1
|
Di Forti M, Bond BW, Spinazzola E, Trotta G, Lynn J, Malkin R, Kamran Siddiqui N, Demir S, Opadokun T, Leung PBM, Li Z, Quattrone A, Baxter G, Appiah-Kusi E, Freeman TP, Walsh H, Squeri T, Semikina D, Amberson-Jones F, Austin-Zimmerman I, Meynen T, Quattrone D, Murray RM. A proof-of-concept analysis of data from the first NHS clinic for young adults with comorbid cannabis use and psychotic disorders. BJPsych Open 2024; 11:e1. [PMID: 39663754 DOI: 10.1192/bjo.2024.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Cannabis use severely affects the outcome of people with psychotic disorders, yet there is a lack of treatments. To address this, in 2019 the National Health Service (NHS) Cannabis Clinic for Psychosis (CCP) was developed to support adults suffering from psychosis to reduce and/or stop their cannabis use. AIMS Examine outcome data from the first 46 individuals to complete the CCP's intervention. METHOD The sample (N = 46) consisted of adults (aged ≥ 18) with psychosis under the care of the South London and Maudsley NHS Foundation Trust, referred to the CCP between January 2020 and February 2023, who completed their intervention by September 2023. Clinical and functional measures were collected before (T0) and after (T1) the CCP intervention (one-to-one sessions and peer group attendance). Primary outcomes were changes in the Cannabis Use Disorders Identification Test-Revised (CUDIT-R) score and pattern of cannabis use. Secondary outcomes included T0-T1 changes in measures of delusions, paranoia, depression, anxiety and functioning. RESULTS A reduction in the mean CUDIT-R score was observed between T0 (mean difference = 17.10, 95% CI = 15.54-18.67) and T1, with 73.91% of participants achieving abstinence and 26.09% reducing the frequency and potency of their use. Significant improvements in all clinical and functional outcomes were observed, with 90.70% being in work or education at T1 compared with 8.70% at T0. The variance in CUDIT-R scores explained between 34 and 64% of the variance in our secondary measures. CONCLUSIONS The CCP intervention is a feasible strategy to support cannabis use cessation/reduction and improve clinical and functional outcomes of people with psychotic disorders.
Collapse
Affiliation(s)
- Marta Di Forti
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
| | - Benjamin W Bond
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Edoardo Spinazzola
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Giulia Trotta
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
| | - Jodie Lynn
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
| | - Richard Malkin
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
- Tees, Esk and Wear Valleys NHS Foundation Trust, Darlington, UK
| | | | - Sultan Demir
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
| | | | - Perry B M Leung
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Zhikun Li
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- Centre for Neurodevelopmental Disorders New Hunt's House, Guy's Campus King's College London, UK
| | - Andrea Quattrone
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Gabriella Baxter
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
| | | | - Tom P Freeman
- Addiction and Mental Health Group University of Bath, UK
| | - Hannah Walsh
- Department of Addictions, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Tommaso Squeri
- GKT School of Medical Education, King's College London, UK
| | - Daria Semikina
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
| | | | - Isabelle Austin-Zimmerman
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Tim Meynen
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
| | - Diego Quattrone
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
| | - Robin M Murray
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
2
|
Power E, Mongan D, Healy C, Susai SR, Föcking M, Zammit S, Cannon M, Cotter D. Cannabis use in youth is associated with chronic inflammation. Psychol Med 2024:1-11. [PMID: 39648682 DOI: 10.1017/s0033291724002848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
BACKGROUND Markers of inflammation and cannabis exposure are associated with an increased risk of mental disorders. In the current study, we investigated associations between cannabis use and biomarkers of inflammation. METHODS Utilizing a sample of 914 participants from the Avon Longitudinal Study of Parents and Children, we investigated whether interleukin-6 (IL-6), tumor necrosis factor α (TNFα), C-reactive protein (CRP), and soluble urokinase plasminogen activator receptor (suPAR) measured at age 24 were associated with past year daily cannabis use, less frequent cannabis use, and no past year cannabis use. We adjusted for a number of covariates including sociodemographic measures, body mass index, childhood trauma, and tobacco smoking. We found evidence of a strong association between daily or near daily cannabis use and suPAR. RESULTS We did not find any associations between less frequent cannabis use and suPAR. We did not find evidence of an association between IL-6, TNFα or CRP, and cannabis use. CONCLUSIONS Our finding that frequent cannabis use is strongly associated with suPAR, a biomarker of systemic chronic inflammation implicated in neurodevelopmental and neurodegenerative processes is novel. These findings may provide valuable insights into biological mechanisms by which cannabis affects the brain and impacts the risk of serious mental disorders.
Collapse
Affiliation(s)
- Emmet Power
- Department of Psychiatry, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
- Department of Liaison Psychiatry, Children's Health Ireland, Dublin 1, Ireland
| | - David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
- Centre for Clinical Brain Sciences, Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Department of Child and Adolescent Psychiatry, School of Medicine, University College Dublin, Dublin, Ireland
| | - Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Stanley Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, UK
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
- Department of Liaison Psychiatry, Beaumont Hospital, Dublin 9, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - David Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
- Department of Liaison Psychiatry, Beaumont Hospital, Dublin 9, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
3
|
Austin-Zimmerman I, Spinazzola E, Quattrone D, Wu-Choi B, Trotta G, Li Z, Johnson E, Richards AL, Freeman TP, Tripoli G, Gayer-Anderson C, Rodriguez V, Jongsma HE, Ferraro L, La Cascia C, Tosato S, Tarricone I, Berardi D, Bonora E, Seri M, D'Andrea G, Szöke A, Arango C, Bobes J, Sanjuán J, Santos JL, Arrojo M, Velthorst E, Bernardo M, Del-Ben CM, Rossi Menezes P, Selten JP, Jones PB, Kirkbride JB, Rutten BPF, Tortelli A, Llorca PM, de Haan L, Stilo S, La Barbera D, Lasalvia A, Schurnhoff F, Pignon B, van Os J, Lynskey M, Morgan C, O' Donovan M, Lewis CM, Sham PC, Murray RM, Vassos E, Di Forti M. The impact of schizophrenia genetic load and heavy cannabis use on the risk of psychotic disorder in the EU-GEI case-control and UK Biobank studies. Psychol Med 2024:1-13. [PMID: 39637925 DOI: 10.1017/s0033291724002058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND The association between cannabis and psychosis is established, but the role of underlying genetics is unclear. We used data from the EU-GEI case-control study and UK Biobank to examine the independent and combined effect of heavy cannabis use and schizophrenia polygenic risk score (PRS) on risk for psychosis. METHODS Genome-wide association study summary statistics from the Psychiatric Genomics Consortium and the Genomic Psychiatry Cohort were used to calculate schizophrenia and cannabis use disorder (CUD) PRS for 1098 participants from the EU-GEI study and 143600 from the UK Biobank. Both datasets had information on cannabis use. RESULTS In both samples, schizophrenia PRS and cannabis use independently increased risk of psychosis. Schizophrenia PRS was not associated with patterns of cannabis use in the EU-GEI cases or controls or UK Biobank cases. It was associated with lifetime and daily cannabis use among UK Biobank participants without psychosis, but the effect was substantially reduced when CUD PRS was included in the model. In the EU-GEI sample, regular users of high-potency cannabis had the highest odds of being a case independently of schizophrenia PRS (OR daily use high-potency cannabis adjusted for PRS = 5.09, 95% CI 3.08-8.43, p = 3.21 × 10-10). We found no evidence of interaction between schizophrenia PRS and patterns of cannabis use. CONCLUSIONS Regular use of high-potency cannabis remains a strong predictor of psychotic disorder independently of schizophrenia PRS, which does not seem to be associated with heavy cannabis use. These are important findings at a time of increasing use and potency of cannabis worldwide.
Collapse
Affiliation(s)
- Isabelle Austin-Zimmerman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Edoardo Spinazzola
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Diego Quattrone
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
| | - Beatrice Wu-Choi
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai NYC, New York, NY, USA
| | - Giulia Trotta
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
| | - Zhikun Li
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Emma Johnson
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Alexander L Richards
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Tom P Freeman
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Giada Tripoli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | - Charlotte Gayer-Anderson
- ESRC Centre for Society and Mental Health and Health Service and Population Research Department, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Hannah E Jongsma
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- Rivierduinen Institute for Mental Health Care, Sandifortdreef 19, 2333 ZZ Leiden, The Netherlands
| | - Laura Ferraro
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | - Caterina La Cascia
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | - Sarah Tosato
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata di Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Ilaria Tarricone
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Domenico Berardi
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Marco Seri
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Giuseppe D'Andrea
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Andrei Szöke
- INSERM, U955, Equipe 15, 51 Avenue de Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Julio Bobes
- Department of Medicine, Psychiatry Area, School of Medicine, Universidad de Oviedo, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/Julián Clavería s/n, 33006 Oviedo, Spain
| | - Julio Sanjuán
- Department of Psychiatry, School of Medicine, Universidad de Valencia, CIBERSAM, Valencia, Spain
| | - Jose Luis Santos
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Velthorst
- Department of Psychiatry, Mount Sinai School of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Miguel Bernardo
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Department of Medicine, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Cristina Marta Del-Ben
- Division of Psychiatry, Department of Neuroscience and Behaviour, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brasil
| | - Paulo Rossi Menezes
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Arnaldo 455, CEP 01246-903 São Paulo, Brasil
- Núcleo de Pesquina em Saúde Mental Populacional, Universidade de São Paulo, Avenida Doutor Arnaldo 455, CEP 01246-903 São Paulo, Brasil
| | - Jean-Paul Selten
- Rivierduinen Institute for Mental Health Care, Sandifortdreef 19, 2333 ZZ Leiden, The Netherlands
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- CAMEO Early Intervention Service, Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - James B Kirkbride
- PsyLife Group, Division of Psychiatry, University College London, London, UK
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | - Pierre-Michel Llorca
- INSERM, U955, Equipe 15, 51 Avenue de Maréchal de Lattre de Tassigny, 94010 Créteil, France
- CMP B CHU, BP 69, 63003 Clermont Ferrand, Cedex 1, France
| | - Lieuwe de Haan
- Department of Psychiatry, Early Psychosis Section, Academic Medical Centre, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Simona Stilo
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Department of Mental Health and Addiction Services, ASP Crotone, Crotone, Italy
| | - Daniele La Barbera
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | - Antonio Lasalvia
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata di Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Franck Schurnhoff
- Univ Paris Est Creteil (UPEC), AP-HP, Hopitaux Universitaires 'H. Mondor', DMU IMPACT, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, F-94010 Créteil, France
| | - Baptiste Pignon
- Univ Paris Est Creteil (UPEC), AP-HP, Hopitaux Universitaires 'H. Mondor', DMU IMPACT, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, F-94010 Créteil, France
| | - Jim van Os
- Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - Michael Lynskey
- Department of Addiction, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Craig Morgan
- ESRC Centre for Society and Mental Health and Health Service and Population Research Department, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Michael O' Donovan
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- National Institute for Health Research (NIHR), Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Pak C Sham
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
- Centre for Genomic Sciences, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Robin M Murray
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
- National Institute for Health Research (NIHR), Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
4
|
Jahn K, Blumer N, Wieltsch C, Duzzi L, Fuchs H, Meister R, Groh A, Schulze Westhoff M, Krüger THC, Bleich S, Khan AQ, Frieling H. Impact of cannabinoids on synapse markers in an SH-SY5Y cell culture model. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:96. [PMID: 39448630 PMCID: PMC11502758 DOI: 10.1038/s41537-024-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 10/26/2024]
Abstract
Patients suffering from schizophrenic psychosis show reduced synaptic connectivity compared to healthy individuals, and often, the use of cannabis precedes the onset of schizophrenic psychosis. Therefore, we investigated if different types of cannabinoids impact methylation patterns and expression of schizophrenia candidate genes concerned with the development and preservation of synapses and synaptic function in a SH-SY5Y cell culture model. For this purpose, SH-SY5Y cells were differentiated into a neuron-like cell type as previously described. Effects of the cannabinoids delta-9-THC, HU-210, and Anandamide were investigated by analysis of cell morphology and measurement of neurite/dendrite lengths as well as determination of methylation pattern, expression (real time-qPCR, western blot) and localization (immunocytochemistry) of different target molecules concerned with the formation of synapses. Regarding the global impression of morphology, cells, and neurites appeared to be a bit more blunted/roundish and to have more structures that could be described a bit boldly as resembling transport vesicles under the application of the three cannabinoids in comparison to a sole application of retinoic acid (RA). However, there were no obvious differences between the three cannabinoids. Concerning dendrites or branch lengths, there was a significant difference with longer dendrites and branches in RA-treated cells than in undifferentiated control cells (as shown previously), but there were no differences between cannabinoid treatment and exclusive RA application. Methylation rates in the promoter regions of synapse candidate genes in cannabinoid-treated cells were in between those of differentiated cells and untreated controls, even though findings were significant only in some of the investigated genes. In other targets, the methylation rates of cannabinoid-treated cells did not only approach those of undifferentiated cells but were also valued even beyond. mRNA levels also showed the same tendency of values approaching those of undifferentiated controls under the application of the three cannabinoids for most investigated targets except for the structural molecules (NEFH, MAPT). Likewise, the quantification of expression via western blot analysis revealed a higher expression of targets in RA-treated cells compared to undifferentiated controls and, again, lower expression under the additional application of THC in trend. In line with our earlier findings, the application of RA led to higher fluorescence intensity and/or a differential signal distribution in the cell in most of the investigated targets in ICC. Under treatment with THC, fluorescence intensity decreased, or the signal distribution became similar to the dispersion in the undifferentiated control condition. Our findings point to a decline of neuronal differentiation markers in our in vitro cell-culture system under the application of cannabinoids.
