1
|
Li S, Zhao R, Han Y. Electroacupuncture Attenuates Nerve Injury in Cerebral Small Vessel Disease by Protecting the Neurovascular Units. Neurochem Res 2025; 50:150. [PMID: 40261465 PMCID: PMC12014704 DOI: 10.1007/s11064-025-04395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
Studies have found that electroacupuncture (EA) can improve the neurocognitive function of cerebral small vessel disease (CSVD), restore cerebral blood flow, and protect neurovascular units. The occurrence and development of cerebral microvascular disease is highly related to neurovascular unit injury. However, it is not clear whether EA plays a therapeutic role by restoring neurovascular unit injury. To explore the possible therapeutic mechanism of EA by analyzing its effect on CSVD neurovascular units in rats with CSVD. Adult male Sprague-Dawley rats (n = 36) were used for the experiment. The rat model of bilateral carotid artery occlusion (BCAO) was established by bilateral common carotid artery ligation. The treatment group was treated with 2/100 Hz and 2-4 V continuous wave EA every day for 7 days. The water maze test and new object recognition test were used to evaluate the memory and cognition of rats. Golgi staining was performed to evaluate the synaptic plasticity. Western blotting was used to evaluate the expression of synaptic-associated proteins PSD95 and synaptophysin and neurovascular unit-associated proteins VEGF, NeuN, GFAP, and claudin5. The expression of neurovascular unit associated proteins VEGF, NeuN and GFAP was further evaluated by immunofluorescence staining. EA intervention significantly reduced cognitive memory damage, restored neuronal synaptic plasticity, and reduced neurovascular unit damage. EA significantly shortened the latency in the water maze test (p < 0.01), increased the number of platform crossings (p < 0.01) and the mean speed (p < 0.01), and increased new object recognition index (p < 0.01). EA significantly increased the total length of neuronal dendrites (p < 0.01) and the dendrite spinous density (p < 0.01). EA increased the levels of PSD95, Synaptophysin, VEGF, NeuN, GFAP and Claudin5 in the EA + BCAO group, compared with the BCAO group (p < 0.01). EA could improve the neurological function in a rat model of cerebral small vessel disease, and its mechanism may be related to the protective effect of electroacupuncture on neurovascular units.
Collapse
Affiliation(s)
- Shujie Li
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Rui Zhao
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | | |
Collapse
|
2
|
Savoldi LMB, Heringer LDS, Carneiro MB, Martinez AMB, Mendonça HR. Hydrocortisone Attenuates the Development of Malformations of the Polymicrogyria Spectrum. Int J Dev Neurosci 2025; 85:e10414. [PMID: 39873286 DOI: 10.1002/jdn.10414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/22/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025] Open
Abstract
Most of the malformations of the polymicrogyria spectrum are caused by destructive lesions of the neocortex during the third trimester of pregnancy, triggered by hypoxic-ischemic, hemorrhagic or infectious events, with neuroinflammation as a common pathophysiological mechanism. Our study investigated hydrocortisone treatment in attenuating inflammation, malformations development and seizures predisposition in mice subjected to neonatal transcranial freeze lesion. Our results show attenuation of malformation and predisposition to febrile seizures, with concomitant reduction of macrophages/microglia after neonatal freeze lesion, polarizing them towards an anti-inflammatory profile. Thus, we have identified a promising treatment to minimize the development of cortical developmental malformations.
Collapse
Affiliation(s)
- Laura Maria Borges Savoldi
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Dos Santos Heringer
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Maria Blanco Martinez
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henrique Rocha Mendonça
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Macaé, Brazil
| |
Collapse
|
3
|
Maida E, Abbadessa G, Di Lorenzo F, Palladino R, Moccia M, Iodice F, Bombaci A, Balestrino R, Clerico M, Miele G, Artusi CA, Ledda C, Margoni M, Cartella SM, Pozzi FE, Nucera B, Triassi M, De Stefano N, Leocani L, Bonavita S, Padovani A, Lavorgna L. Behind the scenes: exploring neurological journal editors' work habits, decisions, and potential sources of conflict of interest. J Neurol 2024; 272:20. [PMID: 39666199 DOI: 10.1007/s00415-024-12780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AND OBJECTIVES Editors of scientific journals play a key role in the health-related research process. Our study aims to characterize the demographics, work habits, decision-making processes, and ethical challenges faced by editors of neurological journals and to evaluate associations between editor or journal characteristics and editorial decisions, as well as sources of conflict of interest. METHODS Cross-sectional study involving editors from neurological journals that fell above the 50th percentile in the Scimago rankings. Editors were invited to complete a 16-item anonymous online survey. Data on demographics, editorial processes, decision-making, and ethical issues were collected and analysed. RESULTS 64 editors completed the survey (35.94% were aged 55-65 years, 68.75% had over 7 years of experience); journals' impact factors(IF) ranged from 1 to 10 (mean 3.412 ± 0.260). When reviewers were blinded to authors, editors relied more on reviewers' decisions (p = < 0.007). Editors with more years of experience relied less on reviewers' decisions (p = 0.009). Higher IF journals were associated with more frequent conflicts of interest between authors (p = 0.019) and reviewers (p = 0.033). Younger editors faced more ethical dilemmas related to scientific conduct and plagiarism (p = 0.008 and p = 0.016). Younger editors and those working for journals with higher IF were more likely to face ethical dilemmas related to editorial decisions (p = 0.016 and p = 0.042). DISCUSSION The study highlights relevant aspects of the editorial process in neurological journals, emphasizing the influence of blinding procedures and the inconsistent handling of decision-making and ethical challenges. Addressing these issues through collaboration and standardized guidelines can promote the integrity of the process, ensuring high-quality and trustworthy scientific research.
Collapse
Affiliation(s)
- Elisabetta Maida
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianmarco Abbadessa
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Brain Sciences, Imperial College London, London, W120BZ, UK
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Istituto Di Ricovero E Cura a Carattere Scientifico Santa Lucia, 00179, Rome, Italy
| | - Raffaele Palladino
- Department of Public Health, University "Federico II" of Naples, Naples, Italy
- Department of Primary Care and Public Health, Imperial College of London, London, UK
| | - Marcello Moccia
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
- Multiple Sclerosis Unit, Policlinico Federico II University Hospital, Naples, Italy
| | - Francesco Iodice
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Alessandro Bombaci
- Neurology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Roberta Balestrino
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marinella Clerico
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Turin, Italy
| | - Giuseppina Miele
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città Della Salute E Della Scienza, Turin, Italy
| | - Claudia Ledda
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città Della Salute E Della Scienza, Turin, Italy
| | - Monica Margoni
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sandy Maria Cartella
- Centro Parkinson e Disturbi del Movimento, Dipartimento di Neurologia, Policlinico Madonna della Consolazione, Reggio Calabria, Italy
| | - Federico Emanuele Pozzi
- Neurology Department, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - Bruna Nucera
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy
- Paracelsus Medical University, 5020, Salzburg, Austria
| | - Maria Triassi
- Department of Public Health, University "Federico II" of Naples, Naples, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Padovani
- Unit of Neurology, Azienda Socio-Sanitaria Territoriale Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luigi Lavorgna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
4
|
Ghasemi M, Mehranfard N. Neuroprotective actions of norepinephrine in neurological diseases. Pflugers Arch 2024; 476:1703-1725. [PMID: 39136758 DOI: 10.1007/s00424-024-02999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Shafa Street, Urmia, 5715793731, Iran.
| |
Collapse
|
5
|
Rezvankhah S, Zargari F, Sharifi R. Melatonin alleviates arsenic-induced liver injury by regulating protein RKIP and enhancing antioxidant defencse mechanisms. J Biochem Mol Toxicol 2024; 38:e23835. [PMID: 39215756 DOI: 10.1002/jbt.23835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Arsenic (As) is a highly toxic metal and one of the main factors in cancer development through oxidative stress and production of reactive oxygen species. Prior research has demonstrated melatonin's potential as a free radical scavenger. Raf kinase inhibitory protein (RKIP) is an important regulator of intracellular signaling pathways that has been linked to various types of cancer. The aim of this research was to explore the influence of melatonin's antioxidant properties on the expression of the protein RKIP and the antioxidant status of liver tissue in rats that were exposed to arsenic. Thirty two male Wistar rats were divided into four groups of eight, including control, melatonin-treated (20 mg/Kg of melatonin), sodium arsenite-treated (5.5 mg/Kg of sodium arsenite), and melatonin + sodium arsenite-treated groups (combination) for 4 weeks. The expression level of protein RKIP was measured by Western blot, and malondialdehyde (MDA) content of the liver as well as the activities of antioxidant enzymes were measured. The data analyzed using one-way ANOVA (significance level of p < 0.05) and GraphPad Prism (9) software. Sodium arsenite treatment led to a significant decrease in RKIP protein expression and antioxidant enzyme activity, and an increase in liver MDA levels (p < 0.001). Conversely, melatonin treatment in the combination group resulted in a significant increase in RKIP protein expression and antioxidant enzyme activity and a decrease in liver MDA levels (p < 0.05). These findings suggest that melatonin can attenuate oxidative damage caused by arsenic in liver cells by enhancing RKIP protein expression and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Soheil Rezvankhah
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Felor Zargari
- Department of Medical Science, Marand Branch, Islamic Azad University, Marand, Iran
| | - Rasoul Sharifi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
6
|
Ji H, Lu Y, Liu G, Zhao X, Xu M, Chen M. Role of Decreased Expression of miR-155 and miR-146a in Peripheral Blood of Type 2 Diabetes Mellitus Patients with Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2024; 17:2747-2760. [PMID: 39072343 PMCID: PMC11283243 DOI: 10.2147/dmso.s467409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Objective To Study the Correlations of microRNA-155 (miR-155) and microRNA-146a (miR-146a) Expression in Peripheral Blood of Type 2 Diabetes Mellitus (T2DM) Patients with Diabetic Peripheral Neuropathy (DPN), and Explore the Clinical Value of miR-155 and miR-146a in the Diagnosis and Treatment Outcomes of DPN. Methods The study included 51 T2DM patients without DPN (T2DM group), 49 T2DM patients with DPN (DPN group), and 50 normal controls (NC group). Quantitative real-time PCR was utilized to determine the expression levels of miR-155 and miR-146a. Clinical features and risk factors for DPN were assessed. Multivariate stepwise logistic regression analysis was conducted to confirm whether the expressions of miR-155 and miR-146a could independently predict the risk of DPN. ROC curve analysis evaluated their diagnostic value. Results The T2DM group exhibited significantly lower expression levels of miR-155 and miR-146a compared to the NC group (P < 0.05). Moreover, the DPN group exhibited a significantly decreased expression level of miR-155 and miR-146a compared to the T2DM group (P < 0.01). Multivariate logistic regression analysis indicated that higher levels of miR-155 and miR-146a might serve as protective factors against DPN development. ROC curve analysis revealed that miR-155 (sensitivity 91.8%, specificity 37.3%, AUC 0.641,) and miR-146a (sensitivity 57.1%, specificity 84.3%, AUC 0.722) possess a strong ability to discriminate between T2DM and DPN. Their combined use further enhanced the diagnostic potential of DPN (sensitivity 83.7%, specificity 60.8%, AUC 0.775). A multi-index combination can improve DPN diagnostic efficiency. Conclusion The decreased expression of miR-155 and miR-146a in the peripheral blood of T2DM patients is closely related to the occurrence of DPN, highlighting their potential as valuable biomarkers for diagnosing and prognosticating DPN.
