1
|
Manzoor N, Samad N, Bhatti SA, Irfan A, Ahmad S, Shazly GA, Bin Jardan YA. Neuroprotective effect of niacin in a rat model of obesity induced by high-fat-rich diet. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03687-3. [PMID: 39680102 DOI: 10.1007/s00210-024-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
This study investigates the impact of a high-fat-rich diet (HFRD) on behavioral, biochemical, neurochemical, and histopathological studies using the hypothalamus of rats following niacin (NCN) administration. The rats were divided into HFRD and normal diet (ND)-fed groups and administered selected doses of NCN, i.e., 25 mg/mL/kg (low dose) and 50 mg/mL/kg (high dose), for 8 weeks. The grouping of male rats (n = 8) was as follows: (i) Vehicle (Veh) + ND; (ii) ND + NCN (low dose); (iii) ND + NCN (high dose); (iv) Veh + HFRD; (v) HFRD + NCN (low dose); and (vi) HFRD + NCN (high dose). Behavioral tests assessed depression-like symptoms and spatial memory; after that, the hypothalamus was isolated for various analyses of sacrificed animals. NCN at both doses decreased food intake and growth rate in both diet groups and demonstrated antidepressant and memory-enhancing effects. HFRD-induced oxido-neuroinflammation decreased with both doses of NCN. HFRD-induced decreases in serotonergic neurotransmission, 5-HT1A receptor expression, and morphological alterations in the rat's hypothalamus were normalized by both doses of NCN. In conclusion, NCN, as a potential antioxidant and neuromodulator, can normalize feeding behavior and produce antidepressant and memory-improving effects in a rat model of obesity following HFRD intake.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sadaf Ahmad
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Sun D, Xi K, Yang R, Chu J, Xu M, Zhang D, Cheng Y. Gray matter volume differences based on sex in first-episode drug-naive patients with major depressive disorder and its molecular analysis. Neuroreport 2024; 35:1117-1122. [PMID: 39423325 DOI: 10.1097/wnr.0000000000002107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
This study analyzed whether gray matter volume (GMV) differences exist between the sexes in patients with major depressive disorder (MDD) and explored the relationships between these differences and neurotransmitter systems. This study enrolled 190 first-episode drug-naive patients with MDD and 293 healthy controls. All participants underwent T1-weighted high-resolution MRI. The interaction between the diagnosis (healthy controls vs. MDD) and sex (male vs. female) regarding GMV alterations was analyzed. The JuSpace toolbox, which covers a wide range of neurotransmitter systems, was used to identify the relationship between MDD-induced and sex-induced GMV alterations and specific receptor/transporter proteins in the brain. Sex-specific GMV differences were observed in the healthy controls but not in MDD patients. Male healthy controls had a larger GMV in the bilateral parahippocampal, lingual, inferior occipital, fusiform, cerebellar subregions, and left inferior temporal than female healthy controls, but several subregions of the thalamus had a larger GMV in female healthy controls than in male healthy controls. Sex-induced GMV alterations were associated with 5-hydroxytryptamine receptor subtype 1a, cannabinoid receptor, and dopamine receptor ( P < 0.01, false discovery rate corrected). GMV differences were not detected in the main effect of diagnosis and the interaction of diagnosis and sex. Sex-specific GMV differences are associated with the spatial distribution of serotonin, dopamine, and cannabinoid neurotransmitter receptor systems. Sex-based physiological differences in the GMV may account for male and female susceptibility to and differences in the clinical symptoms of MDD.
Collapse
Affiliation(s)
- Duo Sun
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Kang Xi
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu
| | - Runxu Yang
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Jiangmin Chu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Mingjie Xu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| | - Dafu Zhang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqi Cheng
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan
| |
Collapse
|
3
|
Ma YM, Zhang DP, Zhang HL, Cao FZ, Zhou Y, Wu B, Wang LZ, Xu B. Why is vestibular migraine associated with many comorbidities? J Neurol 2024; 271:7422-7433. [PMID: 39302416 DOI: 10.1007/s00415-024-12692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Vestibular migraine (VM) is a usual trigger of episodic vertigo. Patients with VM often experience spinning, shaking, or unsteady sensations, which are usually also accompanied by photophobia, phonophobia, motor intolerance, and more. VM is often associated with a number of comorbidities. Recurrent episodes of VM can affect the patient's emotions, sleep, and cognitive functioning to varying degrees. Patients with VM may be accompanied by adverse moods such as anxiety, fear, and depression, which can gradually develop into anxiety disorders or depressive disorders. Sleep disorders are also a common concomitant symptom of VM, which significantly lower patients' quality of life. The influence of anxiety disorders and sleep disorders may reduce cognitive functions of VM, such as visuospatial ability, attention, and memory decline. Clinically, it is also common to see VM comorbid with other vestibular disorders, making the diagnosis more difficult. VM episodes are relieved but lingering, in which case VM may coexist with persistent postural-perceptual dizziness (PPPD). Anxiety may be an important bridge between recurrent VM and PPPD. The clinical manifestations of VM and Meniere's disease (MD) overlap considerably, and those who meet the diagnostic criteria for both can be said to have VM/MD comorbidity. VM can also present with positional vertigo, and some patients with VM present with typical benign paroxysmal positional vertigo (BPPV) nystagmus on positional testing. In this paper, we synthesize and analyze the pathomechanisms of VM comorbidity by reviewing the literature. The results show that it may be related to the extensive connectivity of the vestibular system with different brain regions and the close connection of the trigeminovascular system with the periphery of the vestibule. Therefore, it is necessary to pay attention to the diagnosis of comorbidities in VM, synthesize its pathogenesis, and give comprehensive treatment to patients.
Collapse
Affiliation(s)
- Yan-Min Ma
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Dao-Pei Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Huai-Liang Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Fang-Zheng Cao
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Yu Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Bin Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Ling-Zhe Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Bin Xu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, 310053, China.
| |
Collapse
|
4
|
Hussein MN. Labeling of the serotonergic neuronal circuits emerging from the raphe nuclei via some retrograde tracers. Microsc Res Tech 2024; 87:2894-2914. [PMID: 39041701 DOI: 10.1002/jemt.24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a very important neurotransmitter emerging from the raphe nuclei to several brain regions. Serotonergic neuronal connectivity has multiple functions in the brain. In this study, several techniques were used to trace serotonergic neurons in the dorsal raphe (DR) and median raphe (MnR) that project toward the arcuate nucleus of the hypothalamus (Arc), dorsomedial hypothalamic nucleus (DM), lateral hypothalamic area (LH), paraventricular hypothalamic nucleus (PVH), ventromedial hypothalamic nucleus (VMH), fasciola cinereum (FC), and medial habenular nucleus (MHb). Cholera toxin subunit B (CTB), retro-adeno-associated virus (rAAV-CMV-mCherry), glycoprotein-deleted rabies virus (RV-ΔG), and simultaneous microinjection of rAAV2-retro-Cre-tagBFP with AAV-dio-mCherry in C57BL/6 mice were used in this study. In addition, rAAV2-retro-Cre-tagBFP was microinjected into Ai9 mice. Serotonin immunohistochemistry was used for the detection of retrogradely traced serotonergic neurons in the raphe nuclei. The results indicated that rAAV2-retro-Cre-tagBFP microinjection in Ai9 mice was the best method for tracing serotonergic neuron circuits. All of the previously listed nuclei exhibited serotonergic neuronal projections from the DR and MnR, with the exception of the FC, which had very few projections from the DR. The serotonergic neuronal projections were directed toward the Arc by the subpeduncular tegmental (SPTg) nuclei. Moreover, the RV-ΔG tracer revealed monosynaptic non-serotonergic neuronal projections from the DR that were directed toward the Arc. Furthermore, rAAV tracers revealed monosynaptic serotonergic neuronal connections from the raphe nuclei toward Arc. These findings validate the variations in neurotropism among several retrograde tracers. The continued discovery of several novel serotonergic neural circuits is crucial for the future discovery of the functions of these circuits. RESEARCH HIGHLIGHTS: Various kinds of retrograde tracers were microinjected into C57BL/6 and Ai9 mice. The optimum method for characterizing serotonergic neuronal circuits is rAAV2-retro-Cre-tagBFP microinjection in Ai9 mice. The DR, MnR, and SPTg nuclei send monosynaptic serotonergic neuronal projections toward the arcuate nucleus of the hypothalamus. Whole-brain quantification analysis of retrograde-labeled neurons in different brain nuclei following rAAV2-retro-Cre-tagBFP microinjection in the Arc, DM, LH, and VMH is shown. Differential quantitative analysis of median and dorsal raphe serotonergic neurons emerging toward the PVH, DM, LH, Arc, VMH, MHb, and FC is shown.
