1
|
Martin T, Pasquier F, Denise P, Davenne D, Quarck G. The relationship between the vestibular system and the circadian timing system: A review. Sleep Med 2024; 126:148-158. [PMID: 39672094 DOI: 10.1016/j.sleep.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
This review attempts to analyze the relationship between the vestibular system and the circadian timing system. The activity of the biological clock allows an organism to optimally perform its tasks throughout the nychtemeron. To achieve this, the biological clock is subjected to exogenous factors that entrain it to a 24h period. While the most powerful synchronizer is the light-dark cycle produced by the Earth's rotation, research has led to the hypothesis of the vestibular system as a possible non-photic time cue used to entrain circadian rhythms. Demonstrated neuroanatomical pathways between vestibular nuclei and suprachiasmatic nuclei could transmit this message. Moreover, functional evidence in both humans and animals has shown that vestibular disruption or stimulation may lead to changes in circadian rhythms characteristics. Vestibular stimulations could be considered to act synergistically with other synchronizers, such as light, to ensure the entrainment of biological rhythms over the 24-h reference period.
Collapse
Affiliation(s)
- Tristan Martin
- Le Mans Université, Movement - Interactions - Performance, MIP, UR 4334, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France; Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France.
| | - Florane Pasquier
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| | - Pierre Denise
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| | - Damien Davenne
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| | - Gaëlle Quarck
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| |
Collapse
|
2
|
Micarelli A, Viziano A, Arena M, Misici I, Di Benedetto A, Carbini V, Micarelli B, Alessandrini M. Changes in sleep performance and chronotype behaviour after vestibular rehabilitation in unilateral vestibular hypofunction. J Laryngol Otol 2023; 137:1349-1358. [PMID: 36524555 DOI: 10.1017/s0022215122002602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study aimed to investigate changes in sleep parameters and self-perceived sleep quality in unilateral vestibular hypofunction participants after vestibular rehabilitation. METHOD Forty-six unilateral vestibular hypofunction participants (before and after vestibular rehabilitation) along with a control group of 60 healthy patients underwent otoneurological examination, a one-week actigraphy sleep analysis and a series of self-report and performance measures. RESULTS After vestibular rehabilitation, unilateral vestibular hypofunction participants showed a significant score decrease in the Pittsburgh Sleep Quality Index, a self-rated reliable questionnaire depicting sleep quality during the last month, as well as a reduction in sleep onset latency and an increase in total sleep time, indicating an objective improvement in sleep quality as measured by actigraphy analysis. However, after vestibular rehabilitation, unilateral vestibular hypofunction participants still showed statistically significant differences with respect to the control group in both self-rated and objective measurements of sleep quality. CONCLUSION Vestibular rehabilitation may impact on sleep performance and chronotype behaviour, possibly by opposing long-term structural changes along neural pathways entangled in sleep activity because of the deafferentation of the vestibular nuclei.
Collapse
Affiliation(s)
- A Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, Uniter Onlus, Rome, Italy
| | - A Viziano
- Department of Clinical Sciences and Translational Medicine, ENT Unit, University of Rome Tor Vergata, Italy
| | - M Arena
- Unit of Neuroscience, Rehabilitation and Sensory Organs, Uniter Onlus, Rome, Italy
| | - I Misici
- Unit of Neuroscience, Rehabilitation and Sensory Organs, Uniter Onlus, Rome, Italy
| | - A Di Benedetto
- Unit of Neuroscience, Rehabilitation and Sensory Organs, Uniter Onlus, Rome, Italy
- Occupational Therapy Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - V Carbini
- Unit of Neuroscience, Rehabilitation and Sensory Organs, Uniter Onlus, Rome, Italy
| | - B Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, Uniter Onlus, Rome, Italy
| | - M Alessandrini
- Department of Clinical Sciences and Translational Medicine, ENT Unit, University of Rome Tor Vergata, Italy
| |
Collapse
|
3
|
Cote JM, Hood A, Kwon B, Smith JC, Houpt TA. Behavioral and neural responses to high-strength magnetic fields are reduced in otolith mutant mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R181-R192. [PMID: 37306398 PMCID: PMC10393321 DOI: 10.1152/ajpregu.00317.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Static high magnetic fields (MFs) interact with the vestibular system of humans and rodents. In rats and mice, exposure to MFs causes perturbations such as head movements, circular locomotion, suppressed rearing, nystagmus, and conditioned taste aversion acquisition. To test the role of otoconia, two mutant mouse models were examined, head-tilt Nox3het (het) and tilted Otop1 (tlt), with mutations, respectively, in Nox3, encoding the NADPH oxidase 3 enzyme, and Otop1, encoding the otopetrin 1 proton channel, which are normally expressed in the otolith organs, and are critical for otoconia formation. Consequently, both mutants show a near complete loss of otoconia in the utricle and saccule, and are nonresponsive to linear acceleration. Mice were exposed to a 14.1 Tesla MF for 30 min. After exposure, locomotor activity, conditioned taste aversion and c-Fos (in het) were assessed. Wild-type mice exposed to the MF showed suppressed rearing, increased latency to rear, locomotor circling, and c-Fos in brainstem nuclei related to vestibular processing (prepositus, spinal vestibular, and supragenual nuclei). Mutant het mice showed no response to the magnet and were similar to sham animals in all assays. Unlike het, tlt mutants exposed to the MF showed significant locomotor circling and suppressed rearing compared with sham controls, although they failed to acquire a taste aversion. The residual responsiveness of tlt versus het mice might reflect a greater semicircular deficit in het mice. These results demonstrate the necessity of the otoconia for the full effect of exposure to high MFs, but also suggest a semicircular contribution.
Collapse
Affiliation(s)
- Jason M Cote
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Alison Hood
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Bumsup Kwon
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - James C Smith
- Department of Psychology, Florida State University, Tallahassee, Florida, United States
| | - Thomas A Houpt
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
4
|
Perrier J, Galin M, Denise P, Giffard B, Quarck G. Tackling Insomnia Symptoms through Vestibular Stimulation in Patients with Breast Cancer: A Perspective Paper. Cancers (Basel) 2023; 15:cancers15112904. [PMID: 37296867 DOI: 10.3390/cancers15112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Insomnia symptoms are common among patients with breast cancer (BC; 20-70%) and are predictors of cancer progression and quality of life. Studies have highlighted sleep structure modifications, including increased awakenings and reduced sleep efficiency and total sleep time. Such modifications may result from circadian rhythm alterations consistently reported in this pathology and known as carcinogenic factors, including lower melatonin levels, a flattened diurnal cortisol pattern, and lower rest-activity rhythm amplitude and robustness. Cognitive behavioral therapy and physical activity are the most commonly used non-pharmacological interventions to counter insomnia difficulties in patients with BC. However, their effects on sleep structure remain unclear. Moreover, such approaches may be difficult to implement shortly after chemotherapy. Innovatively, vestibular stimulation would be particularly suited to tackling insomnia symptoms. Indeed, recent reports have shown that vestibular stimulation could resynchronize circadian rhythms and improve deep sleep in healthy volunteers. Moreover, vestibular dysfunction has been reported following chemotherapy. This perspective paper aims to support the evidence of using galvanic vestibular stimulation to resynchronize circadian rhythms and reduce insomnia symptoms in patients with BC, with beneficial effects on quality of life and, potentially, survival.