Collapse
Affiliation(s)
- Hua Ji
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - YaTing Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Gui Liu
- Department of Endocrinology, The Second People’s Hospital of Lu’an City, Lu’an City, Anhui Province, People’s Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| |
Collapse
|
7
|
Herrera-Zamora JM, Osuna-Lopez F, Reyes-Méndez ME, Valadez-Lemus RE, Sánchez-Pastor EA, Navarro-Polanco RA, Moreno-Galindo EG, Alamilla J. Increased glutamatergic neurotransmission between the retinohypothalamic tract and the suprachiasmatic nucleus of old mice. J Neurosci Res 2024; 102:e25331. [PMID: 38651314 DOI: 10.1002/jnr.25331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Circadian rhythms synchronize to light through the retinohypothalamic tract (RHT), which is a bundle of axons coming from melanopsin retinal ganglion cells, whose synaptic terminals release glutamate to the ventral suprachiasmatic nucleus (SCN). Activation of AMPA-kainate and NMDA postsynaptic receptors elicits the increase in intracellular calcium required for triggering the signaling cascade that ends in phase shifts. During aging, there is a decline in the synchronization of circadian rhythms to light. With electrophysiological (whole-cell patch-clamp) and immunohistochemical assays, in this work, we studied pre- and postsynaptic properties between the RHT and ventral SCN neurons in young adult (P90-120) and old (P540-650) C57BL/6J mice. Incremental stimulation intensities (applied on the optic chiasm) induced much lesser AMPA-kainate postsynaptic responses in old animals, implying a lower recruitment of RHT fibers. Conversely, a higher proportion of old SCN neurons exhibited synaptic facilitation, and variance-mean analysis indicated an increase in the probability of release in RHT terminals. Moreover, both spontaneous and miniature postsynaptic events displayed larger amplitudes in neurons from aged mice, whereas analysis of the NMDA and AMPA-kainate components (evoked by RHT electrical stimulation) disclosed no difference between the two ages studied. Immunohistochemistry revealed a bigger size in the puncta of vGluT2, GluN2B, and GluN2A of elderly animals, and the number of immunopositive particles was increased, but that of PSD-95 was reduced. All these synaptic adaptations could be part of compensatory mechanisms in the glutamatergic signaling to ameliorate the loss of RHT terminals in old animals.
Collapse
Affiliation(s)
- J Manuel Herrera-Zamora
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, Mexico
| | - Fernando Osuna-Lopez
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, Mexico
| | - Miriam E Reyes-Méndez
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, Mexico
| | - Ramon E Valadez-Lemus
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, Mexico
| | - Enrique A Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, Mexico
| | | | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, Mexico
| | - Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima, Mexico
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Universidad de Colima, Colima, Mexico
| |
Collapse
|
8
|
Saito M, Hoshino T, Ishizuka K, Iwasaki S, Toi S, Shibata N, Kitagawa K. Remote Ischemic Conditioning Enhances Collateral Circulation Through Leptomeningeal Anastomosis and Diminishes Early Ischemic Lesions and Infarct Volume in Middle Cerebral Artery Occlusion. Transl Stroke Res 2024; 15:41-52. [PMID: 36441491 DOI: 10.1007/s12975-022-01108-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Remote ischemic conditioning (RIC) has attracted much attention as a protective strategy for the heart and brain, although the underlying mechanisms remain unclear. We hypothesized that RIC enhances collateral circulation during cerebral ischemia through endothelial function and mitigates both early ischemic change and final infarct volume. We tested the RIC and sham procedure 30 min after permanent middle cerebral artery occlusion (MCAO) in male mice. Collateral circulation was examined during the procedure with 2D color-coded ultrasound imaging. Immediately after four cycles of RIC, early ischemic lesions on magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and development of pial collateral vessels were examined. The neurological signs and infarct volume with TTC were examined until 48 h after daily RIC. As compared with sham procedure, RIC enhanced collateral circulation, diminished early ischemic lesions, enlarged pial collaterals, and mitigated infarct volume. Next, we examined the effect of inhibitor of nitric oxide synthase (NOS) and Akt on the beneficial effect of RIC in MCAO. Both allosteric Akt inhibitor, 8-[4-(1-Aminocyclobutyl)phenyl]-9-phenyl[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3(2H)-one (MK2206), and two NOS inhibitors, N5-(1-Iminoethyl)-L-ornithine dihydrochloride (L-NIO) and NG-Nitro-L-arginine methyl ester hydrochloride (L-NAME), counteracted the beneficial effect of RIC on collateral circulation, early lesions, pial anastomosis, and infarct volume. In permanent MCAO, RIC could enhance collateral circulation through leptomeningeal anastomosis with Akt-eNOS pathway and diminish early lesion and final infarct volume.
Collapse
Affiliation(s)
- Moeko Saito
- Department of Neurology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-Cho, Shinjyuku-Ku, Tokyo, 162-8666, Japan
| | - Takao Hoshino
- Department of Neurology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-Cho, Shinjyuku-Ku, Tokyo, 162-8666, Japan
| | - Kentaro Ishizuka
- Department of Neurology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-Cho, Shinjyuku-Ku, Tokyo, 162-8666, Japan
| | - Shuichi Iwasaki
- Department of Pathology (SI, NS), Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sono Toi
- Department of Neurology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-Cho, Shinjyuku-Ku, Tokyo, 162-8666, Japan
| | - Noriyuki Shibata
- Department of Pathology (SI, NS), Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-Cho, Shinjyuku-Ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
9
|
Yang L, He P, Zhang L, Li K. Altered resting-state brain functional activities and networks in Crohn's disease: a systematic review. Front Neurosci 2024; 18:1319359. [PMID: 38332859 PMCID: PMC10851432 DOI: 10.3389/fnins.2024.1319359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Background Crohn's disease (CD) is a non-specific chronic inflammatory disease of the gastrointestinal tract and is a phenotype of inflammatory bowel disease (IBD). The current study sought to compile the resting-state functional differences in the brain between CD patients and healthy controls. Methods The online databases PubMed, Web of Science Core, and EMBASE were used to find the published neuroimage studies. The search period was from the beginning through December 15, 2023. The predetermined inclusion and exclusion criteria allowed for the identification of the studies. The studies were assembled by two impartial reviewers, who also assessed their quality and bias. Results This review comprised 16 resting-state fMRI studies in total. The included studies generally had modest levels of bias. According to the research, emotional processing and pain processing were largely linked to increased or decreased brain activity in patients with CD. The DMN, CEN, and limbic systems may have abnormalities in patients with CD, according to research on brain networks. Several brain regions showed functional changes in the active CD group compared to the inactive CD group and the healthy control group, respectively. The abnormalities in brain areas were linked to changes in mood fluctuations (anxiety, melancholy) in patients with CD. Conclusion Functional neuroimaging helps provide a better understanding of the underlying neuropathological processes in patients with CD. In this review, we summarize as follows: First, these findings indicate alterations in brain function in patients with CD, specifically affecting brain regions associated with pain, emotion, cognition, and visceral sensation; second, disease activity may have an impact on brain functions in patients with CD; and third, psychological factors may be associated with altered brain functions in patients with CD.
Collapse
Affiliation(s)
- Ling Yang
- Radiology Department, Chongqing General Hospital, Chongqing, China
- Department of Radiology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Peipei He
- Radiology Department, Chongqing General Hospital, Chongqing, China
| | - Lingqin Zhang
- Radiology Department, Chongqing General Hospital, Chongqing, China
| | - Kang Li
- Radiology Department, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
10
|
Patani A, Balram D, Yadav VK, Lian KY, Patel A, Sahoo DK. Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress. Front Endocrinol (Lausanne) 2023; 14:1271521. [PMID: 38098868 PMCID: PMC10720671 DOI: 10.3389/fendo.2023.1271521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing's syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S.S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Hsu YF, Tu CA, Bekinschtein TA, Hämäläinen JA. Longitudinal Evidence for Attenuated Local-Global Deviance Detection as a Precursor of Working Memory Decline. eNeuro 2023; 10:ENEURO.0156-23.2023. [PMID: 37500495 PMCID: PMC10431235 DOI: 10.1523/eneuro.0156-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
From the perspective of predictive coding, normal aging is accompanied by decreased weighting of sensory inputs and increased reliance on predictions, resulting in the attenuation of prediction errors in older age. Recent electroencephalography (EEG) research further revealed that the age-related shift from sensorium to predictions is hierarchy-selective, as older brains show little reduction in lower-level but significant suppression in higher-level prediction errors. Moreover, the disrupted propagation of prediction errors from the lower-level to the higher-level seems to be linked to deficient maintenance of information in working memory. However, it is unclear whether the hierarchical predictive processing continues to decline with advancing age as working memory. Here, we longitudinally followed a sample of 78 participants from three age groups (including seniors, adults, and adolescents) over three years' time. Seniors exhibited largely preserved local processing [consisting of comparable mismatch negativity (MMN), delayed P3a, and comparable reorienting negativity (RON)] but significantly compromised global processing (consisting of suppressed frontocentral negativity and suppressed P3b) in the auditory local-global paradigm. These electrophysiological responses did not change with the passing of time, unlike working memory which deteriorated with advancing age. Correlation analysis further showed that these electrophysiological responses signaling prediction errors are indicative of concurrent working memory. Moreover, there was a correlation between earlier predictive processing and later working memory but not between earlier working memory and later predictive processing. The temporal asymmetry suggested that the hierarchy-selective attenuation of prediction errors is likely a precursor of working memory decline.
