1
|
Li S, Adamu A, Ye Y, Gao F, Mi R, Xue G, Wang Z. (+)-Borneol inhibits neuroinflammation and M1 phenotype polarization of microglia in epileptogenesis through the TLR4-NFκB signaling pathway. Front Neurosci 2024; 18:1497102. [PMID: 39605791 PMCID: PMC11599196 DOI: 10.3389/fnins.2024.1497102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Objective To investigate the effect of (+)-borneol on neuroinflammation and microglia phenotype polarization in epileptogenesis and its possible mechanism. Methods Based on mouse models of status epilepticus (SE) induced by pilocarpine, and treated with 15 mg/kg (+)-borneol, western-blot was used to detect the expressions of NeuN, Iba-1, TLR4, p65 and p-p65 in the hippocampus. Immunofluorescence was used to detect the expression of apoptosis-related proteins Bax and Bcl-2. To explore the effect of (+)-borneol on microglia in vitro, we used the kainic acid-induced microglia model and the concentration of (+)-borneol was 25 μM according to CCK-8 results. The levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-10 (IL-10) in the supernatant of each group was detected by ELISA. The nitric oxide (NO) content in the supernatant was detected by Griess method. The expressions of Iba-1 and TLR4-NFκB signaling pathway-related proteins (TLR4, p65, p-p65) were detected by Western-Blot. Immunofluorescence was used to detect microglia's M1 and M2 phenotype polarization and the expression of Iba-1 and TLR4. Results (+)-borneol reduced hippocampal neuronal injury, apoptosis, and microglia activation by inhibiting the TLR-NFκB signaling pathway in SE mice. TLR4 agonist LPS partially reversed the neuroprotective effect of (+)-borneol. In the KA-induced microglia model, (+)-borneol inhibited microglia activation, M1 phenotype polarization, and secretion of pro-inflammatory cytokines through the TLR4-NFκB signaling pathway. LPS treatment inhibited the therapeutic effects of (+)-borneol. Conclusion (+)-borneol inhibits microglial neuroinflammation and M1 phenotype polarization through TLR4-NFκB signaling pathway and reduces neuronal damage and apoptosis in SE mice. Therefore, (+)-borneol may be a potential drug for epilepsy modification therapy.
Collapse
Affiliation(s)
- Shuo Li
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Alhamdu Adamu
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Yucai Ye
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Fankai Gao
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rulin Mi
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guofang Xue
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhaojun Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Montiel-Troya M, Mohamed-Mohamed H, Pardo-Moreno T, González-Díaz A, Ruger-Navarrete A, de la Mata Fernández M, Tovar-Gálvez MI, Ramos-Rodríguez JJ, García-Morales V. Advancements in Pharmacological Interventions and Novel Therapeutic Approaches for Amyotrophic Lateral Sclerosis. Biomedicines 2024; 12:2200. [PMID: 39457513 PMCID: PMC11505100 DOI: 10.3390/biomedicines12102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease in which the patient suffers from an affection of both upper and lower motor neurons at the spinal and brainstem level, causing a progressive paralysis that leads to the patient's demise. Gender is also considered a predisposing risk factor for developing the disease. A brief review of the pathophysiological mechanisms of the disease is also described in this work. Despite the fact that a cure for ALS is currently unknown, there exists a variety of pharmacological and non-pharmacological therapies that can help reduce the progression of the disease over a certain period of time and alleviate symptoms. (2) We aim to analyze these pharmacological and non-pharmacological therapies through a systematic review. A comprehensive, multidisciplinary approach to treatment is necessary. (3) Drugs such as riluzole, edaravone, and sodium phenylbutyrate, among others, have been investigated. Additionally, it is important to stay updated on research on new drugs, such as masitinib, from which very good results have been obtained. (4) Therapies aimed at psychological support, speech and language, and physical therapy for the patient are also available, which increase the quality of life of the patients.
Collapse
Affiliation(s)
- María Montiel-Troya
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (H.M.-M.); (M.d.l.M.F.); (J.J.R.-R.)
| | - Teresa Pardo-Moreno
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Ana González-Díaz
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Azahara Ruger-Navarrete
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Mario de la Mata Fernández
- Department of Physiology, Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (H.M.-M.); (M.d.l.M.F.); (J.J.R.-R.)
| | - María Isabel Tovar-Gálvez
- Nursing Department, Faculty of Health Sciences, University of Granada, Avda. Ilustración 69, 18071 Granada, Spain
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (H.M.-M.); (M.d.l.M.F.); (J.J.R.-R.)
| | - Victoria García-Morales
- Department of Biomedicine, Biotechnology and Public Health, Physiology Area, Faculty of Medicine, University of Cádiz, Pl. Falla, 9, 11003 Cádiz, Spain;
| |
Collapse
|
3
|
Liu Z, Zhang H, Lu K, Chen L, Zhang Y, Xu Z, Zhou H, Sun J, Xu M, Ouyang Q, Thompson GJ, Yang Y, Su N, Cai X, Cao L, Zhao Y, Jiang L, Zheng Y, Zhang X. Low-intensity pulsed ultrasound modulates disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Cell Rep 2024; 43:114660. [PMID: 39180748 DOI: 10.1016/j.celrep.2024.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord, and there are no effective drug treatments. Low-intensity pulsed ultrasound (LIPUS) has garnered attention as a promising noninvasive neuromodulation method. In this study, we investigate its effects on the motor cortex and underlying mechanisms using the SOD1G93A mouse model of ALS. Our results show that LIPUS treatment delays disease onset and prolongs lifespan in ALS mice. LIPUS significantly increases cerebral blood flow in the motor cortex by preserving vascular endothelial cell integrity and increasing microvascular density, which may be mediated via the ion channel TRPV4. RNA sequencing analysis reveals that LIPUS substantially reduces the expression of genes associated with neuroinflammation. These findings suggest that LIPUS applied to the motor cortex may represent a potentially effective therapeutic tool for the treatment of ALS.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Huan Zhang
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Kaili Lu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Chen
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yueqi Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhouwei Xu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hongsheng Zhou
- Institute of Advanced Ultrasonic Technology, National Innovation Center par Excellence, Shanghai 201203, China
| | - Junfeng Sun
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengyang Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi Ouyang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Garth J Thompson
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojun Cai
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China; Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lixian Jiang
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yuanyi Zheng
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
4
|
Meyer T, Schumann P, Grehl T, Weyen U, Petri S, Rödiger A, Steinbach R, Grosskreutz J, Bernsen S, Weydt P, Wolf J, Günther R, Vidovic M, Baum P, Metelmann M, Weishaupt JH, Streubel B, Kasper DC, Koc Y, Kettemann D, Norden J, Schmitt P, Walter B, Münch C, Spittel S, Maier A, Körtvélyessy P. SOD1 gene screening in ALS - frequency of mutations, patients' attitudes to genetic information and transition to tofersen treatment in a multi-center program. Amyotroph Lateral Scler Frontotemporal Degener 2024:1-10. [PMID: 39268612 DOI: 10.1080/21678421.2024.2401131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Objective: To report the frequency of pathogenic SOD1 gene variants in a screening program in amyotrophic lateral sclerosis (ALS), and the clinical practice of transition to an expanded access program (EAP) of tofersen treatment. Methods: From October 2021 to February 2024, at 11 ALS centers in Germany genetic testing for SOD1, FUS, TARDBP, and C9orf72 was performed. Patients were offered to opt for notification either about all genetic variants or SOD1 variants relevant for tofersen therapy. The transition to the EAP with tofersen was assessed. Results: 1935 patients were screened (94.7% sporadic ALS). 48.8% (n = 928) opted for notification of treatment-relevant information. Genetic variants were found as follows: SOD1 (likely) pathogenic variants (class 4/5) 1.8% (n = 34), variants of unknown significance (class 3) 0.8% (n = 16), FUS (class 4/5) 0.9% (n = 17), TARDBP (class 4/5) 1.3% (n = 25), C9orf72 hexanucleotide repeat expansion 7.0% (n = 135). In SOD1-ALS (encompassing class 3-5 variants, n = 50), 68.0% (n = 34) reported a negative family history. 74.0% (n = 37) of SOD1-ALS patients - which represent 1.9% of all participants of the screening program - were transitioned to tofersen. Median duration from start of genetic testing to treatment was 94 days (57 to 295 days). Eight patients declined treatment whereas five individuals died before initiation of therapy. Conclusion: The finding of SOD1 variants in patients with a negative family history underscores the need for a broad genetic screening in ALS. In SOD1-ALS, the treatment option with tofersen was mostly utilized. The wide range in the transition time to tofersen calls for a SOD1-ALS management program.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Ambulanzpartner Soziotechnologie APST GmbH, Berlin, Germany
| | - Peggy Schumann
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Ambulanzpartner Soziotechnologie APST GmbH, Berlin, Germany
| | - Torsten Grehl
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Alfried Krupp Krankenhaus, Essen, Germany
| | - Ute Weyen
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Annekathrin Rödiger
- Department of Neurology, Jena University Hospital, Jena, Germany
- ZSE, Zentrum für Seltene Erkrankungen, Jena University Hospital, Jena, Germany
| | - Robert Steinbach
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Department of Neurology, Universitätsmedizin Schleswig-Holstein, Lübeck, Germany
| | - Sarah Bernsen
- Department for Neuromuscular Disorders, Bonn University, Bonn, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn, Germany
| | - Patrick Weydt
- Department for Neuromuscular Disorders, Bonn University, Bonn, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn, Germany
| | - Joachim Wolf
- Department of Neurology, Diako Mannheim, Mannheim, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
- DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Germany
| | - Maximilian Vidovic
- Department of Neurology, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Petra Baum
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Moritz Metelmann
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Jochen H Weishaupt
- Division for Neurodegenerative Diseases, Neurology Department, University Medicine Mannheim, Heidelberg University, Mannheim Center for Translational Medicine, Mannheim, Germany
| | | | | | - Yasemin Koc
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dagmar Kettemann
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jenny Norden
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Schmitt
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bertram Walter
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christoph Münch
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Ambulanzpartner Soziotechnologie APST GmbH, Berlin, Germany
| | | | - André Maier
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Péter Körtvélyessy
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Raffaele S, Nguyen N, Milanese M, Mannella FC, Boccazzi M, Frumento G, Bonanno G, Abbracchio MP, Bonifacino T, Fumagalli M. Montelukast improves disease outcome in SOD1 G93A female mice by counteracting oligodendrocyte dysfunction and aberrant glial reactivity. Br J Pharmacol 2024; 181:3303-3326. [PMID: 38751168 DOI: 10.1111/bph.16408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron (MN) loss and consequent muscle atrophy, for which no effective therapies are available. Recent findings reveal that disease progression is fuelled by early aberrant neuroinflammation and the loss of oligodendrocytes with neuroprotective and remyelinating properties. On this basis, pharmacological interventions capable of restoring a pro-regenerative local milieu and re-establish proper oligodendrocyte functions may be beneficial. EXPERIMENTAL APPROACH Here, we evaluated the in vivo therapeutic effects of montelukast (MTK), an antagonist of the oligodendroglial G protein-coupled receptor 17 (GPR17) and of cysteinyl-leukotriene receptor 1 (CysLT1R) receptors on microglia and astrocytes, in the SOD1G93A ALS mouse model. We chronically treated SOD1G93A mice with MTK, starting from the early symptomatic disease stage. Disease progression was assessed by behavioural and immunohistochemical approaches. KEY RESULTS Oral MTK treatment significantly extended survival probability, delayed body weight loss and ameliorated motor functionalityonly in female SOD1G93A mice. Noteworthy, MTK significantly restored oligodendrocyte maturation and induced significant changes in the reactive phenotype and morphological features of microglia/macrophages and astrocytes in the spinal cord of female SOD1G93A mice, suggesting enhanced pro-regenerative functions. Importantly, concomitant MN preservation has been detected after MTK administration. No beneficial effects were observed in male mice, highlighting a sex-based difference in the protective activity of MTK. CONCLUSIONS AND IMPLICATIONS Our results provide the first preclinical evidence indicating that repurposing of MTK, a safe and marketed anti-asthmatic drug, may be a promising sex-specific strategy for personalized ALS treatment.
