabis may be an effective analgesic. As cannabis contains the terpenes α-terpineol, β-caryophyllene, and γ-terpinene, we hypothesized these terpenes would produce analgesia in a mouse model of neuropathic pain. We used the chronic constriction injury of the sciatic nerve mouse model, which produces mechanical allodynia, assessed via the von Frey assay, as well as thermal hyperalgesia assessed via the hotplate assay. Compounds were further assessed in tests of locomotor activity, hypothermia, and acute antinociception. Each terpene produced dose-related reversal of mechanical allodynia and thermal hyperalgesia. Thermal hyperalgesia displayed higher sensitivity to the effects of each terpene than mechanical allodynia, and the rank order potency of the terpenes was α-terpineol > β-caryophyllene > γ-terpinene. To examine the involvement of cannabinoid receptors, further tests were conducted in mice lacking either functional cannabinoid type 1 receptors (CB1R (-/-)) or cannabinoid type 2 receptors (CB2R (-/-)). Compared to wild type mice, CB1R (-/-) mice treated with α-terpineol displayed a 2.91-fold decrease in potency to reverse mechanical allodynia; in CB2R (-/-) mice, the potency of α-terpineol was decreased 11.73-fold. The potency of β-caryophyllene to reverse mechanical allodynia decreased 1.80-fold in CB2R (-/-) mice. Each terpene produced a subset of effects in tests of locomotor activity, hypothermia, and acute antinociception. These findings suggest α-terpineol, β-caryophyllene, and γ-terpinene may have differential cannabinoid receptor activity and a pharmacological profile that may yield new efficacious analgesics.
Collapse
|
15
|
Singh A, Xie Y, Davis A, Wang ZJ. Early social isolation stress increases addiction vulnerability to heroin and alters c-Fos expression in the mesocorticolimbic system. Psychopharmacology (Berl) 2022; 239:1081-1095. [PMID: 34997861 DOI: 10.1007/s00213-021-06024-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023]
Abstract
RATIONALE Adverse psychosocial factors during early childhood or adolescence compromise neural structure and brain function, inducing susceptibility for many psychiatric disorders such as substance use disorder. Nevertheless, the mechanisms underlying early life stress-induced addiction vulnerability is still unclear, especially for opioids. OBJECTIVES To address this, we used a mouse heroin self-administration model to examine how chronic early social isolation (ESI) stress (5 weeks, beginning at weaning) affects the behavioral and neural responses to heroin during adulthood. RESULTS We found that ESI stress did not alter the acquisition for sucrose or heroin self-administration, nor change the motivation for sucrose on a progressive ratio schedule. However, ESI stress induced an upward shift of heroin dose-response curve in female mice and increased motivation and seeking for heroin in both sexes. Furthermore, we examined the neuronal activity (measured by c-Fos expression) within the key brain regions of the mesocorticolimbic system, including the prelimbic cortex (PrL), infralimbic cortex (IL), nucleus accumbens (NAc) core and shell, caudate putamen, and ventral tegmental area (VTA). We found that ESI stress dampened c-Fos expression in the PrL, IL, and VTA after 14-day forced abstinence, while augmented the neuronal responses to heroin-predictive context and cue in the IL and NAc core. Moreover, ESI stress disrupted the association between c-Fos expression and attempted infusions during heroin-seeking test in the PrL. CONCLUSIONS These data indicate that ESI stress leads to increased seeking and motivation for heroin, and this may be associated with distinct changes in neuronal activities in different subregions of the mesocorticolimbic system.
Collapse
Affiliation(s)
- Archana Singh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Yang Xie
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Ashton Davis
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Zi-Jun Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
16
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
17
|
Finn DP, Haroutounian S, Hohmann AG, Krane E, Soliman N, Rice ASC. Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain 2021; 162:S5-S25. [PMID: 33729211 PMCID: PMC8819673 DOI: 10.1097/j.pain.0000000000002268] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT This narrative review represents an output from the International Association for the Study of Pain's global task force on the use of cannabis, cannabinoids, and cannabis-based medicines for pain management, informed by our companion systematic review and meta-analysis of preclinical studies in this area. Our aims in this review are (1) to describe the value of studying cannabinoids and endogenous cannabinoid (endocannabinoid) system modulators in preclinical/animal models of pain; (2) to discuss both pain-related efficacy and additional pain-relevant effects (adverse and beneficial) of cannabinoids and endocannabinoid system modulators as they pertain to animal models of pathological or injury-related persistent pain; and (3) to identify important directions for future research. In service of these goals, this review (1) provides an overview of the endocannabinoid system and the pharmacology of cannabinoids and endocannabinoid system modulators, with specific relevance to animal models of pathological or injury-related persistent pain; (2) describes pharmacokinetics of cannabinoids in rodents and humans; and (3) highlights differences and discrepancies between preclinical and clinical studies in this area. Preclinical (rodent) models have advanced our understanding of the underlying sites and mechanisms of action of cannabinoids and the endocannabinoid system in suppressing nociceptive signaling and behaviors. We conclude that substantial evidence from animal models supports the contention that cannabinoids and endocannabinoid system modulators hold considerable promise for analgesic drug development, although the challenge of translating this knowledge into clinically useful medicines is not to be underestimated.
Collapse
Affiliation(s)
- David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, Human Biology Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - Simon Haroutounian
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Elliot Krane
- Departments of Anesthesiology, Perioperative, and Pain Medicine, & Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Nadia Soliman
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - Andrew SC Rice
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
18
|
Diester CM, Lichtman AH, Negus SS. Behavioral Battery for Testing Candidate Analgesics in Mice. II. Effects of Endocannabinoid Catabolic Enzyme Inhibitors and ∆9-Tetrahydrocannabinol. J Pharmacol Exp Ther 2021; 377:242-253. [PMID: 33622769 PMCID: PMC8058502 DOI: 10.1124/jpet.121.000497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Enhanced signaling of the endocannabinoid (eCB) system through inhibition of the catabolic enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) has received increasing interest for development of candidate analgesics. This study compared effects of MAGL and FAAH inhibitors with effects of ∆9-tetrahydrocannabinol (THC) using a battery of pain-stimulated, pain-depressed, and pain-independent behaviors in male and female mice. Intraperitoneal injection of dilute lactic acid (IP acid) served as an acute visceral noxious stimulus to stimulate two behaviors (stretching, facial grimace) and depress two behaviors (rearing, nesting). Nesting and locomotion were also assessed in the absence of IP acid as pain-independent behaviors. THC and a spectrum of six eCB catabolic enzyme inhibitors ranging from MAGL- to FAAH-selective were assessed for effectiveness to alleviate pain-related behaviors at doses that did not alter pain-independent behaviors. The MAGL-selective inhibitor MJN110 produced the most effective antinociceptive profile, with 1.0 mg/kg alleviating IP acid effects on stretching, grimace, and nesting without altering pain-independent behaviors. MJN110 effects on IP acid-depressed nesting had a slow onset and long duration (40 minutes to 6 hours), were blocked by rimonabant, and tended to be greater in females. As inhibitors increased in FAAH selectivity, antinociceptive effectiveness decreased. PF3845, the most FAAH-selective inhibitor, produced no antinociception up to doses that disrupted locomotion. THC decreased IP acid-stimulated stretching and grimace at doses that did not alter pain-independent behaviors; however, it did not alleviate IP acid-induced depression of rearing or nesting. These results support further consideration of MAGL-selective inhibitors as candidate analgesics for acute inflammatory pain. SIGNIFICANCE STATEMENT: This study characterized a spectrum of endocannabinoid catabolic enzyme inhibitors ranging in selectivity from monoacylglycerol lipase-selective to fatty acid amide hydrolase-selective in a battery of pain-stimulated, pain-depressed, and pain-independent behaviors previously pharmacologically characterized in a companion paper. This battery provides a method for prioritizing candidate analgesics by effectiveness to alleviate pain-related behaviors at doses that do not alter pain-independent behaviors, with inclusion of pain-depressed behaviors increasing translational validity and decreasing susceptibility to motor-depressant false positives.