Collapse
Affiliation(s)
- Joy Perrier
- Neuropsychologie et Imagerie de la Mémoire Humaine U1077, EPHE, INSERM, CHU de Caen, GIP Cyceron, PSL Université, Normandie Univ, Université de Caen Normandie, 14000 Caen, France
| | - Melvin Galin
- Neuropsychologie et Imagerie de la Mémoire Humaine U1077, EPHE, INSERM, CHU de Caen, GIP Cyceron, PSL Université, Normandie Univ, Université de Caen Normandie, 14000 Caen, France
- COMETE U1075, INSERM, CYCERON, CHU de Caen, Normandie Univ, Université de Caen Normandie, 14000 Caen, France
| | - Pierre Denise
- COMETE U1075, INSERM, CYCERON, CHU de Caen, Normandie Univ, Université de Caen Normandie, 14000 Caen, France
| | - Bénédicte Giffard
- Neuropsychologie et Imagerie de la Mémoire Humaine U1077, EPHE, INSERM, CHU de Caen, GIP Cyceron, PSL Université, Normandie Univ, Université de Caen Normandie, 14000 Caen, France
| | - Gaëlle Quarck
- COMETE U1075, INSERM, CYCERON, CHU de Caen, Normandie Univ, Université de Caen Normandie, 14000 Caen, France
| |
Collapse
|
5
|
How vestibular dysfunction transforms into symptoms of depersonalization and derealization? J Neurol Sci 2023; 444:120530. [PMID: 36586207 DOI: 10.1016/j.jns.2022.120530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Psychiatric Depersonalization/Derealization (DPDR) symptoms were demonstrated in patients with peripheral vestibular disorders. However, only semicircular canals (SCCs) dysfunction was evaluated, therefore, otoliths' contribution to DPDR is unknown. Also, DPDR symptoms in patients with central vestibular dysfunction are presently unknown. DPDR was also studied in the context of spatial disorientation and anxiety, but the relation of these cognitive and emotional functions to vestibular dysfunction requires clarification. METHODS We tested patients with peripheral Bilateral Vestibular Hypofunction (pBVH), Machado Joseph Disease (MJD) with cerebellar and central bilateral vestibular hypofunction, and healthy controls. Participants completed the video Head Impulse Test (vHIT) for SCCs function, cervical Vestibular Evoked Myogenic Potentials test (cVEMPt) for sacculi function, Body Sensation Questionnaire (BSQ) for panic anxiety, Object Perspective-Taking test (OPTt) for spatial orientation and Cox & Swinson DPDR inventory for DPDR symptoms. RESULTS pBVH patients showed significant SCCs and sacculi dysfunction, spatial disorientation, elevated panic anxiety, and DPDR symptoms. MJD patients showed significant SCCs hypofunction but preserved sacculi function, spatial disorientation but normal levels of panic anxiety and DPDR symptoms. Only pBVH patients demonstrated a positive correlation between the severity of the DPDR and spatial disorientation and panic anxiety. CONCLUSIONS DPDR develops in association with sacculi dysfunction, either with or without SSCs dysfunction. Spatial disorientation and anxiety seem to mediate the transformation of vestibular dysfunction into DPDR symptoms. DPDR does not develop in MJD with central vestibular hypofunction but a normal saccular response. We propose a three-step model that describes the development of DPDR symptoms in vestibular patients.
Collapse
|
6
|
Abe C, Katayama C, Horii K, Okada R, Kamimura D, Nin F, Morita H. Changes in metabolism and vestibular function depend on gravitational load in mice. J Appl Physiol (1985) 2023; 134:10-17. [PMID: 36395381 DOI: 10.1152/japplphysiol.00555.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vestibular system is known to participate in controlling posture and metabolism. Different gravitational environments, including microgravity or hypergravity, cause plastic alteration of the vestibular system, and plasticity is important for adaptation to a novel gravitational environment. However, it is unclear whether the degree of change in vestibular-related physiological function depends on gravitational loading. To examine this, we used a hypergravity environment including 1.33 G, 1.67 G, and 2 G for 29 days. We found that a gravitational threshold induces physiological changes, including vestibular-related posture control and metabolism in mice. Body mass did not return to the preloading level in 1.67 G and 2 G mice. A significant drop in food intake, observed on the first day of hypergravity load, disappeared in all mice after longer exposure. However, a reduction in water intake was sustained in 2 G mice but not 1.33 G and 1.67 G mice. Body temperature did not return to the preloading level in 2 G mice by the final day. A decrease in the skill of the righting reflex was observed in 2 G mice but not 1.33 G and 1.67 G mice. In conclusion, this study showed that hypergravity-induced changes in metabolism and vestibular function depended on the amount of gravitational loading. The 2 G load affected vestibular-related posture control and metabolism considerably, compared with 1.33 G and 1.67 G loads.NEW & NOTEWORTHY It is unclear whether the degree of change in vestibular-related physiological function depends on gravitational loading. Present study showed that exposure to hypergravity-induced degrees of change in metabolism and vestibular function depended on the gravitational loading. The response of body mass depended on the gravitational loading size. Especially in 2 G environment, water intake, body temperature, and vestibular function were influenced. These changes could involve plastic alteration of vestibular-related autonomic and motor functions.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chikako Katayama
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Horii
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, Japan
| | - Daisuke Kamimura
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, Japan
| | - Fumiaki Nin
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
7
|
Ray JC, Pham X, Foster E, Cheema S, Corcoran SJ, Matharu MS, Hutton EJ. The prevalence of headache disorders in Postural Tachycardia Syndrome: A systematic review and meta-analysis of the literature. Cephalalgia 2022; 42:1274-1287. [PMID: 35469447 DOI: 10.1177/03331024221095153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Headache is a common presentation of postural tachycardia syndrome, yet robust prevalence data is lacking. OBJECTIVES To undertake a systematic review and meta-analysis to estimate the prevalence of headache disorders in postural tachycardia syndrome, and to explore the potential shared pathophysiological mechanisms that underpin these conditions as well as treatment options. METHODS Three databases were searched for publications evaluating prevalence of migraine (primary outcome) and general and orthostatic headache (secondary outcomes) in patients with postural tachycardia syndrome. Two independent reviewers selected studies and extracted data. A random-effects meta-analysis calculated the pooled prevalence of migraine in postural tachycardia syndrome. A narrative literature review explored the pathophysiology and treatment options for concurrent headache disorders and postural tachycardia syndrome. RESULTS Twenty-three articles met inclusion criteria. Estimated pooled prevalence of migraine in postural tachycardia syndrome was 36.8% (95% CI 2.9-70.7%). Various shared pathophysiological pathways for these conditions, as well as proposed treatment strategies, were identified.Limitations: Heterogeneity of study design, populations, and methodology for identifying headache disorders and postural tachycardia syndrome limited the generalisability of results. CONCLUSIONS Migraine is a commonly reported comorbidity in POTS, however the true prevalence cannot be determined from the current literature. Further studies are required to assess this comorbidity and investigate the underlying mechanisms, as well as identify effective treatment strategies.