Collapse
Affiliation(s)
- Mona N Hussein
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Histology and Cytology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
5
|
Yu LCH. Gastrointestinal pathophysiology in long COVID: Exploring roles of microbiota dysbiosis and serotonin dysregulation in post-infectious bowel symptoms. Life Sci 2024; 358:123153. [PMID: 39454992 DOI: 10.1016/j.lfs.2024.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered an unprecedented public health crisis known as the coronavirus disease 2019 (COVID-19) pandemic. Gastrointestinal (GI) symptoms develop in patients during acute infection and persist after recovery from airway distress in a chronic form of the disease (long COVID). A high incidence of irritable bowel syndrome (IBS) manifested by severe abdominal pain and defecation pattern changes is reported in COVID patients. Although COVID is primarily considered a respiratory disease, fecal shedding of SARS-CoV-2 antigens positively correlates with bowel symptoms. Active viral infection in the GI tract was identified by human intestinal organoid studies showing SARS-CoV-2 replication in gut epithelial cells. In this review, we highlight the key findings in post-COVID bowel symptoms and explore possible mechanisms underlying the pathophysiology of the illness. These mechanisms include mucosal inflammation, gut barrier dysfunction, and microbiota dysbiosis during viral infection. Viral shedding through the GI route may be the primary factor causing the alteration of the microbiome ecosystem, particularly the virome. Recent evidence in experimental models suggested that microbiome dysbiosis could be further aggravated by epithelial barrier damage and immune activation. Moreover, altered microbiota composition has been associated with dysregulated serotonin pathways, resulting in intestinal nerve hypersensitivity. These mechanisms may explain the development of post-infectious IBS-like symptoms in long COVID. Understanding how coronavirus infection affects gut pathophysiology, including microbiome changes, would benefit the therapeutic advancement for managing post-infectious bowel symptoms.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
De Filippo R, Schmitz D. Transcriptomic mapping of the 5-HT receptor landscape. PATTERNS (NEW YORK, N.Y.) 2024; 5:101048. [PMID: 39569210 PMCID: PMC11574285 DOI: 10.1016/j.patter.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 11/22/2024]
Abstract
Serotonin (5-HT) is crucial for regulating brain functions such as mood, sleep, and cognition. This study presents a comprehensive transcriptomic analysis of 5-HT receptors (Htrs) across ≈4 million cells in the adult mouse brain using single-cell RNA sequencing (scRNA-seq) data from the Allen Institute. We observed differential transcription patterns of all 14 Htr subtypes, revealing diverse prevalence and distribution across cell classes. Remarkably, we found that 65.84% of cells transcribe RNA of at least one Htr, with frequent co-transcription of multiple Htrs, underscoring the complexity of the 5-HT system even at the single-cell dimension. Leveraging a multiplexed error-robust fluorescence in situ hybridization (MERFISH) dataset provided by Harvard University of ≈10 million cells, we analyzed the spatial distribution of each Htr, confirming previous findings and uncovering novel transcription patterns. To aid in exploring Htr transcription, we provide an online interactive visualizer.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
- Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
7
|
Huang X, Hu SS, Zhang QL, Han XM, Chen ZG, Nie RZ, Cao X, Yuan DH, Long Y, Hong H, Tang SS. A circuit from lateral hypothalamic to dorsal hippocampal dentate gyrus modulates behavioral despair in mice. Cereb Cortex 2024; 34:bhae399. [PMID: 39367727 DOI: 10.1093/cercor/bhae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024] Open
Abstract
Behavioral despair is one of the clinical manifestations of major depressive disorder and an important cause of disability and death. However, the neural circuit mechanisms underlying behavioral despair are poorly understood. In a well-established chronic behavioral despair (CBD) mouse model, using a combination of viral tracing, in vivo fiber photometry, chemogenetic and optogenetic manipulations, in vitro electrophysiology, pharmacological profiling techniques, and behavioral tests, we investigated the neural circuit mechanisms in regulating behavioral despair. Here, we found that CBD enhanced CaMKIIα neuronal excitability in the dorsal dentate gyrus (dDG) and dDGCaMKIIα neurons involved in regulating behavioral despair in CBD mice. Besides, dDGCaMKIIα neurons received 5-HT inputs from median raphe nucleus (MRN) and were mediated by 5-HT1A receptors, whereas MRN5-HT neurons received CaMKIIα inputs from lateral hypothalamic (LH) and were mediated by AMPA receptors to regulate behavioral despair. Furthermore, fluvoxamine exerted its role in resisting behavioral despair through the LH-MRN-dDG circuit. These findings suggest that a previously unidentified circuit of LHCaMKIIα-MRN5-HT-dDGCaMKIIα mediates behavioral despair induced by CBD. Furthermore, these support the important role of AMPA receptors in MRN and 5-HT1A receptors in dDG that might be the potential targets for treatment of behavioral despair, and explain the neural circuit mechanism of fluvoxamine-resistant behavioral despair.
Collapse
Affiliation(s)
- Xin Huang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Shan-Shan Hu
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Qi-Lu Zhang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Xiao-Meng Han
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Zhi-Gang Chen
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Rui-Zhe Nie
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Xian Cao
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Dan-Hua Yuan
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Hao Hong
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Su-Su Tang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| |
Collapse
|
8
|
Li D, Du H, Qu ST, Wu JL, Li YC, Xu QY, Chen X, Dai XX, Xu JT, Wang Q, Xu GY. Thalamic Nucleus Reuniens Glutamatergic Neurons Mediate Colorectal Visceral Pain in Mice via 5-HT 2B Receptors. Neurosci Bull 2024; 40:1421-1433. [PMID: 38739251 PMCID: PMC11422542 DOI: 10.1007/s12264-024-01207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 05/14/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional bowel disorder characterized by abdominal pain and visceral hypersensitivity. Reducing visceral hypersensitivity is the key to effectively relieving abdominal pain in IBS. Increasing evidence has confirmed that the thalamic nucleus reuniens (Re) and 5-hydroxytryptamine (5-HT) neurotransmitter system play an important role in the development of colorectal visceral pain, whereas the exact mechanisms remain largely unclear. In this study, we found that high expression of the 5-HT2B receptors in the Re glutamatergic neurons promoted colorectal visceral pain. Specifically, we found that neonatal maternal deprivation (NMD) mice exhibited visceral hyperalgesia and enhanced spontaneous synaptic transmission in the Re brain region. Colorectal distension (CRD) stimulation induced a large amount of c-Fos expression in the Re brain region of NMD mice, predominantly in glutamatergic neurons. Furthermore, optogenetic manipulation of glutamatergic neuronal activity in the Re altered colorectal visceral pain responses in CON and NMD mice. In addition, we demonstrated that 5-HT2B receptor expression on the Re glutamatergic neurons was upregulated and ultimately promoted colorectal visceral pain in NMD mice. These findings suggest a critical role of the 5HT2B receptors on the Re glutamatergic neurons in the regulation of colorectal visceral pain.
Collapse
Affiliation(s)
- Di Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Han Du
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shu-Ting Qu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Jing-Lai Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qi-Ya Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xia Chen
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, 215123, China
| | - Xiao-Xuan Dai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, 215123, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Gu J, Qu Y, Shen Y, Zhou Q, Jiang Y, Zhu H. Comprehensive analysis of adverse events associated with pimavanserin using the FAERS database. J Affect Disord 2024; 362:742-748. [PMID: 39029673 DOI: 10.1016/j.jad.2024.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Pimavanserin, a novel 5-HT2A receptor antagonist, has been approved for the treatment of Parkinson's disease psychosis (PDP). This study aims to conduct a comprehensive analysis of the adverse events (AEs) of pimavanserin by analyzing the FDA's Adverse Event Reporting System (FAERS) database. METHODS AE reports related to pimavanserin in the FAERS database from the second quarter of 2016 to the fourth quarter of 2023 were mined. Signal detection methods, including the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM), were employed to identify and classify AEs. RESULTS The study collected 12,839,687 AE reports, with 30,997 reports primarily suspecting pimavanserin, identifying 166 Preferred Terms (PTs) across 27 System Organ Classes (SOCs). The data showed that males reported more frequently than females, with the highest reporting in patients aged 75 and above. Reports increased over time, with a significant rise in 2023 compared to 2016. Major categories of AEs included hallucination, death, product dose omission issue, and confusional state, with death being notably the second most reported issue. Strong and new potential AEs were identified, including sleep-related issues like somnolence, insomnia, and sleep talking; cognitive and behavioral issues such as alexithymia, belligerence, and aggression; dose-related issues like prescribed underdose and underdose; and other AEs like nonspecific reactions. CONCLUSION This study reveals potential AEs of pimavanserin, including sleep disorders and cognitive changes, underscoring the importance of careful monitoring and personalized treatment in managing PDP.
Collapse
Affiliation(s)
- Jun Gu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Yucai Qu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Yuan Shen
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Qin Zhou
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Ying Jiang
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| | - Haohao Zhu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| |
Collapse
|
10
|
Bijata M, Wirth A, Wlodarczyk J, Ponimaskin E. The interplay of serotonin 5-HT1A and 5-HT7 receptors in chronic stress. J Cell Sci 2024; 137:jcs262219. [PMID: 39279505 PMCID: PMC11491811 DOI: 10.1242/jcs.262219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Serotonin regulates multiple physiological and pathological processes in the brain, including mood and cognition. The serotonin receptors 5-HT1AR (also known as HTR1A) and 5-HT7R (also known as HTR7) have emerged as key players in stress-related disorders, particularly depression. These receptors can form heterodimers, which influence their functions. Here, we explored the developmental dynamics of 5-HT1AR and 5-HT7R expression and validated heterodimerization levels in the brain of control and stressed mice. In control animals, we found that there was an increase in 5-HT1AR expression over 5-HT7R in the prefrontal cortex (PFC) and hippocampus during development. Using a chronic unpredictable stress as a depression model, we found an increase in 5-HT7R expression exclusively in the PFC of resilient animals, whereas no changes in 5-HT1AR expression between control and anhedonic mice were obtained. Quantitative in situ analysis of heterodimerization revealed the PFC as the region exhibiting the highest abundance of 5-HT1AR-5-HT7R heterodimers. More importantly, upon chronic stress, the amount of heterodimers was significantly reduced only in PFC of anhedonic mice, whereas it was not affected in resilient animals. These results suggest an important role of brain-region-specific 5-HT1AR-5-HT7R heterodimerization for establishing depressive-like behaviour and for development of resiliency.
Collapse
Affiliation(s)
- Monika Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Alexander Wirth
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
11
|
Alfaro-Rodríguez A, Reyes-Long S, Roldan-Valadez E, González-Torres M, Bonilla-Jaime H, Bandala C, Avila-Luna A, Bueno-Nava A, Cabrera-Ruiz E, Sanchez-Aparicio P, González Maciel A, Dotor-Llerena AL, Cortes-Altamirano JL. Association of the Serotonin and Kynurenine Pathways as Possible Therapeutic Targets to Modulate Pain in Patients with Fibromyalgia. Pharmaceuticals (Basel) 2024; 17:1205. [PMID: 39338367 PMCID: PMC11434812 DOI: 10.3390/ph17091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Fibromyalgia (FM) is a disorder characterized by widespread chronic pain, significant depression, and various neural abnormalities. Recent research suggests a reciprocal exacerbation mechanism between chronic pain and depression. In patients with FM, dysregulation of tryptophan (Trp) metabolism has been identified. Trp, an essential amino acid, serves as a precursor to serotonin (5-HT), a neuromodulator that influences mood, appetite, sleep, and pain perception through the receptors 5-HT1, 5-HT2, and 5-HT3. Additionally, Trp is involved in the kynurenine pathway, a critical route in the immune response, inflammation, and production of neuroactive substances and nicotinamide adenine dinucleotide (NAD+). The activation of this pathway by pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interferon gamma (IFN-γ), leads to the production of kynurenic acid (KYNA), which has neuroprotective properties, and quinolinic acid (QA), which is neurotoxic. These findings underscore the crucial balance between Trp metabolism, 5-HT, and kynurenine, where an imbalance can contribute to the dual burden of pain and depression in patients with FM. This review proposes a novel therapeutic approach for FM pain management, focusing on inhibiting QA synthesis while co-administering selective serotonin reuptake inhibitors to potentially increase KYNA levels, thus dampening pain perception and improving patient outcomes.