Collapse
Affiliation(s)
- Yi-Fang Hsu
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei 106308, Taiwan
- Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei 106308, Taiwan
| | - Chia-An Tu
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei 106308, Taiwan
| | | | - Jarmo A Hämäläinen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä 40014, Finland
| |
Collapse
|
12
|
Aydın S. Investigation of global brain dynamics depending on emotion regulation strategies indicated by graph theoretical brain network measures at system level. Cogn Neurodyn 2023; 17:331-344. [PMID: 37007189 PMCID: PMC10050309 DOI: 10.1007/s11571-022-09843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
In the present study, new findings reveal the close association between graph theoretic global brain connectivity measures and cognitive abilities the ability to manage and regulate negative emotions in healthy adults. Functional brain connectivity measures have been estimated from both eyes-opened and eyes-closed resting-state EEG recordings in four groups including individuals who use opposite Emotion Regulation Strategies (ERS) as follow: While 20 individuals who frequently use two opposing strategies, such as rumination and cognitive distraction, are included in 1st group, 20 individuals who don't use these cognitive strategies are included in 2nd group. In 3rd and 4th groups, there are matched individuals who use both Expressive Suppression and Cognitive Reappraisal strategies together frequently and never use them, respectively. EEG measurements and psychometric scores of individuals were both downloaded from a public dataset LEMON. Since it is not sensitive to volume conduction, Directed Transfer Function has been applied to 62-channel recordings to obtain cortical connectivity estimations across the whole cortex. Regarding well defined threshold, connectivity estimations have been transformed into binary numbers for implementation of Brain Connectivity Toolbox. The groups are compared to each other through both statistical logistic regression models and deep learning models driven by frequency band specific network measures referring segregation, integration and modularity of the brain. Overall results show that high classification accuracies of 96.05% (1st vs 2nd) and 89.66% (3rd vs 4th) are obtained in analyzing full-band ( 0.5 - 45 H z ) EEG. In conclusion, negative strategies may upset the balance between segregation and integration. In particular, graphical results show that frequent use of rumination induces the decrease in assortativity referring network resilience. The psychometric scores are found to be highly correlated with brain network measures of global efficiency, local efficiency, clustering coefficient, transitivity and assortativity in even resting-state.
Collapse
Affiliation(s)
- Serap Aydın
- Medical Faculty, Biophysics Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Wang Y, Liu J, Hui Y, Wu Z, Wang L, Wu X, Bai Y, Zhang Q, Li L. Dose and time-dependence of acute intermittent theta-burst stimulation on hippocampus-dependent memory in parkinsonian rats. Front Neurosci 2023; 17:1124819. [PMID: 36866328 PMCID: PMC9972116 DOI: 10.3389/fnins.2023.1124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Background The treatment options for cognitive impairments in Parkinson's disease (PD) are limited. Repetitive transcranial magnetic stimulation has been applied in various neurological diseases. However, the effect of intermittent theta-burst stimulation (iTBS) as a more developed repetitive transcranial magnetic stimulation paradigm on cognitive dysfunction in PD remains largely unclear. Objective Our aim was to explore the effect of acute iTBS on hippocampus-dependent memory in PD and the mechanism underlying it. Methods Different blocks of iTBS protocols were applied to unilateral 6-hydroxidopamine-induced parkinsonian rats followed by the behavioral, electrophysiological and immunohistochemical analyses. The object-place recognition and hole-board test were used to assess hippocampus-dependent memory. Results Sham-iTBS and 1 block-iTBS (300 stimuli) didn't alter hippocampus-dependent memory, hippocampal theta rhythm and the density of c-Fos- and parvalbumin-positive neurons in the hippocampus and medial septum. 3 block-iTBS (900 stimuli) alleviated 6-hydroxidopamine-induced memory impairments, and increased the density of hippocampal c-Fos-positive neurons at 80 min post-stimulation but not 30 min compared to sham-iTBS. Interestingly, 3 block-iTBS first decreased and then increased normalized theta power during a period of 2 h following stimulation. Moreover, 3 block-iTBS decreased the density of parvalbumin-positive neurons in the medial septum at 30 min post-stimulation compared to sham-iTBS. Conclusion The results indicate that multiple blocks of iTBS elicit dose and time-dependent effects on hippocampus-dependent memory in PD, which may be attributed to changes in c-Fos expression and the power of theta rhythm in the hippocampus.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yanping Hui
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhongheng Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiang Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yihua Bai
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
Lin B, Zhou X, Jiang D, Shen X, Ouyang H, Li W, Xu D, Fang L, Tian Y, Li X, Huang Y. Comparative transcriptomic analysis reveals candidate genes for seasonal breeding in the male Lion-Head goose. Br Poult Sci 2023; 64:157-163. [PMID: 36440984 DOI: 10.1080/00071668.2022.2152651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Due to seasonal breeding, geese breeds from Southern China have low egg yield. The genetic makeup underlying performance of local breeds is largely unknown, and few studies have investigated this problem. This study integrated 21 newly generated and 50 publicly existing RNA-seq libraries, representing the hypothalamus, pituitary and testis, to identify candidate genes and importantly related pathways associated with seasonal breeding in male Lion-Head geese.2. In total, 19, 119 and 302 differentially expressed genes (DEGs) were detected in the hypothalamus, pituitary and testis, respectively, of male Lion-Head geese between non-breeding and breeding periods. These genes were significantly involved in the neuropeptide signalling pathway, gland development, neuroactive ligand-receptor interaction, JAK-STAT signalling pathway, cAMP signalling pathway, PI3K-Akt signalling pathway and Foxo signalling pathway.3. By integrating another 50 RNA-seq samples 4, 18 and 40 promising DEGs were confirmed in hypothalamus, pituitary and testis, respectively.4. HOX genes were identified as having important roles in the development of testis between non-breeding and breeding periods of male Lion-Head geese.
Collapse
Affiliation(s)
- B Lin
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - X Zhou
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - D Jiang
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - X Shen
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - H Ouyang
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - W Li
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - D Xu
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - L Fang
- MRC Human Genetics Unit at Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Y Tian
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - X Li
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - Y Huang
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
15
|
Cammarota M, Ferlenghi F, Vacondio F, Vincenzi F, Varani K, Bedini A, Rivara S, Mor M, Boscia F. Combined targeting of fatty acid amide hydrolase and melatonin receptors promotes neuroprotection and stimulates inflammation resolution in rats. Br J Pharmacol 2022; 180:1316-1338. [PMID: 36526591 DOI: 10.1111/bph.16014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Devising novel strategies to therapeutically favour inflammation resolution and provide neuroprotection is an unmet clinical need. Enhancing endocannabinoid tone by inhibiting the catabolic enzyme fatty acid amide hydrolase (FAAH), or stimulating melatonin receptors has therapeutic potential to treat neuropathological states in which neuroinflammation plays a central role. EXPERIMENTAL APPROACH A rodent hippocampal explant model of inflammatory injury was used to assess the effects of UCM1341, a dual-acting compound with FAAH inhibitory action and agonist activity at melatonin receptors, against neuroinflammatory damage. FAAH activity was measured by a radiometric assay, and N-acylethanolamine levels were assessed by HPLC-MS/MS methods. FAAH distribution, evolution of inflammation and the contribution of UCM1341 to the expression of proteins controlling macrophage behaviour were investigated by biochemical and confocal analyses. KEY RESULTS UCM1341 exhibited greater neuroprotection against neuroinflammatory degeneration, compared with the reference compounds URB597 (FAAH inhibitor) and melatonin. During neuroinflammation, UCM1341 augmented the levels of anandamide and N-oleoylethanolamine, but not N-palmitoylethanolamine, up-regulated PPAR-α levels, attenuated demyelination and prevented the release of TNF-α. UCM1341 modulated inflammatory responses by contributing to microglia/macrophage polarization, stimulating formation of lipid-laden macrophages and regulating expression of proteins controlling cholesterol metabolism and efflux. The neuroprotective effects of UCM1341 were prevented by PPARα, TRPV1 and melatonin receptor antagonists. CONCLUSION AND IMPLICATIONS UCM1341, by enhancing endocannabinoid and melatoninergic signalling, benefits neuroprotection and stimulates inflammation resolution pathways. Our findings provide an encouraging prospect of therapeutically targeting endocannabinoid and melatoninergic systems in inflammatory demyelinating states in the CNS.
Collapse
Affiliation(s)
- Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | | | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Annalida Bedini
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Urbino, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
16
|
Samotrueva MA, Azhikova AK. Supraoptic nucleus morphological features of the hypothalamus in the skin burn injury dynamics. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-3-232-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Relevance. The relevance of the study of the large cell nucleus of the anterior hypothalamus in case of skin damage is due to the important role of accompanying reactive changes in the neuroendocrine regulatory complex in stress. Since the hypothalamus is part of neuroendocrine cooperation, it shows pronounced signs of structural disorganization of neurons. The purpose of the study is to study structural changes in the supraoptic nucleus of the hypothalamus of rats in the dynamics of thermal burn injury of the skin. Materials and Methods. The study was conducted in laboratory mature male rats. To assess the morphological features of the supraoptic nucleus of the hypothalamus in the dynamics of skin burn injury, histological examination methods were carried out. The morphological analysis evaluated the neurotopographic organization of the nucleus and its structural organization. Structural transformations were judged by the shape and location of neurons, by the shape of neuronal pericarions, by the presence of focal gliosis, swelling, spongiosis. Results and Discussion. The results of morphological analysis showed that in the conditions of burn damage to the skin in the supraoptic nucleus of the hypothalamus, pronounced destructive changes in the form of focal gliosis, swelling, spongiosis, reversible and irreversible damage to nerve cells occurred in the initial post-traumatic period (on days 2-4). Weak structural tissue transformations on days 7-10 after burn exposure reflected the dynamics of repair of damaged nerve cells, testifying to of partial disorganization of nerve cells of a restorative nature. Conclusion. Thus, the revealed structural disorders in the supraoptic nucleus of the hypothalamus can be regarded as insignificant, which indicates the complex internal organization of the supraoptic nucleus of the hypothalamus and its high resistance to damaging exogenous influences. The morphological features of the supraoptic nucleus of the hypothalamus confirm the involvement of the neurosecretory apparatus in the process of adaptation to stress against the background of burn exposure, the selective participation of their neurohormones in the regulation of normal and pathological conditions, exerting a wide range of physiological influences in the development of protective and adaptive mechanisms.