Collapse
Affiliation(s)
- Kirsten Jahn
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany.
| | - Nina Blumer
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Caroline Wieltsch
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Laura Duzzi
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Heiko Fuchs
- Laboratory for Experimental Eye Research, Department of Ophthalmology, Medical School Hannover, Hanover, Germany
| | - Roland Meister
- Laboratory for Experimental Eye Research, Department of Ophthalmology, Medical School Hannover, Hanover, Germany
| | - Adrian Groh
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Martin Schulze Westhoff
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Tillmann Horst Christoph Krüger
- Department of Clinical Psychiatry, Division of clinical psychology and sexual medicine, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| | - Stefan Bleich
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| | - Abdul Qayyum Khan
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Helge Frieling
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| |
Collapse
|
5
|
Kreis I, Lagerberg TV, Wold KF, Åsbø G, Simonsen C, Flaaten CB, Engen MJ, Lyngstad SH, Widing LH, Ueland T, Melle I. Behind the heterogeneity in the long-term course of first-episode psychosis: Different psychotic symptom trajectories are associated with different patterns of cannabis and stimulant use. Schizophr Res 2024; 271:91-99. [PMID: 39018985 DOI: 10.1016/j.schres.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Data-driven classification of long-term psychotic symptom trajectories and identification of associated risk factors could assist treatment planning and improve long-term outcomes in psychosis. However, few studies have used this approach, and knowledge about underlying mechanisms is limited. Here, we identify long-term psychotic symptom trajectories and investigate the role of illness-concurrent cannabis and stimulant use. METHODS 192 participants with first-episode psychosis were followed up after 10 years. Psychotic symptom trajectories were estimated using growth mixture modeling and tested for associations with baseline characteristics and cannabis and stimulant use during the follow-up (FU) period. RESULTS Four trajectories emerged: (1) Stable Psychotic Remission (54.2 %), (2) Delayed Psychotic Remission (15.6 %), (3) Psychotic Relapse (7.8 %), (4) Persistent Psychotic Symptoms (22.4 %). At baseline, all unfavorable trajectories (2-4) were characterized by more schizophrenia diagnoses, higher symptom severity, and longer duration of untreated psychosis. Compared to the Stable Psychotic Remission trajectory, unstable trajectories (2,3) showed distinct associations with cannabis/stimulant use during the FU-period, with dose-dependent effects for cannabis but not stimulants (Delayed Psychotic Remission: higher rates of frequent cannabis and stimulant use during the first 5 FU-years; Psychotic Relapse: higher rates of sporadic stimulant use throughout the entire FU-period). The Persistent Psychosis trajectory was less clearly linked to substance use during the FU-period. CONCLUSIONS The risk for an adverse long-term course could be mitigated by treatment of substance use, where particular attention should be devoted to preventing the use of stimulants while the use reduction of cannabis may already yield positive effects.
Collapse
Affiliation(s)
- Isabel Kreis
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Trine Vik Lagerberg
- Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Kristin Fjelnseth Wold
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Clinical Psychosis Research, Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Gina Åsbø
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway; Section for Clinical Psychosis Research, Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Carmen Simonsen
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway; Early Intervention in Psychosis Advisory Unit for South East Norway, Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Camilla Bärthel Flaaten
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway; Drammen District Psychiatric Center, Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Magnus Johan Engen
- Division of Mental Health and Addiction, Nydalen District Psychiatric Center, Oslo University Hospital, Oslo, Norway
| | - Siv Hege Lyngstad
- Division of Mental Health and Addiction, Nydalen District Psychiatric Center, Oslo University Hospital, Oslo, Norway
| | - Line Hustad Widing
- Section for Clinical Psychosis Research, Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Child and Adolescent Psychiatry, Division of Mental Health and Substance Use, Diakonhjemmet Hospital, Oslo, Norway
| | - Torill Ueland
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway; Section for Clinical Psychosis Research, Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Clinical Psychosis Research, Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Brink V, Andleeb H, Gayer-Anderson C, Arango C, Arrojo M, Berardi D, Bernardo M, Bobes J, Del-Ben CM, Ferraro L, de Haan L, La Barbera D, La Cascia C, Lasalvia A, Llorca PM, Menezes PR, Pignon B, Sanjuán J, Santos JL, Selten JP, Tarricone I, Tortelli A, Tripoli G, Velthorst E, Rutten BPF, van Os J, Quattrone D, Murray RM, Jones PB, Morgan C, Di Forti M, Jongsma HE, Kirkbride JB. The Role of Social Deprivation and Cannabis Use in Explaining Variation in the Incidence of Psychotic Disorders: Findings From the EU-GEI Study. Schizophr Bull 2024; 50:1039-1049. [PMID: 38788048 PMCID: PMC11349009 DOI: 10.1093/schbul/sbae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
BACKGROUND AND HYPOTHESIS Recent findings suggest the incidence of first-episode psychotic disorders (FEP) varies according to setting-level deprivation and cannabis use, but these factors have not been investigated together. We hypothesized deprivation would be more strongly associated with variation in FEP incidence than the prevalence of daily or high-potency cannabis use between settings. STUDY DESIGN We used incidence data in people aged 18-64 years from 14 settings of the EU-GEI study. We estimated the prevalence of daily and high-potency cannabis use in controls as a proxy for usage in the population at-risk; multiple imputations by chained equations and poststratification weighting handled missing data and control representativeness, respectively. We modeled FEP incidence in random intercepts negative binomial regression models to investigate associations with the prevalence of cannabis use in controls, unemployment, and owner-occupancy in each setting, controlling for population density, age, sex, and migrant/ethnic group. STUDY RESULTS Lower owner-occupancy was independently associated with increased FEP (adjusted incidence rate ratio [aIRR]: 0.76, 95% CI: 0.61-0.95) and non-affective psychosis incidence (aIRR: 0.68, 95% CI: 0.55-0.83), after multivariable adjustment. Prevalence of daily cannabis use in controls was associated with the incidence of affective psychoses (aIRR: 1.53, 95% CI: 1.02-2.31). We found no association between FEP incidence and unemployment or high-potency cannabis use prevalence. Sensitivity analyses supported these findings. CONCLUSIONS Lower setting-level owner-occupancy and increased prevalence of daily cannabis use in controls independently contributed to setting-level variance in the incidence of different psychotic disorders. Public health interventions that reduce exposure to these harmful environmental factors could lower the population-level burden of psychotic disorders.
Collapse
Affiliation(s)
- Vera Brink
- Department of Psychosis, University Center Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- PsyLife Group, Division of Psychiatry, University College London, London, UK
| | - Humma Andleeb
- PsyLife Group, Division of Psychiatry, University College London, London, UK
| | - Charlotte Gayer-Anderson
- ESRC Centre for Society and Mental Health, King’s College London, London, UK
- Department of Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Manuel Arrojo
- Department of Mental Health and Drug-Addiction Assistance, Health Service of Galicia, Psychiatric Genetic Group IDIS, Hospital Clínico Universitario de Santiago de Compostela, affiliated center to Centro de Investigación Biomédica en Red de Salud Mental, Servicio Gallego de Salud, Santiago de Compostela, Spain
| | | | - Miquel Bernardo
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- CIBERSAM, ISCIII, Barcelona, Spain
| | - Julio Bobes
- Department of Medicine, Psychiatry Area, School of Medicine, Universidad de Oviedo, Centro de Investigación Biomédica en Red de Salud Mental, Oviedo, Spain
| | - Cristina Marta Del-Ben
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Laura Ferraro
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Section of Psychiatry, University of Palermo, Palermo, Italy
| | - Lieuwe de Haan
- Department of Psychiatry, Early Psychosis Section, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniele La Barbera
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Section of Psychiatry, University of Palermo, Palermo, Italy
| | - Caterina La Cascia
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Section of Psychiatry, University of Palermo, Palermo, Italy
| | - Antonio Lasalvia
- Department of Neuroscience, Biomedicine and Movement, Section of Psychiatry, University of Verona, Verona, Italy
| | - Pierre-Michel Llorca
- Fondation FondaMental, Créteil, France
- CMP B CHU, Clermont-Ferrand, France
- Université Clermont Auvergne, Clermont-Ferrand, France
| | - Paolo Rossi Menezes
- Department of Preventive Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Núcleo de Pesquina em Saúde Mental Populacional, Universidade de São Paulo, São Paulo, Brazil
| | - Baptiste Pignon
- Fondation FondaMental, Créteil, France
- Université Paris-Est-Créteil (UPEC) and AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, Psychiatry department and INSERM, IMRB, Translational Neuropsychiatry, Créteil, France
| | - Julio Sanjuán
- Department of Psychiatry, School of Medicine, Universidad de Valencia, Centro de Investigación Biomédica en Red de Salud Mental, Valencia, Spain
| | - José Luis Santos
- Department of Psychiatry, Servicio de Psiquiatría Hospital “Virgen de la Luz”, Cuenca, Spain
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ilaria Tarricone
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorium Università di Bologna, Bologna, Italy
| | - Andrea Tortelli
- Institut National de la Santé et de la Recherche Médicale, U955, Créteil, France
- Pôle Psychiatrie Précarité, Groupe Hospitalier Paris Psychiatrie Neurosciences, Paris, France
| | - Giada Tripoli
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Section of Psychiatry, University of Palermo, Palermo, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Eva Velthorst
- Department of Research, Mental Health Organization “GGZ Noord-Holland-Noord”, Heerhugowaard, The Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Diego Quattrone
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Section of Psychiatry, University of Palermo, Palermo, Italy
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Cambridge, UK
- CAMEO Early Intervention Service, Cambridgeshire and Peterborough National Health Service Foundation Trust, Chesterton Medical Centre, Cambridge, UK
| | - Craig Morgan
- ESRC Centre for Society and Mental Health, King’s College London, London, UK
- Department of Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Marta Di Forti
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Hannah E Jongsma
- Department of Psychosis, University Center Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Veldzicht Centre for Transcultural Psychiatry, Balkbrug, The Netherlands
| | - James B Kirkbride
- PsyLife Group, Division of Psychiatry, University College London, London, UK
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Cambridge, UK
| |
Collapse
|
7
|
Murray CH, Gannon BM, Winsauer PJ, Cooper ZD, Delatte MS. The Development of Cannabinoids as Therapeutic Agents in the United States. Pharmacol Rev 2024; 76:915-955. [PMID: 38849155 PMCID: PMC11331953 DOI: 10.1124/pharmrev.123.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Cannabis is one of the oldest and widely used substances in the world. Cannabinoids within the cannabis plant, known as phytocannabinoids, mediate cannabis' effects through interactions with the body's endogenous cannabinoid system. This endogenous system, the endocannabinoid system, has important roles in physical and mental health. These roles point to the potential to develop cannabinoids as therapeutic agents while underscoring the risks related to interfering with the endogenous system during nonmedical use. This scoping narrative review synthesizes the current evidence for both the therapeutic and adverse effects of the major (i.e., Δ9-tetrahydrocannabinol and cannabidiol) and lesser studied minor phytocannabinoids, from nonclinical to clinical research. We pay particular attention to the areas where evidence is well established, including analgesic effects after acute exposures and neurocognitive risks after acute and chronic use. In addition, drug development considerations for cannabinoids as therapeutic agents within the United States are reviewed. The proposed clinical study design considerations encourage methodological standards for greater scientific rigor and reproducibility to ultimately extend our knowledge of the risks and benefits of cannabinoids for patients and providers. SIGNIFICANCE STATEMENT: This work provides a review of prior research related to phytocannabinoids, including therapeutic potential and known risks in the context of drug development within the United States. We also provide study design considerations for future cannabinoid drug development.
Collapse
Affiliation(s)
- Conor H Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Brenda M Gannon
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Peter J Winsauer
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Ziva D Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Marcus S Delatte
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| |
Collapse
|
8
|
Brunette MF, Roth RM, Trask C, Khokhar JY, Ford JC, Park SH, Hickey SM, Zeffiro T, Xie H. Randomized Laboratory Study of Single-Dose Cannabis, Dronabinol, and Placebo in Patients With Schizophrenia and Cannabis Use Disorder. Schizophr Bull 2024:sbae097. [PMID: 38900958 DOI: 10.1093/schbul/sbae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND HYPOTHESIS Up to 43% of people with schizophrenia have a lifetime cannabis use disorder (CUD). Tetrahydrocannabinol (THC) has been shown to exacerbate psychosis in a dose-dependent manner, but little research has assessed its effects on schizophrenia and co-occurring CUD (SCZ-CUD). In this double-dummy, placebo-controlled trial (total n = 130), we hypothesized that a modest dose of THC would worsen cognitive function but not psychosis. STUDY DESIGN Effects of single-dose oral THC (15 mg dronabinol) or smoked 3.5% THC cigarettes vs placebo in SCZ-CUD or CUD-only on positive and negative symptoms of schizophrenia (only for SCZ-CUD), cognition, and drug experiences assessed several hours after drug administration. SCZ-only and healthy control participants were also assessed. STUDY RESULTS Drug liking was higher in THC groups vs placebo. Neither smoked THC nor oral dronabinol predicted positive or negative symptom subscale scores 2 and 5 h, respectively, after drug exposure in SCZ-CUD participants. The oral dronabinol SCZ-CUD group, but not smoked THC SCZ-CUD group, performed worse than placebo on verbal learning (B = -9.89; 95% CI: -16.06, -3.18; P = .004) and attention (B = -0.61; 95% CI: -1.00, -0.23; P = .002). Every 10-point increment in serum THC + THCC ng/ml was associated with increased negative symptoms (0.40 points; 95% CI: 0.15, 0.65; P = .001; subscale ranges 7-49) and trends were observed for worse positive symptoms and performance in verbal learning, delayed recall, and working memory. CONCLUSIONS In people with SCZ-CUD, a modest single dose of oral THC was associated with worse cognitive functioning without symptom exacerbation several hours after administration, and a THC dose-response effect was seen for negative symptoms.
Collapse
Affiliation(s)
- Mary F Brunette
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Robert M Roth
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Christi Trask
- Ohio State University College of Medicine, Department of Psychiatry and Behavioral Health, Columbus, OH, USA
| | - Jibran Y Khokhar
- University of Western Ontario Schulich School of Medicine and Dentistry, Department of Anatomy and Cell Biology, London, Ontario, Canada
| | - James C Ford
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Soo Hwan Park
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
| | - Sara M Hickey
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Thomas Zeffiro
- University of Maryland School of Medicine, Department of Diagnostic Radiology and Oncology, Baltimore, Maryland, USA
| | - Haiyi Xie
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
| |
Collapse
|
9
|
Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel) 2024; 13:709. [PMID: 38929148 PMCID: PMC11200831 DOI: 10.3390/antiox13060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Psychosis, defined as a set of symptoms that results in a distorted sense of reality, is observed in several psychiatric disorders in addition to schizophrenia. This paper reviews the literature relevant to the underlying neurobiology of psychosis. The dopamine hypothesis has been a major influence in the study of the neurochemistry of psychosis and in development of antipsychotic drugs. However, it became clear early on that other factors must be involved in the dysfunction involved in psychosis. In the current review, it is reported how several of these factors, namely dysregulation of neurotransmitters [dopamine, serotonin, glutamate, and γ-aminobutyric acid (GABA)], neuroinflammation, glia (microglia, astrocytes, and oligodendrocytes), the hypothalamic-pituitary-adrenal axis, the gut microbiome, oxidative stress, and mitochondrial dysfunction contribute to psychosis and interact with one another. Research on psychosis has increased knowledge of the complexity of psychotic disorders. Potential new pharmacotherapies, including combinations of drugs (with pre- and probiotics in some cases) affecting several of the factors mentioned above, have been suggested. Similarly, several putative biomarkers, particularly those related to the immune system, have been proposed. Future research on both pharmacotherapy and biomarkers will require better-designed studies conducted on an all stages of psychotic disorders and must consider confounders such as sex differences and comorbidity.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (S.M.D.)
| |
Collapse
|
10
|
Daswani RR, Choles CM, Kim DD, Barr AM. A systematic review and meta-analysis of synthetic cathinone use and psychosis. Psychopharmacology (Berl) 2024; 241:875-896. [PMID: 38446172 DOI: 10.1007/s00213-024-06569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
RATIONALE Synthetic cathinones (SC), commonly referred to as "bath salts", are stimulants resembling the natural alkaloid cathinone found in the khat plant. These substances have the potential to induce serious health risks such as hallucinations, delusions, paranoia and agitation which can lead to substance-induced psychotic disorders. Despite growing concerns, there is a limited understanding of the association between SC consumption and the devolvement of such psychopathologies. METHODS We conducted a systematic review to investigate the frequency of substance-induced psychotic disorder (SIPD) and associated conditions in humans following synthetic cathinone consumption. We qualitatively and quantitatively analyzed SC exposure cases. RESULTS A total of 32 studies were included, with a diverse range of demographics, synthetic cathinone types, and consumption patterns. The proportion of individuals developing psychotic symptoms was reported at 0.380 (Random-effects model, 95% CI 0.289 - 0.475). Additionally, the significant heterogeneity in diagnostic approaches limited our ability to provide a precise estimate of prevalence. CONCLUSIONS Synthetic cathinone consumption is associated with the risk of developing psychotic symptoms as indicated by the prevalence of hallucinations and/or delusions. Due to the lack of information on classifying factors, particularly duration of symptoms, we are unable to conclude synthetic cathinone-induced psychosis. Further research is warranted to elucidate the underlying mechanism linking synthetic cathinone consumption and psychosis. This review underscores the urgency of addressing the growing health risks posed by synthetic cathinone use. Additionally, it highlights the necessity of proper quantification of psychotic symptoms through scales and reporting of classification criteria to accurately diagnose SIPD.