Collapse
Affiliation(s)
- C M Diester
- Department of Pharmacology and Toxicology (C.M.D., A.H.L., S.S.N.), School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - A H Lichtman
- Department of Pharmacology and Toxicology (C.M.D., A.H.L., S.S.N.), School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - S S Negus
- Department of Pharmacology and Toxicology (C.M.D., A.H.L., S.S.N.), School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
19
|
Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline? Pharmacol Biochem Behav 2021; 206:173192. [PMID: 33932409 DOI: 10.1016/j.pbb.2021.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
It has been established that the endogenous cannabinoid (endocannabinoid) system plays key modulatory roles in a wide variety of pathological conditions. The endocannabinoid system comprises both cannabinoid receptors, their endogenous ligands including 2-arachidonoylglycerol (2-AG), N-arachidonylethanolamine (anandamide, AEA), and enzymes that regulate the synthesis and degradation of endogenous ligands which include diacylglycerol lipase alpha (DAGL-α), diacylglycerol lipase beta (DAGL-β), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), α/β hydrolase domain 6 (ABHD6). As the endocannabinoid system exerts considerable involvement in the regulation of homeostasis and disease, much effort has been made towards understanding endocannabinoid-related mechanisms of action at cellular, physiological, and pathological levels as well as harnessing the various components of the endocannabinoid system to produce novel therapeutics. However, drug discovery efforts within the cannabinoid field have been slower than anticipated to reach satisfactory clinical endpoints and raises an important question into the validity of developing novel ligands that therapeutically target the endocannabinoid system. To answer this, we will first examine evidence that supports the existence of an endocannabinoid system role within inflammatory diseases, neurodegeneration, pain, substance use disorders, mood disorders, as well as metabolic diseases. Next, this review will discuss recent clinical studies, within the last 5 years, of cannabinoid compounds in context to these diseases. We will also address some of the challenges and considerations within the cannabinoid field that may be important in the advancement of therapeutics into the clinic.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Zhang H, Lipinski AA, Liktor-Busa E, Smith AF, Moutal A, Khanna R, Langlais PR, Largent-Milnes TM, Vanderah TW. The Effects of Repeated Morphine Treatment on the Endogenous Cannabinoid System in the Ventral Tegmental Area. Front Pharmacol 2021; 12:632757. [PMID: 33953672 PMCID: PMC8090348 DOI: 10.3389/fphar.2021.632757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
The therapeutic utility of opioids is diminished by their ability to induce rewarding behaviors that may lead to opioid use disorder. Recently, the endogenous cannabinoid system has emerged as a hot topic in the study of opioid reward but relatively little is known about how repeated opioid exposure may affect the endogenous cannabinoid system in the mesolimbic reward circuitry. In the present study, we investigated how sustained morphine may modulate the endogenous cannabinoid system in the ventral tegmental area (VTA) of Sprague Dawley rats, a critical region in the mesolimbic reward circuitry. Studies here using proteomic analysis and quantitative real-time PCR (qRT-PCR) found that the VTA expresses 32 different proteins or genes related to the endogenous cannabinoid system; three of these proteins or genes (PLCγ2, ABHD6, and CB2R) were significantly affected after repeated morphine exposure (CB2R was only detected by qRT-PCR but not proteomics). We also identified that repeated morphine treatment does not alter either anandamide (AEA) or 2-arachidonoylglycerol (2-AG) levels in the VTA compared to saline treatment; however, there may be diminished levels of anandamide (AEA) production in the VTA 4 h after a single morphine injection in both chronic saline and morphine pretreated cohorts. Treating the animals with an inhibitor of 2-AG degradation significantly decreased repeated opioid rewarding behavior. Taken together, our studies reveal a potential influence of sustained opioids on the endocannabinoid system in the VTA, suggesting that the endogenous cannabinoid system may participate in the opioid-induced reward.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Austin A. Lipinski
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Angela F. Smith
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
21
|
Hermes DJ, Jacobs IR, Key MC, League AF, Yadav-Samudrala BJ, Xu C, McLane VD, Nass SR, Jiang W, Meeker RB, Ignatowska-Jankowska BM, Lichtman AH, Li Z, Wu Z, Yuan H, Knapp PE, Hauser KF, Fitting S. Escalating morphine dosing in HIV-1 Tat transgenic mice with sustained Tat exposure reveals an allostatic shift in neuroinflammatory regulation accompanied by increased neuroprotective non-endocannabinoid lipid signaling molecules and amino acids. J Neuroinflammation 2020; 17:345. [PMID: 33208151 PMCID: PMC7672881 DOI: 10.1186/s12974-020-01971-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type-1 (HIV-1) and opiates cause long-term inflammatory insult to the central nervous system (CNS) and worsen disease progression and HIV-1-related neuropathology. The combination of these proinflammatory factors reflects a devastating problem as opioids have high abuse liability and continue to be prescribed for certain patients experiencing HIV-1-related pain. METHODS Here, we examined the impact of chronic (3-month) HIV-1 transactivator of transcription (Tat) exposure to short-term (8-day), escalating morphine in HIV-1 Tat transgenic mice that express the HIV-1 Tat protein in a GFAP promoter-regulated, doxycycline (DOX)-inducible manner. In addition to assessing morphine-induced tolerance in nociceptive responses organized at spinal (i.e., tail-flick) and supraspinal (i.e., hot-plate) levels, we evaluated neuroinflammation via positron emission tomography (PET) imaging using the [18F]-PBR111 ligand, immunohistochemistry, and cytokine analyses. Further, we examined endocannabinoid (eCB) levels, related non-eCB lipids, and amino acids via mass spectrometry. RESULTS: Tat-expressing [Tat(+)] transgenic mice displayed antinociceptive tolerance in the tail withdrawal and hot-plate assays compared to control mice lacking Tat [Tat(-)]. This tolerance was accompanied by morphine-dependent increases in Iba-1 ± 3-nitrotryosine immunoreactive microglia, and alterations in pro- and anti-inflammatory cytokines, and chemokines in the spinal cord and striatum, while increases in neuroinflammation were absent by PET imaging of [18F]-PBR111 uptake. Tat and morphine exposure differentially affected eCB levels, non-eCB lipids, and specific amino acids in a region-dependent manner. In the striatum, non-eCB lipids were significantly increased by short-term, escalating morphine exposure, including peroxisome proliferator activator receptor alpha (PPAR-α) ligands N-oleoyl ethanolamide (OEA) and N-palmitoyl ethanolamide (PEA), as well as the amino acids phenylalanine and proline. In the spinal cord, Tat exposure increased amino acids leucine and valine, while morphine decreased levels of tyrosine and valine but did not affect eCBs or non-eCB lipids. CONCLUSION Overall results demonstrate that 3 months of Tat exposure increased morphine tolerance and potentially innate immune tolerance evidenced by reductions in specific cytokines (e.g., IL-1α, IL-12p40) and microglial reactivity. In contrast, short-term, escalating morphine exposure acted as a secondary stressor revealing an allostatic shift in CNS baseline inflammatory responsiveness from sustained Tat exposure.