Collapse
|
17
|
Fang X, Hu S, Han T, Yang T, Hu J, Song Y, Li C, Ma A, Li Y, Kong Q, Tang L, Chen W, Sun W, Fang C, Sun Y, Chen J, Sun W, Yan Y, Gao Y, Geng J, Li N, Li Q, Jiang Z, Lv S, Li W, Lang X, Wang S, Chen Y, Li B, Li L, Liu X, Liu Y, Zhan Y, Gao Z, Qu L, Fu Q, Liu X. Effect of inactivated COVID-19 vaccines on seizure frequency in patients with epilepsy: A multicenter, prospective study. Front Immunol 2022; 13:984789. [PMID: 36569941 PMCID: PMC9769399 DOI: 10.3389/fimmu.2022.984789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives Several COVID-19 vaccines list "uncontrolled epilepsy" as a contraindication for vaccination. This consequently restricts vaccination against COVID-19 in patients with epilepsy (PWE). However, there is no strong evidence that COVID-19 vaccination can exacerbate conditions in PWE. This study aims to determine the impact of COVID-19 vaccination on PWE. Methods PWE were prospectively recruited from 25 epilepsy centers. We recorded the seizure frequency at three time periods (one month before the first vaccination and one month after the first and second vaccinations). A generalized linear mixed-effects model (GLMM) was used for analysis, and the adjusted incidence rate ratio (AIRR) with 95% CI was presented and interpreted accordingly. Results Overall, 859 PWE were included in the analysis. Thirty-one (3.6%) and 35 (4.1%) patients were found to have increased seizure frequency after the two doses, respectively. Age had an interaction with time. The seizure frequency in adults decreased by 81% after the first dose (AIRR=0.19, 95% CI:0.11-0.34) and 85% after the second dose (AIRR=0.16, 95% CI:0.08-0.30). In juveniles (<18), it was 25% (AIRR=0.75, 95% CI:0.42-1.34) and 51% (AIRR=0.49, 95% CI:0.25-0.95), respectively. Interval between the last seizure before vaccination and the first dose of vaccination (ILSFV) had a significant effect on seizure frequency after vaccination. Seizure frequency in PWE with hereditary epilepsy after vaccination was significantly higher than that in PWE with unknown etiology (AIRR=1.95, 95% CI: 1.17-3.24). Two hundred and seventeen (25.3%) patients experienced non-epileptic but not serious adverse reactions. Discussion The inactivated COVID-19 vaccine does not significantly increase seizure frequency in PWE. The limitations of vaccination in PWE should focus on aspects other than control status. Juvenile PWE should be of greater concern after vaccination because they have lower safety. Finally, PWE should not reduce the dosage of anti-seizure medication during the peri-vaccination period.
Collapse
Affiliation(s)
- Xiqin Fang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China,Institute of Epilepsy, Shandong University, Jinan, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Neuromodulation, Beijing, China,Institute of Sleep and Consciousness Disorders, Center of Epilepsy, Beijing institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Tao Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Tingting Yang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China,Institute of Epilepsy, Shandong University, Jinan, China
| | - Junji Hu
- Department of Neurology, Zibo Changguo Hospital, Zibo, China
| | - Yucheng Song
- Department of Neurology, Jining City Dai Zhuang Hospital, Jining, China
| | - Chunxiang Li
- Department of Pediatrics, Yantai Yuhuangding Hospital, Yantai, China
| | - Aihua Ma
- Department of Pediatrics, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Yufeng Li
- Department of Pediatrics, Linyi People’s Hospital, Linyi, China
| | - Qingxia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical, Jining, China
| | - Liou Tang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Chen
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Wenxiu Sun
- Department of Pediatrics, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Chunyan Fang
- Department of Neurology, Zhucheng People’s Hospital, Zhucheng, China
| | - Yanping Sun
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Juan Chen
- Department of Neurology, Heze Third People’s Hospital, Heze, China
| | - Wenying Sun
- Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Yibing Yan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yuxing Gao
- Department of Pediatrics, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Jianhong Geng
- Department of Neurology, Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Nan Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Qiubo Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical, Jining, China
| | - Zhaolun Jiang
- Department of Pediatrics, Tengzhou Central People’s Hospital, Zaozhuang, China
| | - Shishen Lv
- Department of Pediatrics, Tengzhou Central People’s Hospital, Zaozhuang, China
| | - Wenke Li
- Department of Pediatrics, Tengzhou Central People’s Hospital, Zaozhuang, China
| | - Xiaoling Lang
- Department of Neurology, Laizhou People’s Hospital, Qingdao, China
| | - Suli Wang
- Department of Pediatrics, Weifang Maternal and Child Health Care Hospital, Weifang, China
| | - Yanxiu Chen
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Li
- Department of Neurology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yong Liu
- Department of Pediatrics, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Yan Zhan
- Department of Neurology, Affiliated Hospital of Binzhou Medical College, Yantai, China
| | - Zaifen Gao
- Department of Pediatrics, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Lixin Qu
- Department of Neurology, Dezhou People’s Hospital, Dezhou, China
| | - Qingxi Fu
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Xuewu Liu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China,Institute of Epilepsy, Shandong University, Jinan, China,*Correspondence: Xuewu Liu,
| |
Collapse
|
18
|
Xu H, Zhang A, Fang C, Zhu Q, Wang W, Liu Y, Zhang Z, Wang X, Yuan L, Xu Y, Shao A, Lou M. SLC11A1 as a stratification indicator for immunotherapy or chemotherapy in patients with glioma. Front Immunol 2022; 13:980378. [PMID: 36531992 PMCID: PMC9748290 DOI: 10.3389/fimmu.2022.980378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background Glioma is a fatal tumor originating from the brain, which accounts for most intracranial malignancies. Currently, Immunotherapy has turned into a novel and promising treatment in glioma patients. however, there are still few effective biomarkers to mirror the reaction to immunotherapy in patients with glioma. Therefore, we intended to elucidate the evaluable efficacy of SLC11A1 in glioma patients. Methods In this study, samples from Shanghai General Hospital and data from TCGA, GEO, CGGA datasets were used to investigate and validate the relationship between SLC11A1 and the progression of glioma. We evaluated the predictive value of SLC11A1 on the prognosis of glioma with cox regression analysis. Then the relationship between immune infiltration and SLC11A1 was also analyzed. Ultimately, we performed the prediction on the immunotherapeutic response and therapeutic drugs according to the expression of SLC11A1. Results Expression of SLC11A1 increased with progression and predicted unfavorable prognosis for glioma patients. The hazard ratio for SLC11A1 expression was 2.33 with 95% CI (1.92-2.58) (P < 0.001) in cox analysis. And based on expression, we found SLC11A1 stratified glioma patients into subgroups with different immune activation statuses. Moreover, we observed that patients with higher SLC11A1 levels companied with better immunotherapeutic response, while those with lower SLC11A1 levels may respond better to temozolomide. Conclusion This study provided evidence that SLC11A1 was a novel prognostic marker and immunotherapy response indicator for gliomas. In some cases, SLC11A1 could be an effective marker for identifying patients who might benefit from immunotherapy or chemotherapy.
Collapse
Affiliation(s)
- Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingwei Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yibo Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zeyu Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Meiqing Lou, ; Anwen Shao, ; Yuanzhi Xu,
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China,*Correspondence: Meiqing Lou, ; Anwen Shao, ; Yuanzhi Xu,
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Meiqing Lou, ; Anwen Shao, ; Yuanzhi Xu,
| |
Collapse
|
19
|
Lin Q, Fang Z, Sun J, Chen F, Ren Y, Fu Z, Yang S, Feng L, Wang F, Song Z, Chen W, Yu W, Wang C, Shi Y, Liang Y, Zhang H, Qu H, Fang X, Xi Q. Single-cell transcriptomic analysis of the tumor ecosystem of adenoid cystic carcinoma. Front Oncol 2022; 12:1063477. [DOI: 10.3389/fonc.2022.1063477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is a malignant tumor that originates from exocrine gland epithelial cells. We profiled the transcriptomes of 49,948 cells from paracarcinoma and carcinoma tissues of three patients using single-cell RNA sequencing. Three main types of the epithelial cells were identified into myoepithelial-like cells, intercalated duct-like cells, and duct-like cells by marker genes. And part of intercalated duct-like cells with special copy number variations which altered with MYB family gene and EN1 transcriptomes were identified as premalignant cells. Developmental pseudo-time analysis showed that the premalignant cells eventually transformed into malignant cells. Furthermore, MYB and MYBL1 were found to belong to two different gene modules and were expressed in a mutually exclusive manner. The two gene modules drove ACC progression into different directions. Our findings provide novel evidence to explain the high recurrence rate of ACC and its characteristic biological behavior.
Collapse
|
20
|
Hilber P. The Role of the Cerebellar and Vestibular Networks in Anxiety Disorders and Depression: the Internal Model Hypothesis. CEREBELLUM (LONDON, ENGLAND) 2022; 21:791-800. [PMID: 35414040 DOI: 10.1007/s12311-022-01400-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Clinical data and animal studies confirmed that the cerebellum and the vestibular system are involved in emotions. Nowadays, no real consensus has really emerged to explain the clinical symptoms in humans and behavioral deficits in the animal models. We envisage here that the cerebellum and the vestibular system play complementary roles in emotional reactivity. The cerebellum integrates a large variety of exteroceptive and proprioceptive information necessary to elaborate and to update the internal model: in emotion, as in motor processes, it helps our body and self to adapt to the environment, and to anticipate any changes in such environment in order to produce a time-adapted response. The vestibular system provides relevant environmental stimuli (i.e., gravity, self-position, and movement) and is involved in self-perception. Consequently, cerebellar or vestibular disorders could generate « internal fake news» (due to lack or false sensory information and/or integration) that could, in turn, generate potential internal model deficiencies. In this case, the alterations provoke false anticipation of motor command and external sensory feedback, associated with unsuited behaviors. As a result, the individual becomes progressively unable to cope with the environmental solicitation. We postulate that chronically unsuited, and potentially inefficient, behavioral and visceral responses to environmental solicitations lead to stressful situations. Furthermore, this inability to adapt to the context of the situation generates chronic anxiety which could precede depressive states.
Collapse
Affiliation(s)
- Pascal Hilber
- UNIROUEN, INSERM U1245, Cancer and Brain Genomics, Normandie University, 76000, Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
| |
Collapse
|
21
|
Zhou F, Zhang T, Jin Y, Ma Y, Li Y, Zeng M, Yu G. Unveiling the knowledge domain and emerging trends of olfactory dysfunction with depression or anxiety: A bibliometrics study. Front Neurosci 2022; 16:959936. [PMID: 36161166 PMCID: PMC9493192 DOI: 10.3389/fnins.2022.959936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/19/2022] [Indexed: 12/05/2022] Open
Abstract
Olfactory dysfunction (OD) accompanied by depression or anxiety is a very common clinical problem, and there has been a growing number of studies on OD with depression or anxiety in recent decades. This study performed bibliometric and visual analyses of the literature on OD with depression or anxiety to derive research trends and identify emerging research foci. Relevant publications were obtained from the Science Citation Index-Expanded and Social Sciences Citation Index in the Web of Science Core Collection databases (2002–2021). CiteSpace and VOSviewer were applied to identify and evaluate research foci and emerging trends in this research domain. The analyses found that the number of publications related to OD with depression or anxiety has increased significantly over the past 20 years, up from 15 in 2002 to 114 in 2022. The country that ranked highest in the number of articles and international cooperation was the United States. The top 10 most frequent keywords were “depression,” “olfaction,” “anxiety,” “dysfunction,” “olfactory bulbectomy,” “olfactory dysfunction,” “Parkinson’s disease,” “odor identification,” “brain,” and “disorders.” Analysis of keywords with the strongest citation bursts revealed that “oxidative stress” is an emerging research hotspot. A timeline chart of the cluster of co-cited references demonstrated that Parkinson’s disease was always a topic of interest in this area of research. This study conducted an objective, comprehensive, and systematic analysis of these publications, and identified the development of trends and hotspots in this research domain. It is hoped that this work will provide scholars, worldwide, with information to assist them in further research and the development of new therapies.