Collapse
Affiliation(s)
- Jason C Ray
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Xiuxian Pham
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Emma Foster
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Sanjay Cheema
- Headache and Facial Pain Group, University College London Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Susan J Corcoran
- Department of Cardiology, Alfred Hospital, Melbourne Victoria, Australia
| | - Manjit S Matharu
- Headache and Facial Pain Group, University College London Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Elspeth J Hutton
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Changes in daily energy expenditure and movement behavior in unilateral vestibular hypofunction: Relationships with neuro-otological parameters. J Clin Neurosci 2021; 91:200-208. [PMID: 34373028 DOI: 10.1016/j.jocn.2021.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
The vestibular system has been found to affect energy homeostasis and body composition, due to its extensive connections to the brainstem and melanocortin nuclei involved in regulating the metabolism and feeding behavior. The aim of this study was to evaluate - by means of a wrist-worn physical activity tracker and bioelectrical impedance analysis (BIA) - the energy expenditure (EE) in resting (REE) and free-living conditions and movement behavior in a group of chronic unilateral vestibular hypofunction (UVH) patients when compared with a control group (CG) of healthy participants. Forty-six chronic UVH and 60 CG participants underwent otoneurological (including video-Head Impulse Test [vHIT] for studying vestibulo-ocular reflex [VOR] and static posturography testing [SPT]), and EE and movement measurements and self-report (SRM) andperformance measures (PM). As well as significant (p < 0.001) changes in SPT variables (area and path length) and SRM/PM, UVH participants also demonstrated significantly (p < 0.001) lower values in REE, movement EE, hours/day spent upright, number of strides and distance covered and total daily EE (p = 0.007) compared to the CG. UVH patients consumed significantly lower Kcal/min in sweeping (p = 0.001) and walking upstairs and downstairs (p < 0.001) compared to the CG. Multiple correlations were found between free-living and resting EE and neuro-otological parameters in UVH participants. Since the melanocortin system could be affected along the central vestibular pathways as a consequence of chronic vestibular deafferentation, data collected by reliable wearables could reflect the phenomena that constitute an increased risk of falls and sedentary lifestyle for patients affected by UVH, and could improve rehabilitation stages.
Collapse
|
9
|
Micarelli A, Viziano A, Pistillo R, Granito I, Micarelli B, Alessandrini M. Sleep Performance and Chronotype Behavior in Unilateral Vestibular Hypofunction. Laryngoscope 2021; 131:2341-2347. [PMID: 34191310 DOI: 10.1002/lary.29719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To evaluate sleep behavior and its relation to otoneurological parameters in a group of patients with chronic unilateral vestibular hypofunction (UVH) without self-reported sleep disturbances when compared with healthy subjects serving as a control group (CG). METHODS Fifty-one patients affected by UVH underwent a retrospective clinical and instrumental otoneurological examination, a 1-week actigraphy sleep analysis, and a series of self-report and performance measures (SRM/PM). A CG of 60 gender- and age-matched healthy subjects was also enrolled. A between-group analysis of variance was performed for each variable, while correlation analysis was performed in UVH patients between otoneurological, SRM/PM, and actigraphy measure scores. RESULTS When compared with CG subjects, UVH patients were found to be spending less time sleeping and taking more time to go from being fully awake to asleep, based on actigraphy-based sleep analysis. Also, SRM/PM depicted UVH patients to have poor sleep quality and to be more prone to an evening-type behavior. Correlations were found between vestibular-related functionality indexes and subjective sleep quality, as well as between longer disease duration and reduced sleep time. CONCLUSION For the first time, a multiparametric sleep analysis was performed on a large population-based sample of chronic UVH patients. While a different pattern in sleep behavior was found, the cause is still unclear. Further research is needed to expand the extent of knowledge about sleep disruption in vestibular disorders. LEVEL OF EVIDENCE Level 3 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | - Andrea Viziano
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rossella Pistillo
- ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | - Ivan Granito
- ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | - Beatrice Micarelli
- ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | - Marco Alessandrini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
10
|
Micarelli A, Viziano A, Granito I, Micarelli RX, Felicioni A, Alessandrini M. Changes in body composition in unilateral vestibular hypofunction: relationships between bioelectrical impedance analysis and neuro-otological parameters. Eur Arch Otorhinolaryngol 2021; 278:2603-2611. [PMID: 33392761 DOI: 10.1007/s00405-020-06561-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Experimental works have indicated the potential of the vestibular system to affect body composition to be mediated by its extensive connections to brainstem nuclei involved in regulating metabolism and feeding behavior. The aim of this study was to evaluate-by means of bioelectrical impedance analysis (BIA)-the body composition in a group of chronic UVH normal-weighted patients when compared with an equally balanced group of healthy participants, serving as a control group (CG). METHODS Forty-six chronic UVH and 60 CG participants underwent otoneurological (including video Head Impulse Test [vHIT] and static posturography testing [SPT]), BIA measurements and self-report (SRM) and performance measures (PM). RESULTS Beyond significant (p < 0.001) changes in SPT variables (surface and length) and SRM/PM (including Dizziness Handicap Inventory, Dynamic Gait Index and Activity Balance Confidence scales), UVH participants demonstrated significant (p < 0.001) higher values of fat mass and visceral fat and lower values of muscle mass (p = 0.004), when compared to CG. Significant correlations were found in UVH participants between otoneurological and BIA measurements. CONCLUSION These study findings represent the first clinical in-field attempt at depicting, with the use of BIA parameters, changes in body composition related to chronic UVH. Since such alterations in metabolic parameters could be considered both the consequences and/or the cause of vestibular-related quality of life deficit, BIA parameters could be considered as cheap, easy to use, noninvasive assessments in case of chronic UVH.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Institute of Mountain Emergency Medicine, Eurac Research, Viale Druso/Drususallee 1, 39100, Bolzano, Italy. .,ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy.