Collapse
Affiliation(s)
- Douglas J Hermes
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Ian R Jacobs
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Megan C Key
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Alexis F League
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | | | - Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Virginia D McLane
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zibo Li
- Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Zhanhong Wu
- Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Yuan
- Department of Radiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Zhu C, Liu N, Tian M, Ma L, Yang J, Lan X, Ma H, Niu J, Yu J. Effects of alkaloids on peripheral neuropathic pain: a review. Chin Med 2020; 15:106. [PMID: 33024448 PMCID: PMC7532100 DOI: 10.1186/s13020-020-00387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain is a debilitating pathological pain condition with a great therapeutic challenge in clinical practice. Currently used analgesics produce deleterious side effects. Therefore, it is necessary to investigate alternative medicines for neuropathic pain. Chinese herbal medicines have been widely used in treating intractable pain. Compelling evidence revealed that the bioactive alkaloids of Chinese herbal medicines stand out in developing novel drugs for neuropathic pain due to multiple targets and satisfactory efficacy. In this review, we summarize the recent progress in the research of analgesic effects of 20 alkaloids components for peripheral neuropathic pain and highlight the potential underlying molecular mechanisms. We also point out the opportunities and challenges of the current studies and shed light on further in-depth pharmacological and toxicological studies of these bioactive alkaloids. In conclusion, the alkaloids hold broad prospects and have the potentials to be novel drugs for treating neuropathic pain. This review provides a theoretical basis for further applying some alkaloids in clinical trials and developing new drugs of neuropathic pain.
Collapse
Affiliation(s)
- Chunhao Zhu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Miaomiao Tian
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004 Ningxia China
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| |
Collapse
|
23
|
Navaratne PV, Wilkerson JL, Ranasinghe KD, Semenova E, Felix JS, Ghiviriga I, Roitberg A, McMahon LR, Grenning AJ. Axially Chiral Cannabinols: A New Platform for Cannabinoid-Inspired Drug Discovery. ChemMedChem 2020; 15:728-732. [PMID: 32061146 PMCID: PMC10173896 DOI: 10.1002/cmdc.202000025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Phytocannabinoids (and synthetic analogs thereof) are gaining significant attention as promising leads in modern medicine. Considering this, new directions for the design of phytocannabinoid-inspired molecules is of immediate interest. In this regard, we have hypothesized that axially-chiral-cannabinols (ax-CBNs), unnatural and unknown isomers of cannabinol (CBN) may be valuable scaffolds for cannabinoid-inspired drug discovery. There are two main factors directing our interest to these scaffolds: (a) ax-CBNs would have ground-state three-dimensionality; ligand-receptor interactions can be more significant with complimentary 3D-topology, and (b) ax-CBNs at their core structure are biaryl molecules, generally attractive platforms for pharmaceutical development due to their ease of functionalization and stability. Herein we report a synthesis of ax-CBNs, examine physical properties experimentally and computationally, and perform a comparative analysis of ax-CBN and THC in mice behavioral studies.
Collapse
Affiliation(s)
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32611, USA
| | | | - Evgeniya Semenova
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32611, USA
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Adrian Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
24
|
Slivicki RA, Iyer V, Mali SS, Garai S, Thakur GA, Crystal JD, Hohmann AG. Positive Allosteric Modulation of CB 1 Cannabinoid Receptor Signaling Enhances Morphine Antinociception and Attenuates Morphine Tolerance Without Enhancing Morphine- Induced Dependence or Reward. Front Mol Neurosci 2020; 13:54. [PMID: 32410959 PMCID: PMC7199816 DOI: 10.3389/fnmol.2020.00054] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/17/2020] [Indexed: 01/09/2023] Open
Abstract
Opioid analgesics represent a critical treatment for chronic pain in the analgesic ladder of the World Health Organization. However, their use can result in a number of unwanted side-effects including incomplete efficacy, constipation, physical dependence, and overdose liability. Cannabinoids enhance the pain-relieving effects of opioids in preclinical studies and dampen unwanted side-effects resulting from excessive opioid intake. We recently reported that a CB1 positive allosteric modulator (PAM) exhibits antinociceptive efficacy in models of pathological pain and lacks the adverse side effects of direct CB1 receptor activation. In the present study, we evaluated whether a CB1 PAM would enhance morphine’s therapeutic efficacy in an animal model of chemotherapy-induced neuropathic pain and characterized its impact on unwanted side-effects associated with chronic opioid administration. In paclitaxel-treated mice, both the CB1 PAM GAT211 and the opioid analgesic morphine reduced paclitaxel-induced behavioral hypersensitivities to mechanical and cold stimulation in a dose-dependent manner. Isobolographic analysis revealed that combinations of GAT211 and morphine resulted in anti-allodynic synergism. In paclitaxel-treated mice, a sub-threshold dose of GAT211 prevented the development of tolerance to the anti-allodynic effects of morphine over 20 days of once daily dosing. However, GAT211 did not reliably alter somatic withdrawal signs (i.e., jumps, paw tremors) in morphine-dependent neuropathic mice challenged with naloxone. In otherwise naïve mice, GAT211 also prolonged antinociceptive efficacy of morphine in the tail-flick test and reduced the overall right-ward shift in the ED50 for morphine to produce antinociception in the tail-flick test, consistent with attenuation of morphine tolerance. Pretreatment with GAT211 did not alter somatic signs of μ opioid receptor dependence in mice rendered dependent upon morphine via subcutaneous implantation of a morphine pellet. Moreover, GAT211 did not reliably alter μ-opioid receptor-mediated reward as measured by conditioned place preference to morphine. Our results suggest that a CB1 PAM may be beneficial in enhancing and prolonging the therapeutic properties of opioids while potentially sparing unwanted side-effects (e.g., tolerance) that occur with repeated opioid treatment.
Collapse
Affiliation(s)
- Richard A Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sonali S Mali
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sumanta Garai
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Jonathon D Crystal
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| |
Collapse
|
25
|
Fotio Y, Palese F, Guaman Tipan P, Ahmed F, Piomelli D. Inhibition of fatty acid amide hydrolase in the CNS prevents and reverses morphine tolerance in male and female mice. Br J Pharmacol 2020; 177:3024-3035. [PMID: 32077093 DOI: 10.1111/bph.15031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Fatty acid amide hydrolase (FAAH) is an intracellular serine amidase that terminates the signalling of various lipid messengers involved in pain regulation, including anandamide and palmitoylethanolamide. Here, we investigated the effects of pharmacological or genetic FAAH removal on tolerance to the anti-nociceptive effects of morphine. EXPERIMENTAL APPROACH We induced tolerance in male and female mice by administering twice-daily morphine for 7 days while monitoring nociceptive thresholds by the tail immersion test. The globally active FAAH inhibitor URB597 (1 and 3 mg·kg-1 , i.p.) or the peripherally restricted FAAH inhibitor URB937 (3 mg·kg-1 , i.p.) were administered daily 30 min prior to morphine, alone or in combination with the cannabinoid CB1 receptor antagonist AM251 (3 mg·kg-1 , i.p.), the CB2 receptor antagonist AM630 (3 mg·kg-1 , i.p.), or the PPAR-α antagonist GW6471 (4 mg·kg-1 , i.p.). Spinal levels of FAAH-regulated lipids were quantified by LC/MS-MS. Gene transcription was assessed by RT-qPCR. KEY RESULTS URB597 prevented and reversed morphine tolerance in both male and female mice. This effect was mimicked by genetic FAAH deletion, but not by URB937. Treatment with AM630 suppressed, whereas treatment with AM251 or GW6471, attenuated the effects of URB597. Anandamide mobilization was enhanced in the spinal cord of morphine-tolerant mice. mRNA levels of the anandamide-producing enzyme N-acyl-phosphatidylethanolamine PLD (NAPE-PLD) and the palmitoylethanolamide receptor PPAR-α, but not those for CB2 , CB1 receptors or FAAH, were elevated in spinal cord CONCLUSION AND IMPLICATIONS: FAAH-regulated lipid signalling in the CNS modulated opiate tolerance, suggesting FAAH as a potential target for opiate-sparing medications.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Francesca Palese
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Pablo Guaman Tipan
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California.,Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California.,Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California.,Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| |
Collapse
|
26
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
27
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
28
|
Schurman LD, Lu D, Kendall DA, Howlett AC, Lichtman AH. Molecular Mechanism and Cannabinoid Pharmacology. Handb Exp Pharmacol 2020; 258:323-353. [PMID: 32236882 PMCID: PMC8637936 DOI: 10.1007/164_2019_298] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since antiquity, Cannabis has provoked enormous intrigue for its potential medicinal properties as well as for its unique pharmacological effects. The elucidation of its major cannabinoid constituents, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), led to the synthesis of new cannabinoids (termed synthetic cannabinoids) to understand the mechanisms underlying the pharmacology of Cannabis. These pharmacological tools were instrumental in the ultimate discovery of the endogenous cannabinoid system, which consists of CB1 and CB2 cannabinoid receptors and endogenously produced ligands (endocannabinoids), which bind and activate both cannabinoid receptors. CB1 receptors mediate the cannabimimetic effects of THC and are highly expressed on presynaptic neurons in the nervous system, where they modulate neurotransmitter release. In contrast, CB2 receptors are primarily expressed on immune cells. The endocannabinoids are tightly regulated by biosynthetic and hydrolytic enzymes. Accordingly, the endocannabinoid system plays a modulatory role in many physiological processes, thereby generating many promising therapeutic targets. An unintended consequence of this research was the emergence of synthetic cannabinoids sold for human consumption to circumvent federal laws banning Cannabis use. Here, we describe research that led to the discovery of the endogenous cannabinoid system and show how knowledge of this system benefitted as well as unintentionally harmed human health.