Collapse
|
22
|
Duncan RS, Riordan SM, Hall CW, Payne AJ, Chapman KD, Koulen P. N-acylethanolamide metabolizing enzymes are upregulated in human neural progenitor-derived neurons exposed to sub-lethal oxidative stress. Front Cell Neurosci 2022; 16:902278. [PMID: 36003139 PMCID: PMC9393304 DOI: 10.3389/fncel.2022.902278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
N-acyl amides (NAAs) are a class of lipids that consist of an acyl group N-linked to an amino acid, neurotransmitter, taurine or ethanolamide group (N-acylethanolamines or NAEs) and include some endocannabinoids (eCB) such as anandamide. These lipids are synthesized in a wide variety of organisms and in multiple cell types, including neurons. NAEs are involved in numerous cellular and physiological processes and their concentrations are elevated in response to ischemia and physical trauma to play a role in neuroprotection. The neuroprotective properties of eCB NAEs make the protein targets of these compounds attractive targets for clinical intervention for a variety of conditions. The most promising of these targets include cannabinoid receptor type 1 (CB1), cannabinoid receptor type 2 (CB2), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA), and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD). Further characterization of these targets in a more contemporary model system of neurodegeneration and neuroprotection will allow us to fully describe their role and mechanism of action in neuroprotection against oxidative stress leading to better utilization in the clinical setting. Human stem cell-derived or human neural progenitor cell-derived cells, such as ReN cells, have become more utilized for the study of human neuronal development and neurodegenerative diseases. ReN cells can be easily differentiated thereby circumventing the need for using transformed cell lines and primary neurons as cell model systems. In this study, we determined whether ReN cells, a superior cell model system for studying neurodevelopment, differentiation, and neuroprotection, express proteins involved in canonical eCB NAE signaling and whether oxidative stress can induce their expression. We determined that sublethal oxidative stress upregulates the expression of all eCB proteins tested. In addition, we determined that oxidative stress increases the nuclear localization of FAAH, and to a lesser extent, NAAA and NAPE-PLD. This study is a first step toward determining how oxidative stress affects CB1, CB2, FAAH, NAAA, and NAPE-PLD expression and their potential defense against oxidative stress. As such, our data is important for further determining the role of eCB metabolizing proteins and eCB receptors against oxidative stress.
Collapse
Affiliation(s)
- R. Scott Duncan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Sean M. Riordan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Conner W. Hall
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Andrew J. Payne
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Kent D. Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, United States
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
23
|
Aydın S. Cross-validated Adaboost Classification of Emotion Regulation Strategies Identified by Spectral Coherence in Resting-State. Neuroinformatics 2022; 20:627-639. [PMID: 34536200 DOI: 10.1007/s12021-021-09542-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 12/31/2022]
Abstract
In the present study, quantitative relations between Cognitive Emotion Regulation strategies (CERs) and EEG synchronization levels have been investigated for the first time. For this purpose, spectral coherence (COH), phase locking value and mutual information have been applied to short segments of 62-channel resting state eyes-opened EEG data collected from healthy adults who use contrasting emotion regulation strategies (frequently and rarely use of rumination&distraction, frequently and rarely use of suppression&reappraisal). In tests, the individuals are grouped depending on their self-responses to both emotion regulation questionnaire (ERQ) and cognitive ERQ. Experimental data are downloaded from publicly available data-base, LEMON. Regarding EEG electrode pairs that placed on right and left cortical regions, inter-hemispheric dependency measures are computed for non-overlapped short segments of 2 sec at 2 min duration trials. In addition to full-band EEG analysis, dependency metrics are also obtained for both alpha and beta sub-bands. The contrasting groups are discriminated from each other with respect to the corresponding features using cross-validated adaboost classifiers. High classification accuracies (CA) of 99.44% and 98.33% have been obtained through instant classification driven by full-band COH estimations. Considering regional features that provide the high CA, CERs are found to be highly relevant with associative memory functions and cognition. The new findings may indicate the close relation between neuroplasticity and cognitive skills.
Collapse
Affiliation(s)
- Serap Aydın
- Biophysics Department, Medical Faculty, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
24
|
Yang E, Kim W, Park YS, Jin YH. Substance P Increases the Excitability of Dorsal Motor Nucleus of the Vagus Nerve via Inhibition of Potassium Channels. Front Neurosci 2022; 16:867831. [PMID: 35495038 PMCID: PMC9051405 DOI: 10.3389/fnins.2022.867831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Increases in the substance P (SP) concentration in the medial portion of the dorsal motor nucleus of the vagus nerve (mDMV) in the brainstem are closely associated with chemotherapy induced nausea and vomiting (CINV). However, the underlying cellular and molecular mechanisms of action are not well understood. In this study, we investigated the effects of SP on mDMV neurons using whole-cell patch-clamp recordings from rat brainstem slices. Application of different concentrations of SP induced tonic and phasic responses. Submicromolar concentrations of induced an inward shift of the holding current by increasing membrane input resistance. The response was mimicked by acidification of the extracellular solution and inhibited by a neurokinin type 1 receptor antagonist. These responses have equilibrium potentials close to the K+ equilibrium potential. In addition, a TWIK-related acid-sensitive K+ channel 3 (TASK-3) inhibitor, PK-THPP, induced responses similar to those produced by submicromolar SP concentrations. Micromolar concentrations of SP facilitated γ-aminobutyric acid (GABA) release but diminished glutamate release; these changes were blocked by a GABAB receptor antagonist and a neurokinin type 3 receptor antagonist, respectively. In current-clamp recordings, submicromolar SP concentrations increased neuronal excitability by depolarizing membrane potentials. However, neither the increase in SP concentration to the micromolar range nor the addition of GABAA and ionotropic glutamate receptor antagonists affected neuronal excitability. Thus, SP increases the excitability of mDMV neurons by inhibiting K+ conductance.
Collapse
Affiliation(s)
- Eunhee Yang
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Woojin Kim,
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Young-Ho Jin
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Young-Ho Jin,
| |
Collapse
|
25
|
Su X, Yue P, Kong J, Xu X, Zhang Y, Cao W, Fan Y, Liu M, Chen J, Liu A, Bao F. Human Brain Organoids as an In Vitro Model System of Viral Infectious Diseases. Front Immunol 2022; 12:792316. [PMID: 35087520 PMCID: PMC8786735 DOI: 10.3389/fimmu.2021.792316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Brain organoids, or brainoids, have shown great promise in the study of central nervous system (CNS) infection. Modeling Zika virus (ZIKV) infection in brain organoids may help elucidate the relationship between ZIKV infection and microcephaly. Brain organoids have been used to study the pathogenesis of SARS-CoV-2, human immunodeficiency virus (HIV), HSV-1, and other viral infections of the CNS. In this review, we summarize the advances in the development of viral infection models in brain organoids and their potential application for exploring mechanisms of viral infections of the CNS and in new drug development. The existing limitations are further discussed and the prospects for the development and application of brain organs are prospected.
Collapse
Affiliation(s)
- Xuan Su
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Pediatrics, The Affiliated Children Hospital, Kunming Medical University, Kunming, China
| | - Peng Yue
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Jing Kong
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Xin Xu
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yu Zhang
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Wenjing Cao
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Yuxin Fan
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Meixiao Liu
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Jingjing Chen
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Aihua Liu
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Fukai Bao
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| |
Collapse
|
26
|
Abdel-Aziz N, Elkady AA, Elgazzar EM. Effect of Low-Dose Gamma Radiation and Lipoic Acid on High- Radiation-Dose Induced Rat Brain Injuries. Dose Response 2021; 19:15593258211044845. [PMID: 34759786 PMCID: PMC8573698 DOI: 10.1177/15593258211044845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
Aim This work aims to investigate the possible radio-adaptive mechanisms induced by low-dose (LD) whole-body γ-irradiation alone or combined with alpha-lipoic acid (ALA) administration in modulating high-dose (HD) head irradiation–induced brain injury in rats. Materials and Methods Rats were irradiated with LD (.25 Gy) 24 hours prior HD (20 Gy), and subjected to ALA (100 mg/kg/day) 5 minutes after HD and continued for 10 days. At the end of the experiment, animals were sacrificed and brain samples were dissected for biochemical and histopathological examinations. Results HD irradiation-induced brain injury as manifested by elevation of oxidative stress, DNA damage, apoptotic, and inflammatory markers in brain tissue. Histological examination of brain sections showed marked alterations. However, LD alone or combined with ALA ameliorated the changes induced by HD. Conclusion Under the present experimental conditions, LD whole-body irradiation exhibited neuroprotective activity against detrimental effects of a subsequent HD head irradiation. This effect might be due to the adaptive response induced by LD that activated the anti-oxidative, anti-apoptotic, and anti-inflammatory mechanisms in the affected animals making them able to cope with the subsequent high-dose exposure. However, the combined LD exposure and ALA supplementation produced a further modulating effect in the HD-irradiated rats.
Collapse
Affiliation(s)
- Nahed Abdel-Aziz
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed A Elkady
- Ahmed A. Elkady: Health Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Eman M Elgazzar
- Ahmed A. Elkady: Health Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
27
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Sharma N, Bungau S. Elucidating the Possible Role of FoxO in Depression. Neurochem Res 2021; 46:2761-2775. [PMID: 34075521 DOI: 10.1007/s11064-021-03364-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Forkhead box-O (FoxO) transcriptional factors perform essential functions in several physiological and biological processes. Recent studies have shown that FoxO is implicated in the pathophysiology of depression. Changes in the upstream mediators of FoxOs including brain-derived neurotrophic factor (BDNF) and protein kinase B have been associated with depressive disorder and the antidepressant agents are known to alter the phosphorylation of FoxOs. Moreover, FoxOs might be regulated by serotonin or noradrenaline signaling and the hypothalamic-pituitary-adrenal (HPA)-axis,both of them are associated with the development of the depressive disorder. FoxO also regulates neural morphology, synaptogenesis, and neurogenesis in the hippocampus, which accounts for the pathogenesis of the depressive disorder. The current article underlined the potential functions of FoxOs in the etiology of depressive disorder and formulate few essential proposals for further investigation. The review also proposes that FoxO and its signal pathway might establish possible therapeutic mediators for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.,Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt., Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
28
|
Zhang X, Chen F, Wang Y. Commentary: In vivo Neuroregeneration to Treat Ischemic Stroke Through NeuroD1 AAV-Based Gene Therapy in Adult Non-human Primates. Front Cell Dev Biol 2021; 9:648020. [PMID: 34124038 PMCID: PMC8194073 DOI: 10.3389/fcell.2021.648020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/12/2021] [Indexed: 01/21/2023] Open
Affiliation(s)
- Xiaoqin Zhang
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Fenghua Chen
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Jesudasan SJB, Gupta SJ, Churchward MA, Todd KG, Winship IR. Inflammatory Cytokine Profile and Plasticity of Brain and Spinal Microglia in Response to ATP and Glutamate. Front Cell Neurosci 2021; 15:634020. [PMID: 33889075 PMCID: PMC8057348 DOI: 10.3389/fncel.2021.634020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/10/2021] [Indexed: 11/27/2022] Open
Abstract
Microglia are the primary cells in the central nervous system that identify and respond to injury or damage. Such a perturbation in the nervous system induces the release of molecules including ATP and glutamate that act as damage-associated molecular patterns (DAMPs). DAMPs are detected by microglia, which then regulate the inflammatory response in a manner sensitive to their surrounding environment. The available data indicates that ATP and glutamate can induce the release of pro inflammatory factors TNF (tumor necrosis factor), IL-1β (interleukin 1 beta), and NO (nitric oxide) from microglia. However, non-physiological concentrations of ATP and glutamate were often used to derive these insights. Here, we have compared the response of spinal cord microglia (SM) relative to brain microglia (BM) using physiologically relevant concentrations of glutamate and ATP that mimic injured conditions in the central nervous system. The data show that ATP and glutamate are not significant modulators of the release of cytokines from either BM or SM. Consistent with previous studies, spinal microglia exhibited a general trend toward reduced release of inflammatory cytokines relative to brain-derived microglia. Moreover, we demonstrate that the responses of microglia to these DAMPs can be altered by modifying the biochemical milieu in their surrounding environment. Preconditioning brain derived microglia with media from spinal cord derived mixed glial cultures shifted their release of IL-1ß and IL-6 to a less inflammatory phenotype consistent with spinal microglia.