| | - Andrea Viziano
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ivan Granito
- ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | | | - Alessio Felicioni
- ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | - Marco Alessandrini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
11
|
Shi X, Wei H, Chen Z, Wang J, Qu W, Huang Z, Dai C. Whole-brain monosynaptic inputs and outputs of glutamatergic neurons of the vestibular nuclei complex in mice. Hear Res 2020; 401:108159. [PMID: 33401198 DOI: 10.1016/j.heares.2020.108159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022]
Abstract
Vestibular nuclei complex (VN) glutamatergic neurons play a critical role in the multisensory and multimodal processing. The dysfunction of VN leads to a series of vestibular concurrent symptoms, such as disequilibrium, spatial disorientation, autonomic disorders and even emotion disorders. However, the reciprocal neural connectivity in the whole brain of VN glutamatergic neurons was incompletely understood. Here, we employed a cell-type-specific, cre-dependent, modified virus vector to retrogradely and anterogradely trace VN glutamatergic neurons in the VGLUT2-IRES-Cre mouse line. We identified and analyzed statistically the afferents and efferents of VN glutamatergic neurons in the whole brain, and also reconstructed monosynaptic inputs distribution of VN glutamatergic neurons at the three-dimensional level with the combination of a fluorescence micro-optical sectioning tomography system (fMOST). We found that VN glutamatergic neurons primarily received afferents from 57 nuclei and send efferents to 59 nuclei in the whole brain, intensively located in the brainstem and cerebellum. Projections from nuclei in the cerebellum targeting VN glutamatergic neurons mainly performed the balance control - the principal function of the vestibular system. In addition, VN glutamatergic neurons sent projections to oculomotor nucleus, trochlear nucleus and abducens nucleus dominating the eye movement. Except for the maintenance of balance, VN glutamatergic neurons were also directly connected with other functional regions, such as sleep-wake state (locus coeruleus, dorsal raphe nucleus, and laterodorsal tegmental nucleus, gigantocellular reticular nucleus, lateral paragigantocellular nucleus, periaqueductal gray, subcoeruleus nucleus, parvicellular reticular nucleus, paramedian raphe nucleus), and emotional regulation (locus coeruleus and dorsal raphe nucleus). Hence, this study revealed a comprehensive whole-brain neural connectivity of VN glutamatergic neurons and provided with a neuroanatomic foundation to further study on central vestibular circuits.
Collapse
Affiliation(s)
- Xunbei Shi
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Haohua Wei
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zeka Chen
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Weimin Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| |
Collapse
|
12
|
Pasquier F, Bessot N, Martin T, Gauthier A, Bulla J, Denise P, Quarck G. Effect of vestibular stimulation using a rotatory chair in human rest/activity rhythm. Chronobiol Int 2020; 37:1244-1251. [PMID: 32845722 DOI: 10.1080/07420528.2020.1797762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The vestibular system is responsible for sensing every angular and linear head acceleration, mainly during periods of motor activity. Previous animal and human experiments have shown biological rhythm disruptions in small rodents exposed to a hypergravity environment, but also in patients with bilateral vestibular loss compared to a control population. This raised the hypothesis of the vestibular afferent influence on circadian rhythm synchronization. The present study aimed to test the impact of vestibular stimulation induced by a rotatory chair on the rest/activity rhythm in human subjects. Thirty-four healthy adults underwent both sham (SHAM) and vestibular stimulation (STIM) sessions scheduled at 18:00 h. An off-vertical axis rotation on a rotatory chair was used to ecologically stimulate the vestibular system by head accelerations. The rest/activity rhythm was continuously registered by actigraphy. The recording started one week before the first session (BASELINE), continued in the week between the two sessions and one week after the second session. Vestibular stimulation caused a significant decrease in the average activity level in the evening following the vestibular stimulation. A significant phase advance in the rest/activity rhythm occurred two days after the 18:00 h vestibular stimulation session. Moreover, the level of motion sickness symptoms increased significantly after vestibular stimulation. The present study confirms previous results on the effect of vestibular stimulation and the role of vestibular afferents on circadian biological rhythmicity. Our results support the hypothesis of the implication of vestibular afferents as non-photic stimuli acting on circadian rhythms.
Collapse
Affiliation(s)
- Florane Pasquier
- Normandie University, Unicaen, Inserm, Comete, Gip Cyceron , Caen, France
| | - Nicolas Bessot
- Normandie University, Unicaen, Inserm, Comete, Gip Cyceron , Caen, France
| | - Tristan Martin
- Normandie University, Unicaen, Inserm, Comete, Gip Cyceron , Caen, France
| | - Antoine Gauthier
- Normandie University, Unicaen, Inserm, Comete, Gip Cyceron , Caen, France
| | - Jan Bulla
- Department of Mathematics, University of Bergen , Bergen, Norway.,Department of Psychiatry and Psychotherapy, University Regensburg , Regensburg, Germany
| | - Pierre Denise
- Normandie University, Unicaen, Inserm, Comete, Gip Cyceron , Caen, France
| | - Gaëlle Quarck
- Normandie University, Unicaen, Inserm, Comete, Gip Cyceron , Caen, France
| |
Collapse
|
13
|
McGeoch PD, McKeown J. Anti-diabetic effect of vestibular stimulation is mediated via AMP-activated protein kinase. Med Hypotheses 2020; 144:109996. [PMID: 32570167 DOI: 10.1016/j.mehy.2020.109996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/11/2020] [Indexed: 11/25/2022]
Abstract
There is abundant animal evidence that vestibular stimulation, particularly of the otolith organs, can trigger a shift in body mass composition towards a leaner physique. One way of non-invasively stimulating the otolith organs is via a small electrical current applied to the skin behind the ears. This technique is called vestibular nerve stimulation, or VeNS, and is believed to have a good safety profile. Thus, it has previously been argued that VeNS could be used in human health as a means of treating the complications of metabolic syndrome, such as obesity and type 2 diabetes mellitus. Weight loss itself is known to improve diabetic control, however, tantalizing evidence is now emerging that the improvements seen in the glycemic control of type 2 diabetics who undergo repeated vestibular stimulation are significantly better than would be expected on the basis of weight loss alone. As vestibular stimulation has been shown to increase levels of an anti-inflammatory protein, called sirtuin 1, we hypothesize here that VeNS will increase levels of an associated enzyme called AMP-activated protein kinase (AMPK). AMPK plays an important role in glucose and fat metabolism and is activated by exercise, as well as being a known target for certain anti-diabetic drugs. This hypothesis is readily amenable to clinical testing as specific assays for testing human AMPK are available. If substantiated, then this hypothesis could prove an important clinical insight and potentially offer a new treatment avenue for patients with type 2 diabetes; a condition which remains a major cause of morbidity and premature mortality worldwide.