Collapse
Affiliation(s)
- Alfonso Alfaro-Rodríguez
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Samuel Reyes-Long
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Ernesto Roldan-Valadez
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Maykel González-Torres
- Conahcyt & Biotechnology Laboratory, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 03940, Mexico
| | - Herlinda Bonilla-Jaime
- Department of Reproductive Biology, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico
| | - Cindy Bandala
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alberto Avila-Luna
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Antonio Bueno-Nava
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Elizabeth Cabrera-Ruiz
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Pedro Sanchez-Aparicio
- Pharmacology Department, Facultad de Medicina Veterinaria, Universidad Autónoma del Estado de México, Toluca 50090, Mexico
| | - Angélica González Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Ana Lilia Dotor-Llerena
- Division of Clinic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - José Luis Cortes-Altamirano
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
- Department of Chiropractic, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos 55210, Mexico
| |
Collapse
|
12
|
Okawa Y, Ushio S, Izushi Y, Kitamura Y, Zamami Y, Sendo T. Ameliorating effect of chotosan and its active component, Uncaria hook, on lipopolysaccharide-induced anxiety-like behavior in mice. Front Pharmacol 2024; 15:1471602. [PMID: 39295939 PMCID: PMC11408319 DOI: 10.3389/fphar.2024.1471602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction In this study, we aimed to examine the effects of chotosan, a traditional Japanese botanical drug, and its active component, Uncaria hook, on anxiety-like behaviors induced by systemic inflammation in mice. Methods To induce systemic inflammation, the mice were treated with lipopolysaccharide (LPS), a bacterial endotoxin. Prior to LPS treatment, the mice were administered chotosan or Uncaria hook orally each day for 14 days. Anxiety-like behavior of the mice was evaluated using the light-dark test 24 h after LPS treatment. Results Repeated administration of chotosan prevented anxiety-like behavior in both normal and LPS-treated mice. Similarly, administration of Uncaria hook suppressed LPS-induced anxiety-like behavior in mice. Furthermore, treatment with tandospirone, a 5-HT1A receptor agonist, alleviated anxiety-like behavior in mice, whereas treatment with DOI, a 5-HT2A receptor agonist, enhanced anxiety-like behavior in mice. LPS treatment significantly increased serotonin (5-HT)2A receptor mRNA expression in the frontal cortex, whereas 5-HT1A receptor mRNA expression remained unchanged in the hippocampus. Notably, chotosan significantly suppressed the mRNA expression of 5-HT2A receptor. Discussion These findings indicate that chotosan exerts anxiolytic-like effects in the context of inflammation-induced anxiety, potentially mediated by the inhibition of 5-HT2A receptor hyperfunction in LPS-treated mice. Consequently, we postulate that chotosan may be effective in managing inflammation-induced anxiety-like behaviors.
Collapse
Affiliation(s)
- Yasumasa Okawa
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Soichiro Ushio
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Emergency and Disaster Medical Pharmacy, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yasuhisa Izushi
- Department of Pharmacotherapy, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Yoshihisa Kitamura
- Department of Pharmacotherapy, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
14
|
Li Y, Wang L, He Y, Zhu S, He SC, Zhang XY. Genetic polymorphisms in the 5-HT and endocannabinoid systems moderate the association between childhood trauma and burnout in the general occupational population. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111054. [PMID: 38879068 DOI: 10.1016/j.pnpbp.2024.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Interactions between the serotonin (5-HT) and endocannabinoid (eCB) systems have been reported in the psychopathology of stress-related symptoms, while their interplay in regulating the relationship between childhood trauma and burnout remains unclear. In this study, we investigated the interaction of childhood trauma with genetic polymorphisms in these two systems in predicting burnout. METHODS Burnout, childhood trauma, and job stress were assessed using rating scales in 992 general occupational individuals. Genetic polymorphisms including HTR2A rs6313, 5-HTT rs6354 and FAAH rs324420, were genotyped. Linear hierarchical regression analysis and PROCESS macro in SPSS were used to examine two- and three-way interactions. RESULTS There were significant interactions of job stress × HTR2A rs6313 and childhood abuse × FAAH rs324420 on reduced personal accomplishment. Moreover, we found significant three-way interactions of childhood abuse × FAAH rs324420 × HTR2A rs6313 on cynicism and reduced personal accomplishment, childhood abuse × FAAH rs324420 × 5-HTT rs6354 on emotional exhaustion, and childhood neglect × FAAH rs324420 × 5-HTT rs6354 on reduced personal accomplishment. These results suggest that the FAAH rs324420 A allele carriers, when with some specific genetic polymorphisms of 5-HT system, would show more positive associations between childhood trauma and burnout. CONCLUSIONS Genetic polymorphisms in the 5-HT and eCB systems may jointly moderate the impact of childhood trauma on burnout.
Collapse
Affiliation(s)
- Yuling Li
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, China; Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China; School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Lei Wang
- Department of Medical Psychology, Strategic Support Force Medical Center, Beijing, China
| | - Yingyi He
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus 43210, OH, United States
| | - Shuanggen Zhu
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China.
| | - Shu-Chang He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China.
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Healthy, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Zhao S, Gu ZL, Yue YN, Zhang X, Dong Y. Cannabinoids and monoaminergic system: implications for learning and memory. Front Neurosci 2024; 18:1425532. [PMID: 39206116 PMCID: PMC11349573 DOI: 10.3389/fnins.2024.1425532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cannabinoids and the endocannabinoid system (ECS) have been intensively studied for their neuroregulatory roles in the central nervous system (CNS), especially in regulating learning and memory. However, many experimental and clinical studies obtained conflicting results indicating a complex network of interaction underlying the regulation of learning and memory by different cannabinoids and the ECS. The ECS influences neuronal synaptic communications, and therefore may exert different regulation via their different impact on other neurotransmitters. The monoaminergic system includes a variety of neurotransmitters, such as dopamine, norepinephrine, and serotonin, which play important roles in regulating mood, cognition, and reward. The interaction among cannabinoids, ECS and the monoaminergic system has drawn particular attention, especially their contributions to learning and memory. In this review, we summarized the current understanding of how cannabinoids, ECS and the monoaminergic system contribute to the process of learning and memory, and discussed the influences of monoaminergic neurotransmission by cannabinoids and ECS during this process.
Collapse
Affiliation(s)
- Sha Zhao
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhao-Liang Gu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ya-Nan Yue
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Wu Z, Li J, Zhong M, Xu Z, Yang M, Xu C. HTR3A Promotes Non-small Cell Lung Cancer Through the FOXH1/Wnt3A Signaling Pathway. Biochem Genet 2024:10.1007/s10528-024-10872-9. [PMID: 39046651 DOI: 10.1007/s10528-024-10872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/15/2024] [Indexed: 07/25/2024]
Abstract
5-Hydroxytryptamine receptors (5-HTRs) are strongly correlated with tumor progression in various types of cancer. Despite this, the underlying mechanisms responsible for the role of 5-HTRs in non-small cell lung cancer (NSCLC) remains unclear. This study aimed to investigate the relationship between 5-hydroxytryptamine receptor 3A (HTR3A) and NSCLC development. Our findings indicated a higher distribution of HTR3A expression in NSCLC tissues when compared with normal tissues, where patients with high HTR3A levels demonstrated shorter overall survival times. In vitro analyses revealed that overexpression of HTR3A facilitated the proliferation and migration of NSCLC cell lines (A549 and NCI-H3255). Similarly, a notable acceleration of tumor growth and enhanced pulmonary tumorigenic potential were observed in HTR3A-overexpressing tumor-bearing mice. Mechanistically, upregulation of Forkhead Box H1 (FOXH1) by HTR3A led to the activation of Wnt3A/β-catenin signaling pathways, thereby promoting the development of NSCLC. Our report thus highlights the significance of the HTR3A/FOXH1 axis during tumor progression in NSCLC, proposing HTR3A as a possible diagnostic indicator and candidate target for clinical therapy.
Collapse
Affiliation(s)
- Zeqin Wu
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China
| | - Jiufei Li
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China
| | - Minglian Zhong
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China
| | - Zhiyuan Xu
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mulan Yang
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China.
| | - Chenyang Xu
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China.
| |
Collapse
|
17
|
Sancho-Alonso M, Sarriés-Serrano U, Miquel-Rio L, Yanes Castilla C, Paz V, Meana JJ, Perello M, Bortolozzi A. New insights into the effects of serotonin on Parkinson's disease and depression through its role in the gastrointestinal tract. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00039-5. [PMID: 38992345 DOI: 10.1016/j.sjpmh.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Neuropsychiatric and neurodegenerative disorders are frequently associated with gastrointestinal (GI) co-pathologies. Although the central and enteric nervous systems (CNS and ENS, respectively) have been studied separately, there is increasing interest in factors that may contribute to conditions affecting both systems. There is compelling evidence that serotonin (5-HT) may play an important role in several gut-brain disorders. It is well known that 5-HT is essential for the development and functioning of the CNS. However, most of the body's 5-HT is produced in the GI tract. A deeper understanding of the specific effects of enteric 5-HT on gut-brain disorders may provide the basis for the development of new therapeutic targets. This review summarizes current data focusing on the important role of 5-HT in ENS development and motility, with particular emphasis on novel aspects of 5-HT signaling in conditions where CNS and ENS comorbidities are common, such as Parkinson's disease and depressive disorders.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Anatomy and Human Embryology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Claudia Yanes Castilla
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
18
|
Buzzi B, AlSharari SD, Walentiny DM, Damaj MI. Nelotanserin, a selective 5-HT2A receptor inverse agonist, attenuates aspects of nicotine withdrawal but not reward in mice. Behav Brain Res 2024; 467:115019. [PMID: 38677331 PMCID: PMC11250952 DOI: 10.1016/j.bbr.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Nicotine smoking contributes to many preventable disabilities, diseases and deaths. Targeting nicotine reward and withdrawal is a basis for the majority of smoking cessation pharmacotherapies. Due to the emergence of interest in 5-HT2A receptor modulators for numerous psychiatric disorders, we investigated the effect of nelotanserin, a 5-HT2A receptor inverse agonist, on nicotine reward and withdrawal in ICR mice. In nicotine-dependent mice, nelotanserin dose-dependently reduced somatic signs of nicotine withdrawal and thermal hyperalgesia as measured in the hot plate test. However, nelotanserin had no effect on anxiety-like behavior and failed to reduce nicotine reward as measured in the conditioned place preference test. Our results suggest that inverse agonism of the 5-HT2A receptor may be a feasible novel mechanism for smoking cessation by reducing both physical withdrawal and thermal hyperalgesia associated with nicotine abstinence but may require complementary pharmacotherapies targeting affective and reward-associated decrements to improve cessation outcomes.