Collapse
Affiliation(s)
- Lesley D Schurman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dai Lu
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, TX, USA
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
29
|
Abstract
Substance use disorder (SUD) is a major public health crisis worldwide, and effective treatment options are limited. During the past 2 decades, researchers have investigated the impact of a variety of pharmacological approaches to treat SUD, one of which is the use of medical cannabis or cannabinoids. Significant progress was made with the discovery of rimonabant, a selective CB1 receptor (CB1R) antagonist (also an inverse agonist), as a promising therapeutic for SUDs and obesity. However, serious adverse effects such as depression and suicidality led to the withdrawal of rimonabant (and almost all other CB1R antagonists/inverse agonists) from clinical trials worldwide in 2008. Since then, much research interest has shifted to other cannabinoid-based strategies, such as peripheral CB1R antagonists/inverse agonists, neutral CB1R antagonists, allosteric CB1R modulators, CB2R agonists, fatty acid amide hydrolase (FAAH) inhibitors, monoacylglycerol lipase (MAGL) inhibitors, fatty acid binding protein (FABP) inhibitors, or nonaddictive phytocannabinoids with CB1R or CB2R-binding profiles, as new therapeutics for SUDs. In this article, we first review recent progress in research regarding the endocannabinoid systems, cannabis reward versus aversion, and the underlying receptor mechanisms. We then review recent progress in cannabinoid-based medication development for the treatment of SUDs. As evidence continues to accumulate, neutral CB1R antagonists (such as AM4113), CB2R agonists (JWH133, Xie2-64), and nonselective phytocannabinoids (cannabidiol, β-caryophyllene, ∆9-tetrahydrocannabivarin) have shown great therapeutic potential for SUDs, as shown in experimental animals. Several cannabinoid-based medications (e.g., dronabinol, nabilone, PF-04457845) that entered clinical trials have shown promising results in reducing withdrawal symptoms in cannabis and opioid users.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
30
|
Abstract
Cannabinoid receptors, endocannabinoids and the enzymes responsible for their biosynthesis and degradation constitute the endocannabinoid system. In recent decades, the endocannabinoid system has attracted considerable interest as a potential therapeutic target in numerous pathological conditions. Its involvement in several physiological processes is well known, such as in energy balance, appetite stimulation, blood pressure, pain modulation, embryogenesis, nausea and vomiting control, memory, learning and immune response, among others, as well as in pathological conditions where it exerts a protective role in the development of certain disorders. As a result, it has been reported that changes in endocannabinoid levels may be related to neurological diseases such as Parkinson's disease, Huntington's disease, Alzheimer's disease and multiple sclerosis, as well as anorexia and irritable bowel syndrome. Alterations in the endocannabinoid system have also been associated with cancer, affecting the growth, migration and invasion of some tumours. Cannabinoids have been tested in several cancer types, including brain, breast and prostate cancers. Cannabinoids have shown promise as analgesics for the treatment of both inflammatory and neuropathic pain. There is also evidence for a role of the endocannabinoid system in the control of emotional states, and cannabinoids could prove useful in decreasing and palliating post-traumatic stress disorder symptoms and anxiolytic disorders. The role of the endocannabinoid system in addictions has also been examined, and cannabinoids have been postulated as alternative and co-adjuvant treatments in some abuse syndromes, mainly in ethanol and opioid abuses. The expression of the endocannabinoid system in the eye suggests that it could be a potential therapeutic target for eye diseases. Considering the importance of the endocannabinoid system and the therapeutic potential of cannabinoids in this vast number of medical conditions, several clinical studies with cannabinoid-based medications are ongoing. In addition, some cannabinoid-based medications have already been approved in various countries, including nabilone and dronabinol capsules for the treatment of nausea and vomiting associated with chemotherapy, dronabinol capsules for anorexia, an oral solution of dronabinol for both vomiting associated with chemotherapy and anorexia, a Δ9-tetrahydrocannabinol/cannabidiol oromucosal spray for pain related to cancer and for spasticity and pain associated with multiple sclerosis, and an oral solution of cannabidiol for Dravet and Lennox-Gastaut syndromes. Here, we review the available efficacy, safety and tolerability data for cannabinoids in a range of medical conditions.
Collapse
Affiliation(s)
- Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, 28040 , Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, 28040 , Madrid, Spain. .,Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 , Madrid, Spain.