Collapse
Affiliation(s)
- Stefano Raffaele
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Nhung Nguyen
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca C Mannella
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Giulia Frumento
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
- Inter-University Center for the Promotion of the 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Wang XX, Chen WZ, Li C, Xu RS. Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:549-563. [PMID: 38381656 DOI: 10.1515/revneuro-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease which damages upper and lower motor neurons (UMN and LMN) innervating the muscles of the trunk, extremities, head, neck and face in cerebrum, brain stem and spinal cord, which results in the progressive weakness, atrophy and fasciculation of muscle innervated by the related UMN and LMN, accompanying with the pathological signs leaded by the cortical spinal lateral tract lesion. The pathogenesis about ALS is not fully understood, and no specific drugs are available to cure and prevent the progression of this disease at present. In this review, we reviewed the structure and associated functions of copper-zinc superoxide dismutase 1 (SOD1), discuss why SOD1 is crucial to the pathogenesis of ALS, and outline the pathogenic mechanisms of SOD1 in ALS that have been identified at recent years, including glutamate-related excitotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, axonal transport disruption, prion-like propagation, and the non-cytologic toxicity of glial cells. This review will help us to deeply understand the current progression in this field of SOD1 pathogenic mechanisms in ALS.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
- Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wen-Zhi Chen
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
| | - Ren-Shi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
- Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
7
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Castelli L, Vasta R, Allen SP, Waller R, Chiò A, Traynor BJ, Kirby J. From use of omics to systems biology: Identifying therapeutic targets for amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:209-268. [PMID: 38802176 DOI: 10.1016/bs.irn.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.
Collapse
Affiliation(s)
- Lydia Castelli
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rosario Vasta
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Adriano Chiò
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Turin, Turin, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States; National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, United States; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology,University College London, London, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Singh P, Belliveau P, Towle J, Neculau AE, Dima L. Edaravone Oral Suspension: A Neuroprotective Agent to Treat Amyotrophic Lateral Sclerosis. Am J Ther 2024; 31:e258-e267. [PMID: 38691665 DOI: 10.1097/mjt.0000000000001742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is characterized by loss of motor neurons due to degeneration of nerve cells within the brain and spinal cord. Early symptoms include limb weakness, twitching or muscle cramping, and slurred speech. As the disease progresses, difficulty breathing, swallowing, and paralysis can lead to death. Currently, there are no medications that cure ALS, and guidelines recommend treatments focused on symptom management. Intravenous (IV) edaravone was approved by the US Food and Drug Administration (FDA) in 2017 as a treatment to slow the progression of ALS. In May 2022, the FDA approved an oral suspension (ORS) formulation of edaravone. MECHANISM OF ACTION The mechanism of action of edaravone is not well defined. However, its neuroprotective effects are thought to result from antioxidant properties occurring through elimination of free radicals. PHARMACOKINETICS Edaravone ORS (105 mg) has a bioavailability of 57% when compared with edaravone IV (60 mg). The ORS should be taken on an empty stomach in the morning, with water and no food or beverages, for 1 hour. Edaravone is bound to albumin (92%), has a mean volume of distribution of 63.1 L, a half-life of 4.5-9 hours, and a total clearance of 35.9 L/h after intravenous administration. Edaravone is metabolized into nonactive sulfate and glucuronide conjugates. CLINICAL TRIALS The FDA approval was based on studies of the pharmacokinetics, safety, tolerability, and bioavailability of edaravone ORS. A phase III, global, multicenter, open-label safety study was conducted on edaravone ORS in 185 patients with ALS over 48 weeks. The most reported treatment-emergent adverse events were falls, muscular weakness, and constipation. Serious treatment-emergent adverse events included disease worsening, dysphagia, dyspnea, and respiratory failure. THERAPEUTIC ADVANCE Oral edaravone is an ALS treatment that can be self-administered or administered by a caregiver, precluding the need for administration by a health care professional in an institutional setting.
Collapse
Affiliation(s)
| | - Paul Belliveau
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Manchester, NH; and
| | - Jennifer Towle
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Manchester, NH; and
| | | | - Lorena Dima
- Faculty of Medicine, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|
10
|
Hu Y, Chen W, Wei C, Jiang S, Li S, Wang X, Xu R. Pathological mechanisms of amyotrophic lateral Sclerosis. Neural Regen Res 2024; 19:1036-1044. [PMID: 37862206 PMCID: PMC10749610 DOI: 10.4103/1673-5374.382985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis refers to a neurodegenerative disease involving the motor system, the cause of which remains unexplained despite several years of research. Thus, the journey to understanding or treating amyotrophic lateral sclerosis is still a long one. According to current research, amyotrophic lateral sclerosis is likely not due to a single factor but rather to a combination of mechanisms mediated by complex interactions between molecular and genetic pathways. The progression of the disease involves multiple cellular processes and the interaction between different complex mechanisms makes it difficult to identify the causative factors of amyotrophic lateral sclerosis. Here, we review the most common amyotrophic lateral sclerosis-associated pathogenic genes and the pathways involved in amyotrophic lateral sclerosis, as well as summarize currently proposed potential mechanisms responsible for amyotrophic lateral sclerosis disease and their evidence for involvement in amyotrophic lateral sclerosis. In addition, we discuss current emerging strategies for the treatment of amyotrophic lateral sclerosis. Studying the emergence of these new therapies may help to further our understanding of the pathogenic mechanisms of the disease.
Collapse
Affiliation(s)
- Yushu Hu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Wenzhi Chen
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Caihui Wei
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shu Li
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Xinxin Wang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College; The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
11
|
Witzel S, Statland JM, Steinacker P, Otto M, Dorst J, Schuster J, Barohn RJ, Ludolph AC. Longitudinal course of neurofilament light chain levels in amyotrophic lateral sclerosis-insights from a completed randomized controlled trial with rasagiline. Eur J Neurol 2024; 31:e16154. [PMID: 37975796 PMCID: PMC11235763 DOI: 10.1111/ene.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE Rasagiline might be disease modifying in patients with amyotrophic lateral sclerosis (ALS). The aim was to evaluate the effect of rasagiline 2 mg/day on neurofilament light chain (NfL), a prognostic biomarker in ALS. METHODS In 65 patients with ALS randomized in a 3:1 ratio to rasagiline 2 mg/day (n = 48) or placebo (n = 17) in a completed randomized controlled multicentre trial, NfL levels in plasma were measured at baseline, month 6 and month 12. Longitudinal changes in NfL levels were evaluated regarding treatment and clinical parameters. RESULTS Baseline NfL levels did not differ between the study arms and correlated with disease progression rates both pre-baseline (r = 0.64, p < 0.001) and during the study (r = 0.61, p < 0.001). NfL measured at months 6 and 12 did not change significantly from baseline in both arms, with a median individual NfL change of +1.4 pg/mL (interquartile range [IQR] -5.6, 14.2) across all follow-up time points. However, a significant difference in NfL change at month 12 was observed between patients with high and low NfL baseline levels treated with rasagiline (high [n = 13], -6.9 pg/mL, IQR -20.4, 6.0; low [n = 18], +5.9 pg/mL, IQR -1.4, 19.7; p = 0.025). Additionally, generally higher longitudinal NfL variability was observed in patients with high baseline levels, whereas disease progression rates and disease duration at baseline had no impact on the longitudinal NfL course. CONCLUSION Post hoc NfL measurements in completed clinical trials are helpful in interpreting NfL data from ongoing and future interventional trials and could provide hypothesis-generating complementary insights. Further studies are warranted to ultimately differentiate NfL response to treatment from other factors.
Collapse
Affiliation(s)
| | | | | | - Markus Otto
- Department of NeurologyUniversity of HalleHalle (Saale)Germany
| | | | - Joachim Schuster
- Department of NeurologyUlm UniversityUlmGermany
- German Center for Neurodegenerative Diseases (DZNE)UlmGermany
| | - Richard J. Barohn
- School of Medicine, NextGen Precision Health, University of MissouriColumbiaMissouriUSA
| | - Albert C. Ludolph
- Department of NeurologyUlm UniversityUlmGermany
- German Center for Neurodegenerative Diseases (DZNE)UlmGermany
| |
Collapse
|
12
|
Gebrehiwet P, Aggarwal S, Topaloglu O, Chiò A. Feasibility assessment of using the MiToS staging system for conducting economic evaluation in amyotrophic lateral sclerosis. Expert Rev Pharmacoecon Outcomes Res 2024; 24:447-458. [PMID: 38235589 DOI: 10.1080/14737167.2024.2306819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
OBJECTIVES This study assessed the feasibility of using the Milano-Torino staging (MiToS) system for conducting economic evaluation to measure health outcomes in amyotrophic lateral sclerosis (ALS). METHODS A Markov model was developed using the MiToS system and evaluated with a hypothetical treatment versus standard of care. Health utilities and transition probabilities were derived from the literature. Four-time horizons (1, 5, 10, and 20 years) were examined. Treatment effects of 20-35% relative risk reduction (RRR) of progressing to the next MiToS stage were assessed. Three patient distribution scenarios were tested: (1) all patients began in stage 0; (2) patient distribution based on real-world TONiC study; (3) distribution based on the PRO-ACT database. Health outcomes (quality-adjusted life-years [QALYs], life-years [LYs]) were reported with a 3% discount rate. RESULTS A time horizon of 10 years fully captured treatment benefits: incremental QALYs were 0.28-0.60, 0.21-0.45, and 0.26-0.55 for scenarios 1-3, respectively; incremental LYs were 0.56-1.17, 0.46-0.97, and 0.53-1.11, respectively. CONCLUSION MiToS-based staging can be used for conducting economic analyses in ALS. Estimated incremental QALY and LY gains were meaningful within the context of ALS, for hypothetical treatments with RRR of 20-35%.