Collapse
Affiliation(s)
- Rishika R Daswani
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, V6T1Z3, Canada
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Cassandra M Choles
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, V6T1Z3, Canada
- International Collaboration On Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - David D Kim
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, V6T1Z3, Canada
- British Columbia Mental Health & Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Alasdair M Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, V6T1Z3, Canada.
- British Columbia Mental Health & Substance Use Services Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Canseco-Alba A, Tabata K, Momoki Y, Tabassum T, Horiuchi Y, Arinami T, Onaivi ES, Ishiguro H. Cannabinoid CB2 receptors and hypersensitivity to methamphetamine: Vulnerability to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110924. [PMID: 38135096 PMCID: PMC10872318 DOI: 10.1016/j.pnpbp.2023.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/19/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
The human cannabinoid receptor 2 (CB2R) gene CNR2 has been associated with schizophrenia development. Inbred mice treated with the CB2R inverse agonist AM630 and challenged with methamphetamine (MAP) showed reduced prepulse inhibition (%PPI) response and locomotor hyperactivity, both behavioral measures in rodents that correlate with psychosis. Mice lacking CB2R on striatal dopaminergic neurons exhibit a hyperdopaminergic tone and a hyperactivity phenotype. Hyperdopaminergia plays a role in the etiology of schizophrenia. This study aimed to determine the direct role of CB2R, heterozygous Cnr2 gene knockout (Het) mice treated with MAP to induce behavioral sensitivity mimicking a schizophrenia-like human phenotype. Additionally, the study aims to explore the unique modulation of dopamine activity by neuronal CB2R. Conditional knockout DAT-Cnr2-/- mice were evaluated in response to MAP treatments for this purpose. Sensorimotor gating deficits in DAT-Cnr2-/- mice were also evaluated. Het mice developed reverse tolerance (RT) to MAP-enhanced locomotor activity, and RT reduced the %PPI compared to wild-type (WT) mice. DAT-Cnr2-/- mice showed an increased sensitivity to stereotypical behavior induced by MAP and developed RT to MAP. DAT-Cnr2-/- mice exhibit a reduction in %PPI and alter social interaction, another core symptom of schizophrenia. These results demonstrate that there is an interaction between neuronal CB2R and MAP treatment, which increases the risk of schizophrenia-like behavior in this mouse model. This finding provides evidence for further studies targeting CB2R as a potential schizophrenia therapy.
Collapse
Affiliation(s)
- Ana Canseco-Alba
- Laboratory of Reticular Formation Physiology, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico; Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Koichi Tabata
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Yukihiko Momoki
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Taharima Tabassum
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Yasue Horiuchi
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan; Department of Genomic Medicine, Shizuoka Graduate University of Public Health, Shizuoka, Shizuoka 420-0881, Japan
| | - Tadao Arinami
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Hiroki Ishiguro
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan; Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan.
| |
Collapse
|
12
|
Xenaki LA, Dimitrakopoulos S, Selakovic M, Stefanis N. Stress, Environment and Early Psychosis. Curr Neuropharmacol 2024; 22:437-460. [PMID: 37592817 PMCID: PMC10845077 DOI: 10.2174/1570159x21666230817153631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 08/19/2023] Open
Abstract
Existing literature provides extended evidence of the close relationship between stress dysregulation, environmental insults, and psychosis onset. Early stress can sensitize genetically vulnerable individuals to future stress, modifying their risk for developing psychotic phenomena. Neurobiological substrate of the aberrant stress response to hypothalamic-pituitary-adrenal axis dysregulation, disrupted inflammation processes, oxidative stress increase, gut dysbiosis, and altered brain signaling, provides mechanistic links between environmental risk factors and the development of psychotic symptoms. Early-life and later-life exposures may act directly, accumulatively, and repeatedly during critical neurodevelopmental time windows. Environmental hazards, such as pre- and perinatal complications, traumatic experiences, psychosocial stressors, and cannabis use might negatively intervene with brain developmental trajectories and disturb the balance of important stress systems, which act together with recent life events to push the individual over the threshold for the manifestation of psychosis. The current review presents the dynamic and complex relationship between stress, environment, and psychosis onset, attempting to provide an insight into potentially modifiable factors, enhancing resilience and possibly influencing individual psychosis liability.
Collapse
Affiliation(s)
- Lida-Alkisti Xenaki
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Stefanos Dimitrakopoulos
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Mirjana Selakovic
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Nikos Stefanis
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| |
Collapse
|
13
|
Moffa G, Kuipers J, Kuipers E, McManus S, Bebbington P. Sexual abuse and psychotic phenomena: a directed acyclic graph analysis of affective symptoms using English national psychiatric survey data. Psychol Med 2023; 53:7817-7826. [PMID: 37485689 PMCID: PMC10755243 DOI: 10.1017/s003329172300185x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Sexual abuse and bullying are associated with poor mental health in adulthood. We previously established a clear relationship between bullying and symptoms of psychosis. Similarly, we would expect sexual abuse to be linked to the emergence of psychotic symptoms, through effects on negative affect. METHOD We analysed English data from the Adult Psychiatric Morbidity Surveys, carried out in 2007 (N = 5954) and 2014 (N = 5946), based on representative national samples living in private households. We used probabilistic graphical models represented by directed acyclic graphs (DAGs). We obtained measures of persecutory ideation and auditory hallucinosis from the Psychosis Screening Questionnaire, and identified affective symptoms using the Clinical Interview Schedule. We included cannabis consumption and sex as they may determine the relationship between symptoms. We constrained incoming edges to sexual abuse and bullying to respect temporality. RESULTS In the DAG analyses, contrary to our expectations, paranoia appeared early in the cascade of relationships, close to the abuse variables, and generally lying upstream of affective symptoms. Paranoia was consistently directly antecedent to hallucinations, but also indirectly so, via non-psychotic symptoms. Hallucinosis was also the endpoint of pathways involving non-psychotic symptoms. CONCLUSIONS Via worry, sexual abuse and bullying appear to drive a range of affective symptoms, and in some people, these may encourage the emergence of hallucinations. The link between adverse experiences and paranoia is much more direct. These findings have implications for managing distressing outcomes. In particular, worry may be a salient target for intervention in psychosis.
Collapse
Affiliation(s)
- Giusi Moffa
- University of Basel, Basel, Switzerland
- University College London, London, UK
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, Eidgenossische Technische Hochschule Zurich, Basel, Switzerland
| | | | | | | |
Collapse
|
14
|
Sánchez-Gutiérrez T, Rodríguez-Toscano E, Roldán L, Ferraro L, Parellada M, Calvo A, López G, Rapado-Castro M, La Barbera D, La Cascia C, Tripoli G, Di Forti M, Murray RM, Quattrone D, Morgan C, van Os J, García-Portilla P, Al-Halabí S, Bobes J, de Haan L, Bernardo M, Santos JL, Sanjuán J, Arrojo M, Ferchiou A, Szoke A, Rutten BP, Stilo S, D'Andrea G, Tarricone I, Díaz-Caneja CM, Arango C. Tobacco use in first-episode psychosis, a multinational EU-GEI study. Psychol Med 2023; 53:7265-7276. [PMID: 37185055 DOI: 10.1017/s0033291723000806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Tobacco is a highly prevalent substance of abuse in patients with psychosis. Previous studies have reported an association between tobacco use and schizophrenia. The aim of this study was to analyze the relationship between tobacco use and first-episode psychosis (FEP), age at onset of psychosis, and specific diagnosis of psychosis. METHODS The sample consisted of 1105 FEP patients and 1355 controls from the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EU-GEI) study. We assessed substance use with the Tobacco and Alcohol Questionnaire and performed a series of regression analyses using case-control status, age of onset of psychosis, and diagnosis as outcomes and tobacco use and frequency of tobacco use as predictors. Analyses were adjusted for sociodemographic characteristics, alcohol, and cannabis use. RESULTS After controlling for cannabis use, FEP patients were 2.6 times more likely to use tobacco [p ⩽ 0.001; adjusted odds ratio (AOR) 2.6; 95% confidence interval (CI) [2.1-3.2]] and 1.7 times more likely to smoke 20 or more cigarettes a day (p = 0.003; AOR 1.7; 95% CI [1.2-2.4]) than controls. Tobacco use was associated with an earlier age at psychosis onset (β = -2.3; p ⩽ 0.001; 95% CI [-3.7 to -0.9]) and was 1.3 times more frequent in FEP patients with a diagnosis of schizophrenia than in other diagnoses of psychosis (AOR 1.3; 95% CI [1.0-1.8]); however, these results were no longer significant after controlling for cannabis use. CONCLUSIONS Tobacco and heavy-tobacco use are associated with increased odds of FEP. These findings further support the relevance of tobacco prevention in young populations.
Collapse
Affiliation(s)
- T Sánchez-Gutiérrez
- Faculty of Health Science, Universidad Internacional de la Rioja (UNIR), Logroño, Spain
| | - E Rodríguez-Toscano
- Grupo de investigación en Psiquiatría, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy at the Complutense University of Madrid, Madrid, Spain
| | - L Roldán
- Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
| | - L Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy
| | - M Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - A Calvo
- Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
| | - G López
- Faculty of Health Science, Universidad Internacional de la Rioja (UNIR), Logroño, Spain
| | - M Rapado-Castro
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, Victoria 3053, Australia
| | - D La Barbera
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy
| | - C La Cascia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy
| | - G Tripoli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy
| | - M Di Forti
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Mental Health Trust, London, UK
| | - R M Murray
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - D Quattrone
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - C Morgan
- ESRC Centre for Society and Mental Health, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - J van Os
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department Psychiatry, Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - P García-Portilla
- Department of Medicine-Psychiatry, Universidad de Oviedo, ISPA, INEUROPA, CIBERSAM, Oviedo, Spain
| | - S Al-Halabí
- Department of Psychology, University of Oviedo, Oviedo, Spain
| | - J Bobes
- Department of Medicine-Psychiatry, Universidad de Oviedo, ISPA, INEUROPA, CIBERSAM, Oviedo, Spain
| | - L de Haan
- Early Psychosis Department, Amsterdam UMC, University of Amsterdam, Academic Psychiatric Centre, Arkin, Amsterdam, The Netherlands
| | - M Bernardo
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERSAM, ISCIII, Barcelona, Spain
| | - J L Santos
- Department of Psychiatry, Servicio de Psiquiatría Hospital 'Virgen de la Luz', Cuenca, Spain
| | - J Sanjuán
- Department of Psychiatry, Hospital Clínico Universitario de Valencia, INCLIVA, CIBERSAM, School of Medicine, Universidad de Valencia, Valencia, Spain
| | - M Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Ferchiou
- Fondation FondaMental, Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- AP-HP, Hopitaux Universitaires 'H. Mondor', DMU IMPACT, F-94010 Creteil, France
| | - A Szoke
- Fondation FondaMental, Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- AP-HP, Hopitaux Universitaires 'H. Mondor', DMU IMPACT, F-94010 Creteil, France
| | - B P Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - S Stilo
- Department of Mental Health and Addiction Services, ASP Crotone, Crotone, Italy
| | - G D'Andrea
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - I Tarricone
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - C M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - C Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
15
|
Spinazzola E, Quattrone D, Rodriguez V, Trotta G, Alameda L, Tripoli G, Gayer-Anderson C, Freeman TP, Johnson EC, Jongsma HE, Stilo S, La Cascia C, Ferraro L, La Barbera D, Lasalvia A, Tosato S, Tarricone I, D'Andrea G, Galatolo M, Tortelli A, Tagliabue I, Turco M, Pompili M, Selten JP, de Haan L, Rossi Menezes P, Del Ben CM, Santos JL, Arrojo M, Bobes J, Sanjuán J, Bernardo M, Arango C, Kirkbride JB, Jones PB, O'Donovan M, Rutten BP, Van Os J, Morgan C, Sham PC, Austin-Zimmerman I, Li Z, Vassos E, Murray RM, Di Forti M. The association between reasons for first using cannabis, later pattern of use, and risk of first-episode psychosis: the EU-GEI case-control study. Psychol Med 2023; 53:7418-7427. [PMID: 37129249 PMCID: PMC10719678 DOI: 10.1017/s0033291723001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/23/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND While cannabis use is a well-established risk factor for psychosis, little is known about any association between reasons for first using cannabis (RFUC) and later patterns of use and risk of psychosis. METHODS We used data from 11 sites of the multicentre European Gene-Environment Interaction (EU-GEI) case-control study. 558 first-episode psychosis patients (FEPp) and 567 population controls who had used cannabis and reported their RFUC.We ran logistic regressions to examine whether RFUC were associated with first-episode psychosis (FEP) case-control status. Path analysis then examined the relationship between RFUC, subsequent patterns of cannabis use, and case-control status. RESULTS Controls (86.1%) and FEPp (75.63%) were most likely to report 'because of friends' as their most common RFUC. However, 20.1% of FEPp compared to 5.8% of controls reported: 'to feel better' as their RFUC (χ2 = 50.97; p < 0.001). RFUC 'to feel better' was associated with being a FEPp (OR 1.74; 95% CI 1.03-2.95) while RFUC 'with friends' was associated with being a control (OR 0.56; 95% CI 0.37-0.83). The path model indicated an association between RFUC 'to feel better' with heavy cannabis use and with FEPp-control status. CONCLUSIONS Both FEPp and controls usually started using cannabis with their friends, but more patients than controls had begun to use 'to feel better'. People who reported their reason for first using cannabis to 'feel better' were more likely to progress to heavy use and develop a psychotic disorder than those reporting 'because of friends'.