| |
Collapse
|
31
|
Wilkerson JL, Felix JS, Restrepo LF, Ansari MI, Coop A, McMahon LR. The Effects of Morphine, Baclofen, and Buspirone Alone and in Combination on Schedule-Controlled Responding and Hot Plate Antinociception in Rats. J Pharmacol Exp Ther 2019; 370:380-389. [PMID: 31235534 DOI: 10.1124/jpet.118.255844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
Better therapeutic options are needed for pain. Baclofen, buspirone, and morphine are characterized as having analgesic properties. However, little is known about potential interactions between analgesic effects of these drugs when combined. Furthermore, it is not known if the magnitude of these potential interactions will be similar for all drug effects. Thus, we tested the effects of these drugs alone and in combination for their capacity to produce thermal antinociception and to decrease food-maintained responding. Four male and four female Sprague-Dawley rats responded for food under a fixed-ratio 10 schedule; afterward they were immediately placed on a 52°C hot plate. Morphine, baclofen, and buspirone were examined alone and in 1:1 combinations, based upon ED50 values. Morphine and baclofen effects were evaluated with the opioid antagonist naltrexone and the GABAB antagonist (3-Aminopropyl)(diethoxymethyl)phosphinic acid (CGP35348), respectively. Morphine, baclofen, and buspirone dose dependently decreased operant responding, with the calculated ED50 values being 7.09, 3.42, and 0.57 mg/kg, respectively. The respective antinociception ED50 values were 16.15, 8.75, and 2.20 mg/kg. Analysis of 1:1 combinations showed the effects of morphine plus baclofen to decrease schedule-controlled responding and to produce thermal antinociception were synergistic. Effects of morphine plus buspirone and baclofen plus buspirone to decrease schedule-controlled responding were additive. Effects of the two combinations to produce thermal antinociception were synergistic. Naltrexone and CGP35348 antagonized the effects of morphine and baclofen, respectively. Synergistic antinociceptive effects, in conjunction with additive effects on food-maintained responding, highlight the therapeutic utility of opioid and non-opioid drug combinations.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Luis F Restrepo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Mohd Imran Ansari
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Andrew Coop
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| |
Collapse
|
32
|
Nguyen JD, Grant Y, Creehan KM, Hwang CS, Vandewater SA, Janda KD, Cole M, Taffe MA. Δ 9-tetrahydrocannabinol attenuates oxycodone self-administration under extended access conditions. Neuropharmacology 2019; 151:127-135. [PMID: 30980837 DOI: 10.1016/j.neuropharm.2019.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 11/24/2022]
Abstract
Growing nonmedical use of prescription opioids is a global problem, motivating research on ways to reduce use and combat addiction. Medical cannabis ("medical marijuana") legalization has been associated epidemiologically with reduced opioid harms and cannabinoids have been shown to modulate effects of opioids in animal models. This study was conducted to determine if Δ9-tetrahydrocannabinol (THC) enhances the behavioral effects of oxycodone. Male rats were trained to intravenously self-administer (IVSA) oxycodone (0.15 mg/kg/infusion) during 1 h, 4 h or 8 h sessions. Following acquisition rats were exposed to THC by vapor inhalation (1 h and 8 h groups) or injection (0-10 mg/kg, i.p.; all groups) prior to IVSA sessions. Fewer oxycodone infusions were obtained by rats following vaporized or injected THC compared with vehicle treatment prior to the session. Follow-up studies demonstrated parallel dose-dependent effects of THC, i.p., on self-administration of different per-infusion doses of oxycodone and a preserved loading dose early in the session. These patterns are inconsistent with behavioral suppression. Additional groups of male and female Wistar rats were assessed for nociception following inhalation of vaporized THC (50 mg/mL), oxycodone (100 mg/mL) or the combination. Tail withdrawal latency was increased more by the THC/oxycodone combination compared to either drug alone. Similar additive antinociceptive effects were produced by injection of THC (5.0 mg/kg, i.p.) and oxycodone (2.0 mg/kg, s.c.). Together these data demonstrate additive effects of THC and oxycodone and suggest the potential use of THC to enhance therapeutic efficacy, and to reduce the abuse, of opioids.
Collapse
Affiliation(s)
- Jacques D Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Yanabel Grant
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kevin M Creehan
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Candy S Hwang
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA; Department of Chemistry, Southern Connecticut State University, New Haven, CT, USA
| | - Sophia A Vandewater
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA
| | - Maury Cole
- La Jolla Alcohol Research, Inc, La Jolla, CA, USA
| | - Michael A Taffe
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Scherma M, Masia P, Satta V, Fratta W, Fadda P, Tanda G. Brain activity of anandamide: a rewarding bliss? Acta Pharmacol Sin 2019; 40:309-323. [PMID: 30050084 DOI: 10.1038/s41401-018-0075-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
Anandamide is a lipid mediator that acts as an endogenous ligand of CB1 receptors. These receptors are also the primary molecular target responsible for the pharmacological effects of Δ9-tetrahydrocannabinol, the psychoactive ingredient in Cannabis sativa. Several studies demonstrate that anandamide exerts an overall modulatory effect on the brain reward circuitry. Several reports suggest its involvement in the addiction-producing actions of other abused drugs, and it can also act as a behavioral reinforcer in animal models of drug abuse. Importantly, all these effects of anandamide appear to be potentiated by pharmacological inhibition of its metabolic degradation. Enhanced brain levels of anandamide after treatment with inhibitors of fatty acid amide hydrolase, the main enzyme responsible for its degradation, seem to affect the rewarding and reinforcing actions of many drugs of abuse. In this review, we will provide an overview from a preclinical perspective of the current state of knowledge regarding the behavioral pharmacology of anandamide, with a particular emphasis on its motivational/reinforcing properties. We will also discuss how modulation of anandamide levels through inhibition of enzymatic metabolic pathways could provide a basis for developing new pharmaco-therapeutic tools for the treatment of substance use disorders.
Collapse
|
34
|
Huang Z, Ogasawara D, Seneviratne UI, Cognetta AB, am Ende CW, Nason DM, Lapham K, Litchfield J, Johnson DS, Cravatt BF. Global Portrait of Protein Targets of Metabolites of the Neurotoxic Compound BIA 10-2474. ACS Chem Biol 2019; 14:192-197. [PMID: 30702848 DOI: 10.1021/acschembio.8b01097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Clinical investigation of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 resulted in serious adverse neurological events. Structurally unrelated FAAH inhibitors tested in humans have not presented safety concerns, suggesting that BIA 10-2474 has off-target activities. A recent activity-based protein profiling (ABPP) study revealed that BIA 10-2474 and one of its major metabolites inhibit multiple members of the serine hydrolase class to which FAAH belongs. Here, we extend these studies by performing a proteome-wide analysis of covalent targets of BIA 10-2474 metabolites. Using alkynylated probes for click chemistry-ABPP in human cells, we show that des-methylated metabolites of BIA 10-2474 covalently modify the conserved catalytic cysteine in aldehyde dehydrogenases, including ALDH2, which has been implicated in protecting the brain from oxidative stress-related damage. These findings indicate that BIA 10-2474 and its metabolites have the potential to inhibit multiple mechanistically distinct enzyme classes involved in nervous system function.
Collapse
Affiliation(s)
- Zhen Huang
- Medicine Design, Chemical Biology, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Daisuke Ogasawara
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Uthpala I. Seneviratne
- Medicine Design, Chemical Biology, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Armand B. Cognetta
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher W. am Ende
- Medicine Design, Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Deane M. Nason
- Medicine Design, Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kimberly Lapham
- Medicine Design, Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - John Litchfield
- Medicine Design, Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Douglas S. Johnson
- Medicine Design, Chemical Biology, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Benjamin F. Cravatt
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
35
|
De Luca MA, Buczynski MW, Di Chiara G. Loren Parsons' contribution to addiction neurobiology. Addict Biol 2018; 23:1207-1222. [PMID: 29949237 DOI: 10.1111/adb.12642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022]
Abstract
Loren (Larry) H. Parsons passed away at the age of 51. In spite of his premature departure, Larry much contributed to the drug abuse field. Since his graduate studies for the Ph.D. in Chemistry in J.B. Justice lab, microdialysis is the tread that links Larry's research topics, namely, the role of dopamine (DA), serotonin (5-HT), gamma-aminobutyric acid (GABA), glutamate and endocannabinoids (eCBs) in drug reinforcement and dependence. Larry was the first to show that abstinence from chronic cocaine reduces extracellular DA in the NAc, consistent with the so called 'dopamine depletion hypothesis' of cocaine addiction. Another Larry's major contributions are the studies on 5-HT and 5-HT receptors' role in cocaine stimulant actions, which resulted in the identification of 5-HT1B receptors as a critical substrate of cocaine reinforcement. By applying mass spectrometry to eCBs analysis in brain dialysates, Larry's lab showed that ethanol, heroin, nicotine and cocaine differentially affect anandamide and 2-arachidonoylglicerol overflow in the NAc shell, a critical site of drugs of abuse DA stimulant actions. Larry also applied microdialysis to study GABA and glutamate's role in ethanol dependence and heroin reinforcement, providing in vivo evidence for a sensitization of corticotropin-releasing factor-dependent release of GABA in the central amygdala in withdrawal from chronic ethanol and for a reduction of GABA transmission in the ventral pallidum in heroin but not cocaine intravenous self-administration. Larry showed the wide possibilities of microdialysis as a general purpose methodology for monitoring neurotransmitters and neuromodulators in the brain extracellular compartment. From this viewpoint, he stands as the best advocate for microdialysis.