Collapse
Affiliation(s)
- Paulos Gebrehiwet
- Health Economics and Outcomes Research, Cytokinetics, Incorporated, South San Francisco, CA, USA
| | | | | | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Goyal NA, Bonar K, Savic N, Beau Lejdstrom R, Wright J, Mellor J, McDermott C. Misdiagnosis of amyotrophic lateral sclerosis in clinical practice in Europe and the USA: a patient chart review and physician survey. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:16-25. [PMID: 37794794 DOI: 10.1080/21678421.2023.2260808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE Delays in amyotrophic lateral sclerosis (ALS) diagnosis can result in compromised disease management and unnecessary costs. We examined the extent of ALS misdiagnosis in the US and Europe. METHODS Data were collected via the Adelphi ALS Disease Specific Programme™, a cross-sectional survey of physicians and a medical chart review of their consulting patients with ALS in France, Germany, Italy, Spain, the UK (EU5), and the US. Between July 2020 and March 2021, eligible physicians (primary speciality neurology, active involvement in managing patients with ALS) abstracted data from patients (≥18 years old) with confirmed ALS. RESULTS Overall, 138 physicians completed the survey (EU5 107, US 31), with data reviewed from 795 patient medical charts (EU5 568, US 227); 278 (35.0%) patients (EU5 183 [32.2%], US 95 [41.9%]) had received ≥1 initial misdiagnosis based on symptoms later attributed to ALS. Mean (SD) time from symptom onset to first healthcare professional consultation was 3.8 (5.2) months (EU5 4.3 [4.8] months, US 2.6 [5.8] months). Mean (SD) time from symptom onset to ALS diagnosis was 8.2 (12.5) months (EU5 9.6 [14.0] months, US 5.0 [6.8] months) and increased to 10.4 (17.9) for patients with a misdiagnosis (compared with 6.9 [7.2] for patients with no misdiagnosis). Physician-identified barriers to timely ALS diagnosis included the similarity of symptoms to other conditions and delayed referral to neurologists. CONCLUSIONS Misdiagnosis of ALS is frequent, with a protracted diagnostic pathway. Targeted education of patients and physicians about signs and symptoms and benefits of prompt referral to multidisciplinary care are needed.
Collapse
Affiliation(s)
- Namita A Goyal
- Department of Neurology, UC Irvine MDA-ALS and Neuromuscular Center, University of California, Irvine, USA
| | | | | | | | | | | | - Christopher McDermott
- Department of Neurology, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
De Marchi F, Venkatesan S, Saraceno M, Mazzini L, Grossini E. Acetyl-L-carnitine and Amyotrophic Lateral Sclerosis: Current Evidence and Potential use. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:588-601. [PMID: 36998125 DOI: 10.2174/1871527322666230330083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND The management of neurodegenerative diseases can be frustrating for clinicians, given the limited progress of conventional medicine in this context. AIM For this reason, a more comprehensive, integrative approach is urgently needed. Among various emerging focuses for intervention, the modulation of central nervous system energetics, oxidative stress, and inflammation is becoming more and more promising. METHODS In particular, electrons leakage involved in the mitochondrial energetics can generate reactive oxygen-free radical-related mitochondrial dysfunction that would contribute to the etiopathology of many disorders, such as Alzheimer's and other dementias, Parkinson's disease, multiple sclerosis, stroke, and amyotrophic lateral sclerosis (ALS). RESULTS In this context, using agents, like acetyl L-carnitine (ALCAR), provides mitochondrial support, reduces oxidative stress, and improves synaptic transmission. CONCLUSION This narrative review aims to update the existing literature on ALCAR molecular profile, tolerability, and translational clinical potential use in neurodegeneration, focusing on ALS.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| | - Massimo Saraceno
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| |
Collapse
|
15
|
Oliveira Santos M, Swash M, de Carvalho M. Current challenges in primary lateral sclerosis diagnosis. Expert Rev Neurother 2024; 24:45-53. [PMID: 38093670 DOI: 10.1080/14737175.2023.2295010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION Primary lateral sclerosis (PLS) is a rare, adult-onset and slowly progressive motor neuron disorder whose clinical core is characterized by upper motor neuron (UMN) dysfunction. Its formal diagnosis is clinically based and disease duration-dependent. Differentiating PLS from other disorders involving UMN can be challenging, particularly in the early stages. AREAS COVERED Our review covers and discusses different aspects of the PLS field, including the diagnostic criteria and its limitations, its differential diagnosis and their major pitfalls, and the actual role of neurophysiology, neuroimaging, genetics, and molecular biomarkers. Symptomatic treatment of the different manifestations is also addressed. The authors searched MEDLINE and Scopus. They also searched the reference lists of articles identified by our search strategy and reviewed and selected those deemed relevant. They selected papers and studies based on the quality of the report, significance of the findings, and on the author's critical appraise and expertise. EXPERT OPINION It is important to investigate novel molecular biomarkers and plan multicenter clinical trials for PLS. However, this will require a large international project to recruit enough patients, particularly given the diagnostic uncertainty of the current clinical criteria. A better understanding of PLS pathophysiology is crucial for designing disease-targeted therapies.
Collapse
Affiliation(s)
- Miguel Oliveira Santos
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Michael Swash
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Mamede de Carvalho
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
16
|
Abstract
Although the past two decades have produced exciting discoveries in the genetics and pathology of amyotrophic lateral sclerosis (ALS), progress in developing an effective therapy remains slow. This review summarizes the critical discoveries and outlines the advances in disease characterization, diagnosis, imaging, and biomarkers, along with the current status of approaches to ALS care and treatment. Additional knowledge of the factors driving disease progression and heterogeneity will hopefully soon transform the care for patients with ALS into an individualized, multi-prong approach able to prevent disease progression sufficiently to allow for a dignified life with limited disability.
Collapse
Affiliation(s)
- Hristelina Ilieva
- Jefferson Weinberg ALS Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Justin Kwan
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Li J, Jaiswal MK, Chien JF, Kozlenkov A, Jung J, Zhou P, Gardashli M, Pregent LJ, Engelberg-Cook E, Dickson DW, Belzil VV, Mukamel EA, Dracheva S. Divergent single cell transcriptome and epigenome alterations in ALS and FTD patients with C9orf72 mutation. Nat Commun 2023; 14:5714. [PMID: 37714849 PMCID: PMC10504300 DOI: 10.1038/s41467-023-41033-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
A repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications. The greatest alterations occur in upper and deep layer excitatory neurons, as well as in astrocytes. In neurons, the changes imply an increase in proteostasis, metabolism, and protein expression pathways, alongside a decrease in neuronal function. In astrocytes, the alterations suggest activation and structural remodeling. Conversely, C9-FTD donors have fewer high-quality neuronal nuclei in the frontal cortex and numerous gene expression changes in glial cells. These findings highlight a context-dependent molecular disruption in C9-ALS and C9-FTD, indicating unique effects across cell types, brain regions, and diseases.
Collapse
Affiliation(s)
- Junhao Li
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US
| | - Manoj K Jaiswal
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jo-Fan Chien
- Department of Physics, University of California San Diego, La Jolla, CA, 92037, US
| | - Alexey Kozlenkov
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jinyoung Jung
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Ping Zhou
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | | | - Luc J Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US.
| | - Stella Dracheva
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US.
- Research & Development and VISN2 MIREC, James J, Peters VA Medical Center, Bronx, NY, 10468, US.
| |
Collapse
|
18
|
Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 2023; 19:525-541. [PMID: 37563264 PMCID: PMC10964248 DOI: 10.1038/s41582-023-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sukriti Nag
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
19
|
De Marchi F, Franjkic T, Schito P, Russo T, Nimac J, Chami AA, Mele A, Vidatic L, Kriz J, Julien JP, Apic G, Russell RB, Rogelj B, Cannon JR, Baralle M, Agosta F, Hecimovic S, Mazzini L, Buratti E, Munitic I. Emerging Trends in the Field of Inflammation and Proteinopathy in ALS/FTD Spectrum Disorder. Biomedicines 2023; 11:1599. [PMID: 37371694 PMCID: PMC10295684 DOI: 10.3390/biomedicines11061599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proteinopathy and neuroinflammation are two main hallmarks of neurodegenerative diseases. They also represent rare common events in an exceptionally broad landscape of genetic, environmental, neuropathologic, and clinical heterogeneity present in patients. Here, we aim to recount the emerging trends in amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) spectrum disorder. Our review will predominantly focus on neuroinflammation and systemic immune imbalance in ALS and FTD, which have recently been highlighted as novel therapeutic targets. A common mechanism of most ALS and ~50% of FTD patients is dysregulation of TAR DNA-binding protein 43 (TDP-43), an RNA/DNA-binding protein, which becomes depleted from the nucleus and forms cytoplasmic aggregates in neurons and glia. This, in turn, via both gain and loss of function events, alters a variety of TDP-43-mediated cellular events. Experimental attempts to target TDP-43 aggregates or manipulate crosstalk in the context of inflammation will be discussed. Targeting inflammation, and the immune system in general, is of particular interest because of the high plasticity of immune cells compared to neurons.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Toni Franjkic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
- Metisox, Cambridge CB24 9NL, UK;
| | - Paride Schito
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Tommaso Russo
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Anna A. Chami
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Angelica Mele
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Jean-Pierre Julien
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | | | | | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | | | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| |
Collapse
|
20
|
Kim SG, George NP, Hwang JS, Park S, Kim MO, Lee SH, Lee G. Human Bone Marrow-Derived Mesenchymal Stem Cell Applications in Neurodegenerative Disease Treatment and Integrated Omics Analysis for Successful Stem Cell Therapy. Bioengineering (Basel) 2023; 10:bioengineering10050621. [PMID: 37237691 DOI: 10.3390/bioengineering10050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Neurodegenerative diseases (NDDs), which are chronic and progressive diseases, are a growing health concern. Among the therapeutic methods, stem-cell-based therapy is an attractive approach to NDD treatment owing to stem cells' characteristics such as their angiogenic ability, anti-inflammatory, paracrine, and anti-apoptotic effects, and homing ability to the damaged brain region. Human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) are attractive NDD therapeutic agents owing to their widespread availability, easy attainability and in vitro manipulation and the lack of ethical issues. Ex vivo hBM-MSC expansion before transplantation is essential because of the low cell numbers in bone marrow aspirates. However, hBM-MSC quality decreases over time after detachment from culture dishes, and the ability of hBM-MSCs to differentiate after detachment from culture dishes remains poorly understood. Conventional analysis of hBM-MSCs characteristics before transplantation into the brain has several limitations. However, omics analyses provide more comprehensive molecular profiling of multifactorial biological systems. Omics and machine learning approaches can handle big data and provide more detailed characterization of hBM-MSCs. Here, we provide a brief review on the application of hBM-MSCs in the treatment of NDDs and an overview of integrated omics analysis of the quality and differentiation ability of hBM-MSCs detached from culture dishes for successful stem cell therapy.
Collapse
Affiliation(s)
- Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo Hwan Lee
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
| |
Collapse
|
21
|
Sironi F, De Marchi F, Mazzini L, Bendotti C. Cell therapy in ALS: An update on preclinical and clinical studies. Brain Res Bull 2023; 194:64-81. [PMID: 36690163 DOI: 10.1016/j.brainresbull.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons and neuromuscular impairment leading to complete paralysis, respiratory failure and premature death. The pathogenesis of the disease is multifactorial and noncell-autonomous involving the central and peripheral compartments of the neuromuscular axis and the skeletal muscle. Advanced clinical trials on specific ALS-related pathways have failed to significantly slow the disease. Therapy with stem cells from different sources has provided a promising strategy to protect the motor units exerting their effect through multiple mechanisms including neurotrophic support and excitotoxicity and neuroinflammation modulation, as evidenced from preclinical studies. Several phase I and II clinical trial of ALS patients have been developed showing positive effects in terms of safety and tolerability. However, the modest results on functional improvement in ALS patients suggest that only a coordinated effort between basic and clinical researchers could solve many problems, such as selecting the ideal stem cell source, identifying their mechanism of action and expected clinical outcomes. A promising approach may be stem cells selected or engineered to deliver optimal growth factor support at multiple sites along the neuromuscular pathway. This review covers recent advances in stem cell therapies in animal models of ALS, as well as detailing the human clinical trials that have been done and are currently undergoing development.
Collapse
Affiliation(s)
- Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy.