Collapse
Affiliation(s)
- Sam Joshva Baskar Jesudasan
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Somnath J. Gupta
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthew A. Churchward
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Biology and Environmental Sciences, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Kathryn G. Todd
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Biegon A. Considering Biological Sex in Traumatic Brain Injury. Front Neurol 2021; 12:576366. [PMID: 33643182 PMCID: PMC7902907 DOI: 10.3389/fneur.2021.576366] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Published epidemiological studies of traumatic brain injury (TBI) of all severities consistently report higher incidence in men. Recent increases in the participation of women in sports and active military service as well as increasing awareness of the very large number of women who sustain but do not report TBI as a result of intimate partner violence (IPV) suggest that the number of women with TBI is significantly larger than previously believed. Women are also grossly under-represented in clinical and natural history studies of TBI, most of which include relatively small numbers of women, ignore the role of sex- and age-related gonadal hormone levels, and report conflicting results. The emerging picture from recent studies powered to detect effects of biological sex as well as age (as a surrogate of hormonal status) suggest young (i.e., premenopausal) women are more likely to die from TBI relative to men of the same age group, but this is reversed in the 6th and 7th decades of life, coinciding with postmenopausal status in women. New data from concussion studies in young male and female athletes extend this finding to mild TBI, since female athletes who sustained mild TBI are significantly more likely to report more symptoms than males. Studies including information on gonadal hormone status at the time of injury are still too scarce and small to draw reliable conclusions, so there is an urgent need to include biological sex and gonadal hormone status in the design and analysis of future studies of TBI.
Collapse
Affiliation(s)
- Anat Biegon
- Department of Radiology and Neurology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
31
|
Rinaldin CDP, Avila de Oliveira J, Ribeiro de Souza C, Scheeren EM, Coelho DB, Teixeira LA. Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue. Exp Brain Res 2021; 239:639-653. [PMID: 33388814 DOI: 10.1007/s00221-020-06003-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023]
Abstract
In response to sudden perturbations of stance stability, muscles of both legs are activated for balance recovery. In conditions that one of the legs has a reduced capacity to respond, the opposite leg is predicted to compensate by responding more powerfully to restore stable upright stance. In this investigation, we aimed to evaluate between-leg compensatory control in automatic postural responses to sudden perturbations in a situation in which plantar flexor muscles of a single leg were fatigued. Young participants were evaluated in response to a series of perturbations inducing forward body sway, with a focus on activation of plantar flexor muscles: lateral and medial gastrocnemii and soleus. Muscular responses were analyzed through activation magnitude and latency of muscular activation onset. For evaluation of balance and postural stability, we also analyzed the center of pressure and upper trunk displacement and weight-bearing asymmetry between the legs. Responses were assessed in three conditions: pre-fatigue, under single-leg fatigue, and following the recovery of muscular function. Results showed (a) compensation of the non-fatigued leg through the increased magnitude of muscular activation in the first perturbation under fatigue; (b) adaptation in the non-fatigued leg over repetitive perturbations, with a progressive decrement of muscular activation over trials; and (c) maintenance of increased muscular activation of the non-fatigued leg following fatigue dissipation. These findings suggest that the central nervous system is able to modulate the descending motor drive individually for each leg's muscles apparently based on their potential contribution for the achievement of the behavioral aim of recovering stable body balance following stance perturbations.
Collapse
Affiliation(s)
- Carla Daniele Pacheco Rinaldin
- Graduate Program on Health Technology, Pontifical Catholic University of Paraná, St. Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, 80215-901, Brazil.
| | - Júlia Avila de Oliveira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, Av. Professor Mello Moraes, 65, Butantã, São Paulo, 05508-030, Brazil
| | - Caroline Ribeiro de Souza
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, Av. Professor Mello Moraes, 65, Butantã, São Paulo, 05508-030, Brazil
| | - Eduardo Mendonça Scheeren
- Graduate Program on Health Technology, Pontifical Catholic University of Paraná, St. Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, 80215-901, Brazil
| | - Daniel Boari Coelho
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, Av. Professor Mello Moraes, 65, Butantã, São Paulo, 05508-030, Brazil.,Biomedical Engineering, Federal University of ABC, Av. da Universidade, Anchieta, São Bernardo do Campo, São Paulo, 09606-045, Brazil
| | - Luis Augusto Teixeira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, Av. Professor Mello Moraes, 65, Butantã, São Paulo, 05508-030, Brazil
| |
Collapse
|
32
|
EL-Mallah R, Elattar EA. Extracorporeal shockwave therapy versus musculoskeletal mesotherapy for Achilles tendinopathy in athlete. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2020. [DOI: 10.1186/s43166-020-00033-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Achilles tendinopathy (AT) is considered the commonest tendon pathology, occurring mainly in athletes. Different conservative treatment options have been introduced but with short-term effects; however, extracorporeal shockwave therapy (ESWT) and mesotherapy (MT) injections were claimed to provide longer effects and could be used in cases failure of response to conservative treatments.
The objective of our prospective 12-week study was to compare the effect of ESWT and MT on chronic Achilles tendinopathy in athletes by both clinical and ultrasonographical assessment.
Results
Forty patients with chronic AT diagnosed clinically and with high-resolution ultrasound (US) randomly allocated in two groups first received weekly ESWT session, and the other group underwent weekly MT sessions for 4 consecutive weeks. Both groups improved during the treatment and follow-up period. The mean visual analogue score (VAS) decreased in both the ESWT group and the MT group. Mean American Orthopedic Foot and Ankle Society (AOFAS) hindfoot score and VAS scores were not significantly different between ESWT and MT groups at the 4th and the 12th week of follow-up. However, US assessment significantly improved after 12 weeks in the ESWT group (as regards tendon thickness, calcifications, and Doppler signal), and for the mesotherapy group, there was the only improvement of tendon thickness.
Conclusion
ESWT showed improvement of pain and inflammation and calcifications of AT than MT injections, which was documented by US improved findings at week 12 follow up.
Collapse
|
33
|
Wang YH, Li Y, Wang JN, Zhao QX, Jin J, Wen S, Wang SC, Sun T. Maresin 1 Attenuates Radicular Pain Through the Inhibition of NLRP3 Inflammasome-Induced Pyroptosis via NF-κB Signaling. Front Neurosci 2020; 14:831. [PMID: 32982664 PMCID: PMC7479972 DOI: 10.3389/fnins.2020.00831] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background The exposure of the nucleus pulposus (NP) causes an immune and inflammatory response, which is intrinsically linked to the pathogenesis of radicular pain. As a newly discovered pro-resolving lipid mediator, maresin 1 (MaR1) could exert powerful inflammatory resolution, neuroprotection, and analgesic activities. In the present research, the analgesic effect of MaR1 was observed. Then, the potential mechanism by which MaR1 attenuated radicular pain was also analyzed in a rat model. Methods Intrathecal administration of MaR1 (10 or 100 ng) was successively performed in a rat with non-compressive lumbar disk herniation for three postoperative days. Mechanical and thermal thresholds were determined to assess pain-related behavior from days 1 to 7 (n = 8/group). On day 7, the tissues of spinal dorsal horns from different groups were gathered to evaluate expression levels of inflammatory cytokines (IL-1β, IL-18, and TNF-α), the NLRP3 inflammasome and pyroptosis indicators (GSDMD, ASC, NLRP3, and Caspase-1), together with NF-κB/p65 activation (n = 6/group). TUNEL and PI staining were performed to further examine the process of pyroptosis. Results After intrathecal administration in the rat model, MaR1 exhibited potent analgesic effect dose-dependently. MaR1 significantly prompted the resolution of the increased inflammatory cytokine levels, reversed the up-regulated expression of the inflammasome and pyroptosis indicators, and reduced the cell death and the positive activation of NF-κB/p65 resulting from the NP application on the L5 dorsal root ganglion. Conclusion This study indicated that the activation of NLRP3 inflammasome and pyroptosis played a significant role in the inflammatory reaction of radicular pain. Also, MaR1 could effectively down-regulate the inflammatory response and attenuate pain by inhibiting NLRP3 inflammasome-induced pyroptosis via NF-κB signaling.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun-Nan Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Xiang Zhao
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin Jin
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuang Wen
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Si-Cong Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
34
|
Chen SY, Gao Y, Sun JY, Meng XL, Yang D, Fan LH, Xiang L, Wang P. Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer's Disease. Front Pharmacol 2020; 11:497. [PMID: 32390843 PMCID: PMC7188934 DOI: 10.3389/fphar.2020.00497] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease characterized by memory loss and cognitive impairment. The major characteristics of AD are amyloid β plaques, apoptosis, autophagy dysfunction, neuroinflammation, oxidative stress, and mitochondrial dysfunction. These are mostly used as the significant indicators for selecting the effects of potential drugs. It is imperative to explain AD pathogenesis and realize productive treatments. Although the currently used chemical drugs for clinical applications of AD are effective in managing the symptoms, they are inadequate to achieve anticipated preventive or therapeutic outcomes. There are new strategies for treating AD. Traditional Chinese Medicine (TCM) has accumulated thousands of years of experience in treating dementia. Nowadays, numerous modern pharmacological studies have verified the efficacy of many bioactive ingredients isolated from TCM for AD treatment. In this review, representative TCM for the treatment of AD are discussed, and among these herbal medicines, the Lamiaceae family accounts for the highest proportion. It is concluded that monomers and extracts from TCM have potential therapeutic effect for AD treatment.