Collapse
Affiliation(s)
- Edoardo Spinazzola
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, UK
| | - Diego Quattrone
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- National Institute for Health Research, Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College, London, UK
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
| | - Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, UK
| | - Giulia Trotta
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, UK
- Service of General Psychiatry, Treatment and Early Intervention in Psychosis Program, Lausanne, University Hospital (CHUV), Lausanne, Switzerland
- Centro Investigacion Biomedica en Red de Salud Mental (CIBERSAM); Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Departamento de Psiquiatria, Universidad de Sevilla, Sevilla, Spain
| | - Giada Tripoli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, UK
- Biomedicine, Neuroscience and Advanced Diagnostic Department, Psychiatry Section, University of Palermo, Palermo, Italy
| | - Charlotte Gayer-Anderson
- Department of Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tom P Freeman
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
- National Addiction Centre, Institute of Psychiatry, King's College London, London, UK
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah E Jongsma
- Psylife Group, Division of Psychiatry, University College London, London, UK
| | - Simona Stilo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, UK
- Department of Mental Health and Addiction Services, ASP Crotone, Crotone, Italy
| | - Caterina La Cascia
- Biomedicine, Neuroscience and Advanced Diagnostic Department, Psychiatry Section, University of Palermo, Palermo, Italy
| | - Laura Ferraro
- Biomedicine, Neuroscience and Advanced Diagnostic Department, Psychiatry Section, University of Palermo, Palermo, Italy
| | - Daniele La Barbera
- Biomedicine, Neuroscience and Advanced Diagnostic Department, Psychiatry Section, University of Palermo, Palermo, Italy
| | - Antonio Lasalvia
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sarah Tosato
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Tarricone
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giuseppe D'Andrea
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Michela Galatolo
- Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Andrea Tortelli
- Institut Mondor de recherché biomedicale, Creteil, France
- Etablissement Public de Sante Maison Blanche, Paris, France
| | - Ilaria Tagliabue
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
- Department of Mental Health and Addiction Services, ASST Lecco, Lecco, Italy
| | - Marco Turco
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Jean-Paul Selten
- Rivierduinen Institute for Mental Health Care, Leiden, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lieuwe de Haan
- Early Psychosis Section, AmsterdamUMC, Academic Medical Centre, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculdade de Medicina, Universidade of São Paulo, São Paulo, Brazil
| | - Cristina M Del Ben
- Department of Preventive Medicine, Faculdade de Medicina, Universidade of São Paulo, São Paulo, Brazil
| | - Jose Luis Santos
- Department of Psychiatry, Servicio de Psiquiatría Hospital “Virgen de la Luz”, Cuenca, Spain
| | - Manuel Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago, Spain
| | - Julio Bobes
- Department of Medicine, Psychiatry Area, School of Medicine, Universidad de Oviedo, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Oviedo, Spain
| | - Julio Sanjuán
- Department of Psychiatry, School of Medicine, Universidad de Valencia, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Valencia, Spain
| | - Miguel Bernardo
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Biomedical Research Networking Centre in Mental Health (CIBERSAM), Barcelona, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - James B Kirkbride
- Reader; Psylife Group, Division of Psychiatry, University College London, London, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- CAMEO Early Intervention Service, Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | - Michael O'Donovan
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Bart P Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jim Van Os
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, UK
- Rivierduinen Institute for Mental Health Care, Leiden, The Netherlands
- Department Psychiatry, Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - Craig Morgan
- Department of Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Pak C Sham
- Department of Psychiatry, Centre for PanorOmic Sciences, and State Key Laboratory of Brain and Cognitive Sciences, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Isabelle Austin-Zimmerman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Zhikun Li
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - EU-GEI WP2 Group
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College of London, London, UK
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
- Research Foundation, National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London and the NIHR BRC at University College London, London, UK
| |
Collapse
|
16
|
Levi L, Bar-Haim M, Winter-van Rossum I, Davidson M, Leucht S, Fleischhacker WW, Park J, Davis JM, Kahn RS, Weiser M. Cannabis Use and Symptomatic Relapse in First Episode Schizophrenia: Trigger or Consequence? Data From the OPTIMISE Study. Schizophr Bull 2023; 49:903-913. [PMID: 36999551 PMCID: PMC10318873 DOI: 10.1093/schbul/sbad033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND HYPOTHESIS This analysis examined the relationship between cannabis use, compliance with antipsychotics and risk for relapse in patients in remission following a first episode of schizophrenia, schizophreniform, or schizoaffective disorder. STUDY DESIGN Analyses were performed on data from a large European study on first episode of schizophrenia, schizophreniform, or schizoaffective disorder (OPTiMiSE). After 10 weeks of antipsychotic treatment, 282/446 patients (63%) met criteria for symptomatic remission; of whom 134/282 (47.5%) then completed a 1-year follow-up. Cross-lagged models and mediation models investigated the temporal relationships between cannabis use, compliance with antipsychotics, social functioning, and symptomatic worsening/relapse. STUDY RESULTS Compared to nonusers, cannabis use increased risk for relapse, adjusted hazard ratio (HR) = 3.03 (SE = 0.32), P < .001, even in patients who were compliant with antipsychotic medication, adjusted HR = 2.89, (SE = 0.32), P < .001. Cannabis use preceded symptomatic worsening and was followed by worsening of Positive and Negative Syndrome Scale total score at the 1-year end-point (standardized β = 0.62, SE = 0.19, P = .001) and by worsening of social functioning (coef = -0.66, P ≤ .001). CONCLUSIONS In patients in remission from their first episode of schizophrenia, schizophreniform, or schizoaffective disorder, cannabis use increases the rate of relapse in both compliant and noncompliant individuals. Importantly, the temporal relationship between cannabis and relapse was that cannabis use preceded later relapse, noncompliance, and decrease in social functioning, and not that patients began to relapse, then used cannabis. Further research with a precision psychiatry approach might identify those patients in particular danger of relapse when using cannabis.
Collapse
Affiliation(s)
- Linda Levi
- Psychiatry Department, Sheba Medical Center, Ramat Gan, Israel
| | - Mor Bar-Haim
- Psychiatry Department, Sheba Medical Center, Ramat Gan, Israel
| | - Inge Winter-van Rossum
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | | | - Stefan Leucht
- Psychiatry Department, Technical University of Munich, Munich, Germany
| | | | - Jinyoung Park
- Department of Psychology and Neuroscience, Duke University, Durham, NC
| | - John M Davis
- Department of Psychiatry, University of Illinois, Chicago, IL
| | - Renè S Kahn
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY
| | - Mark Weiser
- Psychiatry Department, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Persia D, Mangiavacchi F, Marcotullio MC, Rosati O. Cannabinoids as multifaceted compounds. PHYTOCHEMISTRY 2023; 212:113718. [PMID: 37196772 DOI: 10.1016/j.phytochem.2023.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Since ancient times, Cannabis and its preparations have found various applications such as for medical, recreational and industrial purposes. Subsequently the 1930s, legislation in many countries has restricted its use due to its psychotropic properties. More recently, the discovery of endocannabinoid system, including new receptors, ligands, and mediators, its role in maintaining the homeostasis of the human body and the possible implication in various physiological and pathophysiological processes has also been understood. Based on this evidence, researchers were able to develop new therapeutic targets for the treatment of various pathological disorders. For this purpose, Cannabis and cannabinoids were subjected for the evaluation of their pharmacological activities. The renewed interest in the medical use of cannabis for its potential therapeutic application has prompted legislators to take action to regulate the safe use of cannabis and products containing cannabinoids. However, each country has an enormous heterogeneity in the regulation of laws. Here, we are pleased to show a general and prevailing overview of the findings regarding cannabinoids and the multiple research fields such as chemistry, phytochemistry, pharmacology and analytics in which they are involved.
Collapse
Affiliation(s)
- Diana Persia
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy
| | - Francesca Mangiavacchi
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy; Current Address: Department of Chemistry 'Ugo Schiff', Via Della Lastruccia, 16 - Università Degli Studi di Firenze, 50019, Sesto Fiorentino, Italy
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy
| | - Ornelio Rosati
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy.
| |
Collapse
|
18
|
Oscoz-Irurozqui M, Almodóvar-Payá C, Guardiola-Ripoll M, Guerrero-Pedraza A, Hostalet N, Salvador R, Carrión MI, Maristany T, Pomarol-Clotet E, Fatjó-Vilas M. Cannabis Use and Endocannabinoid Receptor Genes: A Pilot Study on Their Interaction on Brain Activity in First-Episode Psychosis. Int J Mol Sci 2023; 24:ijms24087501. [PMID: 37108689 PMCID: PMC10142622 DOI: 10.3390/ijms24087501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The role of both cannabis use and genetic background has been shown in the risk for psychosis. However, the effect of the interplay between cannabis and variability at the endocannabinoid receptor genes on the neurobiological underpinnings of psychosis remains inconclusive. Through a case-only design, including patients with a first-episode of psychosis (n = 40) classified as cannabis users (50%) and non-users (50%), we aimed to evaluate the interaction between cannabis use and common genetic variants at the endocannabinoid receptor genes on brain activity. Genetic variability was assessed by genotyping two Single Nucleotide Polymorphisms (SNP) at the cannabinoid receptor type 1 gene (CNR1; rs1049353) and cannabinoid receptor type 2 gene (CNR2; rs2501431). Functional Magnetic Resonance Imaging (fMRI) data were obtained while performing the n-back task. Gene × cannabis interaction models evidenced a combined effect of CNR1 and CNR2 genotypes and cannabis use on brain activity in different brain areas, such as the caudate nucleus, the cingulate cortex and the orbitofrontal cortex. These findings suggest a joint role of cannabis use and cannabinoid receptor genetic background on brain function in first-episode psychosis, possibly through the impact on brain areas relevant to the reward circuit.
Collapse
Affiliation(s)
- Maitane Oscoz-Irurozqui
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Salud Mental Errenteria-Osakidetza, Av Galtzaraborda 69-75, 20100 Errenteria, Guipúzcoa, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Av Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Av Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Hospital Benito Menni CASM, C/Doctor Antoni Pujadas 38, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | - Noemí Hostalet
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Av Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | | | - Teresa Maristany
- Diagnostic Imaging Department, Hospital Sant Joan de Déu Research Foundation, Passeig de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Av Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Av Jordà 8, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Av Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Pintori N, Caria F, De Luca MA, Miliano C. THC and CBD: Villain versus Hero? Insights into Adolescent Exposure. Int J Mol Sci 2023; 24:ijms24065251. [PMID: 36982327 PMCID: PMC10048857 DOI: 10.3390/ijms24065251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Cannabis is the most used drug of abuse worldwide. It is well established that the most abundant phytocannabinoids in this plant are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These two compounds have remarkably similar chemical structures yet vastly different effects in the brain. By binding to the same receptors, THC is psychoactive, while CBD has anxiolytic and antipsychotic properties. Lately, a variety of hemp-based products, including CBD and THC, have become widely available in the food and health industry, and medical and recreational use of cannabis has been legalized in many states/countries. As a result, people, including youths, are consuming CBD because it is considered “safe”. An extensive literature exists evaluating the harmful effects of THC in both adults and adolescents, but little is known about the long-term effects of CBD exposure, especially in adolescence. The aim of this review is to collect preclinical and clinical evidence about the effects of cannabidiol.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
- Correspondence: ; Tel.: +39-070-6758633
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
20
|
Lemvigh C, Brouwer R, Hilker R, Anhøj S, Baandrup L, Pantelis C, Glenthøj B, Fagerlund B. The relative and interactive impact of multiple risk factors in schizophrenia spectrum disorders: a combined register-based and clinical twin study. Psychol Med 2023; 53:1266-1276. [PMID: 35822354 DOI: 10.1017/s0033291721002749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Research has yielded evidence for genetic and environmental factors influencing the risk of schizophrenia. Numerous environmental factors have been identified; however, the individual effects are small. The additive and interactive effects of multiple risk factors are not well elucidated. Twin pairs discordant for schizophrenia offer a unique opportunity to identify factors that differ between patients and unaffected co-twins, who are perfectly matched for age, sex and genetic background. METHODS Register data were combined with clinical data for 216 twins including monozygotic (MZ) and dizygotic (DZ) proband pairs (one or both twins having a schizophrenia spectrum diagnosis) and MZ/DZ healthy control (HC) pairs. Logistic regression models were applied to predict (1) illness vulnerability (being a proband v. HC pair) and (2) illness status (being the patient v. unaffected co-twin). Risk factors included: A polygenic risk score (PRS) for schizophrenia, birth complications, birth weight, Apgar scores, paternal age, maternal smoking, season of birth, parental socioeconomic status, urbanicity, childhood trauma, estimated premorbid intelligence and cannabis. RESULTS The PRS [odds ratio (OR) 1.6 (1.1-2.3)], childhood trauma [OR 4.5 (2.3-8.8)], and regular cannabis use [OR 8.3 (2.1-32.7)] independently predicted illness vulnerability as did an interaction between childhood trauma and cannabis use [OR 0.17 (0.03-0.9)]. Only regular cannabis use predicted having a schizophrenia spectrum diagnosis between patients and unaffected co-twins [OR 3.3 (1.1-10.4)]. CONCLUSION The findings suggest that several risk factors contribute to increasing schizophrenia spectrum vulnerability. Moreover, cannabis, a potentially completely avoidable environmental risk factor, seems to play a substantial role in schizophrenia pathology.
Collapse
Affiliation(s)
- C Lemvigh
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R Hilker
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Anhøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, Glostrup, Denmark
| | - L Baandrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Center Copenhagen, Copenhagen NV, Denmark
| | - C Pantelis
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - B Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Fagerlund
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Abstract
Cannabis is one of the most widely used recreational drugs among people with clinical psychosis, after nicotine and alcohol. There has been a debate in psychiatry about whether or not we can infer a cause-and-effect relationship between the use of cannabis and psychotic disorders. In this editorial, we first present and critically discuss the evidence to date of the association between heavy cannabis use and psychosis. We argue that while the biological mechanisms underlying individual susceptibility to develop a psychotic disorder following heavy cannabis use are still unknown, heavy cannabis use remains the most modifiable risk factor for the onset of psychotic disorders and for its clinical and functional outcome. This demands a clear move towards both primary and secondary prevention intervention to reduce the impact of heavy cannabis use on the incidence and prevalence of psychotic disorders.
Collapse
Affiliation(s)
- L Johnson-Ferguson
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
- Psychiatric University Hospital, Zurich, Switzerland
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - M Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- South London and Maudsley NHS Mental Health Foundation Trust, London, UK
| |
Collapse
|
22
|
Holt AK, Poklis JL, Peace MR. The history, evolution, and practice of cannabis and E-cigarette industries highlight necessary public health and public safety considerations. JOURNAL OF SAFETY RESEARCH 2023; 84:192-203. [PMID: 36868647 PMCID: PMC10829760 DOI: 10.1016/j.jsr.2022.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/29/2022] [Accepted: 10/25/2022] [Indexed: 06/18/2023]
Affiliation(s)
- Alaina K Holt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States; Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, United States.