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|
22
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Viader F. La sclérose latérale amyotrophique : une maladie neurodégénérative emblématique. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2023. [DOI: 10.1016/j.banm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Canosa A, Martino A, Manera U, Vasta R, Grassano M, Palumbo F, Cabras S, Di Pede F, Arena V, Moglia C, Giuliani A, Calvo A, Chiò A, Pagani M. Role of brain 2-[ 18F]fluoro-2-deoxy-D-glucose-positron-emission tomography as survival predictor in amyotrophic lateral sclerosis. Eur J Nucl Med Mol Imaging 2023; 50:784-791. [PMID: 36308536 PMCID: PMC9852209 DOI: 10.1007/s00259-022-05987-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE The identification of prognostic tools in amyotrophic lateral sclerosis (ALS) would improve the design of clinical trials, the management of patients, and life planning. We aimed to evaluate the accuracy of brain 2-[18F]fluoro-2-deoxy-D-glucose-positron-emission tomography (2-[18F]FDG-PET) as an independent predictor of survival in ALS. METHODS A prospective cohort study enrolled 418 ALS patients, who underwent brain 2-[18F]FDG-PET at diagnosis and whose survival time was available. We discretized the survival time in a finite number of classes in a data-driven fashion by employing a k-means-like strategy. We identified "hot brain regions" with maximal power in discriminating survival classes, by evaluating the Laplacian scores in a class-aware fashion. We retained the top-m features for each class to train the classification systems (i.e., a support vector machine, SVM), using 10% of the ALS cohort as test set. RESULTS Data were discretized in three survival profiles: 0-2 years, 2-5 years, and > 5 years. SVM resulted in an error rate < 20% for two out of three classes separately. As for class one, the discriminant clusters included left caudate body and anterior cingulate cortex. The most discriminant regions were bilateral cerebellar pyramid in class two, and right cerebellar dentate nucleus, and left cerebellar nodule in class three. CONCLUSION Brain 2-[18F]FDG-PET along with artificial intelligence was able to predict with high accuracy the survival time range in our ALS cohort. Healthcare professionals can benefit from this prognostic tool for planning patients' management and follow-up. 2-[18F]FDG-PET represents a promising biomarker for individual patients' stratification in clinical trials. The lack of a multicentre external validation of the model warrants further studies to evaluate its generalization capability.
Collapse
Affiliation(s)
- Antonio Canosa
- grid.7605.40000 0001 2336 6580ALS Centre, “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy ,grid.432329.d0000 0004 1789 4477SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy ,grid.428479.40000 0001 2297 9633Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| | - Alessio Martino
- grid.428479.40000 0001 2297 9633Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy ,grid.18038.320000 0001 2180 8787Department of Business and Management, LUISS University, Viale Romania 32, 00197 Rome, Italy
| | - Umberto Manera
- grid.7605.40000 0001 2336 6580ALS Centre, “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy ,grid.432329.d0000 0004 1789 4477SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Rosario Vasta
- grid.7605.40000 0001 2336 6580ALS Centre, “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Maurizio Grassano
- grid.7605.40000 0001 2336 6580ALS Centre, “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Francesca Palumbo
- grid.7605.40000 0001 2336 6580ALS Centre, “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Sara Cabras
- grid.7605.40000 0001 2336 6580ALS Centre, “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Francesca Di Pede
- grid.7605.40000 0001 2336 6580ALS Centre, “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Vincenzo Arena
- Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A., Turin, Italy
| | - Cristina Moglia
- grid.7605.40000 0001 2336 6580ALS Centre, “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy ,grid.432329.d0000 0004 1789 4477SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Calvo
- grid.7605.40000 0001 2336 6580ALS Centre, “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy ,grid.432329.d0000 0004 1789 4477SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy ,grid.7605.40000 0001 2336 6580Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Adriano Chiò
- grid.7605.40000 0001 2336 6580ALS Centre, “Rita Levi Montalcini” Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy ,grid.432329.d0000 0004 1789 4477SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy ,grid.428479.40000 0001 2297 9633Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy ,grid.7605.40000 0001 2336 6580Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Marco Pagani
- grid.428479.40000 0001 2297 9633Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy ,grid.24381.3c0000 0000 9241 5705Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Muacevic A, Adler JR, Singh P, Faisal AR, Rai N, Poudel P, Waleed MS, Quinonez J, Ruxmohan S, Jain E. Investigating Edaravone Use for Management of Amyotrophic Lateral Sclerosis (ALS): A Narrative Review. Cureus 2023; 15:e33746. [PMID: 36788871 PMCID: PMC9922523 DOI: 10.7759/cureus.33746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
The use of Edaravone, given orally, for the treatment of amyotrophic lateral sclerosis (ALS) was officially approved by the Federal Drug Association (FDA) in 2017. ALS is a rare and progressive degenerative disease that worsens over time. It attacks and destroys the nerve cells that control voluntary muscles, thus leading to weakness, eventual paralysis, and, ultimately death. Edaravone was given initially intravenously, but recent evidence shows better results with oral suspension. This narrative review is aimed to investigate the benefit of Edaravone for the management of ALS, compare it to Riluzole, discuss its mechanism of action, route of use, and side effects, and ultimately discuss future implications of this pharmacotherapy.
Collapse
|
26
|
Soares P, Silva C, Chavarria D, Silva FSG, Oliveira PJ, Borges F. Drug discovery and amyotrophic lateral sclerosis: Emerging challenges and therapeutic opportunities. Ageing Res Rev 2023; 83:101790. [PMID: 36402404 DOI: 10.1016/j.arr.2022.101790] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons (MNs) leading to paralysis and, ultimately, death by respiratory failure 3-5 years after diagnosis. Edaravone and Riluzole, the only drugs currently approved for ALS treatment, only provide mild symptomatic relief to patients. Extraordinary progress in understanding the biology of ALS provided new grounds for drug discovery. Over the last two decades, mitochondria and oxidative stress (OS), iron metabolism and ferroptosis, and the major regulators of hypoxia and inflammation - HIF and NF-κB - emerged as promising targets for ALS therapeutic intervention. In this review, we focused our attention on these targets to outline and discuss current advances in ALS drug development. Based on the challenges and the roadblocks, we believe that the rational design of multi-target ligands able to modulate the complex network of events behind the disease can provide effective therapies in a foreseeable future.
Collapse
Affiliation(s)
- Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Catia Silva
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Filomena S G Silva
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paulo J Oliveira
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
27
|
Mushroom Polysaccharides as Potential Candidates for Alleviating Neurodegenerative Diseases. Nutrients 2022; 14:nu14224833. [PMID: 36432520 PMCID: PMC9696021 DOI: 10.3390/nu14224833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a widespread and serious global public health burden, particularly among the older population. At present, effective therapies do not exist, despite the increasing understanding of the different mechanisms of NDs. In recent years, some drugs, such as galantamine, entacapone, riluzole, and edaravone, have been proposed for the treatment of different NDs; however, they mainly concentrate on symptom management and confer undesirable side effects and adverse reactions. Therefore, there is an urgent need to find novel drugs with fewer disadvantages and higher efficacy for the treatment of NDs. Mushroom polysaccharides are macromolecular complexes with multi-targeting bioactivities, low toxicity, and high safety. Some have been demonstrated to exhibit neuroprotective effects via their antioxidant, anti-amyloidogenic, anti-neuroinflammatory, anticholinesterase, anti-apoptotic, and anti-neurotoxicity activities, which have potential in the treatment of NDs. This review focuses on the different processes involved in ND development and progression, highlighting the neuroprotective activities and potential role of mushroom polysaccharides and summarizing the limitations and future perspectives of mushroom polysaccharides in the prevention and treatment of NDs.
Collapse
|
28
|
Peng S, Chang W, Tian Y, Yang Y, Li S, Ni J, Zhu W. Herbal medicine and acupuncture relieved progressive bulbar palsy for more than 3 years: A case report. Medicine (Baltimore) 2022; 101:e31446. [PMID: 36397351 PMCID: PMC9666122 DOI: 10.1097/md.0000000000031446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
RATIONALE Progressive bulbar palsy (PBP) is a type of motor neuron disease (MND). The main symptoms include dysarthria, dysphagia, tongue muscle atrophy and fasciculations. This disease is generally severe and develops rapidly. Due to the lack of effective treatment, many patients with MND in China turn to traditional Chinese medicine treatment for help. We successfully relieved dysphagia and sialorrhea in a patient with PBP for 3 years with herbal medicine and acupuncture. PATIENT CONCERNS The patient was a 68-years-old woman with PBP and suffered from severe dysphagia and sialorrhea. DIAGNOSES Progressive bulbar palsy. INTERVENTIONS Chinese herbal medicine and acupuncture. OUTCOMES After 4 months of herbal medicine and acupuncture treatment, dysphagia and sialorrhea were relieved considerably. The patient's condition has been stable for more than 3 years and continues to be treated with Chinese herbal medicine and acupuncture. LESSONS Our case suggests that alternative therapies such as herbal medicine and acupuncture may be effective in alleviating the symptoms of MND/PBP. However, standardized clinical studies are still required to verify the effectiveness and safety.
Collapse
Affiliation(s)
- Siyang Peng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Weiqian Chang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Yukun Tian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Yajing Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Shaohong Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Jinxia Ni
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Dongcheng District, Beijing, China
| | - Wenzeng Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| |
Collapse
|
29
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
30
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
31
|
Strnadel J, Dumortier HM, Hajduchova D, Zahumenska R, Nosal V, Smolar M, Marcinek J, Kalman M, Mersakova S, Brany D, Juhas S, Juhasova J, Studenovska H, Mitruskova B, Suroviakova S, Novakova S, Skovierova H, Kurca E, Pecova R, Plank L, Halasova E. In vitro modeling of amyotrophic lateral sclerosis with induced pluripotent stem cell technology-derived cell line ORIONi002-A. Stem Cell Res 2022; 63:102870. [PMID: 35907349 DOI: 10.1016/j.scr.2022.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
We present here a new iPS cell line for modeling sporadic form of ALS. Cell line was generated by reprogramming skin fibroblasts isolated with explant culture technology from skin biopsy, donated by ALS patient. For reprogramming, polycistronic self-replicating RNA vector was used and derived iPS cells were characterized by immunocytochemistry and FACS (pluripotent factors expression), karyotyping, STR fingerprinting analysis and in vitro differentiation assay. New cell line showed normal (46, XY) karyotype and differentiated in vitro into cells from three germ layers. STR analysis proved the origin and originality of the cell line.