Collapse
Affiliation(s)
- Paul D McGeoch
- Center for Brain & Cognition, UC San Diego, La Jolla, CA 92093, USA; Queen's University, Belfast, UK.
| | - Jason McKeown
- Center for Brain & Cognition, UC San Diego, La Jolla, CA 92093, USA; Queen's University, Belfast, UK
| |
Collapse
|
14
|
Martin T, Bonargent T, Besnard S, Quarck G, Mauvieux B, Pigeon E, Denise P, Davenne D. Vestibular stimulation by 2G hypergravity modifies resynchronization in temperature rhythm in rats. Sci Rep 2020; 10:9216. [PMID: 32514078 PMCID: PMC7280278 DOI: 10.1038/s41598-020-65496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
Input from the light/dark (LD) cycle constitutes the primary synchronizing stimulus for the suprachiasmatic nucleus (SCN) circadian clock. However, the SCN can also be synchronized by non-photic inputs. Here, we hypothesized that the vestibular system, which detects head motion and orientation relative to gravity, may provide sensory inputs to synchronize circadian rhythmicity. We investigated the resynchronization of core temperature (Tc) circadian rhythm to a six-hour phase advance of the LD cycle (LD + 6) using hypergravity (2 G) as a vestibular stimulation in control and bilateral vestibular loss (BVL) rats. Three conditions were tested: an LD + 6 exposure alone, a series of seven 2 G pulses without LD + 6, and a series of seven one-hour 2 G pulses (once a day) following LD + 6. First, following LD + 6, sham rats exposed to 2 G pulses resynchronized earlier than BVL rats (p = 0.01), and earlier than sham rats exposed to LD + 6 alone (p = 0.002). Each 2 G pulse caused an acute drop of Tc in sham rats (-2.8 ± 0.3 °C; p < 0.001), while BVL rats remained unaffected. This confirms that the vestibular system influences chronobiological regulation and supports the hypothesis that vestibular input, like physical activity, should be considered as a potent time cue for biological rhythm synchronization, acting in synergy with the visual system.
Collapse
Affiliation(s)
- Tristan Martin
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France
| | | | - Stéphane Besnard
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France
| | - Gaëlle Quarck
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France
| | - Benoit Mauvieux
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France
| | - Eric Pigeon
- University, UNICAEN, ENSICAEN, LAC, 14000, Caen, France
| | - Pierre Denise
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France
| | - Damien Davenne
- UMR-S 1075 COMETE: MOBILITES "Vieillissement, Pathologies, Santé", INSERM-Normandy University, Caen, France.
| |
Collapse
|
15
|
Abe C, Yamaoka Y, Maejima Y, Mikami T, Yokota S, Yamanaka A, Morita H. VGLUT2-expressing neurons in the vestibular nuclear complex mediate gravitational stress-induced hypothermia in mice. Commun Biol 2020; 3:227. [PMID: 32385401 PMCID: PMC7210111 DOI: 10.1038/s42003-020-0950-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
The vestibular system, which is essential for maintaining balance, contributes to the sympathetic response. Although this response is involved in hypergravity load-induced hypothermia in mice, the underlying mechanism remains unknown. This study showed that hypergravity (2g) decreased plasma catecholamines, which resulted in hypoactivity of the interscapular brown adipose tissue (iBAT). Hypothermia induced by 2g load was significantly suppressed by administration of beta-adrenergic receptor agonists, suggesting the involvement of decrease in iBAT activity through sympathoinhibition. Bilateral chemogenetic activation of vesicular glutamate transporter 2 (VGLUT2)-expressing neurons in the vestibular nuclear complex (VNC) induced hypothermia. The VGLUT2-expressing neurons contributed to 2g load-induced hypothermia, since their deletion suppressed hypothermia. Although activation of vesicular gamma-aminobutyric acid transporter-expressing neurons in the VNC induced slight hypothermia instead of hyperthermia, their deletion did not affect 2g load-induced hypothermia. Thus, we concluded that 2g load-induced hypothermia resulted from sympathoinhibition via the activation of VGLUT2-expressing neurons in the VNC. Chikara Abe, Yusuke Yamaoka et al. show that chemogenetic activation of VGLUT2-expressing neurons in the vestibular nuclear complex induces hypothermia, while their deletion suppresses hypergravity load-induced hypothermia in mice. These findings suggest an important role for these glutamatergic neurons in thermoregulation.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Yusuke Yamaoka
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yui Maejima
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoe Mikami
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
16
|
Kawao N, Takafuji Y, Ishida M, Okumoto K, Morita H, Muratani M, Kaji H. Roles of the vestibular system in obesity and impaired glucose metabolism in high-fat diet-fed mice. PLoS One 2020; 15:e0228685. [PMID: 32012199 PMCID: PMC6996831 DOI: 10.1371/journal.pone.0228685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
The vestibular system controls balance, posture, blood pressure, and gaze. However, the roles of the vestibular system in energy and glucose metabolism remain unknown. We herein examined the roles of the vestibular system in obesity and impaired glucose metabolism using mice with vestibular lesions (VL) fed a high-sucrose/high-fat diet (HSHFD). VL was induced by surgery or arsenic. VL significantly suppressed body fat enhanced by HSHFD in mice. Glucose intolerance was improved by VL in mice fed HSHFD. VL blunted the levels of adipogenic factors and pro-inflammatory adipokines elevated by HSHFD in the epididymal white adipose tissue of mice. A β-blocker antagonized body fat and glucose intolerance enhanced by HSHFD in mice. The results of an RNA sequencing analysis showed that HSHFD induced alterations in genes, such as insulin-like growth factor-2 and glial fibrillary acidic protein, in the vestibular nuclei of mice through the vestibular system. In conclusion, we herein demonstrated that the dysregulation of the vestibular system influences an obese state and impaired glucose metabolism induced by HSHFD in mice. The vestibular system may contribute to the regulation of set points under excess energy conditions.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kindai University, Osakasayama, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
- * E-mail:
| |
Collapse
|
17
|
McKeown J, McGeoch PD, Grieve DJ. The influence of vestibular stimulation on metabolism and body composition. Diabet Med 2020; 37:20-28. [PMID: 31667892 DOI: 10.1111/dme.14166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 12/16/2022]
Abstract
Obesity, diabetes and metabolic disease represent an ongoing and rapidly worsening public health issue in both the developed, and much of the developing world. Although there are many factors that influence fat storage, it has been clearly demonstrated that the homeostatic cornerstone of metabolism lies within the hypothalamus. Moreover, neuronal damage to vital areas of the hypothalamus can drive reregulation or dysregulation of endocrine function, energy expenditure and appetite, thereby promoting a shift in overall metabolic function towards a state of obesity. Therefore, identification of treatments that influence the hypothalamus to improve obesity and associated metabolic diseases has long been a medical goal. Interestingly, evidence from animal studies suggests that activating the vestibular system, specifically the macular gravity receptor, influences the hypothalamus in a way that decreases body fat storage and causes a metabolic shift towards a leaner state. Given that the macular element of the vestibular system has been shown to activate with transdermal electrical stimulation applied to the mastoids, this may be a potential therapeutic approach for obesity, diabetes or related metabolic diseases, whereby repetitive stimulation of the vestibular system influences hypothalamic control of metabolic homeostasis, thereby encouraging decreased fat storage. Here, we present an up-to-date review of the current literature surrounding the vestibular influence of the hypothalamus and associated homeostatic sites in the context of current and novel therapeutic approaches for improved clinical management of obesity and diabetes.