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States.
| | - Michelle R Peace
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
23
|
Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem 2023; 164:401-443. [PMID: 35716057 DOI: 10.1111/jnc.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Early applications of positron emission tomography (PET) in psychiatry sought to identify derangements of cerebral blood flow and metabolism. The need for more specific neurochemical imaging probes was soon evident, and these probes initially targeted the sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. For nearly 30 years, the centrality of monoamine dysfunction in psychiatric disorders drove the development of an armamentarium of monoaminergic PET radiopharmaceuticals and imaging methodologies. However, continued investments in monoamine-enhancing drug development realized only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely parallelled drug development priorities, resulting in the development of new PET imaging agents for non-monoamine targets. In part two of this review, we survey clinical research studies using the novel targets and radiotracers described in part one across major psychiatric application areas such as substance use disorders, anxiety disorders, eating disorders, personality disorders, mood disorders, and schizophrenia. Important limitations of the studies described are discussed, as well as key methodologic issues, challenges to the field, and the status of clinical trials seeking to exploit these targets for novel therapeutics.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Patthy Á, Hanics J, Zachar G, Kovács GG, Harkany T, Alpár A. Regional redistribution of CB1 cannabinoid receptors in human foetal brains with Down's syndrome and their functional modifications in Ts65Dn +/+ mice. Neuropathol Appl Neurobiol 2023; 49:e12887. [PMID: 36716771 DOI: 10.1111/nan.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
AIMS The endocannabinoid system with its type 1 cannabinoid receptor (CB1 R) expressed in postmitotic neuroblasts is a critical chemotropic guidance module with its actions cascading across neurogenic commitment, neuronal polarisation and synaptogenesis in vertebrates. Here, we present the systematic analysis of regional CB1 R expression in the developing human brain from gestational week 14 until birth. In parallel, we diagrammed differences in CB1 R development in Down syndrome foetuses and identified altered CB1 R signalling. METHODS Foetal brains with normal development or with Down's syndrome were analysed using standard immunohistochemistry, digitalised light microscopy and image analysis (NanoZoomer). CB1 R function was investigated by in vitro neuropharmacology from neonatal Ts65Dn transgenic mice brains carrying an additional copy of ~90 conserved protein-coding gene orthologues of the human chromosome 21. RESULTS We detected a meshwork of fine-calibre, often varicose processes between the subventricular and intermediate zones of the cortical plate in the late first trimester, when telencephalic fibre tracts develop. The density of CB1 Rs gradually decreased during the second and third trimesters in the neocortex. In contrast, CB1 R density was maintained, or even increased, in the hippocampus. We found the onset of CB1 R expression being delayed by ≥1 month in age-matched foetal brains with Down's syndrome. In vitro, CB1 R excitation induced excess microtubule stabilisation and, consequently, reduced neurite outgrowth. CONCLUSIONS We suggest that neuroarchitectural impairments in Down's syndrome brains involve the delayed development and errant functions of the endocannabinoid system, with a particular impact on endocannabinoids modulating axonal wiring.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - János Hanics
- Department of Anatomy, Semmelweis University, Budapest, Hungary.,SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Gábor G Kovács
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Biomedicum, Karolinska Institutet, Solna, Sweden
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, Budapest, Hungary.,SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
De Felice M, Chen C, Rodríguez-Ruiz M, Szkudlarek HJ, Lam M, Sert S, Whitehead SN, Yeung KKC, Rushlow WJ, Laviolette SR. Adolescent Δ-9-tetrahydrocannabinol exposure induces differential acute and long-term neuronal and molecular disturbances in dorsal vs. ventral hippocampal subregions. Neuropsychopharmacology 2023; 48:540-551. [PMID: 36402837 PMCID: PMC9852235 DOI: 10.1038/s41386-022-01496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Chronic exposure to Δ-9-tetrahydrocannabinol (THC) during adolescence is associated with long-lasting cognitive impairments and enhanced susceptibility to anxiety and mood disorders. Previous evidence has revealed functional and anatomical dissociations between the posterior vs. anterior portions of the hippocampal formation, which are classified as the dorsal and ventral regions in rodents, respectively. Notably, the dorsal hippocampus is critical for cognitive and contextual processing, whereas the ventral region is critical for affective and emotional processing. While adolescent THC exposure can induce significant morphological disturbances and glutamatergic signaling abnormalities in the hippocampus, it is not currently understood how the dorsal vs. ventral hippocampal regions are affected by THC during neurodevelopment. In the present study, we used an integrative combination of behavioral, molecular, and neural assays in a neurodevelopmental rodent model of adolescent THC exposure. We report that adolescent THC exposure induces long-lasting memory deficits and anxiety like-behaviors concomitant with a wide range of differential molecular and neuronal abnormalities in dorsal vs. ventral hippocampal regions. In addition, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS), we show for the first time that adolescent THC exposure induces significant and enduring dysregulation of GABA and glutamate levels in dorsal vs. ventral hippocampus. Finally, adolescent THC exposure induced dissociable dysregulations of hippocampal glutamatergic signaling, characterized by differential glutamatergic receptor expression markers, profound alterations in pyramidal neuronal activity and associated oscillatory patterns in dorsal vs. ventral hippocampal subregions.
Collapse
Affiliation(s)
- Marta De Felice
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Chaochao Chen
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
| | - Mar Rodríguez-Ruiz
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Michael Lam
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
| | - Selvi Sert
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Shawn N Whitehead
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Ken K-C Yeung
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
- Department of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada.
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada.
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON, N6A 4V2, Canada.
| |
Collapse
|
26
|
Sorkhou M, Johnstone S, Kivlichan AE, Castle DJ, George TP. Does cannabis use predict aggressive or violent behavior in psychiatric populations? A systematic review. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:631-643. [PMID: 36137273 DOI: 10.1080/00952990.2022.2118060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Despite an increase in information evaluating the therapeutic and adverse effects of cannabinoids, many potentially important clinical correlates, including violence or aggression, have not been adequately investigated.Objectives: In this systematic review, we examine the published evidence for the relationship between cannabis and aggression or violence in individuals with psychiatric disorders.Methods: Following PRISMA guidelines, articles in English were searched on PubMed, Google Scholar, MEDLINE, and PsycINFO from database inception to January 2022. Data for aggression and violence in people with psychiatric diagnoses were identified during the searches.Results: Of 391 papers identified within the initial search, 15 studies met inclusion criteria. Cross-sectional associations between cannabis use and aggression or violence in samples with post-traumatic stress disorder (PTSD) were found. Moreover, a longitudinal association between cannabis use and violence and aggression was observed in psychotic-spectrum disorders. However, the presence of uncontrolled confounding factors in the majority of included studies precludes any causal conclusions.Conclusion: Although cannabis use is associated with aggression or violence in individuals with PTSD or psychotic-spectrum disorders, causal conclusions cannot be drawn due to methodological limitations observed in the current literature. Well-controlled, longitudinal studies are needed to ascertain whether cannabis plays a causal role on subsequent violence or aggression in mental health disorders.
Collapse
Affiliation(s)
- Maryam Sorkhou
- Centre for Complex Interventions, Centre for Addictions and Mental Health, Toronto, Canada.,Institute of Medical Sciences (IMS) and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Samantha Johnstone
- Centre for Complex Interventions, Centre for Addictions and Mental Health, Toronto, Canada
| | | | - David J Castle
- Centre for Complex Interventions, Centre for Addictions and Mental Health, Toronto, Canada.,Institute of Medical Sciences (IMS) and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tony P George
- Centre for Complex Interventions, Centre for Addictions and Mental Health, Toronto, Canada.,Institute of Medical Sciences (IMS) and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Rasmussen JØ, Nordholm D, Glenthøj LB, Jensen MA, Garde AH, Ragahava JM, Jennum PJ, Glenthøj BY, Nordentoft M, Baandrup L, Ebdrup BH, Kristensen TD. White matter microstructure and sleep-wake disturbances in individuals at ultra-high risk of psychosis. Front Hum Neurosci 2022; 16:1029149. [PMID: 36393990 PMCID: PMC9649829 DOI: 10.3389/fnhum.2022.1029149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Aim White matter changes in individuals at ultra-high risk for psychosis (UHR) may be involved in the transition to psychosis. Sleep-wake disturbances commonly precede the first psychotic episode and predict development of psychosis. We examined associations between white matter microstructure and sleep-wake disturbances in UHR individuals compared to healthy controls (HC), as well as explored the confounding effect of medication, substance use, and level of psychopathology. Methods Sixty-four UHR individuals and 35 HC underwent clinical interviews and diffusion weighted imaging. Group differences on global and callosal mean fractional anisotropy (FA) was tested using general linear modeling. Sleep-wake disturbances were evaluated using the subjective measures disturbed sleep index (DSI) and disturbed awakening index (AWI) from the Karolinska Sleep Questionnaire, supported by objective sleep measures from one-night actigraphy. The primary analyses comprised partial correlation analyses between global FA/callosal FA and sleep-wake measures. Secondary analyses investigated multivariate patterns of covariance between measures of sleep-wake disturbances and FA in 48 white matter regions of interest using partial least square correlations. Results Ultra-high risk for psychosis individuals displayed lower global FA (F = 14.56, p < 0.001) and lower callosal FA (F = 11.34, p = 0.001) compared to HC. Subjective sleep-wake disturbances were significantly higher among the UHR individuals (DSI: F = 27.59, p < 0.001, AWI: F = 36.42, p < 0.001). Lower callosal FA was correlated with increased wake after sleep onset (r = -0.34, p = 0.011) and increased sleep fragmentation index (r = -0.31, p = 0.019) in UHR individuals. Multivariate analyses identified a pattern of covariance in regional FA which were associated with DSI and AWI in UHR individuals (p = 0.028), but not in HC. Substance use, sleep medication and antipsychotic medication did not significantly confound these associations. The association with objective sleep-wake measures was sustained when controlling for level of depressive and UHR symptoms, but symptom level confounded the covariation between FA and subjective sleep-wake measures in the multivariate analyses. Conclusion Compromised callosal microstructure in UHR individuals was related to objectively observed disruptions in sleep-wake functioning. Lower FA in ventrally located regions was associated with subjectively measured sleep-wake disturbances and was partly explained by psychopathology. These findings call for further investigation of sleep disturbances as a potential treatment target.
Collapse
Affiliation(s)
- Jesper Ø. Rasmussen
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Dorte Nordholm
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Louise B. Glenthøj
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie A. Jensen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne H. Garde
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jayachandra M. Ragahava
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Poul J. Jennum
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y. Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Baandrup
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina D. Kristensen
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| |
Collapse
|
28
|
Mona K, Ntlantsana V, Tomita AM, Paruk S. Prevalence of cannabis use in people with psychosis in KwaZulu-Natal, South Africa. S Afr J Psychiatr 2022; 28:1927. [PMID: 36340643 PMCID: PMC9634825 DOI: 10.4102/sajpsychiatry.v28i0.1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Background There is a high prevalence of cannabis use in patients with schizophrenia spectrum and other psychotic disorders, with comorbid cannabis use in this population being associated with poorer long-term outcomes. Aim To determine the prevalence of cannabis use in patients with a schizophrenia spectrum and other psychotic disorders. Setting The study was conducted at a psychiatric hospital in Durban, KwaZulu-Natal Province, South Africa. Methods A review of clinical records of patients admitted to the hospital for the period, June 2018 to June 2020, was conducted. Results A total of 370 clinical records were reviewed, of which 48.9% reported current and 51.1% lifetime cannabis use. Being male was significantly associated with current and lifetime cannabis use (OR = 4.90, 95% CI 2.49–9.62 and OR = 6.27, 95% CI 3.28–11.95, respectively). Current alcohol use was also associated with current cannabis use (CCU) (OR = 3.06, 95% CI 1.78–5.28), and age 45 years and older was associated with a lower odds of cannabis use (OR = 0.30, 95% CI 0.09–0.96). Forty-eight per cent of participants were admitted three or more times, and readmission was associated with cannabis use (p = 0.01). There was a lack of association between cannabis use, readmission and human immunodeficiency virus (HIV) status, after controlling for variables such as alcohol use and gender. Conclusion Almost 50% of people admitted with schizophrenia spectrum and other psychotic disorders have comorbid current and lifetime cannabis use. There is a need for dual diagnosis units to address comorbid substance use in people with psychotic disorders, as it leads to poorer outcomes. Contribution The study found that there is a high prevalence of cannabis use in people with psychosis. Therefore, it is imperative that we revise treatment programs in our psychiatric units and there is an urgent need for dual diagnosis programs that address substance use in this group of patients.
Collapse
Affiliation(s)
- Khanya Mona
- Discipline of Psychiatry, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Vuyokazi Ntlantsana
- Discipline of Psychiatry, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew M. Tomita
- Department of Psychiatry, KwaZulu Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu- Natal, Durban, South Africa
- Discipline of Psychiatry, Centre of Rural Health, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Saeeda Paruk
- Discipline of Psychiatry, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
29
|
Wormington B, Thorp JG, Scott JG, Derks EM. Influences on the Genetic Relationship Between Cannabis Use and Schizophrenia: The Role of the Externalizing Spectrum. Schizophr Bull 2022; 48:1318-1326. [PMID: 35925031 PMCID: PMC9673266 DOI: 10.1093/schbul/sbac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS The nature of the robust association between cannabis use and schizophrenia remains undetermined. Plausible hypotheses explaining this relationship include the premise that cannabis use causes schizophrenia, increased liability for schizophrenia increases the risk of cannabis use initiation (eg, self-medication), or the bidirectional causal hypothesis where both factors play a role in the development of the other. Alternatively, factors that confound the relationship between schizophrenia and cannabis use may explain their association. Externalizing behaviors are related to both schizophrenia and cannabis use and may influence their relationship. STUDY DESIGN This study aimed to evaluate whether externalizing behaviors influence the genetic relationship between cannabis use and schizophrenia. We conducted a multivariate genome-wide association analysis of 6 externalizing behaviors in order to construct a genetic latent factor of the externalizing spectrum. Genomic structural equation modeling was used to evaluate the influence of externalizing behaviors on the genetic relationship between cannabis use and schizophrenia. RESULTS We found that externalizing behaviors partially explained the association between cannabis use and schizophrenia by up to 42%. CONCLUSIONS This partial explanation of the association by externalizing behaviors suggests that there may be other unidentified confounding factors, alongside a possible direct association between schizophrenia and cannabis use. Future studies should aim to identify further confounding factors to accurately explain the relationship between cannabis use and schizophrenia.