Collapse
Affiliation(s)
- Belle Buzzi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - David M Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
Brunetti L, Francavilla F, Leopoldo M, Lacivita E. Allosteric Modulators of Serotonin Receptors: A Medicinal Chemistry Survey. Pharmaceuticals (Basel) 2024; 17:695. [PMID: 38931362 PMCID: PMC11206742 DOI: 10.3390/ph17060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter regulating numerous physiological functions, and its dysregulation is a crucial component of the pathological processes of schizophrenia, depression, migraines, and obesity. 5-HT interacts with 14 different receptors, of which 5-HT1A-1FRs, 5-HT2A-CRs, and 5-HT4-7Rs are G protein-coupled receptors (GPCRs), while 5-HT3R is a ligand-gated ion channel. Over the years, selective orthosteric ligands have been identified for almost all serotonin receptors, yielding several clinically relevant drugs. However, the high degree of homology between 5-HTRs and other GPCRs means that orthosteric ligands can have severe side effects. Thus, there has recently been increased interest in developing safer ligands of GPCRs, which bind to less conserved, more specific sites, distinct from that of the receptor's natural ligand. The present review describes the identification of allosteric ligands of serotonin receptors, which are largely natural compounds (oleamide, cannabidiol, THC, and aporphine alkaloids), complemented by synthetic modulators developed in large part for the 5-HT2C receptor. The latter are positive allosteric modulators sought after for their potential as drugs preferable over the orthosteric agonists as antiobesity agents for their potentially safer profile. When available, details on the interactions between the ligand and allosteric binding site will be provided. An outlook on future research in the field will also be provided.
Collapse
Affiliation(s)
| | | | - Marcello Leopoldo
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (L.B.); (F.F.); (E.L.)
| | | |
Collapse
|
20
|
Barresi E, Baglini E, Poggetti V, Castagnoli J, Giorgini D, Salerno S, Taliani S, Da Settimo F. Indole-Based Compounds in the Development of Anti-Neurodegenerative Agents. Molecules 2024; 29:2127. [PMID: 38731618 PMCID: PMC11085553 DOI: 10.3390/molecules29092127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.
Collapse
Affiliation(s)
- Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Emma Baglini
- Institute of Clinical Physiology, National Research Council of Italy, CNR Research Area, 56124 Pisa, Italy;
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy;
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| |
Collapse
|
21
|
Hales CA, Silveira MM, Calderhead L, Mortazavi L, Hathaway BA, Winstanley CA. Insight into differing decision-making strategies that underlie cognitively effort-based decision making using computational modeling in rats. Psychopharmacology (Berl) 2024; 241:947-962. [PMID: 38172238 DOI: 10.1007/s00213-023-06521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
RATIONALE The rat cognitive effort task (rCET), a rodent model of cognitive rather than physical effort, requires animals to choose between an easy or hard visuospatial discrimination, with a correct hard choice more highly rewarded. Like in humans, there is stable individual variation in choice behavior. In previous reports, animals were divided into two groups-workers and slackers-based on their mean preference for the harder option. Although these groups differed in their response to pharmacological challenges, the rationale for using this criterion for grouping was not robust. METHODS We collated experimental data from multiple cohorts of male and female rats performing the rCET and used a model-based framework combining drift diffusion modeling with cluster analysis to identify the decision-making processes underlying variation in choice behavior. RESULTS We verified that workers and slackers are statistically different groups but also found distinct intra-group profiles. These subgroups exhibited dissociable performance during the attentional phase, linked to distinct decision-making profiles during choice. Reanalysis of previous pharmacology data using this model-based framework showed that serotonergic drug effects were explained by changes in decision boundaries and non-decision times, while scopolamine's effects were driven by changes in decision starting points and rates of evidence accumulation. CONCLUSIONS Modeling revealed the decision-making processes that are associated with cognitive effort costs, and how these differ across individuals. Reanalysis of drug data provided insight into the mechanisms through which different neurotransmitter systems impact cognitively effortful attention and decision-making processes, with relevance to multiple psychiatric disorders.
Collapse
Affiliation(s)
- Claire A Hales
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Fashion Business School, London College of Fashion, University of the Arts London, London, UK
| | - Lucas Calderhead
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leili Mortazavi
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Brett A Hathaway
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Muneta-Arrate I, Miranda-Azpiazu P, Horrillo I, Diez-Alarcia R, Meana JJ. Ligand bias and inverse agonism on 5-HT 2A receptor-mediated modulation of G protein activity in post-mortem human brain. Br J Pharmacol 2024. [PMID: 38644550 DOI: 10.1111/bph.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 02/28/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Whereas biased agonism on the 5-HT2A receptor has been ascribed to hallucinogenic properties of psychedelics, no information about biased inverse agonism on this receptor is available. In schizophrenia, increased 5-HT2A receptor constitutive activity has been suggested, highlighting the therapeutic relevance of inverse agonism. This study characterized the modulation of G protein activity promoted by different drugs, commonly considered as 5-HT2A receptor antagonists, in post-mortem human brain cortex. EXPERIMENTAL APPROACH Modulation of [35S]GTPγS binding to different subtypes of Gα proteins exerted by different 5-HT2A receptor drugs was determined by scintillation proximity assays in brain from human, WT and 5-HT2A receptor KO mice. KEY RESULTS MDL-11,939 was the only drug having no effect on the basal activity of 5-HT2A receptor. Altanserin and pimavanserin decreased basal activation of Gi1, but not Gq/11 proteins. This effect was blocked by MDL-11,939 and absent in 5-HT2A receptor KO mice. Volinanserin showed 5-HT2A receptor-mediated inverse agonism both on Gi1 and Gq/11 proteins. Ketanserin exhibited 5-HT2A receptor partial agonism exclusively on Gq/11 proteins. On the other hand, eplivanserin and nelotanserin displayed inverse agonism on Gq/11 and/or Gi1 proteins, which was insensitive to MDL-11,939 and was present in KO mice suggesting a role for another receptor. CONCLUSION AND IMPLICATIONS The results reveal the existence of constitutively active 5-HT2A receptors in human pre-frontal cortex and demonstrate different pharmacological profiles of various 5-HT2A receptor drugs previously considered antagonists. These findings indicate that altanserin and pimavanserin possess biased inverse agonist profile towards 5-HT2A receptor activation of Gi1 proteins.
Collapse
Affiliation(s)
- Itziar Muneta-Arrate
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
- Current address: Department of Basic Neuroscience, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Patricia Miranda-Azpiazu
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
| | - Igor Horrillo
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
23
|
Bahr F, Ricke-Hoch M, Ponimaskin E, Müller F. Serotonin Receptors in Myocardial Infarction: Friend or Foe? ACS Chem Neurosci 2024; 15:1619-1634. [PMID: 38573542 PMCID: PMC11027101 DOI: 10.1021/acschemneuro.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide and treatment costs pose a major burden on the global health care system. Despite the variety of treatment options, individual recovery can be still poor and the mortality rate, especially in the first few years after the event, remains high. Therefore, intense research is currently focused on identifying novel target molecules to improve the outcome following AMI. One of the potentially interesting targets is the serotonergic system (5-HT system), not at least because of its connection to mental disorders. It is known that patients suffering from AMI have an increased risk of developing depression and vice versa. This implicates that the 5-HT system can be affected in response to AMI and might thus represent a target structure for patients' treatment. This review aims to highlight the importance of the 5-HT system after AMI by describing the role of individual serotonin receptors (5-HTR) in the regulation of physiological and pathophysiological responses. It particularly focuses on the signaling pathways of the serotonin receptors 1, 2, 4, and 7, which are expressed in the cardiovascular system, during disease onset, and the following remodeling process. This overview also emphasizes the importance of the 5-HT system in AMI etiology and highlights 5-HTRs as potential treatment targets.
Collapse
Affiliation(s)
- F.S. Bahr
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - M. Ricke-Hoch
- Cardiology
and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - E. Ponimaskin
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - F.E. Müller
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
24
|
Łapińska N, Pacławski A, Szlęk J, Mendyk A. SerotoninAI: Serotonergic System Focused, Artificial Intelligence-Based Application for Drug Discovery. J Chem Inf Model 2024; 64:2150-2157. [PMID: 38289046 PMCID: PMC11005036 DOI: 10.1021/acs.jcim.3c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 04/09/2024]
Abstract
SerotoninAI is an innovative web application for scientific purposes focused on the serotonergic system. By leveraging SerotoninAI, researchers can assess the affinity (pKi value) of a molecule to all main serotonin receptors and serotonin transporters based on molecule structure introduced as SMILES. Additionally, the application provides essential insights into critical attributes of potential drugs such as blood-brain barrier penetration and human intestinal absorption. The complexity of the serotonergic system demands advanced tools for accurate predictions, which is a fundamental requirement in drug development. SerotoninAI addresses this need by providing an intuitive user interface that generates predictions of pKi values for the main serotonergic targets. The application is freely available on the Internet at https://serotoninai.streamlit.app/, implemented in Streamlit with all major web browsers supported. Currently, to the best of our knowledge, there is no tool that allows users to access affinity predictions for serotonergic targets without registration or financial obligations. SerotoninAI significantly increases the scope of drug development activities worldwide. The source code of the application is available at https://github.com/nczub/SerotoninAI_streamlit.