Collapse
Affiliation(s)
- J McKeown
- Queen's University Belfast, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
- Neurovalens Ltd, Belfast, UK
- Center for Brain and Cognition, University of California, San Diego, CA, USA
| | - P D McGeoch
- Neurovalens Ltd, Belfast, UK
- Center for Brain and Cognition, University of California, San Diego, CA, USA
| | - D J Grieve
- Queen's University Belfast, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| |
Collapse
|
18
|
McGeoch PD. Can Vestibular Stimulation be Used to Treat Obesity? Bioessays 2019; 41:e1800197. [DOI: 10.1002/bies.201800197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Paul D. McGeoch
- Center for Brain and Cognition; UC San Diego, Mandler Hall; 9500 Gilman Drive La Jolla CA 92093 US
| |
Collapse
|
19
|
Albathi M, Agrawal Y. Vestibular vertigo is associated with abnormal sleep duration. J Vestib Res 2017; 27:127-135. [DOI: 10.3233/ves-170617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Monirah Albathi
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, School of Public Health, The Johns Hopkins University, Baltimore, MD, USA
- Department of Surgery, College of Medicine, Princess Nourah University Riyadh, Riyadh, Saudi Arabia
| | - Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, School of Public Health, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Perez Fornos A, Cavuscens S, Ranieri M, van de Berg R, Stokroos R, Kingma H, Guyot JP, Guinand N. The vestibular implant: A probe in orbit around the human balance system. J Vestib Res 2017; 27:51-61. [DOI: 10.3233/ves-170604] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Angelica Perez Fornos
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Samuel Cavuscens
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maurizio Ranieri
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center, The Netherlands
- Faculty of Physics, Tomsk State University, Russian Federation
| | - Robert Stokroos
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Herman Kingma
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center, The Netherlands
- Faculty of Physics, Tomsk State University, Russian Federation
| | - Jean-Philippe Guyot
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nils Guinand
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Fuller PM, Fuller CA. Genetic Evidence for a Neurovestibular Influence on the Mammalian Circadian Pacemaker. J Biol Rhythms 2016; 21:177-84. [PMID: 16731657 DOI: 10.1177/0748730406288148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian circadian timing system (CTS) exerts endogenous temporal control over virtually every biochemical, physiological, and neurobiological process. Recent studies have suggested an interrelationship between the neurovestibular system, specifically the macular otoconial gravity receptors, and the CTS. To test for a functional relationship between these 2 seemingly disparate neuronal systems, the authors performed a study to evaluate the influence of the vestibular system on 3 fundamental properties of the CTS: entrainment, photic modulation, and period. The present study used a nonrecombinant mutant mouse, the head-tilt mouse (abbr. het), which lacks otoconia and hence gravity reception, to evaluate CTS function in mice lacking vestibular inputs. Circadian rhythms of body temperature (Tb) and locomotor activity (ACT) were recorded continuously by biotelemetry in het mice as well as wild-type (PWT) controls during exposure to 4 photic regimens: 12:12 LD, DD (0 μmoles s-1m-2), constant bright light (LLB; 0.5 μmoles s-1m-2), and constant dim light (LLD; 0.02 μmoles s-1m-2). In DD, the circadian period of the Tband ACT rhythms was significantly longer ( p < 0.001) in het than in PWT mice. In addition, the circadian period of Tband ACT was significantly longer ( p < 0.01) in LLBthan in DD for both the het and PWT groups, although increasing ambient illuminance (i.e., DD to LLB) had a significantly greater ( p < 0.01) period-lengthening effect in the PWT group than in the het group. The results of the present study demonstrate for the first time that the vestibular macular gravity receptors influence 2 fundamental properties of the mammalian CTS: (1) the intrinsic circadian pacemaker period and (2) the period-altering response to changes in tonic light intensity. The results of the present study thus provide the first neurobehavioral evidence for a vestibular-circadian interrelationship as well as suggest a novel mechanism underlying the signaling of activity-based nonphotic stimuli to the CTS.
Collapse
Affiliation(s)
- Patrick M Fuller
- Section of Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616-8519, USA
| | | |
Collapse
|
22
|
Shimizu N, Wood S, Kushiro K, Perachio A, Makishima T. The role of GABAB receptors in the vestibular oculomotor system in mice. Behav Brain Res 2016; 302:152-9. [PMID: 26778789 DOI: 10.1016/j.bbr.2016.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 11/28/2022]
Abstract
Systemic administration of a gamma-amino butyric acid type B (GABAB) receptor agonist, baclofen, affects various physiological and psychological processes. To date, the effects on oculomotor system have been well characterized in primates, however those in mice have not been explored. In this study, we investigated the effects of baclofen focusing on vestibular-related eye movements. Two rotational paradigms, i.e. sinusoidal rotation and counter rotation were employed to stimulate semicircular canals and otolith organs in the inner ear. Experimental conditions (dosage, routes and onset of recording) were determined based on the prior studies exploring the behavioral effects of baclofen in mice. With an increase in dosage, both canal and otolith induced ocular responses were gradually affected. There was a clear distinction in the drug sensitivity showing that eye movements derived from direct vestibulo-ocular reflex pathways were relatively unaltered, while the responses through higher-order neural networks in the vestibular system were substantially decreased. These findings were consistent with those observed in primates suggesting a well-conserved role of GABAB receptors in the oculomotor system across frontal-eyed and lateral-eyed animals. We showed here a previously unrecognized effect of baclofen on the vestibular oculomotor function in mice. When interpreting general animal performance under the drug, the potential contribution of altered balance system should be taken into consideration.
Collapse
Affiliation(s)
- Naoki Shimizu
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA.
| | - Scott Wood
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA; Department of Psychology, Azusa Pacific University, Azusa California, USA
| | - Keisuke Kushiro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Adrian Perachio
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tomoko Makishima
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
23
|
Holstein GR, Friedrich VLJ, Martinelli GP. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons. Front Neuroanat 2016; 10:7. [PMID: 26903817 PMCID: PMC4744852 DOI: 10.3389/fnana.2016.00007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first demonstration of two disparate chemoanatomic VSR pathways.