Collapse
Affiliation(s)
- Maria A. De Luca
- Department of Biomedical Sciences, Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
- National Institute of Neuroscience (INN); University of Cagliari; Cagliari Italy
| | - Matthew W. Buczynski
- School of Neuroscience; Virginia Polytechnic Institute and State University; Blacksburg VA 24061 USA
| | - Gaetano Di Chiara
- Department of Biomedical Sciences, Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
- National Institute of Neuroscience (INN); University of Cagliari; Cagliari Italy
- National Research Council of Italy; Institute of Neuroscience; Cagliari Italy
| |
Collapse
|
36
|
Slivicki RA, Saberi SA, Iyer V, Vemuri VK, Makriyannis A, Hohmann AG. Brain-Permeant and -Impermeant Inhibitors of Fatty Acid Amide Hydrolase Synergize with the Opioid Analgesic Morphine to Suppress Chemotherapy-Induced Neuropathic Nociception Without Enhancing Effects of Morphine on Gastrointestinal Transit. J Pharmacol Exp Ther 2018; 367:551-563. [PMID: 30275151 DOI: 10.1124/jpet.118.252288] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 01/15/2023] Open
Abstract
Opioid-based therapies remain a mainstay for chronic pain management, but unwanted side effects limit therapeutic use. We compared efficacies of brain-permeant and -impermeant inhibitors of fatty acid amide hydrolase (FAAH) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Paclitaxel produced mechanical and cold allodynia without altering nestlet shredding or marble burying behaviors. We compared FAAH inhibitors that differ in their ability to penetrate the central nervous system for antiallodynic efficacy, pharmacological specificity, and synergism with the opioid analgesic morphine. (3'-(aminocarbonyl)[1,1'-biphenyl]- 3-yl)-cyclohexylcarbamate (URB597), a brain-permeant FAAH inhibitor, attenuated paclitaxel-induced allodynia via cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) mechanisms. URB937, a brain-impermeant FAAH inhibitor, suppressed paclitaxel-induced allodynia through a CB1 mechanism only. 5-[4-(4-cyano-1-butyn-1-yl)phenyl]-1-(2,4-dichlorophenyl)-N-(1,1-dioxido-4-thiomorpholinyl)-4-methyl-1H-pyrazole-3-carboxamide (AM6545), a peripherally restricted CB1 antagonist, fully reversed the antiallodynic efficacy of N-cyclohexyl-carbamic acid, 3'-(aminocarbonyl)-6-hydroxy[1,1'- biphenyl]-3-yl ester (URB937) but only partially reversed that of URB597. Thus, URB937 suppressed paclitaxel-induced allodynia through a mechanism that was dependent upon peripheral CB1 receptor activation only. Antiallodynic effects of both FAAH inhibitors were reversed by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). Antiallodynic effects of URB597, but not URB937, were reversed by 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630). Isobolographic analysis revealed synergistic interactions between morphine and either URB597 or URB937 in reducing paclitaxel-induced allodynia. A leftward shift in the dose-response curve of morphine antinociception was observed when morphine was coadministered with either URB597 or URB937, consistent with morphine sparing. However, neither URB937 nor URB597 enhanced morphine-induced deficits in colonic transit. Thus, our findings suggest that FAAH inhibition may represent a therapeutic avenue to reduce the overall amount of opioid needed for treating neuropathic pain with potential to reduce unwanted side effects that accompany opioid administration.
Collapse
Affiliation(s)
- Richard A Slivicki
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| | - Shahin A Saberi
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| | - Vishakh Iyer
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| | - V Kiran Vemuri
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| | - Alexandros Makriyannis
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| | - Andrea G Hohmann
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| |
Collapse
|
37
|
Therapeutic Use of Synthetic Cannabinoids: Still an Open Issue? Clin Ther 2018; 40:1457-1466. [DOI: 10.1016/j.clinthera.2018.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
|
38
|
Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 2018; 17:623-639. [DOI: 10.1038/nrd.2018.115] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Abstract
Introduction: Preclinical and clinical studies suggest that cannabidiol (CBD) found in Cannabis spp. has broad therapeutic value. CBD products can currently be purchased online, over the counter and at Cannabis-specific dispensaries throughout most of the country, despite the fact that CBD is generally deemed a Schedule I controlled substance by the U.S. Drug Enforcement Administration and renounced as a dietary supplement ingredient by the U.S. Food and Drug Administration. Consumer demand for CBD is high and growing, but few studies have examined the reasons for increasing CBD use. Materials and Methods: A self-selected convenience sample (n = 2409) was recruited via an online survey designed to characterize whom, how, and why individuals are currently using CBD. The anonymous questionnaire was accessed from October 25, 2017 to January 25, 2018. Participants were recruited through social media. Results: Almost 62% of CBD users reported using CBD to treat a medical condition. The top three medical conditions were pain, anxiety, and depression. Almost 36% of respondents reported that CBD treats their medical condition(s) “very well by itself,” while only 4.3% reported “not very well.” One out of every three users reported a nonserious adverse effect. The odds of using CBD to treat a medical condition were 1.44 (95% confidence interval, 1.16–1.79) times greater among nonregular users of Cannabis than among regular users. Conclusion: Consumers are using CBD as a specific therapy for multiple diverse medical conditions—particularly pain, anxiety, depression, and sleep disorders. These data provide a compelling rationale for further research to better understand the therapeutic potential of CBD.
Collapse
Affiliation(s)
- Jamie Corroon
- The Center for Medical Cannabis Education, Del Mar, California.,Helfgott Research Institute, National University of Natural Medicine (NUNM), Portland, Oregon
| | - Joy A Phillips
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California
| |
Collapse
|
40
|
Wilson‐Poe AR, Morón JA. The dynamic interaction between pain and opioid misuse. Br J Pharmacol 2018; 175:2770-2777. [PMID: 28602044 PMCID: PMC6016619 DOI: 10.1111/bph.13873] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022] Open
Abstract
In 2014, drug overdose surpassed automobile accidents as the number one cause of accidental death for the first time in the history of the United States. The overdose epidemic is largely driven by opioids, and genuine prescription opioid analgesics play the biggest role in this phenomenon. Despite advancements in abuse deterrent formulations, prescription drug monitoring programmes and clinical assessments for the detection of abuse potential, drug overdoses continue to escalate. The Center for Disease Control has recently issued new guidelines for opioid prescription, yet even these recommendations have their shortcomings. Furthermore, undertreated pain in patients with comorbid substance use disorder poses a major clinical challenge, particularly for patients on opioid replacement therapy. Despite the seemingly obvious interaction between the presence of pain and the abuse of pain-relieving opioids, there is surprisingly little mechanistic data to further our understanding of this vitally important topic. The need for novel pain interventions that minimize abuse liability is critical. Without a fundamental characterization of pain neurobiology and the interaction between chronic pain and the brain's reward system, we are unlikely to make progress in the alleviation of the opioid epidemic. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Adrianne R Wilson‐Poe
- Pain Center, Department of AnesthesiologyWashington University School of MedicineSt. LouisMOUSA
| | - Jose A Morón
- Pain Center, Department of AnesthesiologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
41
|
Di Cesare Mannelli L, Micheli L, Lucarini E, Ghelardini C. Ultramicronized N-Palmitoylethanolamine Supplementation for Long-Lasting, Low-Dosed Morphine Antinociception. Front Pharmacol 2018; 9:473. [PMID: 29910726 PMCID: PMC5992817 DOI: 10.3389/fphar.2018.00473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 02/02/2023] Open
Abstract
The facilitation of opioid medication is eliciting a nemetic problem since increasing overdose deaths involve prescription of opioid pain relievers. Chronic painful diseases require higher doses of opioids, progressively with the development of tolerance to the antinociceptive effect. Novel strategies for the maintenance of low dosed opioid effectiveness are necessary to relieve pain and decrease abuse, overdose, and side effects. N-Palmitoylethanolamine (PEA) is an endogenous compound able to preserve the homeostasis of the nervous system and to delay the development of morphine tolerance. In the present study, a preemptive and continuative treatment with ultramicronized PEA (30 mg/kg, daily, per os) enhanced the acute antinociceptive efficacy of morphine (10 mg/kg subcutaneously) in rats and prolonged the responsiveness to the natural opioid. Moreover, PEA-treated animals had a more rapid recovery from tolerance. Four opioid free days were enough to regain sensitivity to morphine whereas control animals needed 31 days for full recovery of tolerance. Characteristically, PEA acquired per se antinociceptive properties in tolerant animals, suggesting the possibility of an integrated morphine/PEA treatment protocol. To maintain a significant analgesia, morphine dose had to be increased from 5 up to 100 mg/kg over 17 days of daily treatment. The same pain threshold increase was achieved in animals using preemptive PEA (30 mg/kg, daily) joined to a combinatorial acute treatment with morphine (5–20 mg/kg s.c.) and PEA (30–120 mg/kg, p.o.). Representatively, on day 17, the magnitude of analgesia induced by 100 mg/kg morphine was obtained by combining 13 mg/kg of morphine with 120 mg/kg of PEA. PEA strengthens the efficacy and potency of morphine analgesia, allowing prolonged and effective pain relief with low doses. PEA is suggested in association with morphine for chronic pain therapies distinguished by low risk of side effects.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
42
|
Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci 2018; 204:20-45. [PMID: 29729263 DOI: 10.1016/j.lfs.2018.04.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF2α-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.