Collapse
Affiliation(s)
- Natalia Łapińska
- Department
of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland
- Doctoral
School of Medicinal and Health Sciences, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Adam Pacławski
- Department
of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Jakub Szlęk
- Department
of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Aleksander Mendyk
- Department
of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland
| |
Collapse
|
25
|
Hou G, Hao M, Duan J, Han MH. The Formation and Function of the VTA Dopamine System. Int J Mol Sci 2024; 25:3875. [PMID: 38612683 PMCID: PMC11011984 DOI: 10.3390/ijms25073875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.
Collapse
Affiliation(s)
- Guoqiang Hou
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mei Hao
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiawen Duan
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ming-Hu Han
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
26
|
LeWitt PA, Stebbins GT, Christensen KV, Tan R, Pretorius A, Thomsen M. Buspirone and Zolmitriptan Combination for Dyskinesia: A Randomized, Controlled, Crossover Study. Mov Disord 2024; 39:613-618. [PMID: 38314643 DOI: 10.1002/mds.29713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Preclinical evidence suggests that co-administration of the 5-HT1A agonist buspirone and the 5-HT1B/1D agonist zolmitriptan act synergistically to reduce dyskinesia to a greater extent than that achieved by either drug alone. OBJECTIVES Assess the therapeutic potential of a fixed-dose buspirone and zolmitriptan combination in Parkinson's disease (PD) patients with levodopa-induced dyskinesia. METHODS Single-center, randomized, placebo-controlled, two-way crossover study (NCT02439203) of a fixed-dose buspirone/zolmitriptan regimen (10/1.25 mg three times a day) in 30 patients with PD experiencing at least moderately disabling peak-effect dyskinesia. RESULTS Seven days of treatment with buspirone/zolmitriptan added to levodopa significantly reduced dyskinesia as assessed by Abnormal Involuntary Movement Scale scores versus placebo (mean treatment effect vs. placebo: -4.2 [-6.1, -2.3]) without significantly worsening Unified Parkinson's Disease Rating Scale (UPDRS) Part III (ON) scores (mean treatment effect vs. placebo: 0.6 [-0.1, 1.3]). No serious adverse events were reported. CONCLUSIONS In this proof-of-concept study, addition of buspirone/zolmitriptan to the patients' PD medication regimen significantly reduced dyskinesia severity without worsening motor function. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Peter A LeWitt
- Department of Neurology, Wayne State University School of Medicine and Henry Ford Hospital, Detroit, Michigan, USA
| | - Glenn T Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Riswanto Tan
- Bukwang Pharmaceutical Co., Ltd, Seoul, South Korea
| | | | | |
Collapse
|
27
|
Zhang C, Tian F, Peng J, Wang X, Li J, Zhang L, Tan Z. Serotonergic neurotransmission mediated cognitive dysfunction in two mouse models of sepsis-associated encephalopathy. CNS Neurosci Ther 2024; 30:e14655. [PMID: 38433019 PMCID: PMC10909618 DOI: 10.1111/cns.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Patients with sepsis-associated encephalopathy (SAE) often exhibit cognitive impairments. Despite this, the underlying mechanisms of SAE remain largely unexplored. Here, we explored the role of serotonergic neurotransmission in cognitive dysfunction of two mouse models of SAE. METHODS The mouse models of SAE were established by injection of lipopolysaccharide (LPS, 10 mg/kg, intraperitoneal) and cecal ligation puncture (CLP) respectively. Barnes maze, new object recognition test and open field test were used to evaluate the effects of fluoxetine (selective serotonin reuptake inhibitor) and cyproheptadine (nonselective 5-HT2 receptor antagonist) on cognition and motor activity of mice. Additionally, WAY100635 (5-HT1A receptor antagonist) was co-administered with fluoxetine to explore the mechanism underlying effect of fluoxetine on cognitive impairments of SAE. Enzyme-linked immunosorbent assay (ELISA) was performed to determine 5-HT levels in hippocampus, brainstem and frontal lobe of experimental groups. RESULTS Both LPS-induced sepsis and CLP induced sepsis resulted in a notable learning deficit. Fluoxetine ameliorated, while cyproheptadine aggravated, cognitive impairment in two classic mouse models of SAE. The cognition-enhancing effect of fluoxetine is reversed by WAY100635. Decreased 5-HT levels in hippocampus, brainstem and frontal lobe were observed in LPS septic model and CLP septic model. Notably, both fluoxetine and cyproheptadine significantly increased 5-HT levels in those brain regions in LPS septic model. Additionally, fluoxetine significantly increased 5-HT levels in frontal lobe of CLP septic model. CONCLUSIONS Our study demonstrated that serotonergic neurotransmission plays a significant role in mechanisms underlying cognitive impairment in SAE. These findings contribute to identification of novel targets to prevent and arrest cognitive impairment in SAE.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Fafa Tian
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jing Peng
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xia Wang
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jingchen Li
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaHumanChina
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersChangshaHunanChina
- Hunan Provincial Clinical Research Center for Critical Care MedicineChangshaHunanChina
| | - Zheren Tan
- Department of Critical Care Medicine, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersChangshaHunanChina
- Hunan Provincial Clinical Research Center for Critical Care MedicineChangshaHunanChina
| |
Collapse
|
28
|
Adonina S, Bazhenova E, Bazovkina D. Effect of Short Photoperiod on Behavior and Brain Plasticity in Mice Differing in Predisposition to Catalepsy: The Role of BDNF and Serotonin System. Int J Mol Sci 2024; 25:2469. [PMID: 38473717 DOI: 10.3390/ijms25052469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Seasonal affective disorder is characterized by depression during fall/winter as a result of shorter daylight. Catalepsy is a syndrome of some grave mental diseases. Both the neurotransmitter serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are involved in the pathophysiological mechanisms underlying catalepsy and depressive disorders. The aim was to compare the response of behavior and brain plasticity to photoperiod alterations in catalepsy-resistant C57BL/6J and catalepsy-prone CBA/Lac male mice. Mice of both strains were exposed for six weeks to standard-day (14 h light/10 h darkness) or short-day (4 h light/20 h darkness) conditions. Short photoperiod increased depressive-like behavior in both strains. Only treated CBA/Lac mice demonstrated increased cataleptic immobility, decreased brain 5-HT level, and the expression of Tph2 gene encoding the key enzyme for 5-HT biosynthesis. Mice of both strains maintained under short-day conditions, compared to those under standard-day conditions, showed a region-specific decrease in the brain transcription of the Htr1a, Htr4, and Htr7 genes. After a short photoperiod exposure, the mRNA levels of the BDNF-related genes were reduced in CBA/Lac mice and were increased in the C57BL/6J mice. Thus, the predisposition to catalepsy considerably influences the photoperiodic changes in neuroplasticity, wherein both C57BL/6J and CBA/Lac mice can serve as a powerful tool for investigating the link between seasons and mood.
Collapse
Affiliation(s)
- Svetlana Adonina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Ekaterina Bazhenova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Darya Bazovkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
29
|
Ogelman R, Gomez Wulschner LE, Hoelscher VM, Hwang IW, Chang VN, Oh WC. Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex. Nat Commun 2024; 15:1368. [PMID: 38365905 PMCID: PMC10873381 DOI: 10.1038/s41467-024-45734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Serotonin (5-HT) imbalances in the developing prefrontal cortex (PFC) are linked to long-term behavioral deficits. However, the synaptic mechanisms underlying 5-HT-mediated PFC development are unknown. We found that chemogenetic suppression and enhancement of 5-HT release in the PFC during the first two postnatal weeks decreased and increased the density and strength of excitatory spine synapses, respectively, on prefrontal layer 2/3 pyramidal neurons in mice. 5-HT release on single spines induced structural and functional long-term potentiation (LTP), requiring both 5-HT2A and 5-HT7 receptor signals, in a glutamatergic activity-independent manner. Notably, LTP-inducing 5-HT stimuli increased the long-term survival of newly formed spines ( ≥ 6 h) via 5-HT7 Gαs activation. Chronic treatment of mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first two weeks, but not the third week of postnatal development, increased the density and strength of excitatory synapses. The effect of fluoxetine on PFC synaptic alterations in vivo was abolished by 5-HT2A and 5-HT7 receptor antagonists. Our data describe a molecular basis of 5-HT-dependent excitatory synaptic plasticity at the level of single spines in the PFC during early postnatal development.
Collapse
Affiliation(s)
- Roberto Ogelman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Luis E Gomez Wulschner
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Victoria M Hoelscher
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - In-Wook Hwang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Victoria N Chang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Won Chan Oh
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
30
|
Armand S, Langley C, Johansen A, Ozenne B, Overgaard-Hansen O, Larsen K, Jensen PS, Knudsen GM, Sahakian BJ, Stenbæk DS, Fisher PM. Functional brain responses to emotional faces after three to five weeks of intake of escitalopram in healthy individuals: a double-blind, placebo-controlled randomised study. Sci Rep 2024; 14:3149. [PMID: 38326352 PMCID: PMC10850508 DOI: 10.1038/s41598-024-51448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Short-term intake of selective serotonin reuptake inhibitors (SSRIs) modulates threat-related amygdala responses in healthy individuals. However, how SSRI intake over a clinically relevant time period modulates threat-related amygdala responses is less clear. In a semi-randomised, double-blind, placebo-controlled study of 64 healthy individuals (SSRI n = 32, placebo n = 32), we examined the effect of 3-5 weeks of SSRI escitalopram (20 mg daily) on brain response to angry, fearful and neutral faces using BOLD fMRI. Data was analysed using a whole-brain region-wise approach extracting standardised effects (i.e., Cohen's D). The study was conducted at the Copenhagen University Hospital. A priori, we hypothesised that SSRI would attenuate amygdala responses to angry and fearful faces but not to neutral ones. Whether SSRI modulates correlations between amygdala responses to emotional faces and negative mood states was also explored. Compared to placebo, 3-5 weeks of SSRI intake did not significantly affect the amygdala response to angry, fearful, or neutral faces (|Cohen's D|< 0.2, PFWER = 1). Whole-brain, region-wise analyses revealed significant differences in frontal (|Cohen's D|< 0.6, PFWER < .01) and occipital regions (|Cohen's D|< 0.5, PFWER < .01). SSRI did not modulate correlations between amygdala responses to emotional faces and negative mood states. Our findings indicate that a 3-5 week SSRI intake impacts cortical responses to emotional stimuli, an effect possibly involved in SSRI's therapeutic efficacy.Trial registration Clinical Trials NCT04239339.