Collapse
Affiliation(s)
- Gay R. Holstein
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Anatomy/Functional Morphology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | | | | |
Collapse
|
24
|
Guinand N, van de Berg R, Cavuscens S, Stokroos RJ, Ranieri M, Pelizzone M, Kingma H, Guyot JP, Perez-Fornos A. Vestibular Implants: 8 Years of Experience with Electrical Stimulation of the Vestibular Nerve in 11 Patients with Bilateral Vestibular Loss. ORL J Otorhinolaryngol Relat Spec 2015; 77:227-240. [PMID: 26367113 DOI: 10.1159/000433554] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The concept of the vestibular implant is primarily to artificially restore the vestibular function in patients with a bilateral vestibular loss (BVL) by providing the central nervous system with motion information using electrical stimulation of the vestibular nerve. Our group initiated human trials about 10 years ago. METHODS Between 2007 and 2013, 11 patients with a BVL received a vestibular implant prototype providing electrodes to stimulate the ampullary branches of the vestibular nerve. Eye movements were recorded and analyzed to assess the effects of the electrical stimulation. Perception induced by electrical stimulation was documented. RESULTS Smooth, controlled eye movements were obtained in all patients showing that electrical stimulation successfully activated the vestibulo-ocular pathway. However, both the electrical dynamic range and the amplitude of the eye movements were variable from patient to patient. The axis of the response was consistent with the stimulated nerve branch in 17 out of the 24 tested electrodes. Furthermore, in at least 1 case, the elicited eye movements showed characteristics similar to those of compensatory eye movements observed during natural activities such as walking. Finally, diverse percepts were reported upon electrical stimulation (i.e., rotatory sensations, sound, tickling or pressure) with intensity increasing as the stimulation current increased. CONCLUSIONS These results demonstrate that electrical stimulation is a safe and effective means to activate the vestibular system, even in a heterogeneous patient population with very different etiologies and disease durations. Successful tuning of this information could turn this vestibular implant prototype into a successful artificial balance organ.
Collapse
|
25
|
Martin T, Mauvieux B, Bulla J, Quarck G, Davenne D, Denise P, Philoxène B, Besnard S. Vestibular loss disrupts daily rhythm in rats. J Appl Physiol (1985) 2015; 118:310-8. [DOI: 10.1152/japplphysiol.00811.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypergravity disrupts the circadian regulation of temperature (Temp) and locomotor activity (Act) mediated through the vestibular otolithic system in mice. In contrast, we do not know whether the anatomical structures associated with vestibular input are crucial for circadian rhythm regulation at 1 G on Earth. In the present study we observed the effects of bilateral vestibular loss (BVL) on the daily rhythms of Temp and Act in semipigmented rats. Our model of vestibular lesion allowed for selective peripheral hair cell degeneration without any other damage. Rats with BVL exhibited a disruption in their daily rhythms (Temp and Act), which were replaced by a main ultradian period (τ <20 h) for 115.8 ± 68.6 h after vestibular lesion compared with rats in the control group. Daily rhythms of Temp and Act in rats with BVL recovered within 1 wk, probably counterbalanced by photic and other nonphotic time cues. No correlation was found between Temp and Act daily rhythms after vestibular lesion in rats with BVL, suggesting a direct influence of vestibular input on the suprachiasmatic nucleus. Our findings support the hypothesis that the vestibular system has an influence on daily rhythm homeostasis in semipigmented rats on Earth, and raise the question of whether daily rhythms might be altered due to vestibular pathology in humans.
Collapse
Affiliation(s)
- T. Martin
- UNICAEN, COMETE, Caen, France
- INSERM, U1075, Caen, France
- Normandie Université, France
| | - B. Mauvieux
- UNICAEN, COMETE, Caen, France
- INSERM, U1075, Caen, France
- Normandie Université, France
| | - J. Bulla
- LMNO, Université de Caen, CNRS UMR 6139, Caen Cedex, France; and
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - G. Quarck
- UNICAEN, COMETE, Caen, France
- INSERM, U1075, Caen, France
- Normandie Université, France
| | - D. Davenne
- UNICAEN, COMETE, Caen, France
- INSERM, U1075, Caen, France
- Normandie Université, France
| | - P. Denise
- UNICAEN, COMETE, Caen, France
- INSERM, U1075, Caen, France
- Normandie Université, France
- CHU de Caen, Service des Explorations Fonctionnelles, Caen, France
| | - B. Philoxène
- UNICAEN, COMETE, Caen, France
- INSERM, U1075, Caen, France
- Normandie Université, France
| | - S. Besnard
- UNICAEN, COMETE, Caen, France
- INSERM, U1075, Caen, France
- Normandie Université, France
| |
Collapse
|
26
|
Holstein GR, Friedrich VL, Martinelli GP. Projection neurons of the vestibulo-sympathetic reflex pathway. J Comp Neurol 2015; 522:2053-74. [PMID: 24323841 DOI: 10.1002/cne.23517] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/19/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
Abstract
Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | | | | |
Collapse
|
27
|
Zur O, Schoen G, Dickstein R, Feldman J, Berner Y, Dannenbaum E, Fung J. Anxiety among individuals with visual vertigo and vestibulopathy. Disabil Rehabil 2015; 37:2197-202. [DOI: 10.3109/09638288.2014.1002577] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Guidetti G. The role of cognitive processes in vestibular disorders. HEARING, BALANCE AND COMMUNICATION 2013. [DOI: 10.3109/21695717.2013.765085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Benarroch EE. Postural tachycardia syndrome: a heterogeneous and multifactorial disorder. Mayo Clin Proc 2012; 87:1214-25. [PMID: 23122672 PMCID: PMC3547546 DOI: 10.1016/j.mayocp.2012.08.013] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023]
Abstract
Postural tachycardia syndrome (POTS) is defined by a heart rate increment of 30 beats/min or more within 10 minutes of standing or head-up tilt in the absence of orthostatic hypotension; the standing heart rate is often 120 beats/min or higher. POTS manifests with symptoms of cerebral hypoperfusion and excessive sympathoexcitation. The pathophysiology of POTS is heterogeneous and includes impaired sympathetically mediated vasoconstriction, excessive sympathetic drive, volume dysregulation, and deconditioning. POTS is frequently included in the differential diagnosis of chronic unexplained symptoms, such as inappropriate sinus tachycardia, chronic fatigue, chronic dizziness, or unexplained spells in otherwise healthy young individuals. Many patients with POTS also report symptoms not attributable to orthostatic intolerance, including those of functional gastrointestinal or bladder disorders, chronic headache, fibromyalgia, and sleep disturbances. In many of these cases, cognitive and behavioral factors, somatic hypervigilance associated with anxiety, depression, and behavioral amplification contribute to symptom chronicity. The aims of evaluation in patients with POTS are to exclude cardiac causes of inappropriate tachycardia; elucidate, if possible, the most likely pathophysiologic basis of postural intolerance; assess for the presence of treatable autonomic neuropathies; exclude endocrine causes of a hyperadrenergic state; evaluate for cardiovascular deconditioning; and determine the contribution of emotional and behavioral factors to the patient's symptoms. Management of POTS includes avoidance of precipitating factors, volume expansion, physical countermaneuvers, exercise training, pharmacotherapy (fludrocortisone, midodrine, β-blockers, and/or pyridostigmine), and behavioral-cognitive therapy. A literature search of PubMed for articles published from January 1, 1990, to June 15, 2012, was performed using the following terms (or combination of terms): POTS; postural tachycardia syndrome, orthostatic; orthostatic; syncope; sympathetic; baroreceptors; vestibulosympathetic; hypovolemia; visceral pain; chronic fatigue; deconditioning; headache; Chiari malformation; Ehlers-Danlos; emotion; amygdala; insula; anterior cingulate; periaqueductal gray; fludrocortisone; midodrine; propranolol; β-adrenergic; and pyridostigmine. Studies were limited to those published in English. Other articles were identified from bibliographies of the retrieved articles.