Collapse
Affiliation(s)
- Jan Strnadel
- Biomedical Centre Martin JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Slovakia.
| | - Hugo M Dumortier
- Biomedical Centre Martin JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Slovakia
| | - Dominika Hajduchova
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Slovakia
| | - Romana Zahumenska
- Biomedical Centre Martin JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Slovakia
| | - Vladimir Nosal
- Clinic of Neurology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University Hospital, Martin, Slovakia
| | - Marek Smolar
- Clinic of Surgery and Transplant Center, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University Hospital, Martin, Slovakia
| | - Juraj Marcinek
- Department of Pathological Anatomy, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University Hospital, Martin, Slovakia
| | - Michal Kalman
- Department of Pathological Anatomy, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University Hospital, Martin, Slovakia
| | - Sandra Mersakova
- Biomedical Centre Martin JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Slovakia
| | - Dusan Brany
- Biomedical Centre Martin JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Slovakia
| | - Stefan Juhas
- PIGMOD Centre, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i., Liběchov, Czech Republic
| | - Jana Juhasova
- PIGMOD Centre, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i., Liběchov, Czech Republic
| | - Hana Studenovska
- Department of Biomaterials and Bioanalogous Systems Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Mitruskova
- Department of Clinical Genetics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University Hospital, Martin, Slovakia
| | - Stanislava Suroviakova
- Clinic of Children and Adolescents, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University Hospital, Martin, Slovakia
| | - Slavomira Novakova
- Biomedical Centre Martin JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Slovakia
| | - Henrieta Skovierova
- Biomedical Centre Martin JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University Hospital, Martin, Slovakia
| | - Renata Pecova
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Slovakia
| | - Lukas Plank
- Department of Pathological Anatomy, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University Hospital, Martin, Slovakia
| | - Erika Halasova
- Biomedical Centre Martin JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Slovakia
| |
Collapse
|
32
|
Shandilya A, Mehan S, Kumar S, Sethi P, Narula AS, Alshammari A, Alharbi M, Alasmari AF. Activation of IGF-1/GLP-1 Signalling via 4-Hydroxyisoleucine Prevents Motor Neuron Impairments in Experimental ALS-Rats Exposed to Methylmercury-Induced Neurotoxicity. Molecules 2022; 27:3878. [PMID: 35745001 PMCID: PMC9228431 DOI: 10.3390/molecules27123878] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe adult motor neuron disease that causes progressive neuromuscular atrophy, muscle wasting, weakness, and depressive-like symptoms. Our previous research suggests that mercury levels are directly associated with ALS progression. MeHg+-induced ALS is characterised by oligodendrocyte destruction, myelin basic protein (MBP) depletion, and white matter degeneration, leading to demyelination and motor neuron death. The selection of MeHg+ as a potential neurotoxicant is based on our evidence that it has been connected to the development of ALS-like characteristics. It causes glutamate-mediated excitotoxicity, calcium-dependent neurotoxicity, and an ALS-like phenotype. Dysregulation of IGF-1/GLP-1 signalling has been associated with ALS progression. The bioactive amino acid 4-hydroxyisoleucine (HI) from Trigonella foenum graecum acts as an insulin mimic in rodents and increases insulin sensitivity. This study examined the neuroprotective effects of 4-HI on MeHg+-treated adult Wistar rats with ALS-like symptoms, emphasising brain IGF1/GLP-1 activation. Furthermore, we investigated the effect of 4-HI on MBP levels in rat brain homogenate, cerebrospinal fluid (CSF), blood plasma, and cell death indicators such as caspase-3, Bax, and Bcl-2. Rats were assessed for muscular strength, locomotor deficits, depressed behaviour, and spatial learning in the Morris water maze (MWM) to measure neurobehavioral abnormalities. Doses of 4-HI were given orally for 42 days in the MeHg+ rat model at 50 mg/kg or 100 mg/kg to ameliorate ALS-like neurological dysfunctions. Additionally, neurotransmitters and oxidative stress markers were examined in rat brain homogenates. Our findings suggest that 4-HI has neuroprotective benefits in reducing MeHg+-induced behavioural, neurochemical, and histopathological abnormalities in ALS-like rats exposed to methylmercury.
Collapse
Affiliation(s)
- Ambika Shandilya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (A.F.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (A.F.A.)
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (A.F.A.)
| |
Collapse
|
33
|
Melatonin Induces Autophagy in Amyotrophic Lateral Sclerosis Mice via Upregulation of SIRT1. Mol Neurobiol 2022; 59:4747-4760. [PMID: 35606613 DOI: 10.1007/s12035-022-02875-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/12/2022] [Indexed: 12/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the neurodegenerative disease that leads to the motor dysfunction damaged by both upper and lower motor neurons. The etiology and pathogenesis of ALS hasn't completely been understood yet up to now, the current study suggests that autophagy plays an important role in the development of ALS. Meanwhile, melatonin is found to inhibit the progression of ALS. To this end, this study aimed to investigate the potential relation between melatonin and autophagy in ALS. The in vivo model of ALS was established to investigate the effects of melatonin in ALS. The mRNA expressions were performed to detect by RT-qPCR, and the protein levels were tested by western blot and immunofluorescence histochemistry staining. The inflammatory cytokine was applied to detect by ELISA. The results showed that melatonin dose-dependently reversed the ALS-induced survival time shortened, weight loss and rotating rod latency decrease. The expressions of both SIRT1 and Beclin-1 as well as the ratio of LC3II/LC3I were significantly upregulated in the ALS mice, while melatonin reversed the upregulation of both SIRT1 and Beclin-1 expression and LC3II/LC3I ratio in a dose-dependent manner. In contrast, melatonin dose-dependently significantly restored the ALS-induced downregulation of p62. Furthermore, SIRT1 silencing notably reduced the effect of melatonin on Beclin-1, LC3II/LC3I, and p62. Melatonin induced autophagy in the ALS mice via the upregulation of SIRT1. Thus, melatonin might act as a new agent for the treatment of ALS.
Collapse
|
34
|
Wang X, Zhang Y, Jin T, Botchway BOA, Fan R, Wang L, Liu X. Adipose-Derived Mesenchymal Stem Cells Combined With Extracellular Vesicles May Improve Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:830346. [PMID: 35663577 PMCID: PMC9158432 DOI: 10.3389/fnagi.2022.830346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
The complexity of central nervous system diseases together with their intricate pathogenesis complicate the establishment of effective treatment strategies. Presently, the superiority of adipose-derived mesenchymal stem cells (ADSCs) on neuronal injuries has attracted significant attention. Similarly, extracellular vesicles (EVs) are potential interventional agents that could identify and treat nerve injuries. Herein, we reviewed the potential effects of ADSCs and EVs on amyotrophic lateral sclerosis (ALS) injured nerves, and expound on their practical application in the clinic setting. This article predominantly focused on the therapeutic role of ADSCs concerning the pathogenesis of ALS, the protective and reparative effects of EVs on nerve injury, as well as the impact following the combined usage of ADSCs and EVs in ALS.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | - Tian Jin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | | | - Ruihua Fan
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lvxia Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|
35
|
Godoy-Corchuelo JM, Fernández-Beltrán LC, Ali Z, Gil-Moreno MJ, López-Carbonero JI, Guerrero-Sola A, Larrad-Sainz A, Matias-Guiu J, Matias-Guiu JA, Cunningham TJ, Corrochano S. Lipid Metabolic Alterations in the ALS-FTD Spectrum of Disorders. Biomedicines 2022; 10:1105. [PMID: 35625841 PMCID: PMC9138405 DOI: 10.3390/biomedicines10051105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the study of the relation between alterations in systemic lipid metabolism and neurodegenerative disorders, in particular in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). In ALS these alterations are well described and evident not only with the progression of the disease but also years before diagnosis. Still, there are some discrepancies in findings relating to the causal nature of lipid metabolic alterations, partly due to the great clinical heterogeneity in ALS. ALS presentation is within a disorder spectrum with Frontotemporal Dementia (FTD), and many patients present mixed forms of ALS and FTD, thus increasing the variability. Lipid metabolic and other systemic metabolic alterations have not been well studied in FTD, or in ALS-FTD mixed forms, as has been in pure ALS. With the recent development in lipidomics and the integration with other -omics platforms, there is now emerging data that not only facilitates the identification of biomarkers but also enables understanding of the underlying pathological mechanisms. Here, we reviewed the recent literature to compile lipid metabolic alterations in ALS, FTD, and intermediate mixed forms, with a view to appraising key commonalities or differences within the spectrum.
Collapse
Affiliation(s)
- Juan Miguel Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Zeinab Ali
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
| | - María J. Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Juan I. López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Antonio Guerrero-Sola
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Angélica Larrad-Sainz
- Nutrition and Endocrinology Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain;
| | - Jorge Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Jordi A. Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Thomas J. Cunningham
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| |
Collapse
|
36
|
Gupta R, Sahu M, Tripathi R, Ambasta RK, Kumar P. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Res Rev 2022; 76:101579. [PMID: 35124235 DOI: 10.1016/j.arr.2022.101579] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) and hydrogen polysulfides (H2Sn) are essential regulatory signaling molecules generated by the entire body, including the central nervous system. Researchers have focused on the classical H2S signaling from the past several decades, whereas the last decade has shown the emergence of H2S-induced protein S-sulfhydration signaling as a potential therapeutic approach. Cysteine S-persulfidation is a critical paradigm of post-translational modification in the process of H2S signaling. Additionally, studies have shown the cross-relationship between S-sulfhydration and other cysteine-induced post-translational modifications, namely nitrosylation and carbonylation. In the central nervous system, S-sulfhydration is involved in the cytoprotection through various signaling pathways, viz. inflammatory response, oxidative stress, endoplasmic reticulum stress, atherosclerosis, thrombosis, and angiogenesis. Further, studies have demonstrated H2S-induced S-sulfhydration in regulating different biological processes, such as mitochondrial integrity, calcium homeostasis, blood-brain permeability, cerebral blood flow, and long-term potentiation. Thus, protein S-sulfhydration becomes a crucial regulatory molecule in cerebrovascular and neurodegenerative diseases. Herein, we first described the generation of intracellular H2S followed by the application of H2S in the regulation of cerebral blood flow and blood-brain permeability. Further, we described the involvement of S-sulfhydration in different biological and cellular functions, such as inflammatory response, mitochondrial integrity, calcium imbalance, and oxidative stress. Moreover, we highlighted the importance of S-sulfhydration in cerebrovascular and neurodegenerative diseases.
Collapse
|
37
|
Ahangaran M, Chiò A, D'Ovidio F, Manera U, Vasta R, Canosa A, Moglia C, Calvo A, Minaei-Bidgoli B, Jahed-Motlagh MR. Causal associations of genetic factors with clinical progression in amyotrophic lateral sclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106681. [PMID: 35151113 DOI: 10.1016/j.cmpb.2022.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/08/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent advances in the genetic causes of ALS reveals that about 10% of ALS patients have a genetic origin and that more than 30 genes are likely to contribute to this disease. However, four genes are more frequently associated with ALS: C9ORF72, TARDBP, SOD1, and FUS. The relationship between genetic factors and ALS progression rate is not clear. In this study, we carried out a causal analysis of ALS disease with a genetics perspective in order to assess the contribution of the four mentioned genes to the progression rate of ALS. METHODS In this work, we applied a novel causal learning model to the CRESLA dataset which is a longitudinal clinical dataset of ALS patients including genetic information of such patients. This study aims to discover the relationship between four mentioned genes and ALS progression rate from a causation perspective using machine learning and probabilistic methods. RESULTS The results indicate a meaningful association between genetic factors and ALS progression rate with causality viewpoint. Our findings revealed that causal relationships between ALSFRS-R items associated with bulbar regions have the strongest association with genetic factors, especially C9ORF72; and other three genes have the greatest contribution to the respiratory ALSFRS-R items with a causation point of view. CONCLUSIONS The findings revealed that genetic factors have a significant causal effect on the rate of ALS progression. Since C9ORF72 patients have higher proportion compared to those carrying other three gene mutations in the CRESLA cohort, we need a large multi-centric study to better analyze SOD1, TARDBP and FUS contribution to the ALS clinical progression. We conclude that causal associations between ALSFRS-R clinical factors is a suitable predictor for designing a prognostic model of ALS.