Collapse
Affiliation(s)
- Sophia Armand
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Overgaard-Hansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kristian Larsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Steen Jensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dea Siggard Stenbæk
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Rodnyy AY, Kondaurova EM, Tsybko AS, Popova NK, Kudlay DA, Naumenko VS. The brain serotonin system in autism. Rev Neurosci 2024; 35:1-20. [PMID: 37415576 DOI: 10.1515/revneuro-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for in vivo regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT-related drugs have potential for ASD treatment.
Collapse
Affiliation(s)
- Alexander Ya Rodnyy
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Elena M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Anton S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Dmitry A Kudlay
- NRC Institute of Immunology FMBA of Russia, Kashirskoe Highway 24, Moscow 115522, Russia
- Sechenov's University, 8-2 Trubetskaya Str., Moscow 119991, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| |
Collapse
|
32
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
33
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
34
|
Xue Y, Mo S, Li Y, Cao Y, Xu X, Xie Q. Dissecting neural circuits from rostral ventromedial medulla to spinal trigeminal nucleus bidirectionally modulating craniofacial mechanical sensitivity. Prog Neurobiol 2024; 232:102561. [PMID: 38142769 DOI: 10.1016/j.pneurobio.2023.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Chronic craniofacial pain is intractable and its mechanisms remain unclarified. The rostral ventromedial medulla (RVM) plays a crucial role in descending pain facilitation and inhibition. It is unclear how the descending circuits from the RVM to spinal trigeminal nucleus (Sp5) are organized to bidirectionally modulate craniofacial nociception. We used viral tracing, in vivo optogenetics, calcium signaling recording, and chemogenetic manipulations to investigate the structure and function of RVM-Sp5 circuits. We found that most RVM neurons projecting to Sp5 were GABAergic or glutamatergic and facilitated or inhibited craniofacial nociception, respectively. Both GABAergic interneurons and glutamatergic projection neurons in Sp5 received RVM inputs: the former were antinociceptive, whereas the latter were pronociceptive. Furthermore, we demonstrated activation of both GABAergic and glutamatergic Sp5 neurons receiving RVM inputs in inflammation- or dysfunction-induced masseter hyperalgesia. Activating GABAergic Sp5 neurons or inhibiting glutamatergic Sp5 neurons that receive RVM projections reversed masseter hyperalgesia. Our study identifies specific cell types and projections of RVM-Sp5 circuits involved in facilitating or inhibiting craniofacial nociception respectively. Selective manipulation of RVM-Sp5 circuits can be used as potential treatment strategy to relieve chronic craniofacial muscle pain.
Collapse
Affiliation(s)
- Yang Xue
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Siyi Mo
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yuan Li
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Ye Cao
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China.
| | - Xiaoxiang Xu
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China.
| | - Qiufei Xie
- Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China.
| |
Collapse
|
35
|
Sharp T, Collins H. Mechanisms of SSRI Therapy and Discontinuation. Curr Top Behav Neurosci 2024; 66:21-47. [PMID: 37955823 DOI: 10.1007/7854_2023_452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
SSRIs are one of the most widely used drug therapies in primary care and psychiatry, and central to the management of the most common mental health problems in today's society. Despite this, SSRIs suffer from a slow onset of therapeutic effect and relatively poor efficacy as well as adverse effects, with recent concerns being focused on a disabling SSRI discontinuation syndrome. The mechanism underpinning their therapeutic effect has long shifted away from thinking that SSRIs act simply by increasing 5-HT in the synapse. Rather, a current popular view is that increased 5-HT is just the beginning of a series of complex downstream signalling events, which trigger changes in neural plasticity at the functional and structural level. These changes in plasticity are then thought to interact with neuropsychological processes to enhance re-learning of emotional experiences that ultimately brings about changes in mood. This compelling view of SSRI action is underpinning attempts to understand fast-acting antidepressants, such as ketamine and psychedelic drugs, and aid the development of future therapies. An important gap in the theory is evidence that changes in plasticity are causally linked to relevant behavioural effects. Also, predictions that the SSRI-induced neural plasticity might have applicability in other areas of medicine have not yet been borne out. In contrast to the sophisticated view of the antidepressant action of SSRIs, the mechanism underpinning SSRI discontinuation is little explored. Nevertheless, evidence of rebound increases in 5-HT neuron excitability immediately on cessation of SSRI treatment provide a starting point for future investigation. Indeed, this evidence allows formulation of a mechanistic explanation of SSRI discontinuation which draws on parallels with the withdrawal states of other psychotropic drugs.
Collapse
Affiliation(s)
- Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Willadsen M, Schwarting RKW, Wöhr M. Acute anxiogenic effects of escitalopram are associated with mild alterations in D-amphetamine-induced behavior and social approach evoked by playback of 50-kHz ultrasonic vocalizations in rats. Neuropharmacology 2023; 241:109734. [PMID: 37813275 DOI: 10.1016/j.neuropharm.2023.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Rats communicate through auditory signals in the ultrasonic range, so-called ultrasonic vocalizations (USV). Short, high-frequency 50-kHz USV are associated with positive affective states and are emitted in appetitive situations, often rewarding social interactions, such as rough-and-tumble play and mating. Exaggerated levels of 50-kHz USV emission can be observed in response to psychostimulants, most notably d-amphetamine (AMPH). There is robust evidence suggesting that 50-kHz USV serve as affiliative signals and help to maintain or re-establish social proximity. A key neurotransmitter involved in behavioral regulation is serotonin (5-hydroxytryptamine, 5-HT). This includes both, the regulation of anxiety-related behavior and ultrasonic communication. Here, we show that acute treatment with the selective 5-HT reuptake inhibitor (SSRI) escitalopram (ESC) leads to increased anxiety-related behavior in the elevated plus maze and tested whether such acute anxiogenic effects of ESC result in alterations in ultrasonic communication in sender and/or receiver. To this aim, we conducted a dose-response study in male rats and assessed AMPH-induced hyperactivity and 50-kHz ultrasonic calling in the sender and social approach behavior evoked by playback of pro-social 50-kHz USV in the receiver. Acute ESC treatment affected both, sender and receiver. This was reflected in a lack of AMPH-induced changes in acoustic features of 50-kHz USV and absence of social exploratory behavior evoked by 50-kHz USV playback, respectively. Albeit the SSRI effects were relatively mild, this supports the notion that the 5-HT system is involved in the regulation of a key aspect of the social behavior repertoire of rodents, namely socio-affective communication through 50-kHz USV.
Collapse
Affiliation(s)
- Maria Willadsen
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, D-35032, Marburg, Germany; Philipps-University of Marburg, Center for Mind, Brain and Behavior, D-35032, Marburg, Germany
| | - Rainer K W Schwarting
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, D-35032, Marburg, Germany; Philipps-University of Marburg, Center for Mind, Brain and Behavior, D-35032, Marburg, Germany
| | - Markus Wöhr
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, D-35032, Marburg, Germany; Philipps-University of Marburg, Center for Mind, Brain and Behavior, D-35032, Marburg, Germany; KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000, Leuven, Belgium; KU Leuven, Leuven Brain Institute, B-3000, Leuven, Belgium.
| |
Collapse
|
37
|
Gianni G, Pasqualetti M. Wiring and Volume Transmission: An Overview of the Dual Modality for Serotonin Neurotransmission. ACS Chem Neurosci 2023; 14:4093-4104. [PMID: 37966717 DOI: 10.1021/acschemneuro.3c00648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Serotonin is a neurotransmitter involved in the modulation of a multitude of physiological and behavioral processes. In spite of the relatively reduced number of serotonin-producing neurons present in the mammalian CNS, a complex long-range projection system provides profuse innervation to the whole brain. Heterogeneity of serotonin receptors, grouped in seven families, and their spatiotemporal expression pattern account for its widespread impact. Although neuronal communication occurs primarily at tiny gaps called synapses, wiring transmission, another mechanism based on extrasynaptic diffusion of neuroactive molecules and referred to as volume transmission, has been described. While wiring transmission is a rapid and specific one-to-one modality of communication, volume transmission is a broader and slower mode in which a single element can simultaneously act on several different targets in a one-to-many mode. Some experimental evidence regarding ultrastructural features, extrasynaptic localization of receptors and transporters, and serotonin-glia interactions collected over the past four decades supports the existence of a serotonergic system of a dual modality of neurotransmission, in which wiring and volume transmission coexist. To date, in spite of the radical difference in the two modalities, limited information is available on the way they are coordinated to mediate the specific activities in which serotonin participates. Understanding how wiring and volume transmission modalities contribute to serotonergic neurotransmission is of utmost relevance for the comprehension of serotonin functions in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Giulia Gianni
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP), 56126 Pisa, Italy
| |
Collapse
|
38
|
Simon IA, Bjørn-Yoshimoto WE, Harpsøe K, Iliadis S, Svensson B, Jensen AA, Gloriam DE. Ligand selectivity hotspots in serotonin GPCRs. Trends Pharmacol Sci 2023; 44:978-990. [PMID: 37914598 DOI: 10.1016/j.tips.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Serotonin is a neurotransmitter regulating numerous physiological processes also modulated by drugs, for example, schizophrenia, depression, migraine, and obesity. However, these drugs typically have adverse effects caused by promiscuous binding across 12 serotonin and more than 20 homologous receptors. Recently, structures of the entire serotonin receptor family uncovered molecular ligand recognition. Here, we present a map of 19 'selectivity hotspots', that is, nonconserved binding site residues governing selectivity via favorable target interactions or repulsive 'off-target' contacts. Furthermore, we review functional rationale from observed ligand-binding affinities and mutagenesis effects. Unifying knowledge underlying specific probes and drugs is critical toward the functional characterization of different receptors and alleviation of adverse effects.