Collapse
Affiliation(s)
- Briar Wormington
- To whom correspondence should be addressed; Briar Wormington, QIMR Berghofer, 300 Herston Road, Herston, QLD 4006, e-mail:
| | - Jackson G Thorp
- QIMR Berghofer, Translational Neurogenomics Group, Herston, QLD, Australia,Faculty of Medicine, University of Queensland, Herston, QLD, Australia
| | - James G Scott
- Faculty of Medicine, University of Queensland, Herston, QLD, Australia,QIMR Berghofer, Child and Youth Mental Health, Herston, QLD, Australia,Metro North Mental Health Service, Brisbane, QLD, Australia
| | - Eske M Derks
- QIMR Berghofer, Translational Neurogenomics Group, Herston, QLD, Australia,Faculty of Medicine, University of Queensland, Herston, QLD, Australia
| |
Collapse
|
30
|
Ellmerer P, Peball M, Carbone F, Ritter M, Heim B, Marini K, Valent D, Krismer F, Poewe W, Djamshidian A, Seppi K. Eye Tracking in Patients with Parkinson’s Disease Treated with Nabilone–Results of a Phase II, Placebo-Controlled, Double-Blind, Parallel-Group Pilot Study. Brain Sci 2022; 12:brainsci12050661. [PMID: 35625047 PMCID: PMC9139535 DOI: 10.3390/brainsci12050661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
The topic of the therapeutic use of cannabinoids in Parkinson’s disease (PD) is broadly discussed and frequently comes up in the outpatient clinic. So far, there are only a few randomized clinical trials assessing the effects of cannabinoids in PD. We are able to demonstrate a reduction in non-motor symptom (NMS) burden after the administration of nabilone. As impairment of attention and working memory have been described earlier as possible side effects, we assess cognitive performance using saccadic paradigms measured by an eye tracker. We do not observe a significant difference in any of the saccadic paradigms between PD patients on placebo versus those treated with nabilone. We, therefore, conclude that top-down inhibitory control is not affected by the tetrahydrocannabinol analogue. Nabilone did not significantly worsen cognitive performance and appears to be safe to use in selected PD patients who suffer from disabling NMS.
Collapse
Affiliation(s)
- Philipp Ellmerer
- Department of Neurology, Medical University Innsbruck, Anichstraße 25, 6020 Innsbruck, Austria; (P.E.); (M.P.); (F.C.); (B.H.); (K.M.); (D.V.); (F.K.); (W.P.); (A.D.)
| | - Marina Peball
- Department of Neurology, Medical University Innsbruck, Anichstraße 25, 6020 Innsbruck, Austria; (P.E.); (M.P.); (F.C.); (B.H.); (K.M.); (D.V.); (F.K.); (W.P.); (A.D.)
| | - Federico Carbone
- Department of Neurology, Medical University Innsbruck, Anichstraße 25, 6020 Innsbruck, Austria; (P.E.); (M.P.); (F.C.); (B.H.); (K.M.); (D.V.); (F.K.); (W.P.); (A.D.)
| | - Marcel Ritter
- Interactive Graphics and Simulation Group, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria;
| | - Beatrice Heim
- Department of Neurology, Medical University Innsbruck, Anichstraße 25, 6020 Innsbruck, Austria; (P.E.); (M.P.); (F.C.); (B.H.); (K.M.); (D.V.); (F.K.); (W.P.); (A.D.)
| | - Kathrin Marini
- Department of Neurology, Medical University Innsbruck, Anichstraße 25, 6020 Innsbruck, Austria; (P.E.); (M.P.); (F.C.); (B.H.); (K.M.); (D.V.); (F.K.); (W.P.); (A.D.)
| | - Dora Valent
- Department of Neurology, Medical University Innsbruck, Anichstraße 25, 6020 Innsbruck, Austria; (P.E.); (M.P.); (F.C.); (B.H.); (K.M.); (D.V.); (F.K.); (W.P.); (A.D.)
| | - Florian Krismer
- Department of Neurology, Medical University Innsbruck, Anichstraße 25, 6020 Innsbruck, Austria; (P.E.); (M.P.); (F.C.); (B.H.); (K.M.); (D.V.); (F.K.); (W.P.); (A.D.)
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Anichstraße 25, 6020 Innsbruck, Austria; (P.E.); (M.P.); (F.C.); (B.H.); (K.M.); (D.V.); (F.K.); (W.P.); (A.D.)
| | - Atbin Djamshidian
- Department of Neurology, Medical University Innsbruck, Anichstraße 25, 6020 Innsbruck, Austria; (P.E.); (M.P.); (F.C.); (B.H.); (K.M.); (D.V.); (F.K.); (W.P.); (A.D.)
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Anichstraße 25, 6020 Innsbruck, Austria; (P.E.); (M.P.); (F.C.); (B.H.); (K.M.); (D.V.); (F.K.); (W.P.); (A.D.)
- Correspondence:
| |
Collapse
|
31
|
Acute effects of Δ 9-tetrahydrocannabinol and cannabidiol on auditory mismatch negativity. Psychopharmacology (Berl) 2022; 239:1409-1424. [PMID: 34719731 DOI: 10.1007/s00213-021-05997-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Mismatch negativity (MMN) is a candidate endophenotype for schizophrenia subserved by N-methyl-D-aspartate receptor (NMDAR) function and there is increasing evidence that prolonged cannabis use adversely affects MMN generation. Few human studies have investigated the acute effects of cannabinoids on brain-based biomarkers of NMDAR function and synaptic plasticity. OBJECTIVES The current study investigated the acute effects of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) alone and in combination on the mismatch negativity (MMN). METHODS In a randomised, double-blind, crossover placebo-controlled study, 18 frequent and 18 less-frequent cannabis users underwent 5 randomised drug sessions administered via vaporiser: (1) placebo; (2) THC 8 mg; (3) CBD 400 mg; (4) THC 8 mg + CBD 4 mg [THC + CBDlow]; (5) THC 12 mg + CBD 400 mg [THC + CBDhigh]. Participants completed a multifeature MMN auditory oddball paradigm with duration, frequency and intensity deviants (6% each). RESULTS Relative to placebo, both THC and CBD were observed to increase duration and intensity MMN amplitude in less-frequent users, and THC also increased frequency MMN in this group. The addition of low-dose CBD added to THC attenuated the effect of THC on duration and intensity MMN amplitude in less-frequent users. The same pattern of effects was observed following high-dose CBD added to THC on duration and frequency MMN in frequent users. CONCLUSIONS The pattern of effects following CBD combined with THC on MMN may be subserved by different underlying neurobiological interactions within the endocannabinoid system that vary as a function of prior cannabis exposure. These results highlight the complex interplay between the acute effects of exogenous cannabinoids and NMDAR function. Further research is needed to determine how this process normalises after the acute effects dissipate and following repeated acute exposure.
Collapse
|
32
|
Jamal M, Waheed S, Shakoor A. The prevalence of substance abuse and associated factors among male prisoners in Karachi jails, Pakistan. J Taibah Univ Med Sci 2022; 17:929-935. [PMID: 36212581 PMCID: PMC9513596 DOI: 10.1016/j.jtumed.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Substance abuse and cigarette smoking are now regarded as major public health problems. This study aims to determine the prevalence, risk profile, and associated sociodemographic factors of substance abuse among male prisoners in Karachi jails. Methods This descriptive cross-sectional study was carried out among 600 male prisoners in Malir and Central Jails in Karachi. The principal investigator collected the data via one-on-one basis interviews, using a survey questionnaire consisting of the WHO ASSIST version 3, and structured demographic proforma. The data analysis regarding ever and current use of ten substances was done according to the standard instruction manual. A Chi-square test was applied to determine the association between categorical sociodemographic variables and current/ever substance use among prisoners. A p-value of <0.05 was considered statistically significant. Results In this study, 97.1% of prisoners had a history of substance abuse at least once in their lifetime. For the current use of a substance, the majority of the prisoners fell into the low-risk category, except for tobacco for which 80.5% of prisoners were at moderate risk of use. 13%, 12.7%, and 9.5% of prisoners were at high risk for using opioids, cannabis, and tobacco, respectively. Several associations were found between the socioeconomic factors of the study subjects and their substance use. Conclusion The study demonstrates a high prevalence and alarming current risk profile of substance abuse among prisoners of Karachi Jails. Considering the associated disease burden, substance abuse among prisoners should be considered a public health priority. Further exploration of associated and causative factors can help policymakers devise adequate measures for prevention and rehabilitation.
Collapse
Affiliation(s)
- Madiha Jamal
- General Dental Practitioner, Royal College of Surgeons of England, Cornwall, United Kingdom
- Corresponding address: Smile Dental Care, Parkvale Dental Practice, 15 Kimberly Park Road, Falmouth, Cornwall, United Kingdom.
| | | | - Asma Shakoor
- Community & Preventive Dentistry Department, Institute of Dentistry, Combined Military Hospital- Lahore Medical College, National University of Medical Sciences, Lahore, Pakistan
| |
Collapse
|
33
|
Pharmacological effects of cannabidiol by transient receptor potential channels. Life Sci 2022; 300:120582. [PMID: 35483477 DOI: 10.1016/j.lfs.2022.120582] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
Cannabidiol (CBD), as a major phytocannabinoid of Cannabis sativa, has emerged as a promising natural compound in the treatment of diseases. Its diverse pharmacological effects with limited side effects have promoted researchers to pursue new therapeutic applications. It has little affinity for classical cannabinoid receptors (CB1 and CB2). Considering this and its diverse pharmacological effects, it is logical to set up studies for finding its putative potential targets other than CB1 and CB2. A class of ion channels, namely transient potential channels (TRP), has been identified during two recent decades. More than 30 members of this family have been studied, so far. They mediate diverse physiological functions and are associated with various pathological conditions. Some have been recognized as key targets for natural compounds such as capsaicin, menthol, and CBD. Studies show that CBD has agonistic effects for TRPV1-4 and TRPA1 channels with antagonistic effects on the TRPM8 channel. In this article, we reviewed the recent findings considering the interaction of CBD with these channels. The review indicated that TRP channels mediate, at least in part, the effects of CBD on seizure, inflammation, cancer, pain, acne, and vasorelaxation. This highlights the role of TRP channels in CBD-mediated effects, and binding to these channels may justify part of its paradoxical effects in comparison to classical phytocannabinoids.
Collapse
|
34
|
Bogale K, Raup-Konsavage W, Dalessio S, Vrana K, Coates MD. Cannabis and Cannabis Derivatives for Abdominal Pain Management in Inflammatory Bowel Disease. Med Cannabis Cannabinoids 2022; 4:97-106. [PMID: 35224429 DOI: 10.1159/000517425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022] Open
Abstract
For centuries, cannabis and its components have been used to manage a wide variety of symptoms associated with many illnesses. Gastrointestinal (GI) diseases are no exception in this regard. Individuals suffering from inflammatory bowel disease (IBD) are among those who have sought out the ameliorating properties of this plant. As legal limitations of its use have eased, interest has grown from both patients and their providers regarding the potential of cannabis to be used in the clinical setting. Similarly, a growing number of animal and human studies have been undertaken to evaluate the impact of cannabis and cannabinoid signaling elements on the natural history of IBD and its associated complications. There is little clinical evidence supporting the ability of cannabis or related products to treat the GI inflammation underlying these disorders. However, 1 recurring theme from both animal and human studies is that these agents have a significant impact on several IBD-related symptoms, including abdominal pain. In this review, we discuss the role of cannabis and cannabinoid signaling in visceral pain perception, what is currently known regarding the efficacy of cannabis and its derivatives for managing pain, related symptoms and inflammation in IBD, and what work remains to effectively utilize cannabis and its derivatives in the clinical setting.
Collapse
Affiliation(s)
- Kaleb Bogale
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Wesley Raup-Konsavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Shannon Dalessio
- Division of Gastroenterology & Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kent Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Matthew D Coates
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.,Division of Gastroenterology & Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
35
|
The Construct of Medical and Non-Medical Marijuana—Critical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052769. [PMID: 35270462 PMCID: PMC8910105 DOI: 10.3390/ijerph19052769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
The rising popularity of medical marijuana and its potential therapeutic uses has resulted in passionate discussions that have mainly focused on its possible benefits and applications. Although the concept itself seems promising, the multitude of presented information has noticeable ramifications—terminological chaos being one. This work aimed to synthesize and critically analyze scientific evidence on the therapeutic uses of cannabinoids in the field of psychiatry. Emphasis was placed on the anxiolytic effects of cannabis constituents and their effects on post-traumatic stress disorder, anxiety disorders, schizophrenia spectrum, and other psychotic disorders. The review was carried out from an addictological perspective. A database search of interchangeably combined keywords resulted in the identification of subject-related records. The data were then analyzed in terms of relevance, contents, methodologies, and cited papers. The results were clear in supporting one common conclusion: while most findings provide support for beneficial applications of medical marijuana in psychiatry, no certain conclusions can be drawn until larger-scaled, more methodologically rigorous, and (preferably) controlled randomized trials verify these discoveries.
Collapse
|
36
|
Jenkins BW, Buckhalter S, Perreault ML, Khokhar JY. Cannabis Vapor Exposure Alters Neural Circuit Oscillatory Activity in a Neurodevelopmental Model of Schizophrenia: Exploring the Differential Impact of Cannabis Constituents. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab052. [PMID: 35036917 PMCID: PMC8752653 DOI: 10.1093/schizbullopen/sgab052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cannabis use is highly prevalent in patients with schizophrenia and worsens the course of the disorder. To understand how exposure to cannabis changes schizophrenia-related oscillatory disruptions, we investigated the impact of administering cannabis vapor containing either Δ9-tetrahydrocannabinol (THC) or balanced THC/cannabidiol (CBD) on oscillatory activity in the neonatal ventral hippocampal lesion (NVHL) rat model of schizophrenia. Male Sprague Dawley rats underwent lesion or sham surgeries on postnatal day 7. In adulthood, electrodes were implanted targeting the cingulate cortex (Cg), the prelimbic cortex (PrLC), the hippocampus (HIP), and the nucleus accumbens (NAc). Local field potential recordings were obtained after rats were administered either the "THC-only" cannabis vapor (8-18% THC/0% CBD) or the "Balanced THC:CBD" cannabis vapor (4-11% THC/8.5-15.5% CBD) in a cross-over design with a 2-week wash-out period between exposures. Compared to controls, NVHL rats had reduced baseline gamma power in the Cg, HIP, and NAc, and reduced HIP-Cg high-gamma coherence. THC-only vapor exposure broadly suppressed oscillatory power and coherence, even beyond the baseline reductions observed in NHVL rats. Balanced THC:CBD vapor, however, did not suppress oscillatory power and coherence, and in some instances enhanced power. For NVHL rats, THC-only vapor normalized the baseline HIP-Cg high-gamma coherence deficits. NHVL rats demonstrated a 20 ms delay in HIP theta to high-gamma phase coupling, which was not apparent in the PrLC and NAc after both exposures. In conclusion, cannabis vapor exposure has varying impacts on oscillatory activity in NVHL rats, and the relative composition of naturally occurring cannabinoids may contribute to this variability.