Collapse
Affiliation(s)
- Meysam Ahangaran
- Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran; Department of Computer Engineering, Mazandaran University of Science and Technology, Babol, Iran.
| | - Adriano Chiò
- Department of Computer Engineering, Mazandaran University of Science and Technology, Babol, Iran; 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy; National Research Council, Institute of Cognitive Sciences and Technologies, Rome, Italy.
| | - Fabrizio D'Ovidio
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Umberto Manera
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Rosario Vasta
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Canosa
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Behrouz Minaei-Bidgoli
- Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
| | | |
Collapse
|
38
|
NU-9 improves health of hSOD1 G93A mouse upper motor neurons in vitro, especially in combination with riluzole or edaravone. Sci Rep 2022; 12:5383. [PMID: 35354901 PMCID: PMC8967818 DOI: 10.1038/s41598-022-09332-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 11/27/2022] Open
Abstract
Even though amyotrophic lateral sclerosis (ALS) is a disease of the upper and lower motor neurons, to date none of the compounds in clinical trials have been tested for improving the health of diseased upper motor neurons (UMNs). There is an urgent need to develop preclinical assays that include UMN health as a readout. Since ALS is a complex disease, combinatorial treatment strategies will be required to address the mechanisms perturbed in patients. Here, we describe a novel in vitro platform that takes advantage of an UMN reporter line in which UMNs are genetically labeled with fluorescence and have misfolded SOD1 toxicity. We report that NU-9, an analog of the cyclohexane-1,3-dione family of compounds, improves the health of UMNs with misfolded SOD1 toxicity more effectively than riluzole or edaravone, -the only two FDA-approved ALS drugs to date-. Interestingly, when NU-9 is applied in combination with riluzole or edaravone, there is an additive effect on UMN health, as they extend longer axons and display enhanced branching and arborization, two important characteristics of healthy UMNs in vitro.
Collapse
|
39
|
Iguchi N, Mano T, Iwasa N, Ozaki M, Yamada N, Kikutsuji N, Kido A, Sugie K. Thoracic Excursion Is a Biomarker for Evaluating Respiratory Function in Amyotrophic Lateral Sclerosis. Front Neurol 2022; 13:853469. [PMID: 35401409 PMCID: PMC8984343 DOI: 10.3389/fneur.2022.853469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo evaluate the usefulness of thoracic excursion as a biomarker in patients with amyotrophic lateral sclerosis (ALS).MethodsWe measured the forced the vital capacity (FVC), thoracic excursion, baseline-to-peak diaphragmatic compound muscle action potential (DCMAP) amplitude, diaphragm thickness at full inspiration (DTfi), Medical Research Council (MRC) sum score for muscle strength, and arterial partial pressures of oxygen and carbon dioxide and administered the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) and modified Medical Research Council (mMRC) Dyspnea Scale. The test–retest reliability of thoracic excursion was determined.Results and ConclusionsThirty-four patients with ALS and 26 age- and sex-matched healthy participants were enrolled. Thoracic excursion measurement had excellent test–retest reliability (intraclass coefficient: 0.974). Thoracic excursion was more strongly correlated with FVC (r = 0.678, p < 0.001) than DCMAP amplitude (r = 0.501, p = 0.003) and DTfi (r = 0.597, p < 0.001). It was also correlated with ALSFRS-R score (r = 0.610, p < 0.001), MRC sum score (r = 0.470, p = 0.005), and mMRC Dyspnea Scale score (r = −0.446, p = 0.008) and was the most sensitive parameter for assessing dyspnea and FVC. Thoracic excursion decreased as FVC declined in the early and late stages, there were no differences in DCMAP amplitude and DTfi between the early and late stages, and ALSFRS-R score and MRC sum score decreased only in the late stage. Thoracic excursion was well correlated with respiratory function and is useful for predicting respiratory and general dysfunction in patients with ALS regardless of stage.
Collapse
Affiliation(s)
- Naohiko Iguchi
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Tomoo Mano
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Rehabilitation Medicine, Nara Medical University, Kashihara, Japan
- *Correspondence: Tomoo Mano
| | - Naoki Iwasa
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Maki Ozaki
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Nanami Yamada
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Naoya Kikutsuji
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Akira Kido
- Department of Rehabilitation Medicine, Nara Medical University, Kashihara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
40
|
Peggion C, Scalcon V, Massimino ML, Nies K, Lopreiato R, Rigobello MP, Bertoli A. SOD1 in ALS: Taking Stock in Pathogenic Mechanisms and the Role of Glial and Muscle Cells. Antioxidants (Basel) 2022; 11:614. [PMID: 35453299 PMCID: PMC9032988 DOI: 10.3390/antiox11040614] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/04/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. While the exact causes of ALS are still unclear, the discovery that familial cases of ALS are related to mutations in the Cu/Zn superoxide dismutase (SOD1), a key antioxidant enzyme protecting cells from the deleterious effects of superoxide radicals, suggested that alterations in SOD1 functionality and/or aberrant SOD1 aggregation strongly contribute to ALS pathogenesis. A new scenario was opened in which, thanks to the generation of SOD1 related models, different mechanisms crucial for ALS progression were identified. These include excitotoxicity, oxidative stress, mitochondrial dysfunctions, and non-cell autonomous toxicity, also implicating altered Ca2+ metabolism. While most of the literature considers motor neurons as primary target of SOD1-mediated effects, here we mainly discuss the effects of SOD1 mutations in non-neuronal cells, such as glial and skeletal muscle cells, in ALS. Attention is given to the altered redox balance and Ca2+ homeostasis, two processes that are strictly related with each other. We also provide original data obtained in primary myocytes derived from hSOD1(G93A) transgenic mice, showing perturbed expression of Ca2+ transporters that may be responsible for altered mitochondrial Ca2+ fluxes. ALS-related SOD1 mutants are also responsible for early alterations of fundamental biological processes in skeletal myocytes that may impinge on skeletal muscle functions and the cross-talk between muscle cells and motor neurons during disease progression.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | | | - Kelly Nies
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.P.); (V.S.); (K.N.); (R.L.)
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
41
|
Cho HY, Chen PC, Chuang TH, Yu MC, Wu SN. Activation of Voltage-Gated Na+ Current by GV-58, a Known Activator of CaV Channels. Biomedicines 2022; 10:biomedicines10030721. [PMID: 35327523 PMCID: PMC8945347 DOI: 10.3390/biomedicines10030721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
GV-58 ((2R)-2-[(6-{[(5-methylthiophen-2-yl)methyl]amino}-9-propyl-9H-purin-2-yl)amino]butan-1-ol) is recognized to be an activator of N- and P/Q-type Ca2+ currents. However, its modulatory actions on other types of ionic currents in electrically excitable cells remain largely unanswered. This study was undertaken to explore the possible modifications caused by GV-58 in ionic currents (e.g., voltage-gated Na+ current [INa], A-type K+ current [IK(A)], and erg-mediated K+ current [IK(erg)]) identified from pituitary GH3 lactotrophs. GH3 cell exposure to GV-58 enhanced the transient and late components of INa with varying potencies; consequently, the EC50 values of GV-58 required for its differential increase in peak and late INa in GH3 cells were estimated to be 8.9 and 2.6 μM, respectively. The INa in response to brief depolarizing pulse was respectively stimulated or suppressed by GV-58 or tetrodotoxin, but it failed to be altered by ω-conotoxin MVIID. Cell exposure to this compound increased the recovery of INa inactivation evoked by two-pulse protocol based on a geometrics progression; however, in its presence, there was a slowing in the inactivation rate of current decay evoked by a train of depolarizing pulses. The existence of GV-58 also resulted in an increase in the amplitude of ramp-induced resurgent and window INa. The presence of this compound inhibited IK(A) magnitude, accompanied by a shortening in inactivation time course of the current; however, it mildly decreased IK(erg). Under current-clamp conditions, GV-58 increased the frequency of spontaneous action potentials in GH3 cells. Moreover, in NSC-34 motor neuron-like cells, the presence of GV-58 not only raised INa amplitude but also reduced current inactivation. Taken together, the overall work provides a noticeable yet unidentified finding which implies that, in addition to its agonistic effect on Ca2+ currents, GV-58 may concertedly modify the amplitude and gating kinetics of INa in electrically excitable cells, hence modifiying functional activities in these cells.
Collapse
Affiliation(s)
- Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (P.-C.C.); (T.-H.C.); (M.-C.Y.)
| | - Pei-Chun Chen
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (P.-C.C.); (T.-H.C.); (M.-C.Y.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
| | - Tzu-Hsien Chuang
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (P.-C.C.); (T.-H.C.); (M.-C.Y.)
| | - Meng-Cheng Yu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (P.-C.C.); (T.-H.C.); (M.-C.Y.)
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (P.-C.C.); (T.-H.C.); (M.-C.Y.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
- Correspondence: ; Tel.: +886-6-2353535-5334; Fax: +886-6-2362780
| |
Collapse
|
42
|
Rizzuti M, Melzi V, Gagliardi D, Resnati D, Meneri M, Dioni L, Masrori P, Hersmus N, Poesen K, Locatelli M, Biella F, Silipigni R, Bollati V, Bresolin N, Comi GP, Van Damme P, Nizzardo M, Corti S. Insights into the identification of a molecular signature for amyotrophic lateral sclerosis exploiting integrated microRNA profiling of iPSC-derived motor neurons and exosomes. Cell Mol Life Sci 2022; 79:189. [PMID: 35286466 PMCID: PMC8921154 DOI: 10.1007/s00018-022-04217-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder characterized by progressive degeneration of motor neurons (MNs). Most cases are sporadic, whereas 10% are familial. The pathological mechanisms underlying the disease are partially understood, but it is increasingly being recognized that alterations in RNA metabolism and deregulation of microRNA (miRNA) expression occur in ALS. In this study, we performed miRNA expression profile analysis of iPSC-derived MNs and related exosomes from familial patients and healthy subjects. We identified dysregulation of miR-34a, miR-335 and miR-625-3p expression in both MNs and exosomes. These miRNAs regulate genes and pathways which correlate with disease pathogenesis, suggesting that studying miRNAs deregulation can contribute to deeply investigate the molecular mechanisms underlying the disease. We also assayed the expression profile of these miRNAs in the cerebrospinal fluid (CSF) of familial (fALS) and sporadic patients (sALS) and we identified a significant dysregulation of miR-34a-3p and miR-625-3p levels in ALS compared to controls. Taken together, all these findings suggest that miRNA analysis simultaneously performed in different human biological samples could represent a promising molecular tool to understand the etiopathogenesis of ALS and to develop new potential miRNA-based strategies in this new propitious therapeutic era.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Valentina Melzi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Delia Gagliardi
- Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Davide Resnati
- Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Megi Meneri
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Laura Dioni
- EPIGET LAB, Unit of Occupational Medicine, Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - Pegah Masrori
- Department of Neurosciences, Laboratory of Neurobiology, Center for Brain and Disease, KU Leuven, University of Leuven, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Nicole Hersmus
- Department of Neurosciences, Laboratory of Neurobiology, Center for Brain and Disease, KU Leuven, University of Leuven, Leuven, Belgium
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Martina Locatelli
- Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Fabio Biella
- Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Rosamaria Silipigni
- Laboratory of Medical Genetics, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Unit of Occupational Medicine, Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Philip Van Damme
- Department of Neurosciences, Laboratory of Neurobiology, Center for Brain and Disease, KU Leuven, University of Leuven, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Stefania Corti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy. .,Department of Physiopathology and Transplants, Dino Ferrari Center, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
43
|
Tu LF, Zhang TZ, Zhou YF, Zhou QQ, Gong HB, Liang L, Hai LN, You NX, Su Y, Chen YJ, Mo XK, Shi CZ, Luo LP, Sun WY, Duan WJ, Kurihara H, Li YF, He RR. GPX4 deficiency-dependent phospholipid peroxidation drives motor deficits of ALS. J Adv Res 2022; 43:205-218. [PMID: 36585109 PMCID: PMC9811330 DOI: 10.1016/j.jare.2022.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/15/2022] [Accepted: 02/27/2022] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by oxidative stress that triggers motor neurons loss in the brain and spinal cord. However, the mechanisms underlying the exact role of oxidative stress in ALS-associated neural degeneration are not definitively established. Oxidative stress-generated phospholipid peroxides are known to have extensive physiological and pathological consequences to tissues. Here, we discovered that the deficiency of glutathione peroxidase 4 (GPX4), an essential antioxidant peroxidase, led to the accumulation of phospholipid peroxides and resulted in a loss of motor neurons in spinal cords of ALS mice. Mutant human SOD1G93A transgenic mice were intrathecally injected with neuron-targeted adeno-associated virus (AAV) expressing GPX4 (GPX4-AAV) or phospholipid peroxidation inhibitor, ferrostatin-1. The results showed that impaired motor performance and neural loss induced by SOD1G93A toxicity in the lumbar spine were substantially alleviated by ferrostatin-1 treatment and AAV-mediated GPX4 delivery. In addition, the denervation of neuron-muscle junction and spinal atrophy in ALS mice were rescued by neural GPX4 overexpression, suggesting that GPX4 is essential for the motor neural maintenance and function. In comparison, conditional knockdown of Gpx4 in the spinal cords of Gpx4fl/fl mice triggered an obvious increase of phospholipid peroxides and the occurrence of ALS-like motor phenotype. Altogether, our findings underscore the importance of GPX4 in maintaining phospholipid redox homeostasis in the spinal cord and presents GPX4 as an attractive therapeutic target for ALS treatment.