Collapse
|
30
|
Holstein GR, Friedrich Jr. VL, Martinelli GP, Ogorodnikov D, Yakushin SB, Cohen B. Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation. Front Neurol 2012; 3:4. [PMID: 22403566 PMCID: PMC3289126 DOI: 10.3389/fneur.2012.00004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/04/2012] [Indexed: 12/12/2022] Open
Abstract
The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02-0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial, and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo-sympathetic pathway.
Collapse
Affiliation(s)
- Gay R. Holstein
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
- Department of Anatomy/Functional Morphology, Mount Sinai School of MedicineNew York, NY, USA
| | | | | | - Dmitri Ogorodnikov
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
| | - Sergei B. Yakushin
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
| | - Bernard Cohen
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
| |
Collapse
|
31
|
Abe C, Tanaka K, Iwata C, Morita H. Vestibular-mediated increase in central serotonin plays an important role in hypergravity-induced hypophagia in rats. J Appl Physiol (1985) 2010; 109:1635-43. [PMID: 20847126 DOI: 10.1152/japplphysiol.00515.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to a hypergravity environment induces acute transient hypophagia, which is partially restored by a vestibular lesion (VL), suggesting that the vestibular system is involved in the afferent pathway of hypergravity-induced hypophagia. When rats were placed in a 3-G environment for 14 days, Fos-containing cells increased in the paraventricular hypothalamic nucleus, the central nucleus of the amygdala, the medial vestibular nucleus, the raphe nucleus, the nucleus of the solitary tract, and the area postrema. The increase in Fos expression was completely abolished or significantly suppressed by VL. Therefore, these regions may be critical for the initiation and integration of hypophagia. Because the vestibular nucleus contains serotonergic neurons and because serotonin (5-HT) is a key neurotransmitter in hypophagia, with possible involvement in motion sickness, we hypothesized that central 5-HT increases during hypergravity and induces hypophagia. To examine this proposition, the 5-HT concentrations in the cerebrospinal fluid were measured when rats were reared in a 3-G environment for 14 days. The 5-HT concentrations increased in the hypergravity environment, and these increases were completely abolished in rats with VL. Furthermore, a 5-HT(2A) antagonist (ketanserin) significantly reduced 3-G (120 min) load-induced Fos expression in the medial vestibular nucleus, and chronically administered ketanserin ameliorated hypergravity-induced hypophagia. These results indicate that hypergravity induces an increase in central 5-HT via the vestibular input and that this increase plays a significant role in hypergravity-induced hypophagia. The 5-HT(2A) receptor is involved in the signal transduction of hypergravity stress in the vestibular nucleus.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | |
Collapse
|
32
|
Cason AM, Kwon B, Smith JC, Houpt TA. c-Fos induction by a 14 T magnetic field in visceral and vestibular relays of the female rat brainstem is modulated by estradiol. Brain Res 2010; 1347:48-57. [PMID: 20553875 DOI: 10.1016/j.brainres.2010.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
There is increasing evidence that high magnetic fields interact with the vestibular system of humans and rodents. In rats, exposure to high magnetic fields of 7 T or above induces locomotor circling and leads to a conditioned taste aversion if paired with a novel taste. Sex differences in the behavioral responses to magnetic field exposure have been found, such that female rats show more locomotor circling and enhanced conditioned taste aversion compared to male rats. To determine if estrogen modulates the neural response to high magnetic fields, c-Fos expression after 14 T magnetic field exposure was compared in ovariectomized rats and ovariectomized rats with estradiol replacement. Compared to sham exposure, magnetic field exposure induced significantly more c-Fos positive cells in the nucleus of the solitary tract and the parabrachial, medial vestibular, prepositus, and supragenualis nuclei. Furthermore, there was a significant asymmetry in c-Fos induction between sides of the brainstem in several regions. In ovariectomized rats, there was more c-Fos expressed in the right side compared to left side in the locus coeruleus and parabrachial, superior vestibular, and supragenualis nuclei; less expression in the right compared to left side of the medial vestibular; and no asymmetry in the prepositus nucleus and the nucleus of the solitary tract. Chronic estradiol treatment modulated the neural response in some regions: less c-Fos was induced in the superior vestibular nucleus and locus coeruleus after estradiol replacement; estradiol treatment eliminated the asymmetry of c-Fos expression in the locus coeruleus and supragenualis nucleus, created an asymmetry in the prepositus nucleus and reversed the asymmetry in the parabrachial nucleus. These results suggest that ovarian steroids may mediate sex differences in the behavioral responses to magnetic field exposure at the level of visceral and vestibular nuclei of the brainstem.
Collapse
Affiliation(s)
- Angie M Cason
- Department of Biological Science, Program in Neuroscience, The Florida State University, Tallahassee, FL 32306-4295, USA
| | | | | | | |
Collapse
|
33
|
Jones TA, Jones SM, Hoffman LF. Resting discharge patterns of macular primary afferents in otoconia-deficient mice. J Assoc Res Otolaryngol 2008; 9:490-505. [PMID: 18661184 DOI: 10.1007/s10162-008-0132-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 07/07/2008] [Indexed: 10/21/2022] Open
Abstract
Vestibular primary afferents in the normal mammal are spontaneously active. The consensus hypothesis states that such discharge patterns are independent of stimulation and depend instead on excitation by vestibular hair cells due to background release of synaptic neurotransmitter. In the case of otoconial sensory receptors, it is difficult to test the independence of resting discharge from natural tonic stimulation by gravity. We examined this question by studying discharge patterns of single vestibular primary afferent neurons in the absence of gravity stimulation using two mutant strains of mice that lack otoconia (OTO-; head tilt, het-Nox3, and tilted, tlt-Otop1). Our findings demonstrated that macular primary afferent neurons exhibit robust resting discharge activity in OTO- mice. Spike interval coefficient of variation (CV = SD/mean spike interval) values reflected both regular and irregular discharge patterns in OTO- mice, and the range of values for rate-normalized CV was similar to mice and other mammals with intact otoconia although there were proportionately fewer irregular fibers. Mean discharge rates were slightly higher in otoconia-deficient strains even after accounting for proportionately fewer irregular fibers [OTO- = 75.4 +/- 31.1(113) vs OTO+ = 68.1 +/- 28.5(143) in sp/s]. These results confirm the hypothesis that resting activity in macular primary afferents occurs in the absence of ambient stimulation. The robust discharge rates are interesting in that they may reflect the presence of a functionally 'up-regulated' tonic excitatory process in the absence of natural sensory stimulation.
Collapse
Affiliation(s)
- T A Jones
- Communication Sciences and Disorders, School of Allied Health Sciences, East Carolina University, Health Sciences Building, Rm 3310P, Greenville, NC 27858-4353, USA.
| | | | | |
Collapse
|