Collapse
Affiliation(s)
- Icaro A Simon
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Stylianos Iliadis
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, University of London, London EC1M 6BQ, UK
| | - Bo Svensson
- SARomics Biostructures AB, Scheelevägen 2, 223 63 Lund, Sweden
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
39
|
Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin Receptors as a Potential Target in the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2023-2042. [PMID: 38462447 DOI: 10.1134/s0006297923120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of β-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of β-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.
Collapse
Affiliation(s)
- Dmitrii V Eremin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksander Ya Rodnyy
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Camilla A Molobekova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii A Kudlay
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
40
|
Wu X, Liu L, Xue X, Li X, Zhao K, Zhang J, Li W, Yao W, Ding S, Jia C, Zhu F. Captive ERVWE1 triggers impairment of 5-HT neuronal plasticity in the first-episode schizophrenia by post-transcriptional activation of HTR1B in ALKBH5-m6A dependent epigenetic mechanisms. Cell Biosci 2023; 13:213. [PMID: 37990254 PMCID: PMC10664518 DOI: 10.1186/s13578-023-01167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Abnormalities in the 5-HT system and synaptic plasticity are hallmark features of schizophrenia. Previous studies suggest that the human endogenous retrovirus W family envelope (ERVWE1) is an influential risk factor for schizophrenia and inversely correlates with 5-HT4 receptor in schizophrenia. To our knowledge, no data describes the effect of ERVWE1 on 5-HT neuronal plasticity. N6-methyladenosine (m6A) regulates gene expression and impacts synaptic plasticity. Our research aims to systematically investigate the effects of ERVWE1 on 5-HT neuronal plasticity through m6A modification in schizophrenia. RESULTS HTR1B, ALKBH5, and Arc exhibited higher levels in individuals with first-episode schizophrenia compared to the controls and showed a strong positive correlation with ERVWE1. Interestingly, HTR1B was also correlated with ALKBH5 and Arc. Further analyses confirmed that ALKBH5 may be an independent risk factor for schizophrenia. In vitro studies, we discovered that ERVWE1 enhanced HTR1B expression, thereby activating the ERK-ELK1-Arc pathway and reducing the complexity and spine density of 5-HT neurons. Furthermore, ERVWE1 reduced m6A levels through ALKBH5 demethylation. ERVWE1 induced HTR1B upregulation by improving its mRNA stability in ALKBH5-m6A-dependent epigenetic mechanisms. Importantly, ALKBH5 mediated the observed alterations in 5-HT neuronal plasticity induced by ERVWE1. CONCLUSIONS Overall, HTR1B, Arc, and ALKBH5 levels were increased in schizophrenia and positively associated with ERVWE1. Moreover, ALKBH5 was a novel risk gene for schizophrenia. ERVWE1 impaired 5-HT neuronal plasticity in ALKBH5-m6A dependent mechanism by the HTR1B-ERK-ELK1-Arc pathway, which may be an important contributor to aberrant synaptic plasticity in schizophrenia.
Collapse
Affiliation(s)
- Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | | | - Xing Xue
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kexin Zhao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiahang Zhang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuang Ding
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chen Jia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
41
|
Mitroshina EV, Marasanova EA, Vedunova MV. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. Int J Mol Sci 2023; 24:16416. [PMID: 38003611 PMCID: PMC10671093 DOI: 10.3390/ijms242216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the neurobiological underpinnings of depressive disorder constitutes a pressing challenge in the fields of psychiatry and neurobiology. Depression represents one of the most prevalent forms of mental and behavioral disorders globally. Alterations in dimerization capacity can influence the functional characteristics of serotonin receptors and may constitute a contributing factor to the onset of depressive disorders. The objective of this review is to consolidate the current understanding of interactions within the 5-HT receptor family and between 5-HT receptors and members of other receptor families. Furthermore, it aims to elucidate the role of such complexes in depressive disorders and delineate the mechanisms through which antidepressants exert their effects.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Ekaterina A. Marasanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
- Faculty of Biology and Biotechnology, HSE University, St. Profsoyuznaya, 33, 117418 Moscow, Russia
| |
Collapse
|
42
|
Alabdali R, Franchini L, Orlandi C. G α Protein Signaling Bias at Serotonin 1A Receptor. Mol Pharmacol 2023; 104:230-238. [PMID: 37567783 PMCID: PMC10586511 DOI: 10.1124/molpharm.123.000722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Serotonin 1A receptor (5-HT1AR) is a clinically relevant target because of its involvement in several central and peripheral functions, including sleep, temperature homeostasis, processing of emotions, and response to stress. As a G protein coupled receptor (GPCR) activating numerous Gα i/o/z family members, 5-HT1AR can potentially modulate multiple intracellular signaling pathways in response to different therapeutics. Here, we applied a cell-based bioluminescence resonance energy transfer assay to quantify how ten structurally diverse 5-HT1AR agonists exert biased signaling by differentially stimulating Gα i/o/z family members. Our concentration-response analysis of the activation of each Gα i/o/z protein revealed unique potency and efficacy profiles of selected agonists when compared with the reference 5-hydroxytryptamine, serotonin. Overall, our analysis of signaling bias identified groups of ligands sharing comparable G protein activation selectivity and also drugs with unique selectivity profiles. We observed, for example, a strong bias of F-15599 toward the activation of Gα i3 that was unique among the agonists tested: we found a biased factor of +2.19 when comparing the activation of Gα i3 versus Gα i2 by F-15599, while it was -0.29 for 8-hydroxy-2-(di-n-propylamino) tetralin. Similarly, vortioxetine showed a biased factor of +1.06 for Gα z versus Gα oA, while it was -1.38 for vilazodone. Considering that alternative signaling pathways are regulated downstream of each Gα protein, our data suggest that the unique pharmacological properties of the tested agonists could result in multiple unrelated cellular outcomes. Further investigation is needed to reveal how this type of ligand bias could affect cellular responses and to illuminate the molecular mechanisms underlying therapeutic profile and side effects of each drug. SIGNIFICANCE STATEMENT: Serotonin 1a receptor (5-HT1AR) activates several members of the Gi/o/z protein family. Here, we examined ten structurally diverse and clinically relevant agonists acting on 5-HT1AR and identified distinctive bias patterns among G proteins. Considering the diversity of their intracellular effectors and signaling properties, this data reveal novel mechanisms underlying both therapeutic and undesirable effects.
Collapse
Affiliation(s)
- Rana Alabdali
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
43
|
Liu H, Chen M. Morphology and Chemical Messenger Regulation of Echinoderm Muscles. BIOLOGY 2023; 12:1349. [PMID: 37887059 PMCID: PMC10603993 DOI: 10.3390/biology12101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The muscular systems of echinoderms play important roles in various physiological and behavioral processes, including feeding, reproduction, movement, respiration, and excretion. Like vertebrates, echinoderm muscle systems can be subdivided into two major divisions, somatic and visceral musculature. The former usually has a myoepithelial organization, while the latter contains muscle bundles formed by the aggregation of myocytes. Neurons and their processes are also detected between these myoepithelial cells and myocytes, which are capable of releasing a variety of neurotransmitters and neuropeptides to regulate muscle activity. Although many studies have reported the pharmacological effects of these chemical messengers on various muscles of echinoderms, there has been limited research on their receptors and their signaling pathways. The muscle physiology of echinoderms is similar to that of chordates, both of which have the deuterostome mode of development. Studies of muscle regulation in echinoderms can provide new insights into the evolution of myoregulatory systems in deuterostomes.
Collapse
Affiliation(s)
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
44
|
Parajulee A, Kim K. Structural studies of serotonin receptor family. BMB Rep 2023; 56:527-536. [PMID: 37817438 PMCID: PMC10618075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Serotonin receptors, also known as 5-HT receptors, belong to the G protein-coupled receptors (GPCRs) superfamily. They mediate the effects of serotonin, a neurotransmitter that plays a key role in a wide range of functions including mood regulation, cognition and appetite. The functions of serotonin are mediated by a family of 5-HT receptors including 12 GPCRs belonging to six major families: 5-HT1, 5-HT2, 5-HT4, 5-HT5, 5-HT6 and 5-HT7. Despite their distinct characteristics and functions, these receptors' subtypes share common structural features and signaling mechanisms. Understanding the structure, functions and pharmacology of the serotonin receptor family is essential for unraveling the complexities of serotonin signaling and developing targeted therapeutics for neuropsychiatric disorders. However, developing drugs that selectively target specific receptor subtypes is challenging due to the structural similarities in their orthosteric binding sites. This review focuses on the recent advancements in the structural studies of 5-HT receptors, highlighting the key structural features of each subtype and shedding light on their potential as targets for mental health and neurological disorders (such as depression, anxiety, schizophrenia, and migraine) drugs. [BMB Reports 2023; 56(10): 527-536].