Collapse
Affiliation(s)
- Long-Fang Tu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; Computer-Aided Drug Discovery Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian-Ze Zhang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yang-Fan Zhou
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qing-Qing Zhou
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hai-Biao Gong
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Lin-Na Hai
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Nan-Xin You
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yang Su
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong-Jun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xu-Kai Mo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Chang-Zheng Shi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Liang-Ping Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
44
|
Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, Tateishi H, Tateishi T, Otsuka M, Fujita M, Başak AN. Comprehensive Research on Past and Future Therapeutic Strategies Devoted to Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:2400. [PMID: 35269543 PMCID: PMC8910198 DOI: 10.3390/ijms23052400] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hilal Sever
- Ministry of Health, Istanbul Training and Research Hospital, Physical Medicine and Rehabilitation Clinic, Istanbul 34098, Turkey;
| | - Firdevs Ocak
- Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alaaddin Keykubat University, Alanya 07425, Turkey;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Ayşe Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (KUTTAM-NDAL), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
45
|
Kliest T, Van Eijk RPA, Al-Chalabi A, Albanese A, Andersen PM, Amador MDM, BrÅthen G, Brunaud-Danel V, Brylev L, Camu W, De Carvalho M, Cereda C, Cetin H, Chaverri D, Chiò A, Corcia P, Couratier P, De Marchi F, Desnuelle C, Van Es MA, Esteban J, Filosto M, GarcÍa Redondo A, Grosskreutz J, Hanemann CO, HolmØy T, HØyer H, Ingre C, Koritnik B, Kuzma-Kozakiewicz M, Lambert T, Leigh PN, Lunetta C, Mandrioli J, Mcdermott CJ, Meyer T, Mora JS, Petri S, Povedano MÓ, Reviers E, Riva N, Roes KCB, Rubio MÁ, Salachas F, Sarafov S, SorarÙ G, Stevic Z, Svenstrup K, MØller AT, Turner MR, Van Damme P, Van Leeuwen LAG, Varona L, VÁzquez Costa JF, Weber M, Hardiman O, Van Den Berg LH. Clinical trials in pediatric ALS: a TRICALS feasibility study. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:481-488. [PMID: 35172656 PMCID: PMC9662181 DOI: 10.1080/21678421.2021.2024856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Pediatric investigation plans (PIPs) describe how adult drugs can be studied in children. In 2015, PIPs for Amyotrophic Lateral Sclerosis (ALS) became mandatory for European marketing-authorization of adult treatments, unless a waiver is granted by the European Medicines Agency (EMA). Objective: To assess the feasibility of clinical studies on the effect of therapy in children (<18 years) with ALS in Europe. Methods: The EMA database was searched for submitted PIPs in ALS. A questionnaire was sent to 58 European ALS centers to collect the prevalence of pediatric ALS during the past ten years, the recruitment potential for future pediatric trials, and opinions of ALS experts concerning a waiver for ALS. Results: Four PIPs were identified; two were waived and two are planned for the future. In total, 49 (84.5%) centers responded to the questionnaire. The diagnosis of 44,858 patients with ALS was reported by 46 sites; 39 of the patients had an onset < 18 years (prevalence of 0.008 cases per 100,000 or 0.087% of all diagnosed patients). The estimated recruitment potential (47 sites) was 26 pediatric patients within five years. A majority of ALS experts (75.5%) recommend a waiver should apply for ALS due to the low prevalence of pediatric ALS. Conclusions: ALS with an onset before 18 years is extremely rare and may be a distinct entity from adult ALS. Conducting studies on the effect of disease-modifying therapy in pediatric ALS may involve lengthy recruitment periods, high costs, ethical/legal implications, challenges in trial design and limited information.
Collapse
Affiliation(s)
- Tessa Kliest
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ruben P A Van Eijk
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands.,Biostatistics & Research Support, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.,Department of Neurology, King's College Hospital, London, UK
| | | | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Maria Del Mar Amador
- Département de Neurologie, Centre de référence SLA Ile de France.,Hôpital de la Pitié Salpêtrière, AP-HP, Paris, France
| | - Geir BrÅthen
- Department of Neurology, University Hospital of Trondheim, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Lev Brylev
- Bujanov Moscow City Clinical Hospital, Moscow, Russian Federation.,Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russian Federation
| | - William Camu
- ALS Centre CHU Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Mamede De Carvalho
- Institute of Physiology-Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Department of Neurosciences and Mental Health, H Santa Maria-CHLN, Lisbon, Portugal
| | - Cristina Cereda
- Regional Newborn Screening Laboratory, Vittore Buzzi Children's Hospital-University of Milan, Italy
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Delia Chaverri
- Neurology Service, Hospital Universitario La Paz, Madrid, Spain
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy.,Azienda Ospedaliera Città della Salute e della Scienza, Turin, Italy
| | - Philippe Corcia
- Centre Constitutif SLA, CHRU de Tours - Fédération des centres SLA Tours-Limoges, LitORALS, Tours, France
| | - Philippe Couratier
- Centre Constitutif de reference SLA-Fédération Tours-Limoges, CHU de Limoges, Limoges, France
| | | | | | - Michael A Van Es
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - JesÚs Esteban
- ALS Research Lab - ALS Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre "i + 12", CIBERER, Madrid, Spain
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia; NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Alberto GarcÍa Redondo
- ALS Research Lab - ALS Unit, Instituto de Investigación Sanitaria Hospital 12 de Octubre "i + 12", CIBERER, Madrid, Spain
| | - Julian Grosskreutz
- Precision Neurology, Dept. of Neurology, Lübeck University Hospital, Lübeck, Germany
| | - Clemens O Hanemann
- University of Plymouth, Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Trygve HolmØy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Helle HØyer
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Caroline Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Blaz Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Thomas Lambert
- Department of Neurology, Royal Stoke University Hospital, Stoke, United Kingdom
| | - Peter N Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, Trafford Centre for Biomedical Research, University of Sussex, Brighton, UK
| | - Christian Lunetta
- NEMO Clinical Center, Serena Onlus Foundation, Milan, Italy.,NEMO LAB, Milan, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neuroscience, St. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Christopher J Mcdermott
- Department of Neuroscience, University of Sheffield, Sheffield Institute for Translational Neuroscience, Sheffield, United Kingdom
| | - Thomas Meyer
- ALS Outpatient Department, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Jesus S Mora
- ALS Unit/Neurology, Hospital San Rafael, Madrid, Spain
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - MÓnica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Evy Reviers
- European Organization for Professionals and Patients with ALS (EUpALS) & ALS Liga Belgium, Leuven, Belgium
| | - Nilo Riva
- Department of Neurology, Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboud University Medical Centre Nijmegen, Nijmegen, the Netherlands
| | - Miguel Á Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, Barcelona, Spain.,Instituto Hospital del Mar de Investivaciones Médicas (IMIM), Barcelona, Spain
| | - FranÇois Salachas
- Département de Neurologie, Centre de référence SLA Ile de France.,Hôpital de la Pitié Salpêtrière, AP-HP, Paris, France
| | - Stayko Sarafov
- Clinic of General Neurology, Medical University Sofia, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Gianni SorarÙ
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Zorica Stevic
- Clinic of Neurology, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Kirsten Svenstrup
- Department of Neurology, Bispebjerg-Frederiksberg Hospital and Rigshospitalet, University Hospital of Copenhagen, Denmark
| | | | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Philip Van Damme
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven and Centre for Brain & Disease Research, VIB, Leuven Brain Institute, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Lucie A G Van Leeuwen
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Luis Varona
- Department of Neurology, Basurto University Hospital, Vizcaya, Spain
| | - Juan F VÁzquez Costa
- ALS Unit and Neuromuscular Disease Unit, Department of Neurology, Hospital La Fe, Valencia, Spain
| | - Markus Weber
- Neuromoscular Disease Unit/ALS Clinic, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Orla Hardiman
- Academic Unit of Neurology Trinity College Dublin Ireland, Dublin, Ireland
| | - Leonard H Van Den Berg
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
46
|
Yadav RK, Mehan S, Sahu R, Kumar S, Khan A, Makeen HA, Al Bratty M. Protective effects of apigenin on methylmercury-induced behavioral/neurochemical abnormalities and neurotoxicity in rats. Hum Exp Toxicol 2022; 41:9603271221084276. [PMID: 35373622 DOI: 10.1177/09603271221084276] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Methylmercury (MeHg) is a neurotoxin that induces neurotoxicity and cell death in neurons. MeHg increases oligodendrocyte death, glial cell activation, and motor neuron demyelination in the motor cortex and spinal cord. As a result, MeHg plays an important role in developing neurocomplications similar to amyotrophic lateral sclerosis (ALS). Recent research has implicated c-JNK and p38MAPK overactivation in the pathogenesis of ALS. Apigenin (APG) is a flavonoid having anti-inflammatory, antioxidant, and c-JNK/p38MAPK inhibitory activities. The purpose of this study is to determine whether APG possesses neuroprotective effects in MeHg-induced neurotoxicity in adult rats associated with ALS-like neuropathological alterations. In the current study, the neurotoxin MeHg causes an ALS-like phenotype in Wistar rats after 21 days of oral administration at a dose of 5 mg/kg. Prolonged administration of APG (40 and 80 mg/kg) improved neurobehavioral parameters such as learning memory, cognition, motor coordination, and grip strength. This is mainly associated with the downregulation of c-JNK and p38MAPK signaling as well as the restoration of myelin basic protein within the brain. Furthermore, APG inhibited neuronal apoptotic markers (Bax, Bcl-2, and caspase-3), restored neurotransmitter imbalance, decreased inflammatory markers (TNF- and IL-1), and alleviated oxidative damage. As a result, the current study shows that APG has neuroprotective potential as a c-JNK and p38MAPK signaling inhibitor against MeHg-induced neurotoxicity in adult rats. Based on these promising findings, we suggested that APG could be a potential new therapeutic approach over other conventional therapeutic approaches for MeHg-induced neurotoxicity in neurobehavioral, molecular, and neurochemical abnormalities.