Collapse
|
43
|
Greco R, Demartini C, Zanaboni AM, Piomelli D, Tassorelli C. Endocannabinoid System and Migraine Pain: An Update. Front Neurosci 2018; 12:172. [PMID: 29615860 PMCID: PMC5867306 DOI: 10.3389/fnins.2018.00172] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS. Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache. Clinical observations, in particular, show that the levels of anandamide (AEA)—one of the two primary endocannabinoid lipids—are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord. AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors. Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna M Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
44
|
Stern CA, de Carvalho CR, Bertoglio LJ, Takahashi RN. Effects of Cannabinoid Drugs on Aversive or Rewarding Drug-Associated Memory Extinction and Reconsolidation. Neuroscience 2018; 370:62-80. [DOI: 10.1016/j.neuroscience.2017.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/23/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022]
|
45
|
Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, Lichtman AH. The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain. Neuropsychopharmacology 2018; 43:52-79. [PMID: 28857069 PMCID: PMC5719110 DOI: 10.1038/npp.2017.204] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/24/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023]
Abstract
A great need exists for the development of new medications to treat pain resulting from various disease states and types of injury. Given that the endogenous cannabinoid (that is, endocannabinoid) system modulates neuronal and immune cell function, both of which play key roles in pain, therapeutics targeting this system hold promise as novel analgesics. Potential therapeutic targets include the cannabinoid receptors, type 1 and 2, as well as biosynthetic and catabolic enzymes of the endocannabinoids N-arachidonoylethanolamine and 2-arachidonoylglycerol. Notably, cannabinoid receptor agonists as well as inhibitors of endocannabinoid-regulating enzymes fatty acid amide hydrolase and monoacylglycerol lipase produce reliable antinociceptive effects, and offer opioid-sparing antinociceptive effects in myriad preclinical inflammatory and neuropathic pain models. Emerging clinical studies show that 'medicinal' cannabis or cannabinoid-based medications relieve pain in human diseases such as cancer, multiple sclerosis, and fibromyalgia. However, clinical data have yet to demonstrate the analgesic efficacy of inhibitors of endocannabinoid-regulating enzymes. Likewise, the question of whether pharmacotherapies aimed at the endocannabinoid system promote opioid-sparing effects in the treatment of pain reflects an important area of research. Here we examine the preclinical and clinical evidence of various endocannabinoid system targets as potential therapeutic strategies for inflammatory and neuropathic pain conditions.
Collapse
Affiliation(s)
- Giulia Donvito
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary A Curry
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Lesley D Schurman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
46
|
Leonard MZ, Alapafuja SO, Ji L, Shukla VG, Liu Y, Nikas SP, Makriyannis A, Bergman J, Kangas BD. Cannabinoid CB 1 Discrimination: Effects of Endocannabinoids and Catabolic Enzyme Inhibitors. J Pharmacol Exp Ther 2017; 363:314-323. [PMID: 28947487 PMCID: PMC5683067 DOI: 10.1124/jpet.117.244392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/14/2017] [Indexed: 11/22/2022] Open
Abstract
An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type 1 (CB1) receptor agonists such as Δ9-tetrahydrocannabinol are increasingly used for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N-arachidonoylethanolamine [AEA (or anandamide)] and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB1 agonist-like subjective effects, as reflected in CB1-related discriminative stimulus effects in laboratory subjects. Squirrel monkeys (n = 8) that discriminated the CB1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, the inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (JZL195, AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB1 agonist-like effects when administered alone or after enzyme inhibition. Results indicate that CB1-related discriminative stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were nonsurmountably antagonized by low doses of rimonabant. Additionally, FAAH or MGL inhibition revealed CB1-like subjective effects produced by AEA but not by 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB1 receptor-mediated subjective effects.
Collapse
MESH Headings
- Adamantane/administration & dosage
- Adamantane/adverse effects
- Adamantane/analogs & derivatives
- Adamantane/pharmacology
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Arachidonic Acids/administration & dosage
- Arachidonic Acids/agonists
- Arachidonic Acids/antagonists & inhibitors
- Arachidonic Acids/pharmacology
- Behavior, Animal/drug effects
- Cannabinoid Receptor Antagonists/administration & dosage
- Cannabinoid Receptor Antagonists/adverse effects
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinol/administration & dosage
- Cannabinol/adverse effects
- Cannabinol/analogs & derivatives
- Cannabinol/pharmacology
- Discrimination Learning/drug effects
- Dose-Response Relationship, Drug
- Drug Agonism
- Drug Antagonism
- Drugs, Investigational/administration & dosage
- Drugs, Investigational/adverse effects
- Drugs, Investigational/pharmacology
- Endocannabinoids/administration & dosage
- Endocannabinoids/agonists
- Endocannabinoids/antagonists & inhibitors
- Endocannabinoids/pharmacology
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/adverse effects
- Enzyme Inhibitors/pharmacology
- Glycerides/administration & dosage
- Glycerides/agonists
- Glycerides/antagonists & inhibitors
- Glycerides/pharmacology
- Injections, Intramuscular
- Injections, Intravenous
- Ligands
- Male
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/metabolism
- Polyunsaturated Alkamides
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Saimiri
Collapse
Affiliation(s)
- Michael Z Leonard
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Shakiru O Alapafuja
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Lipin Ji
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Vidyanand G Shukla
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Yingpeng Liu
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Spyros P Nikas
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Alexandros Makriyannis
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Jack Bergman
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| | - Brian D Kangas
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts (J.B., B.D.K.); McLean Hospital, Preclinical Pharmacology Laboratory, Belmont, Massachusetts (M.Z.L., J.B., B.D.K.); MakScientific LLC, Burlington, Massachusetts (S.O.A.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., V.G.S., Y.L., S.P.N., A.M.)