Collapse
Affiliation(s)
- Shi-Yu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Yi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian-Li Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-Hong Fan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xiang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
Li TG, Shui L, Ge DY, Pu R, Bai SM, Lu J, Chen YS. Moxibustion Reduces Inflammatory Response in the Hippocampus of a Chronic Exercise-Induced Fatigue Rat. Front Integr Neurosci 2019; 13:48. [PMID: 31616260 PMCID: PMC6763602 DOI: 10.3389/fnint.2019.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
Accumulating data indicates that brain inflammation plays an important role in the pathophysiology of chronic exercise-induced fatigue. Moxibustion in traditional Chinese medicine has been found to alleviate exercise-induced fatigue. However, it remains unclear whether the effect of moxibustion is related to its anti-inflammatory properties. In this study, rats were exposed to 3-week exhaustive swimming to induce chronic exercise-induced fatigue. The body weight, exhaustive swimming time, tail suspension test and open-field test were observed. Real-time polymerase chain reaction (RT-PCR) was used to determine the mRNA expression of proinflammatory cytokines (interleukin-1β [IL-1β], interleukin-6 [IL-6], and tumor necrosis factor-α[TNF-α]), and enzyme-linked immunosorbent assay (ELISA) was used to detect IL-1β, IL-6, and TNF-α concentrations. Chronic exhaustive exercise significantly reduced the body weight and exhaustive swimming time, and increased tail suspension immobility time, which were reversed by moxibustion treatment. Compared with control rats, the mRNA and protein expression of IL-1β, IL-6, and TNF-α in the hippocampus was significantly increased in exhaustive swimming trained rats. Moxibustion significantly decreased the level of IL-6 in the hippocampus, but not affected IL-1β and TNF-α level significantly. Our results suggested that a potential inflammatory damage in the brain may be involved during chronic exhaustive exercise-induced fatigue. Moxibustion could attenuate the inflammatory impairment in exercise-induced fatigue, which might be mediated by inhibition of the proinflammatory cytokine IL-6 levels in the brain region.
Collapse
Affiliation(s)
- Tian-Ge Li
- School of Acupuncture-Moxibustion and Tui Na, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Shui
- School of Inner Mongolia Medicine, Inner Mongolia Medical University, Huhehaote, China
| | - Dong-Yu Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Pu
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Shu-Mei Bai
- School of Inner Mongolia Medicine, Inner Mongolia Medical University, Huhehaote, China
| | - Jun Lu
- School of Acupuncture-Moxibustion and Tui Na, Beijing University of Chinese Medicine, Beijing, China
| | - Ying-Song Chen
- School of Inner Mongolia Medicine, Inner Mongolia Medical University, Huhehaote, China
| |
Collapse
|
36
|
Williams S, Hossain M, Ferguson L, Busch RM, Marchi N, Gonzalez-Martinez J, Perucca E, Najm IM, Ghosh C. Neurovascular Drug Biotransformation Machinery in Focal Human Epilepsies: Brain CYP3A4 Correlates with Seizure Frequency and Antiepileptic Drug Therapy. Mol Neurobiol 2019; 56:8392-8407. [PMID: 31243719 DOI: 10.1007/s12035-019-01673-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/07/2019] [Indexed: 01/01/2023]
Abstract
Pharmacoresistance is a major clinical challenge for approximately 30% of patients with epilepsy. Previous studies indicate nuclear receptors (NRs), drug efflux transporters, and cytochrome P450 enzymes (CYPs) control drug passage across the blood-brain barrier (BBB) in drug-resistant epilepsy. Here, we (1) evaluate BBB changes, neurovascular nuclear receptors, and drug transporters in lesional/epileptic (EPI) and non-lesional/non-epileptic (NON-EPI) regions of the same brain, (2) examine regional CYP expression and activity, and (3) investigate the association among CYP brain expression, seizure frequency, duration of epilepsy, and antiepileptic drug (AED) combination. We used surgically resected brain specimens from patients with medically intractable epilepsy (n = 22) where the epileptogenic loci were well-characterized by invasive and non-invasive methods; histology confirmed distinction of small NON-EPI regions from EPI tissues. NRs, transporters, CYPs, and tight-junction proteins were assessed by western blots/immunohistochemistry, and CYP metabolic activity was determined and compared. The relationship of CYP expression with seizure frequency, duration of epilepsy, and prescribed AEDs was evaluated. Decreased BBB tight-junction proteins accompanied IgG leakage in EPI regions and correlated with upregulated NR and efflux transporter levels. CYP expression and activity significantly increased in EPI compared to NON-EPI tissues. Change in EPI and NON-EPI CYP3A4 expression increased in patients taking AEDs that were CYP substrates, was downregulated when CYP- and non-CYP-substrate AEDs were given together, and correlated with seizure frequency. Our studies suggest focal neurovascular CYP-NR-transporter alterations, as demonstrated by the relationship of seizure frequency and AED combination to brain CYP3A4, might together impact biotransformation machinery of human pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Sherice Williams
- Cerebrovascular Research Laboratory, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mohammed Hossain
- Cerebrovascular Research Laboratory, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Lisa Ferguson
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robyn M Busch
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders Laboratory, Department of Neuroscience, Institute of Functional Genomics (CNRS-INSERM), University of Montpellier, Montpellier, France
| | | | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia, Clinical Trial Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Imad M Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chaitali Ghosh
- Cerebrovascular Research Laboratory, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
37
|
Corti O. Neuronal Mitophagy: Lessons from a Pathway Linked to Parkinson's Disease. Neurotox Res 2019; 36:292-305. [PMID: 31102068 DOI: 10.1007/s12640-019-00060-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Neurons are specialized cells with complex and extended architecture and high energy requirements. Energy in the form of adenosine triphosphate, produced essentially by mitochondrial respiration, is necessary to preserve neuronal morphology, maintain resting potential, fire action potentials, and ensure neurotransmission. Pools of functional mitochondria are required in all neuronal compartments, including cell body and dendrites, nodes of Ranvier, growth cones, axons, and synapses. The mechanisms by which old or damaged mitochondria are removed and replaced in neurons remain to be fully understood. Mitophagy has gained considerable interest since the discovery of familial forms of Parkinson's disease caused by dysfunction of PINK1 and Parkin, two multifunctional proteins cooperating in the regulation of this process. Over the past 10 years, the molecular mechanisms by which PINK1 and Parkin jointly promote the degradation of defective mitochondria by autophagy have been dissected. However, our understanding of the relevance of mitophagy to mitochondrial homeostasis in neurons remains poor. Insight has been recently gained thanks to the development of fluorescent reporter systems for tracking mitochondria in the acidic compartment of the lysosome. Using these tools, mitophagy events have been visualized in primary neurons in culture and in vivo, under basal conditions and in response to toxic insults. Despite these advances, whether PINK1 and Parkin play a major role in promoting neuronal mitophagy under physiological conditions in adult animals and during aging remains a matter of debate. Future studies will have to clarify in how far dysfunction of neuronal mitophagy is central to the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- Olga Corti
- Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
- Inserm, U1127, F-75013, Paris, France.
- CNRS, UMR 7225, F-75013, Paris, France.
- Sorbonne Universités, F-75013, Paris, France.
| |
Collapse
|
38
|
Agliardi C, Guerini FR, Zanzottera M, Bianchi A, Nemni R, Clerici M. SNAP-25 in Serum Is Carried by Exosomes of Neuronal Origin and Is a Potential Biomarker of Alzheimer's Disease. Mol Neurobiol 2019; 56:5792-5798. [PMID: 30680692 DOI: 10.1007/s12035-019-1501-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
A loss of synaptic density and connectivity is observed in multiple brain regions of Alzheimer's disease (AD) patients, resulting in a reduced expression of synaptic proteins such as SNAP-25 (synaptosomal-associated-protein-25). SNAP-25 alterations thus could be an index of the degree of synaptic degeneration in the central nervous system (CNS). We isolated from serum of both AD patients and healthy controls (HC) a population of neuron-derived exosomes (NDEs) and measured the concentrations of SNAP-25 contained in such NDEs. The levels of SNAP-25 carried by NDEs were reduced in AD patients (mean 459.05 ng/ml, SD 146.35 ng/ml) compared to HC (mean 686.42 ng/ml, SD 204.08 ng/ml) (p < 0.001). As a further confirmation of these results, ROC (receiver operating characteristic) analyses indicated that the level of SNAP-25 carried by NDEs has the power to discriminate between AD and HC (AUC = 0.826, sensitivity = 87.5%, specificity = 70.6%, p < 0.0001, cut-off value 587.07 ng/ml). Notably, a correlation between the levels of SNAP-25 carried by NDEs and levels and cognitive status measured by MMSE score (r = 0.465, 95% CI 0.11 to 0.714, p = 0.01) was detected. This is the first report of SNAP-25 measurement in serum. These data suggest that NDE-carried SNAP-25 could be an effective and accessible biomarker that reflects synapses integrity in the brain.
Collapse
Affiliation(s)
- Cristina Agliardi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy.
| | - Franca R Guerini
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy
| | - Milena Zanzottera
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy
| | - Anna Bianchi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy
| | - Raffaello Nemni
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
39
|
Laneve P, Rea J, Caffarelli E. Long Noncoding RNAs: Emerging Players in Medulloblastoma. Front Pediatr 2019; 7:67. [PMID: 30923703 PMCID: PMC6426782 DOI: 10.3389/fped.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/18/2019] [Indexed: 01/02/2023] Open
Abstract
Central Nervous System tumors are the leading cause of cancer-related death in children, and medulloblastoma has the highest incidence rate. The current therapies achieve a 5-year survival rate of 50-80%, but often inflict severe secondary effects demanding the urgent development of novel, effective, and less toxic therapeutic strategies. Historically identified on a histopathological basis, medulloblastoma was later classified into four major subgroups-namely WNT, SHH, Group 3, and Group 4-each characterized by distinct transcriptional profiles, copy-number aberrations, somatic mutations, and clinical outcomes. Additional complexity was recently provided by integrating gene- and non-gene-based data, which indicates that each subclass can be further subdivided into specific subtypes. These deeper classifications, while getting over the typical tumor heterogeneity, indicate that different forms of medulloblastoma hold different molecular drivers that can be successfully exploited for a greater diagnostic accuracy and for the development of novel, targeted treatments. Long noncoding RNAs are transcripts that lack coding potential and play relevant roles as regulators of gene expression in mammalian differentiation and developmental processes. Their cell type- and tissue-specificity, higher than mRNAs, make them more informative about cell- type identity than protein-coding genes. Remarkably, about 40% of long noncoding RNAs are expressed in the brain and their aberrant expression has been linked to neuro-oncological disorders. However, while their involvement in gliomas and neuroblastomas has been extensively studied, their role in medulloblastoma is still poorly explored. Here, we present an overview of current knowledge regarding the function played by long noncoding RNAs in medulloblastoma biology.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Jessica Rea
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
40
|
Caretti A, Vasso M, Bonezzi FT, Gallina A, Trinchera M, Rossi A, Adami R, Casas J, Falleni M, Tosi D, Bragonzi A, Ghidoni R, Gelfi C, Signorelli P. Myriocin treatment of CF lung infection and inflammation: complex analyses for enigmatic lipids. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:775-790. [PMID: 28439630 DOI: 10.1007/s00210-017-1373-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022]
Abstract
Our aim was to use quantitative and qualitative analyses to gain further insight into the role of ceramide in cystic fibrosis (CF). Sphingolipid ceramide is a known inflammatory mediator, and its accumulation in inflamed lung has been reported in different types of emphysema, chronic obstructive pulmonary disease and CF. CF is caused by a mutation of the chloride channel and associated with hyperinflammation of the respiratory airways and high susceptibility to ongoing infections. We have previously demonstrated that de novo ceramide synthesis is enhanced in lung inflammation and sustains Pseudomonas aeruginosa pulmonary infection in a CF murine model. We used liquid chromatography and matrix-assisted laser desorption/ionization (MALDI) imaging coupled with mass spectrometry, confocal laser scan microscopy and histology analyses to reveal otherwise undecipherable information. We demonstrated that (i) upregulated ceramide synthesis in the alveoli is strictly related to alveolar infection and inflammation, (ii) alveolar ceramide (C16) can be specifically targeted by nanocarrier delivery of the ceramide synthesis inhibitor myriocin (Myr) and (iii) Myr is able to downmodulate pro-inflammatory lyso-PC, favouring an increase in anti-inflammatory PCs. We concluded that Myr modulates alveolar lipids milieu, reducing hyperinflammation and favouring anti-microbial effective response in CF mouse model.