Collapse
Affiliation(s)
- Rajeshwar Kumar Yadav
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Sumit Kumar
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
47
|
Paganoni S, Berry JD, Quintana M, Macklin E, Saville BR, Detry MA, Chase M, Sherman A, Yu H, Drake K, Andrews J, Shefner J, Chibnik L, Vestrucci M, Cudkowicz ME. Adaptive Platform Trials to Transform ALS Therapy Development. Ann Neurol 2021; 91:165-175. [PMID: 34935174 DOI: 10.1002/ana.26285] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Current therapeutic development in ALS relies on individual randomized clinical trials to test a specific investigational product in a single patient population. This approach has intrinsic limitations including cost, time, and lack of flexibility. Adaptive platform trials represent a novel approach to investigate several interventions for a single disease in a continuous manner. Already in use in oncology, this approach is now being employed more often in neurology. Here, we describe a newly launched, platform trial for amyotrophic lateral sclerosis (ALS). The HEALEY ALS Platform Trial is testing multiple investigational products concurrently in people with ALS, with the goal of rapidly identifying novel treatments, biomarkers, and trial endpoints. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sabrina Paganoni
- Sean M. Healey & AMG Center for ALS at Mass General and Neurological Clinical Research Insititute, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS at Mass General and Neurological Clinical Research Insititute, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Eric Macklin
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Benjamin R Saville
- Berry Consultants, Austin, TX.,Department of Biostatistics, Vanderbilt University School of Medicine
| | | | - Marianne Chase
- Sean M. Healey & AMG Center for ALS at Mass General and Neurological Clinical Research Insititute, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alex Sherman
- Sean M. Healey & AMG Center for ALS at Mass General and Neurological Clinical Research Insititute, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hong Yu
- Sean M. Healey & AMG Center for ALS at Mass General and Neurological Clinical Research Insititute, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kristin Drake
- Sean M. Healey & AMG Center for ALS at Mass General and Neurological Clinical Research Insititute, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | - Lori Chibnik
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Merit E Cudkowicz
- Sean M. Healey & AMG Center for ALS at Mass General and Neurological Clinical Research Insititute, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
48
|
Wong C, Stavrou M, Elliott E, Gregory JM, Leigh N, Pinto AA, Williams TL, Chataway J, Swingler R, Parmar MKB, Stallard N, Weir CJ, Parker RA, Chaouch A, Hamdalla H, Ealing J, Gorrie G, Morrison I, Duncan C, Connelly P, Carod-Artal FJ, Davenport R, Reitboeck PG, Radunovic A, Srinivasan V, Preston J, Mehta AR, Leighton D, Glasmacher S, Beswick E, Williamson J, Stenson A, Weaver C, Newton J, Lyle D, Dakin R, Macleod M, Pal S, Chandran S. Clinical trials in amyotrophic lateral sclerosis: a systematic review and perspective. Brain Commun 2021; 3:fcab242. [PMID: 34901853 PMCID: PMC8659356 DOI: 10.1093/braincomms/fcab242] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive and devastating neurodegenerative disease. Despite decades of clinical trials, effective disease-modifying drugs remain scarce. To understand the challenges of trial design and delivery, we performed a systematic review of Phase II, Phase II/III and Phase III amyotrophic lateral sclerosis clinical drug trials on trial registries and PubMed between 2008 and 2019. We identified 125 trials, investigating 76 drugs and recruiting more than 15 000 people with amyotrophic lateral sclerosis. About 90% of trials used traditional fixed designs. The limitations in understanding of disease biology, outcome measures, resources and barriers to trial participation in a rapidly progressive, disabling and heterogenous disease hindered timely and definitive evaluation of drugs in two-arm trials. Innovative trial designs, especially adaptive platform trials may offer significant efficiency gains to this end. We propose a flexible and scalable multi-arm, multi-stage trial platform where opportunities to participate in a clinical trial can become the default for people with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Charis Wong
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Maria Stavrou
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Elizabeth Elliott
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jenna M Gregory
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Nigel Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Ashwin A Pinto
- Neurology Department, Wessex Neurosciences Centre, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Timothy L Williams
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1B 5EH, UK
- National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, W1T 7DN, UK
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Robert Swingler
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Mahesh K B Parmar
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Nigel Stallard
- Statistics and Epidemiology, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, Level 2, NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh EH16 4UX, UK
| | - Richard A Parker
- Edinburgh Clinical Trials Unit, Usher Institute, Level 2, NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh EH16 4UX, UK
| | - Amina Chaouch
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - Hisham Hamdalla
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - John Ealing
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - George Gorrie
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, G51 4TF, UK
| | - Ian Morrison
- Department of Neurology, NHS Tayside, Dundee, DD2 1UB, UK
| | - Callum Duncan
- Department of Neurology, Aberdeen Royal Infirmary, Aberdeen, AB25 2ZN, UK
| | - Peter Connelly
- NHS Research Scotland Neuroprogressive Disorders and Dementia Network, Ninewells Hospital, Dundee, DD1 9SY, UK
| | | | - Richard Davenport
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Department of Clinical Neurosciences, NHS Lothian, Edinburgh, EH16 4SA, UK
| | - Pablo Garcia Reitboeck
- Atkinson Morley Regional Neurosciences Centre, St. George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | | | | | - Jenny Preston
- Department of Neurology, NHS Ayrshire & Arran, KA12 8SS, UK
| | - Arpan R Mehta
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Danielle Leighton
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Stella Glasmacher
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Emily Beswick
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jill Williamson
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Amy Stenson
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Christine Weaver
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Judith Newton
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Dawn Lyle
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Rachel Dakin
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Malcolm Macleod
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
49
|
Megarbane A, Bizzari S, Deepthi A, Sabbagh S, Mansour H, Chouery E, Hmaimess G, Jabbour R, Mehawej C, Alame S, Hani A, Hasbini D, Ghanem I, Koussa S, Al-Ali MT, Obeid M, Talea DB, Lefranc G, Levy N, Leturcq F, El Hayek S, Delague V, Urtizberea A. A 20-year Clinical and Genetic Neuromuscular Cohort Analysis in Lebanon: An International Effort. J Neuromuscul Dis 2021; 9:193-210. [PMID: 34602496 PMCID: PMC8842757 DOI: 10.3233/jnd-210652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Clinical and molecular data on the occurrence and frequency of inherited neuromuscular disorders (NMD) in the Lebanese population is scarce. OBJECTIVE This study aims to provide a retrospective overview of hereditary NMDs based on our clinical consultations in Lebanon. METHODS Clinical and molecular data of patients referred to a multi-disciplinary consultation for neuromuscular disorders over a 20-year period (1999-2019) was reviewed. RESULTS A total of 506 patients were diagnosed with 62 different disorders encompassing 10 classes of NMDs. 103 variants in 49 genes were identified. In this cohort, 81.4%of patients were diagnosed with motor neuron diseases and muscular dystrophies, with almost half of these described with spinal muscular atrophy (SMA) (40.3%of patients). We estimate a high SMA incidence of 1 in 7,500 births in Lebanon. Duchenne and Becker muscular dystrophy were the second most frequently diagnosed NMDs (17%of patients). The latter disorders were associated with the highest number of variants (39) identified in this study. A highly heterogeneous presentation of Limb Girdle Muscular Dystrophy and Charcot-Marie-Tooth disease was notably identified. The least common disorders (5.5%of patients) involved congenital, metabolic, and mitochondrial myopathies, congenital myasthenic syndromes, and myotonic dystrophies. A review of the literature for selected NMDs in Lebanon is provided. CONCLUSIONS Our study indicates a high prevalence and underreporting of heterogeneous forms of NMDs in Lebanon- a major challenge with many novel NMD treatments in the pipeline. This report calls for a regional NMD patient registry.
Collapse
Affiliation(s)
- Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.,Institut Jérôme Lejeune, Paris, France
| | | | | | - Sandra Sabbagh
- Department of Pediatrics, Hôtel Dieu de France Hospital, Beirut, Lebanon
| | - Hicham Mansour
- Department of Pediatrics, Saint George Hospital, Balamand University, Beirut, Lebanon
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Ghassan Hmaimess
- Department of Pediatrics, Saint George Hospital, Balamand University, Beirut, Lebanon
| | - Rosette Jabbour
- Department of Neurology, Saint George Hospital, Balamand University, Beirut, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Saada Alame
- Department of Neuropediatrics, Lebanese University, Beirut, Lebanon
| | - Abeer Hani
- Departments of Pediatrics and Neurology, Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Dana Hasbini
- Department of Pediatric Neurology, Rafic Hariri University Hospital, Beirut, Lebanon
| | - Ismat Ghanem
- Department of Orthopedics, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - Salam Koussa
- Department of Neurology, Geitaoui Lebanese University Hospital, Beirut, Lebanon
| | | | - Marc Obeid
- Genetic laboratory, American University of Science and Technology, Lebanon
| | - Diana Bou Talea
- Genetic laboratory, American University of Science and Technology, Lebanon
| | - Gerard Lefranc
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, France
| | - Nicolas Levy
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | | | | | | | | |
Collapse
|
50
|
Young C, Pinto S, Grosskreutz J, Hardiman O, Clawson LL, Cudkowicz ME, Andrews JA. Medical therapies for amyotrophic lateral sclerosis-related respiratory decline: an appraisal of needs, opportunities and obstacles. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:66-75. [PMID: 34392765 DOI: 10.1080/21678421.2021.1920981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A roundtable convened in July 2020 examined issues concerning respiratory support in amyotrophic lateral sclerosis (ALS), with reference to the potential for an early-phase orally administered medication that might either postpone the introduction of noninvasive ventilation (NIV) and/or enhance the benefits to be gained from it. Attention was also given to the impact of the COVID-19 pandemic on usual practice in the assessment and management of ALS-related respiratory difficulties. Implementation of NIV marks a step-change in clinical status for patients and a major increase in burden for caregivers. All means to ease this transition should be explored: an oral therapy that supported respiratory function and patients' independence and sense of well-being would aid discussions to facilitate the eventual successful introduction of NIV. Assessment of a candidate oral therapy that might support respiratory function in ALS patients would be aided by the development of improved patient-reported outcome measures for robust quantification of treatment effect and quality of life. Such instruments could also be used to monitor patients' status during the COVID-19 pandemic, averting some of the risks of face-to-face assessment plus the patient burden and costs of traditional methods. Several oral candidate therapies have recently failed to meet their primary endpoints in clinical trials. However, understanding of the underlying physiology and appropriate trial design have grown and will inform future developments in this field.
Collapse
Affiliation(s)
- Carolyn Young
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Susana Pinto
- Translational and Clinical Physiology Unit, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | | | - Orla Hardiman
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Lora L Clawson
- Department of Neurology, School of Medicine , Johns Hopkins University , Baltimore, MD , USA
| | | | - Jinsy A Andrews
- Neurological Institute of New York, Columbia University, New York, NY, USA
| |
Collapse
|