| |
Collapse
|
47
|
Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology 2017; 124:105-120. [PMID: 28625720 PMCID: PMC5785108 DOI: 10.1016/j.neuropharm.2017.06.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 01/20/2023]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Stephen G Woodhams
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - David P Finn
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Interdisciplinary Biochemistry Graduate Program, Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
48
|
Zubrzycki M, Janecka A, Liebold A, Ziegler M, Zubrzycka M. Effects of centrally administered endocannabinoids and opioids on orofacial pain perception in rats. Br J Pharmacol 2017; 174:3780-3789. [PMID: 28771697 DOI: 10.1111/bph.13970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia. The specific effects of these compounds within the orofacial region are largely unknown. In this study, we tried to determine whether an increase in cannabinoid and opioid concentration in the CSF affects impulse transmission between the motor centres localized in the vicinity of the third and fourth cerebral ventricles. EXPERIMENTAL APPROACH The study objectives were realized on rats using a method that allows the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation. The amplitude of ETJ was a measure of the effect of neurotransmitters on neural structures. KEY RESULTS Perfusion of cerebral ventricles with anandamide (AEA), endomorphin-2 (EM-2), URB597, an inhibitor of fatty acid amide hydrolase (FAAH) and JZL195, a dual inhibitor of FAAH and monoacylglycerol lipase (MAGL) reduced the ETJ amplitude. The antinociceptive effect of AEA, EM-2, URB597 and JZL195 was blocked by CB1 receptor antagonist, AM251 and by μ receptor-antagonist, β-funaltrexamine. In contrast to AEA, 2-arachidonoylglycerol alone did not decrease ETJ amplitude. CONCLUSIONS AND IMPLICATIONS We demonstrated that in the orofacial area, analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by μ and CB1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand. Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andreas Liebold
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany
| | - Mechthild Ziegler
- Department of Cardiac Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Interdepartmental Chair of Experimental and Clinical Physiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
49
|
Owens RA, Mustafa MA, Ignatowska-Jankowska BM, Damaj MI, Beardsley PM, Wiley JL, Niphakis MJ, Cravatt BF, Lichtman AH. Inhibition of the endocannabinoid-regulating enzyme monoacylglycerol lipase elicits a CB 1 receptor-mediated discriminative stimulus in mice. Neuropharmacology 2017; 125:80-86. [PMID: 28673548 DOI: 10.1016/j.neuropharm.2017.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/17/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Substantial challenges exist for investigating the cannabinoid receptor type 1 (CB1)-mediated discriminative stimulus effects of the endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide; AEA), compared with exogenous CB1 receptor agonists, such as Δ9-tetrahydrocannabinol (THC) and the synthetic cannabinoid CP55,940. Specifically, each endocannabinoid is rapidly degraded by the respective hydrolytic enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH). Whereas MAGL inhibitors partially substitute for THC and fully substitute for CP55,940, FAAH inhibitors do not substitute for either drug. Interestingly, combined FAAH-MAGL inhibition results in full THC substitution, and the dual FAAH-MAGL inhibitor SA-57 serves as its own discriminative training stimulus. Because MAGL inhibitors fully substitute for SA-57, we tested whether the selective MAGL inhibitor MJN110 would serve as a training stimulus. Twelve of 13 C57BL/6J mice learned to discriminate MJN110 from vehicle, and the CB1 receptor antagonist rimonabant dose-dependently blocked its discriminative stimulus. CP55,940, SA-57, and another MAGL inhibitor JZL184, fully substituted for MJN110. In contrast, the FAAH inhibitor PF-3845 failed to substitute for the MJN110 discriminative stimulus, but produced a 1.6 (1.1-2.2; 95% confidence interval) leftward shift in the MJN110 dose-response curve. Inhibitors of other relevant enzymes (i.e., ABHD6, COX-2) and nicotine did not engender substitution. Diazepam partially substituted for MJN110, but rimonabant failed to block this partial effect. These findings suggest that MAGL normally throttles 2-AG stimulation of CB1 receptors to a magnitude insufficient to produce cannabimimetic subjective effects. Accordingly, inhibitors of this enzyme may release this endogenous brake producing effects akin to those produced by exogenously administered cannabinoids.
Collapse
Affiliation(s)
- Robert A Owens
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammed A Mustafa
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Bogna M Ignatowska-Jankowska
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC, 27709-2194, USA
| | - Micah J Niphakis
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
50
|
Murillo-Rodríguez E, Di Marzo V, Machado S, Rocha NB, Veras AB, Neto GAM, Budde H, Arias-Carrión O, Arankowsky-Sandoval G. Role of N-Arachidonoyl-Serotonin (AA-5-HT) in Sleep-Wake Cycle Architecture, Sleep Homeostasis, and Neurotransmitters Regulation. Front Mol Neurosci 2017; 10:152. [PMID: 28611585 PMCID: PMC5447686 DOI: 10.3389/fnmol.2017.00152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
The endocannabinoid system comprises several molecular entities such as endogenous ligands [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)], receptors (CB1 and CB2), enzymes such as [fatty acid amide hydrolase (FAHH) and monoacylglycerol lipase (MAGL)], as well as the anandamide membrane transporter. Although the role of this complex neurobiological system in the sleep–wake cycle modulation has been studied, the contribution of the blocker of FAAH/transient receptor potential cation channel subfamily V member 1 (TRPV1), N-arachidonoyl-serotonin (AA-5-HT) in sleep has not been investigated. Thus, in the present study, varying doses of AA-5-HT (5, 10, or 20 mg/Kg, i.p.) injected at the beginning of the lights-on period of rats, caused no statistical changes in sleep patterns. However, similar pharmacological treatment given to animals at the beginning of the dark period decreased wakefulness (W) and increased slow wave sleep (SWS) as well as rapid eye movement sleep (REMS). Power spectra analysis of states of vigilance showed that injection of AA-5-HT during the lights-off period diminished alpha spectrum across alertness in a dose-dependent fashion. In opposition, delta power spectra was enhanced as well as theta spectrum, during SWS and REMS, respectively. Moreover, the highest dose of AA-5-HT decreased wake-related contents of neurotransmitters such as dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT) whereas the levels of adenosine (AD) were enhanced. In addition, the sleep-inducing properties of AA-5-HT were confirmed since this compound blocked the increase in W caused by stimulants such as cannabidiol (CBD) or modafinil (MOD) during the lights-on period. Additionally, administration of AA-5-HT also prevented the enhancement in contents of DA, NE, EP, 5-HT and AD after CBD of MOD injection. Lastly, the role of AA-5-HT in sleep homeostasis was tested in animals that received either CBD or MOD after total sleep deprivation (TSD). The injection of CBD or MOD increased alertness during sleep rebound period after TSD. However, AA-5-HT blocked this effect by allowing animals to display an enhancement in sleep across sleep rebound period. Overall, our findings provide evidence that AA-5-HT is an important modulator of sleep, sleep homeostasis and neurotransmitter contents.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación en Envejecimiento, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación Desarrollos Tecnológicos para la Salud, División de Ingeniería y Ciencias Exactas, Universidad Anáhuac MayabMérida, Mexico.,Intercontinental Neuroscience Research Group
| | - Vincenzo Di Marzo
- Intercontinental Neuroscience Research Group.,Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Sergio Machado
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Postgraduate Program, Salgado de Oliveira UniversityRio de Janeiro, Brazil
| | - Nuno B Rocha
- Intercontinental Neuroscience Research Group.,Faculty of Health Sciences, Polytechnic Institute of PortoPorto, Portugal
| | - André B Veras
- Intercontinental Neuroscience Research Group.,Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Dom Bosco Catholic UniversityRio de Janeiro, Brazil
| | - Geraldo A M Neto
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group.,Faculty of Human Sciences, Medical School HamburgHamburg, Germany.,Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering Reykjavik UniversityReykjavik, Iceland.,Department of Health, Physical and Social Education, Lithuanian Sports UniversityKaunas, Lithuania
| | - Oscar Arias-Carrión
- Intercontinental Neuroscience Research Group.,Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General "Dr. Manuel Gea González"Ciudad de México, Mexico
| | - Gloria Arankowsky-Sandoval
- Intercontinental Neuroscience Research Group.,Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de YucatánMérida, Mexico
| |
Collapse
|