Collapse
Affiliation(s)
- Bryan W Jenkins
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Shoshana Buckhalter
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
37
|
Leelawat S, Leelawat K, Wannakup T, Saingam W, Khamthong N, Madaka F, Maha A, Pathompak P, Sueree L, Songsak T. Anticancer activity of Δ 9-tetrahydrocannabinol and cannabinol in vitro and in human lung cancer xenograft. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
38
|
Livne O, Shmulewitz D, Sarvet AL, Wall MM, Hasin DS. Association of Cannabis Use-Related Predictor Variables and Self-Reported Psychotic Disorders: U.S. Adults, 2001-2002 and 2012-2013. Am J Psychiatry 2022; 179:36-45. [PMID: 34645275 PMCID: PMC8945254 DOI: 10.1176/appi.ajp.2021.21010073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors sought to determine the association of cannabis indicators with self-reported psychotic disorders in the U.S. general population. METHODS Participants were from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC; 2001-2002; N=43,093) and NESARC-III (2012-2013; N=36,309). Logistic regression was used to estimate standardized prevalences of past-year self-reported psychotic disorders within each survey and to evaluate the association of past-year self-reported psychotic disorders with indicators of nonmedical cannabis use (any use; frequent use [at least three times/week], daily/near-daily use, and DSM-IV cannabis use disorder) compared with those with no past-year nonmedical cannabis use. Whether the strength of associations differed between surveys was indicated by difference-in-difference tests (between-survey contrasts) and ratios of odds ratios between surveys. RESULTS Self-reported psychotic disorders were significantly more prevalent among participants with any nonmedical cannabis use than those without (2001-2002: 1.65% compared with 0.27%; 2012-2013: 1.89% compared with 0.68%). In 2001-2002, self-reported psychotic disorders were unrelated to either frequent use or daily/near-daily use. However, in 2012 - 2013, compared with nonusers, self-reported psychotic disorders were more common among participants with frequent use and those with daily/near-daily nonmedical cannabis use (2012-2013: 2.79% and 2.52%, respectively, compared with 0.68% among nonusers). Self-reported psychotic disorders were significantly more prevalent among participants with cannabis use disorder than nonusers in both surveys (2001-2002: 2.55% compared with 0.27%; 2012 - 2013: 3.38% compared with 0.68%). The strength of these associations did not change over time. CONCLUSIONS Data from the U.S. general population, especially more recent data, suggest associations between self-reported psychotic disorder and frequent nonmedical cannabis use and cannabis use disorder. Clinicians and policy makers should consider these relationships when monitoring patients and formulating programs.
Collapse
Affiliation(s)
- Ofir Livne
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY
| | - Dvora Shmulewitz
- New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University Medical Center, New York, NY
| | - Aaron L. Sarvet
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Melanie M. Wall
- Department of Psychiatry, Columbia University Medical Center, New York, NY
| | - Deborah S. Hasin
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY,New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University Medical Center, New York, NY
| |
Collapse
|
39
|
Zhuo C, Chen G, Chen J, Yang L, Zhang Q, Li Q, Wang L, Ma X, Sun Y, Jia F, Tian H, Jiang D. Baseline global brain structural and functional alterations at the time of symptom onset can predict subsequent cognitive deterioration in drug-naïve first-episode schizophrenia patients: Evidence from a follow-up study. Front Psychiatry 2022; 13:1012428. [PMID: 36311504 PMCID: PMC9615917 DOI: 10.3389/fpsyt.2022.1012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 01/10/2023] Open
Abstract
Alterations in the global brain gray matter volume (gGMV) and global functional connectivity density (gFCD) play a pivotal role in the cognitive impairment and further deterioration in schizophrenia. This study aimed to assess the correlation between alterations in the gGMV and gFCD at baseline (ΔgGMV and ΔgFCD), and the subsequent alterations of cognitive function in schizophrenia patients after 2-year antipsychotic treatment. Global-brain magnetic resonance imaging scans were acquired from 877 drug-naïve, first-episode schizophrenia patients at baseline and after two years of antipsychotic treatment with adequate dosage and duration, and 200 healthy controls. According to ΔgGMV at baseline, schizophrenia patients were divided into mild, moderate, and severe alteration groups. The MATRICS consensus cognitive battery and Global Deficit Score (GDS) were used to assess cognitive impairment. We found that ΔgGMV and ΔgFCD at baseline were significantly correlated with the severity of the cognitive deterioration (ΔGDS). The correlation coefficient indicated a significant positive correlation between baseline ΔgFCD and subsequent cognitive deterioration, with a relatively stronger relation in the mild alteration group (r = 0.31). In addition, there was a significant positive correlation between baseline ΔgGMV and subsequent cognitive deterioration, with a stronger relation in the moderate and severe alteration groups (r = 0.303; r = 0.302, respectively). Our results showed that ΔgGMV and ΔgFCD are correlated with the severity of cognitive deterioration after completion of a 2-year antipsychotic treatment in schizophrenia patients. These findings suggest that baseline alterations in gGMV and gFCD hold potential for predicting subsequent cognitive decline in schizophrenia.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China.,Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jiayue Chen
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Lei Yang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Qiuyu Zhang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Qianchen Li
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Lina Wang
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Xiaoyan Ma
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Yun Sun
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Feng Jia
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| |
Collapse
|
40
|
Fiorentini A, Cantù F, Crisanti C, Cereda G, Oldani L, Brambilla P. Substance-Induced Psychoses: An Updated Literature Review. Front Psychiatry 2021; 12:694863. [PMID: 35002789 PMCID: PMC8732862 DOI: 10.3389/fpsyt.2021.694863] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/17/2021] [Indexed: 01/22/2023] Open
Abstract
Background: On the current psychopharmacological panorama, the variety of substances able to provoke an episode of acute psychosis is rapidly increasing. Such psychotic episodes are classified according to the major category of symptoms: positive, negative, or cognitive psychotic episodes. On one hand, the abuse of methamphetamines, cannabis, and cocaine plays a big role in increasing the incidence of episodes resembling a psychotic disorder. On the other hand, the progress in terms of pharmacodynamics knowledge has led to the synthesis of new drugs, such as cannabinoids and cathinone's, which have rapidly entered into the common pool of abusers' habits. Regarding these newly synthesized substances of abuse, further clinical studies are needed to understand their psychogenic properties. The topic of this review is complicated due to the frequent abuse of psychotomimetic drugs by patients affected by psychotic disorders, a fact that makes it extremely difficult to distinguish between an induced psychosis and a re-exacerbation of a previously diagnosed disorder. Methods: The present narrative review summarizes results from clinical studies, thus investigating the psychotogenic properties of abused substances and the psychotic symptoms they can give rise to. It also discusses the association between substance abuse and psychosis, especially with regards to the differential diagnosis between a primary vs. a substance-induced psychotic disorder. Findings: Our findings support the theory that psychosis due to substance abuse is commonly observed in clinical practice. The propensity to develop psychosis seems to be a function of the severity of use and addiction. Of note, from a phenomenological point of view, it is possible to identify some elements that may help clinicians involved in differential diagnoses between primary and substance-induced psychoses. There remains a striking paucity of information on the outcomes, treatments, and best practices of substance-induced psychotic episodes.
Collapse
Affiliation(s)
- Alessio Fiorentini
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Filippo Cantù
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Camilla Crisanti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Guido Cereda
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lucio Oldani
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
41
|
Gene-Environment Interactions in Schizophrenia: A Literature Review. Genes (Basel) 2021; 12:genes12121850. [PMID: 34946799 PMCID: PMC8702084 DOI: 10.3390/genes12121850] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a devastating mental illness with a strong genetic component that is the subject of extensive research. Despite the high heritability, it is well recognized that non-genetic factors such as certain infections, cannabis use, psychosocial stress, childhood adversity, urban environment, and immigrant status also play a role. Whenever genetic and non-genetic factors co-exist, interaction between the two is likely. This means that certain exposures would only be of consequence given a specific genetic makeup. Here, we provide a brief review of studies reporting evidence of such interactions, exploring genes and variants that moderate the effect of the environment to increase risk of developing psychosis. Discovering these interactions is crucial to our understanding of the pathogenesis of complex disorders. It can help in identifying individuals at high risk, in developing individualized treatments and prevention plans, and can influence clinical management.
Collapse
|
42
|
Jahn K, Heese A, Kebir O, Groh A, Bleich S, Krebs MO, Frieling H. Differential Methylation Pattern of Schizophrenia Candidate Genes in Tetrahydrocannabinol-Consuming Treatment-Resistant Schizophrenic Patients Compared to Non-Consumer Patients and Healthy Controls. Neuropsychobiology 2021; 80:36-44. [PMID: 32599581 DOI: 10.1159/000507670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Patients suffering from schizophrenic psychosis show reduced synaptic connectivity compared to healthy individuals. Furthermore, the use of cannabis often precedes the onset of schizophrenic psychosis. Therefore, we investigated whether consumption of cannabis has an impact on the methylation pattern of schizophrenia candidate genes concerned with the development and preservation of synapses and synaptic function. METHODS Fifty blood samples of outpatients affected by treatment-resistant schizophrenic psychosis were collected in the outpatient department of Ch Ste Anne/INSERM (Paris, France). Extracted DNA was sent to the LMN/MHH (Hanover, Germany) where DNA samples were bisulfite converted. The methylation patterns of the promoter region of neuregulin 1 (NRG1), neurexin (NRXN1), disrupted in schizophrenia 1 (DISC1), and microtubule-associated-protein tau (MAPT) were then analysed by sequencing according to Sanger. RESULTS In NRXN1 the group of non-consumer patients showed a methylation rate slightly lower than controls. In patients with preliminary use of tetrahydrocannabinol (THC) the NRXN1 promoter turned out to be methylated almost two times higher than in non-consumer patients. In MAPT, non-consumer patients showed a significant lower mean methylation rate in comparison to controls. In THC-consuming patients the difference compared with controls became less. NRG1 and DISC1 showed no significant differences between groups, whereas DISC1 appeared to be not methylated at all. CONCLUSION In MAPT and NRXN1 mean methylation rates were lower in non-consumer patients compared with controls, which seems to be a compensatory mechanism. With consumption of THC, mean methylation rates were increased: in the case of MAPT compared with controls, and in NRXN1 even significantly beyond that. Methylation of NRG1 and DISC1 seems not to be affected by the psychiatric disorder or by consumption of THC.
Collapse
Affiliation(s)
- Kirsten Jahn
- Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Hannover, Germany,
| | - Astrid Heese
- Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Hannover, Germany
| | - Oussama Kebir
- Centre Hospitalier Sainte Anne (Ch Ste Anne), Paris, France
| | - Adrian Groh
- Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Hannover, Germany
| | - Stefan Bleich
- Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Hannover, Germany
| | | | - Helge Frieling
- Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Hannover, Germany
| |
Collapse
|
43
|
|
44
|
BIDWELL LCINNAMON, MARTIN-WILLETT RENÉE, KAROLY HOLLISC. Advancing the science on cannabis concentrates and behavioural health. Drug Alcohol Rev 2021; 40:900-913. [PMID: 33783029 PMCID: PMC9878551 DOI: 10.1111/dar.13281] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 01/28/2023]
Abstract
ISSUES The Cannabis sativa L. plant contains hundreds of phytocannabinoids, but putatively of highest importance to public health risk is the psychoactive cannabinoid delta-9-tetrahydrocannabinol (THC), which is associated with risk for cannabis use disorder, affective disturbance, cognitive harm and psychomotor impairment. Recently, there has been an increase in the use and availability of concentrated cannabis products (or 'concentrates') that are made by extracting cannabinoids from the plant to form a product with THC concentrations as high as 90-95%. These products are increasingly popular nationwide. The literature on these widely available high potency concentrates is limited and there are many unknowns about their potential harms. APPROACH This review covers the state of the research on cannabis concentrates and behavioural health-related outcomes and makes recommendations for advancing the science with studies focused on accurately testing the risks in relation to critical public and behavioural health questions. KEY FINDINGS Data point to unique behavioural health implications of concentrate use. However, causal, controlled and representative research on the effects of cannabis concentrates is currently limited. IMPLICATIONS Future research is needed to explore chronic, acute and developmental effects of concentrates, as well as effects on pulmonary function. We also highlight the need to explore these relationships in diverse populations. CONCLUSION While the literature hints at the potential for these highly potent products to increase cannabis-related behavioural health harms, it is important to carefully design studies that more comprehensively evaluate the impact of concentrates on THC exposure and short- and long-term effects across user groups.
Collapse
Affiliation(s)
- L. CINNAMON BIDWELL
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, USA,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, USA
| | - RENÉE MARTIN-WILLETT
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, USA
| | - HOLLIS C. KAROLY
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, USA,Department of Psychology, Colorado State University, Fort Collins, USA
| |
Collapse
|
45
|
Rasmussen JØ, Jennum P, Linnet K, Glenthøj BY, Baandrup L. Cannabidiol versus risperidone for treatment of recent-onset psychosis with comorbid cannabis use: study protocol for a randomized controlled clinical trial. BMC Psychiatry 2021; 21:404. [PMID: 34391393 PMCID: PMC8364057 DOI: 10.1186/s12888-021-03395-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cannabis use is an important risk factor for development of psychosis and further transition to schizophrenia. The prevalence of patients with psychosis and comorbid cannabis use (dual diagnosis) is rising with no approved specialized pharmacological treatment option. Cannabidiol, a constituent of the Cannabis sativa plant, has potential both as an antipsychotic and as a cannabis substituting agent. The aim of this study is to evaluate the efficacy of cannabidiol versus a first-choice second-generation antipsychotic (risperidone) in patients with early psychosis and comorbid cannabis use. METHODS The study is a phase II randomized, double-blinded, parallel-group, active-comparator clinical trial. We plan to include 130 patients aged between 18 and 64 years with a recent diagnosis of psychosis, comorbid cannabis use, and currently not treated with antipsychotics. The participants will be randomized to seven weeks of treatment with either cannabidiol 600 mg (300 mg BID) or risperidone 4 mg (2 mg BID). Participants will undergo clinical assessment after 1, 3, 5 and 7 weeks, telephone assessment the weeks in between, and a safety visit two weeks after end of treatment. The primary outcomes are cessation of cannabis use (self-reported) and psychotic symptom severity. The secondary outcomes include frequency and quantity of cannabis use, global illness severity, psychosocial functioning, subjective well-being, cognition, sleep, circadian rhythmicity, and metabolomics. DISCUSSION The results of this trial can potentially contribute with a new treatment paradigm for patients suffering from dual diagnosis. TRIAL REGISTRATION ClinicalTrials.gov , NCT04105231 , registered April 23rd, 2021.