Collapse
Affiliation(s)
- Apeksha Parajulee
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Kuglae Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| |
Collapse
|
45
|
Hou ZS, Liu MQ, Wen HS, Gao QF, Li Z, Yang XD, Xiang KW, Yang Q, Hu X, Qian MZ, Li JF. Identification, characterization, and transcription of serotonin receptors in rainbow trout (Oncorhynchus mykiss) in response to bacterial infection and salinity changes. Int J Biol Macromol 2023; 249:125930. [PMID: 37481174 DOI: 10.1016/j.ijbiomac.2023.125930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Serotonergic system is involved in the regulation of physiological functions and behavioral traits including cognition, memory, aggression, stress coping, appetite and immunomodulation. Serotonin exerts its functions via binding distinct serotonin receptors which are classified into 7 groups. Salmonid exhibits expanded functional gene copies due to salmonid-specific whole genome duplication. However, serotonin receptor (htr) repertoire is not fully identified in rainbow trout (Oncorhynchus mykiss). In this study, we identified 39 htr genes, including 14 htr1, 4 htr2, 4 htr2 like, 3 htr3, 4 htr4, 2 htr5, 2 htr6, and 6 htr7 subtypes. We investigated physiological functions of serotonin receptors in response to bacterial pathogens exposure and salinity changes. We showed htr1, htr2, htr4 and htr7 subtypes were associated with immunomodulation in response to Vibrio anguillarum or Aeromonas salmonicida infection. Saltwater (salinity of 15) transfer significantly altered htr1, htr2, htr4, and htr7 subtypes, suggesting trout Htr was associated with osmoregulation. We further showed residues interacted with inverse agonist (methiothepin) and serotonin analogue (5-Carboxamidotryptamine) were conserved between trout and human, suggesting exogenous ligands targeting human HTRs might have a role in aquaculture. This study showed duplicated trout Htrs might be physiologically neofunctionalized and potentially exhibit pleiotropic effects in regulating immunomodulation and osmoregulation.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China.
| | - Meng-Qun Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China.
| | - Qin-Feng Gao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China.
| | - Zhao Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Xiao-Dong Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Kai-Wen Xiang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Qian Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Xin Hu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China.
| | - Meng-Zhi Qian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
46
|
Tauber M, Ben-Chaim Y. Functional consequences of a rare human serotonergic 5-HT 1A receptor variant. Front Pharmacol 2023; 14:1270726. [PMID: 37795037 PMCID: PMC10547147 DOI: 10.3389/fphar.2023.1270726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
Serotonin (5-HT) plays a central role in various brain functions via the activation of a family of receptors, most of them G protein coupled receptors (GPCRs). 5-HT1A receptor, the most abundant 5-HT receptors, was implicated in many brain dysfunctions and is a major target for drug discovery. Several genetic polymorphisms within the 5-HT1A receptor gene were identified and linked to different conditions, including anxiety and depression. Here, we used Xenopus oocytes to examine the effects of one of the functional polymorphism, Arg220Leu, on the function of the receptor. We found that the mutated receptor shows normal activation of G protein and normal 5-HT binding. On the other hand, the mutated receptor shows impaired desensitization, probably due to impairment in activation of β arrestin-dependent pathway. Furthermore, while the 5-HT1A receptor was shown to exhibit voltage dependent activation by serotonin and by buspirone, the mutated receptor was voltage-independent. Our results suggest a pronounced effect of the mutation on the function of the 5-HT1A receptor and add to our understanding of the molecular mechanism of its voltage dependence. Moreover, the findings of this study may suggest a functional explanation for the possible link between this variant and brain pathologies.
Collapse
Affiliation(s)
| | - Yair Ben-Chaim
- Department of Natural Sciences, The Open University of Israel, Ra’anana, Israel
| |
Collapse
|
47
|
Sharma VK, Loh YP. The discovery, structure, and function of 5-HTR1E serotonin receptor. Cell Commun Signal 2023; 21:235. [PMID: 37723479 PMCID: PMC10506339 DOI: 10.1186/s12964-023-01195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/11/2023] [Indexed: 09/20/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a unique neurotransmitter which can regulate various biological processes by activating thirteen different receptors. These serotonin receptors are divided into seven different classes based on their structure and functions. Since these receptors co-express in various tissue and cell types and share the same ligand (5-HT), it has been a challenge for the researchers to define specific pathway and separate physiological role for each of these serotonin receptors. Though the evidence of operational diversity of these receptors is continuously emerging, much work remains to be done. 5-HTR1E is a member of 5-HT1 receptor family which belongs to G-protein coupled receptors (GPCRs). Even after three decades since its discovery, 5-HTR1E remains the least explored serotonin receptor. Very high similarity with another family member (5-HTR1F) and its non-existence in mice or rats makes 5-HTR1E a difficult target to study. Despite these challenges, recent findings on the role of 5-HTR1E in neuroprotection and diseases such as cancer, have excited many researchers to explore this receptor in detail. Here, we provide the first review of 5-HTR1E, since its discovery in 1989 to 2023. We highlight the structural and functional characteristics of this important serotonin receptor in detail and propose future directions in developing 5-HTR1E as a drug target. Video Abstract.
Collapse
Affiliation(s)
- Vinay Kumar Sharma
- Section On Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, NICHD, NIH, 49, Convent Drive, Bldg 49, Rm 6A-10, Bethesda, MD, 20892, USA
| | - Y Peng Loh
- Section On Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, NICHD, NIH, 49, Convent Drive, Bldg 49, Rm 6A-10, Bethesda, MD, 20892, USA.
| |
Collapse
|
48
|
Olivier JDA, Janssen JA, Esquivel-Franco DC, de Prêtre S, Olivier B. A new approach to 'on-demand' treatment of lifelong premature ejaculation by treatment with a combination of a 5-HT 1A receptor antagonist and SSRI in rats. Front Neurosci 2023; 17:1224959. [PMID: 37781259 PMCID: PMC10534979 DOI: 10.3389/fnins.2023.1224959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Lifelong premature ejaculation (PE) in men lacks an adequate on-demand pharmacological treatment. Although selective serotonin reuptake inhibitors (SSRIs) are used for PE they only work after chronic treatment, or if used on-demand, less adequately than chronic SSRI treatment. It has been shown that the addition of a behaviorally silent 5-HT1A-receptor antagonist to an SSRI can generate acute inhibitory effects on male rat sexual behavior. Atlas987 is a selective 5-HT1A-receptor antagonist with equal potency to displace agonist and antagonist binding to pre- and post-synaptic 5-HT1A receptors in rat and human brain. To investigate whether Atlas987 together with the SSRI paroxetine, a combination called Enduro, induces acute inhibitory effects on male rat sexual behavior, we tested Enduro in Wistar rats in a dose-dependent manner. We first tested the 5-HT1A receptor antagonist Atlas987 in 8-OH-DPAT induced serotonergic behavior in rats. Second, we tested Enduro in a dose-dependent manner in male sexual behavior. Third, we tested the effective time window of Enduro's action, and lastly, we measured the plasma levels of Atlas987 and paroxetine over an 8-h period. Results showed that Enduro acutely and dose-dependently reduced the number of ejaculations and increased the ejaculation latencies. The behavioral pattern induced reflected a specific effect on sexual behavior excluding non-specific effects like sedation or sensoric-motoric disturbances. The time-window of activity of Enduro showed that this sexual inhibitory activity was at least found in a 1-4 h' time window after administration. Plasma levels showed that in this time frame both Atlas987 and paroxetine are present. In conclusion, in rats, Enduro is successful in acutely inhibiting sexual behavior. These results may be therapeutically attractive as "on demand" treatment for life-long premature ejaculation in men.
Collapse
Affiliation(s)
- Jocelien D. A. Olivier
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Josien A. Janssen
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Diana C. Esquivel-Franco
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Berend Olivier
- Atlas Pharmaceuticals BV, Bruges, Belgium
- Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
49
|
Gao X, Zhang M, Lin S, Lyu M, Luo X, You W, Ke C. Reproduction strategy of nocturnal marine molluscs: running for love. Integr Zool 2023; 18:906-923. [PMID: 36609825 DOI: 10.1111/1749-4877.12706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cost of reproduction is the core driver of life history evolution in animals. This paper demonstrates that the cumulative distance moved and the duration of movement of sexually immature abalones, Haliotis discus hannai, kept in various male and female groups, were significantly higher than those of sexually mature individuals, except when kept in mixed cultures of mature males and females. After mixed-culture, sexually mature males moved significantly further and for a longer duration than mature female abalones, and even more so than mature male abalones of any other group. Examination of the LC-MS metabolomics of mature males cultured with sexually mature females (AM) and those cultured with sexually immature females (JM) showed that cyclic adenosine monophosphate (cAMP) acted as a differential metabolic biomarker. After 24-h uninterrupted sampling, the concentration of 5-HT and the expression levels of the 5-HT2 and 5-HT6 receptors in AM were significantly higher than those in JM. After further injection of 5-HT2 and 5-HT6 receptor antagonists, the concentrations of cAMP and PKA rose again, but the cumulative movement duration and distance of male abalones decreased significantly, showing that 5-HT was involved in the regulation of movement behavior of male abalones through the 5-HT2 and 5-HT6 receptor-activated cAMP-PKA pathways. The results demonstrated a significant increase in the movement endurance of mature male abalones cultured with mature females, providing a theoretical basis for understanding the adaptive life history strategies of abalones and suggesting ways to protect diverse benthic resources for abalones during the reproductive stage.
Collapse
Affiliation(s)
- Xiaolong Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mo Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Shihui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| |
Collapse
|
50
|
Jaster AM, González-Maeso J. Mechanisms and molecular targets surrounding the potential therapeutic effects of psychedelics. Mol Psychiatry 2023; 28:3595-3612. [PMID: 37759040 DOI: 10.1038/s41380-023-02274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Psychedelics, also known as classical hallucinogens, have been investigated for decades due to their potential therapeutic effects in the treatment of neuropsychiatric and substance use disorders. The results from clinical trials have shown promise for the use of psychedelics to alleviate symptoms of depression and anxiety, as well as to promote substantial decreases in the use of nicotine and alcohol. While these studies provide compelling evidence for the powerful subjective experience and prolonged therapeutic adaptations, the underlying molecular reasons for these robust and clinically meaningful improvements are still poorly understood. Preclinical studies assessing the targets and circuitry of the post-acute effects of classical psychedelics are ongoing. Current literature is split between a serotonin 5-HT2A receptor (5-HT2AR)-dependent or -independent signaling pathway, as researchers are attempting to harness the mechanisms behind the sustained post-acute therapeutically relevant effects. A combination of molecular, behavioral, and genetic techniques in neuropharmacology has begun to show promise for elucidating these mechanisms. As the field progresses, increasing evidence points towards the importance of the subjective experience induced by psychedelic-assisted therapy, but without further cross validation between clinical and preclinical research, the why behind the experience and its translational validity may be lost.
Collapse
Affiliation(s)
- Alaina M Jaster
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|