Collapse
Affiliation(s)
- Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Michele Vasso
- Lita Institute, Segrate, University of Milan, Milan, Italy
| | - Fabiola Tecla Bonezzi
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Andrea Gallina
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Marco Trinchera
- Department of Medicine Clinical and Experimental, University of Insubria Medical School, Varese, Italy
| | - Alice Rossi
- Infections and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Adami
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Josefina Casas
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Catalan Institute of Advanced Chemistry (IQAC/CSIC), Barcelona, Spain
| | - Monica Falleni
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Delfina Tosi
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy
| | - Cecilia Gelfi
- Lita Institute, Segrate, University of Milan, Milan, Italy
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Via A.di Rudinì 8, 20142, Milan, Italy.
| |
Collapse
|
41
|
Gao R, Ji MH, Gao DP, Yang RH, Zhang SG, Yang JJ, Shen JC. Neuroinflammation-Induced Downregulation of Hippocampacal Neuregulin 1-ErbB4 Signaling in the Parvalbumin Interneurons Might Contribute to Cognitive Impairment in a Mouse Model of Sepsis-Associated Encephalopathy. Inflammation 2017; 40:387-400. [DOI: 10.1007/s10753-016-0484-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Lv X, Zhao K, Lan Y, Li Z, Ding N, Su J, Lu H, Song D, Gao F, He W. miR-21a-5p Contributes to Porcine Hemagglutinating Encephalomyelitis Virus Proliferation via Targeting CASK-Interactive Protein1 In vivo and vitro. Front Microbiol 2017; 8:304. [PMID: 28298907 PMCID: PMC5331037 DOI: 10.3389/fmicb.2017.00304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/14/2017] [Indexed: 12/13/2022] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus that can cause nervous symptoms in piglets with muscle tremors, hind limb paralysis, and nystagmus. Whether some factors affect virus replication and proliferation had not been fully understood in the course of nerve damage caused by PHEV infection. In recent years, some reports suggested that miRNA might play a key regulatory role in viral infection. In this study, we found the miR-21a-5p is notably up-regulated in the brains of mice and N2a cells infected with PHEV, and it down-regulated the expression of CASK-interactive protein1 (Caskin1) by directly targeting the 3′-UTR of Caskin1 using a Dual-Luciferase reporter assay. The over-expression of miR-21a-5p or Caskin1 knockdown in the host significantly contributes to PHEV proliferation. Conversely, the silencing of miR-21a-5p by miR-21a-5p inhibitors suppressed the virus proliferation. Taken together, our results indicate that Caskin1 is the direct target gene of miR-21a-5p, and it is advantageous to virus proliferation by down-regulating Caskin1. These findings may help in the development of strategies for therapeutic applications.
Collapse
Affiliation(s)
- Xiaoling Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Ning Ding
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Jingjing Su
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University Changchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| |
Collapse
|
43
|
Li D, Sun J, Zhao L, Guo W, Sun W, Yang S. Aminoglycoside Increases Permeability of Osseous Spiral Laminae of Cochlea by Interrupting MMP-2 and MMP-9 Balance. Neurotox Res 2016; 31:348-357. [PMID: 28005182 DOI: 10.1007/s12640-016-9689-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
The spiral ganglion neurons (SGNs) located in the Rosenthal's canal of cochlea are essential target for cochlear implant. Previous studies found that the canaliculi perforantes, small pores on the surface of the osseous spiral lamina (OSL) of the scala tympanic (ST) of cochlea, may provide communication between the cochlear perilymph and SGNs. In this study, we found that chronic treatment of aminoglycosides antibiotics, which is well known to cause sensory cell damage in the cochlea, induced significant damage of bone lining cells on the OSLs and increased the permeability of the Rosenthal's canal. The pores among the bone lining cells became significantly wider after chronic treatment of amikacin (100 mg/kg/day for 3-7 days). Injection of Evans Blue in the ST resulted in significant increase in its migration in the modulus in the amikacin-treated cochlea compared to the control ears, suggesting increased permeability of these passages. Treatment of amikacin with oxytetracycline, an inhibitor of matrix metalloproteases (MMPs), significantly reduced the amount of dye migrated from the ST to the modiolus. These results suggest that amikacin enhanced the permeability between the ST and SGNs by increasing MMPs. Aggregating the permeability of the bone lining cells on the OSLs may benefit gene and stem cell delivery to the SGNs in the cochlea.
Collapse
Affiliation(s)
- Dengke Li
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Jianhe Sun
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Lidong Zhao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Weiwei Guo
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, the State University of New York at Buffalo, Buffalo, New York, 14214, USA
| | - Shiming Yang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
44
|
Wang T, Zhou YT, Chen XN, Zhu AX, Wu BH. Remote ischemic postconditioning protects against gastric mucosal lesions in rats. World J Gastroenterol 2014; 20:9519-9527. [PMID: 25071347 PMCID: PMC4110584 DOI: 10.3748/wjg.v20.i28.9519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/21/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effects of remote ischemic postconditioning (RIP) against limb ischemia-reperfusion (IR)-induced gastric mucosal injury.
METHODS: Gastric IR was established in male Wistar rats by placing an elastic rubber band under a pressure of 290-310 mmHg on the proximal part of both lower limbs for 3 h followed by reperfusion for 0, 1, 3, 6, 12 or 24 h. RIP was performed using three cycles of 30 s of reperfusion and 30 s of reocclusion of the femoral aortic immediately after IR and before reperfusion for up to 24 h. Rats were randomly assigned to receive IR (n = 36), IR followed by RIP (n = 36), or sham treatment (n = 36). Gastric tissue samples were collected from six animals in each group at each timepoint and processed to determine levels of malondialdehyde (MDA), superoxide dismutase (SOD), xanthine oxidase (XOD) and myeloperoxidase (MPO). Additional samples were processed for histologic analysis by hematoxylin and eosin staining. Blood samples were similarly collected to determine serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), tumor necrosis factor (TNF)-α and interleukin (IL)-10.
RESULTS: The pathologic changes in gastric tissue induced by IR were observed by light microscopy. Administration of RIP dramatically reduced the gastric damage score after 6 h of reperfusion (5.85 ± 0.22 vs 7.72 ± 0.43; P < 0.01). In addition, RIP treatment decreased the serum activities of LDH (3.31 ± 0.32 vs 6.46 ± 0.03; P < 0.01), CK (1.94 ± 0.20 vs 4.54 ± 0.19; P < 0.01) and the concentration of TNF-α (53.82 ± 0.85 vs 88.50 ± 3.08; P < 0.01), and elevated the concentration of IL-10 (101.46 ± 5.08 vs 99.77 ± 4.32; P < 0.01) induced by IR at 6 h. Furthermore, RIP treatment prevented the marked elevation in MDA (3.79 ± 0.29 vs 6.39 ± 0.81) content, XOD (7.81 ± 0.75 vs 10.37 ± 2.47) and MPO (0.47 ± 0.05 vs 0.82 ± 0.03) activities, and decrease in SOD (4.95 ± 0.32 vs 3.41 ± 0.38; P < 0.01) activity in the gastric tissue as measured at 6 h.
CONCLUSION: RIP provides effective functional protection and prevents cell injury to gastric tissue induced by limb IR via anti-inflammatory and antioxidant actions.
Collapse
|
45
|
Su YS, Sun WH, Chen CC. Molecular mechanism of inflammatory pain. World J Anesthesiol 2014; 3:71-81. [DOI: 10.5313/wja.v3.i1.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/20/2013] [Accepted: 11/03/2013] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammatory pain resulting from arthritis, nerve injury and tumor growth is a serious public health issue. One of the major challenges in chronic inflammatory pain research is to develop new pharmacologic treatments with long-term efficacy and few side effects. The mediators released from inflamed sites induce complex changes in peripheral and central processing by directly acting on transducer receptors located on primary sensory neurons to transmit pain signals or indirectly modulating pain signals by activating receptors coupled with G-proteins and second messengers. High local proton concentration (acidosis) is thought to be a decisive factor in inflammatory pain and other mediators such as prostaglandin, bradykinin, and serotonin enhance proton-induced pain. Proton-sensing ion channels [transient receptor potential V1 (TRPV1) and the acid-sensing ion channel (ASIC) family] are major receptors for direct excitation of nociceptive sensory neurons in response to acidosis or inflammation. G-protein-coupled receptors activated by prostaglandin, bradykinin, serotonin, and proton modulate functions of TRPV1, ASICs or other ion channels, thus leading to inflammation- or acidosis-linked hyperalgesia. Although detailed mechanisms remain unsolved, clearly different types of pain or hyperalgesia could be due to complex interactions between a distinct subset of inflammatory mediator receptors expressed in a subset of nociceptors. This review describes new directions for the development of novel therapeutic treatments in pain.
Collapse
|
46
|
Paquette N, Vannasing P, Lefrançois M, Lefebvre F, Roy MS, McKerral M, Lepore F, Lassonde M, Gallagher A. Neurophysiological Correlates of Auditory and Language Development: A Mismatch Negativity Study. Dev Neuropsychol 2013; 38:386-401. [DOI: 10.1080/87565641.2013.805218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|