Collapse
Affiliation(s)
- Jesper Østrup Rasmussen
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Nordstjernevej 41, 2600 Glostrup, Denmark
| | - Poul Jennum
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, University of Copenhagen, Rigshospitalet-Glostrup, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Linnet
- Faculty of Health and Medical Sciences, Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y. Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Nordstjernevej 41, 2600 Glostrup, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lone Baandrup
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Nordstjernevej 41, 2600 Glostrup, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Quattrone D, Reininghaus U, Richards AL, Tripoli G, Ferraro L, Quattrone A, Marino P, Rodriguez V, Spinazzola E, Gayer-Anderson C, Jongsma HE, Jones PB, La Cascia C, La Barbera D, Tarricone I, Bonora E, Tosato S, Lasalvia A, Szöke A, Arango C, Bernardo M, Bobes J, Del Ben CM, Menezes PR, Llorca PM, Santos JL, Sanjuán J, Arrojo M, Tortelli A, Velthorst E, Berendsen S, de Haan L, Rutten BPF, Lynskey MT, Freeman TP, Kirkbride JB, Sham PC, O’Donovan MC, Cardno AG, Vassos E, van Os J, Morgan C, Murray RM, Lewis CM, Di Forti M. The continuity of effect of schizophrenia polygenic risk score and patterns of cannabis use on transdiagnostic symptom dimensions at first-episode psychosis: findings from the EU-GEI study. Transl Psychiatry 2021; 11:423. [PMID: 34376640 PMCID: PMC8355107 DOI: 10.1038/s41398-021-01526-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
Diagnostic categories do not completely reflect the heterogeneous expression of psychosis. Using data from the EU-GEI study, we evaluated the impact of schizophrenia polygenic risk score (SZ-PRS) and patterns of cannabis use on the transdiagnostic expression of psychosis. We analysed first-episode psychosis patients (FEP) and controls, generating transdiagnostic dimensions of psychotic symptoms and experiences using item response bi-factor modelling. Linear regression was used to test the associations between these dimensions and SZ-PRS, as well as the combined effect of SZ-PRS and cannabis use on the dimensions of positive psychotic symptoms and experiences. We found associations between SZ-PRS and (1) both negative (B = 0.18; 95%CI 0.03-0.33) and positive (B = 0.19; 95%CI 0.03-0.35) symptom dimensions in 617 FEP patients, regardless of their categorical diagnosis; and (2) all the psychotic experience dimensions in 979 controls. We did not observe associations between SZ-PRS and the general and affective dimensions in FEP. Daily and current cannabis use were associated with the positive dimensions in FEP (B = 0.31; 95%CI 0.11-0.52) and in controls (B = 0.26; 95%CI 0.06-0.46), over and above SZ-PRS. We provide evidence that genetic liability to schizophrenia and cannabis use map onto transdiagnostic symptom dimensions, supporting the validity and utility of the dimensional representation of psychosis. In our sample, genetic liability to schizophrenia correlated with more severe psychosis presentation, and cannabis use conferred risk to positive symptomatology beyond the genetic risk. Our findings support the hypothesis that psychotic experiences in the general population have similar genetic substrates as clinical disorders.
Collapse
Affiliation(s)
- Diego Quattrone
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK. .,National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK. .,Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68159, Germany.
| | - Ulrich Reininghaus
- grid.7700.00000 0001 2190 4373Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68159 Germany ,grid.13097.3c0000 0001 2322 6764Department of Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK ,grid.412966.e0000 0004 0480 1382Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Alex L. Richards
- grid.5600.30000 0001 0807 5670Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ UK
| | - Giada Tripoli
- grid.10776.370000 0004 1762 5517Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | - Laura Ferraro
- grid.10776.370000 0004 1762 5517Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | - Andrea Quattrone
- National Health Care System, Villa Betania Psychological Institute, 89100 Reggio Calabria, Italy
| | - Paolo Marino
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Victoria Rodriguez
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Edoardo Spinazzola
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Charlotte Gayer-Anderson
- grid.13097.3c0000 0001 2322 6764Department of Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Hannah E. Jongsma
- grid.83440.3b0000000121901201Psylife Group, Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF UK ,grid.4494.d0000 0000 9558 4598Centre for Transcultural Psychiatry “Veldzicht” Balkbrug, the Netherlands, VR Mental Health Group, University Center for Psychiatry, Univerisity Medical Centre Groningen, Groningen, The Netherlands
| | - Peter B. Jones
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge, CB2 0SZ UK ,grid.450563.10000 0004 0412 9303CAMEO Early Intervention Service, Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, CB21 5EF UK
| | - Caterina La Cascia
- National Health Care System, Villa Betania Psychological Institute, 89100 Reggio Calabria, Italy
| | - Daniele La Barbera
- National Health Care System, Villa Betania Psychological Institute, 89100 Reggio Calabria, Italy
| | - Ilaria Tarricone
- grid.6292.f0000 0004 1757 1758Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Elena Bonora
- grid.6292.f0000 0004 1757 1758Department of Medical and Surgical Science, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Viale Pepoli 5, 40126 Bologna, Italy
| | - Sarah Tosato
- grid.5611.30000 0004 1763 1124Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Antonio Lasalvia
- grid.5611.30000 0004 1763 1124Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Andrei Szöke
- grid.7429.80000000121866389INSERM, U955, Equipe 15, 51 Avenue de Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Celso Arango
- grid.4795.f0000 0001 2157 7667Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, C/Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Miquel Bernardo
- grid.5841.80000 0004 1937 0247Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, Department of Medicine, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Julio Bobes
- grid.10863.3c0000 0001 2164 6351Faculty of Medicine and Health Sciences - Psychiatry, Universidad de Oviedo, ISPA, INEUROPA. CIBERSAM, Oviedo, Spain
| | - Cristina Marta Del Ben
- grid.11899.380000 0004 1937 0722Neuroscience and Behavior Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Paulo Rossi Menezes
- grid.11899.380000 0004 1937 0722Department of Preventative Medicine, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo, Brazil
| | - Pierre-Michel Llorca
- grid.494717.80000000115480420University Clermont Auvergne, CMP-B CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Jose Luis Santos
- grid.413507.40000 0004 1765 7383Department of Psychiatry, Servicio de Psiquiatría Hospital “Virgen de la Luz,”, Cuenca, Spain
| | - Julio Sanjuán
- grid.5338.d0000 0001 2173 938XDepartment of Psychiatry, School of Medicine, Universidad de Valencia, Centro de Investigación Biomédica en Red de Salud Mental, Valencia, Spain
| | - Manuel Arrojo
- grid.411048.80000 0000 8816 6945Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago, Spain
| | | | - Eva Velthorst
- grid.7177.60000000084992262Department of Psychiatry, Early Psychosis Section, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Steven Berendsen
- grid.7177.60000000084992262Department of Psychiatry, Early Psychosis Section, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Lieuwe de Haan
- grid.7177.60000000084992262Department of Psychiatry, Early Psychosis Section, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart P. F. Rutten
- grid.412966.e0000 0004 0480 1382Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Michael T. Lynskey
- grid.13097.3c0000 0001 2322 6764National Addiction Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 4 Windsor Walk, London, SE5 8BB UK
| | - Tom P. Freeman
- grid.13097.3c0000 0001 2322 6764National Addiction Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 4 Windsor Walk, London, SE5 8BB UK ,grid.7340.00000 0001 2162 1699Department of Psychology, University of Bath, 10 West, Bath, BA2 7AY UK
| | - James B. Kirkbride
- grid.83440.3b0000000121901201Psylife Group, Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF UK
| | - Pak C. Sham
- grid.194645.b0000000121742757Department of Psychiatry, the University of Hong Kong, Pok Fu Lam, Hong Kong ,grid.194645.b0000000121742757Centre for Genomic Sciences, Li KaShing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Michael C. O’Donovan
- grid.5600.30000 0001 0807 5670Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ UK
| | - Alastair G. Cardno
- grid.9909.90000 0004 1936 8403Division of Psychological and Social Medicine, Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9NL UK
| | - Evangelos Vassos
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, SE5 8AF, London, UK ,grid.13097.3c0000 0001 2322 6764National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King’s College London, London, UK
| | - Jim van Os
- grid.412966.e0000 0004 0480 1382Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands ,grid.7692.a0000000090126352Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - Craig Morgan
- grid.13097.3c0000 0001 2322 6764Department of Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF UK
| | - Robin M. Murray
- grid.10776.370000 0004 1762 5517Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy ,grid.13097.3c0000 0001 2322 6764National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King’s College London, London, UK
| | - Cathryn M. Lewis
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, SE5 8AF, London, UK ,grid.13097.3c0000 0001 2322 6764National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King’s College London, London, UK
| | - Marta Di Forti
- grid.13097.3c0000 0001 2322 6764Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, SE5 8AF, London, UK ,grid.13097.3c0000 0001 2322 6764National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King’s College London, London, UK
| | | |
Collapse
|
47
|
Lebowitz MS, Appelbaum PS, Dixon LB, Girgis RR, Wall MM. Experimentally exploring the potential behavioral effects of personalized genetic information about marijuana and schizophrenia risk. J Psychiatr Res 2021; 140:316-322. [PMID: 34126426 PMCID: PMC8319095 DOI: 10.1016/j.jpsychires.2021.05.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 11/27/2022]
Abstract
Marijuana use may increase schizophrenia risk, and this effect may be genetically moderated. We investigated how hypothetical genetic test results indicating the presence or absence of heightened schizophrenia risk in reaction to marijuana use would affect attitudes toward marijuana use. In two experiments, participants were randomized to hypothetical scenarios in which genetic testing showed the presence or absence of a predisposition for marijuana use to increase their schizophrenia risk, or to a control condition with no mention of genetic testing. Experiment 1 used a sample of 801 U.S. young adults recruited via Amazon.com's Mechanical Turk platform. Experiment 2 replicated the same procedures with a nationally representative sample of 800 U.S. adults aged 18-30. In Experiment 1, those in the predisposition condition, compared to the control condition, rated the likelihood and importance of their avoiding marijuana as significantly higher, whereas those in the no-predisposition condition rated both as significantly lower. In experiment 2, these findings were largely replicated for the predisposition condition but not the no-predisposition condition, and prior marijuana use was a significant moderator, with the effects of the predisposition condition confined to participants who reported having used marijuana. If these results are predictive of responses to actual genetic testing, they suggest that genetic test results indicating that marijuana use will increase one's schizophrenia risk may incentivize abstinence, especially for those with prior marijuana use. Future research could further investigate whether genetic test results indicating the absence of such a predisposition might disincentivize abstinence from marijuana use.
Collapse
Affiliation(s)
- Matthew S. Lebowitz
- Department of Psychiatry, Columbia University, New York, NY, USA,Corresponding author: Matthew S. Lebowitz, Department of Psychiatry, Columbia University, NY State Psychiatric Institute Unit 122, 1051 Riverside Drive, New York, NY 10032, USA,
| | | | - Lisa B. Dixon
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Ragy R. Girgis
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Melanie M. Wall
- Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
48
|
Association between age of cannabis initiation and gray matter covariance networks in recent onset psychosis. Neuropsychopharmacology 2021; 46:1484-1493. [PMID: 33658653 PMCID: PMC8209059 DOI: 10.1038/s41386-021-00977-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/04/2022]
Abstract
Cannabis use during adolescence is associated with an increased risk of developing psychosis. According to a current hypothesis, this results from detrimental effects of early cannabis use on brain maturation during this vulnerable period. However, studies investigating the interaction between early cannabis use and brain structural alterations hitherto reported inconclusive findings. We investigated effects of age of cannabis initiation on psychosis using data from the multicentric Personalized Prognostic Tools for Early Psychosis Management (PRONIA) and the Cannabis Induced Psychosis (CIP) studies, yielding a total sample of 102 clinically-relevant cannabis users with recent onset psychosis. GM covariance underlies shared maturational processes. Therefore, we performed source-based morphometry analysis with spatial constraints on structural brain networks showing significant alterations in schizophrenia in a previous multisite study, thus testing associations of these networks with the age of cannabis initiation and with confounding factors. Earlier cannabis initiation was associated with more severe positive symptoms in our cohort. Greater gray matter volume (GMV) in the previously identified cerebellar schizophrenia-related network had a significant association with early cannabis use, independent of several possibly confounding factors. Moreover, GMV in the cerebellar network was associated with lower volume in another network previously associated with schizophrenia, comprising the insula, superior temporal, and inferior frontal gyrus. These findings are in line with previous investigations in healthy cannabis users, and suggest that early initiation of cannabis perturbs the developmental trajectory of certain structural brain networks in a manner imparting risk for psychosis later in life.
Collapse
|
49
|
Sideli L, Trotta G, Spinazzola E, La Cascia C, Di Forti M. Adverse effects of heavy cannabis use: even plants can harm the brain. Pain 2021; 162:S97-S104. [PMID: 32804835 PMCID: PMC8216111 DOI: 10.1097/j.pain.0000000000001963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/03/2022]
Affiliation(s)
- Lucia Sideli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neurosceince, King's College London, De Crespigny Park, Denmark Hill, London, United Kingdom
| | - Giulia Trotta
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neurosceince, King's College London, De Crespigny Park, Denmark Hill, London, United Kingdom
| | - Edoardo Spinazzola
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neurosceince, King's College London, De Crespigny Park, Denmark Hill, London, United Kingdom
- Department of Neuroscience, Mental Health, and Sensory Organs (NeSMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Caterina La Cascia
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, Palermo University, Palermo, Italy
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
- South London and Maudsley NHS Mental Health Foundation Trust, London, United Kingdom
| |
Collapse
|
50
|
Potential and Limits of Cannabinoids in Alzheimer's Disease Therapy. BIOLOGY 2021; 10:biology10060542. [PMID: 34204237 PMCID: PMC8234911 DOI: 10.3390/biology10060542] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This review was aimed at exploring the potentiality of drugging the endocannabinoid system as a therapeutic option for Alzheimer’s disease (AD). Recent discoveries have demonstrated how the modulation of cannabinoid receptor 1 (CB1) and receptor 2 (CB2) can exert neuroprotective effects without the recreational and pharmacological properties of Cannabis sativa. Thus, this review explores the potential of cannabinoids in AD, also highlighting their limitations in perspective to point out the need for further research on cannabinoids in AD therapy. Abstract Alzheimer’s disease (AD) is a detrimental brain disorder characterized by a gradual cognitive decline and neuronal deterioration. To date, the treatments available are effective only in the early stage of the disease. The AD etiology has not been completely revealed, and investigating new pathological mechanisms is essential for developing effective and safe drugs. The recreational and pharmacological properties of marijuana are known for centuries, but only recently the scientific community started to investigate the potential use of cannabinoids in AD therapy—sometimes with contradictory outcomes. Since the endocannabinoid system (ECS) is highly expressed in the hippocampus and cortex, cannabis use/abuse has often been associated with memory and learning dysfunction in vulnerable individuals. However, the latest findings in AD rodent models have shown promising effects of cannabinoids in reducing amyloid plaque deposition and stimulating hippocampal neurogenesis. Beneficial effects on several dementia-related symptoms have also been reported in clinical trials after cannabinoid treatments. Accordingly, future studies should address identifying the correct therapeutic dosage and timing of treatment from the perspective of using cannabinoids in AD therapy. The present paper aims to summarize the potential and limitations of cannabinoids as therapeutics for AD, focusing on recent pre-clinical and clinical evidence.
Collapse
|