1
|
Madhamanchi K, Madhamanchi P, Jayalakshmi S, Panigrahi M, Patil A, Phanithi PB. Dopamine and Glutamate Crosstalk Worsen the Seizure Outcome in TLE-HS Patients. Mol Neurobiol 2023; 60:4952-4965. [PMID: 37209264 DOI: 10.1007/s12035-023-03361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
Temporal lobe epilepsy (TLE), accompanied by hippocampal sclerosis (HS), is the most common form of drug-resistant epilepsy (DRE). Nearly 20% of the patients showed seizure recurrence even after surgery, and the reasons are yet to be understood. Dysregulation of neurotransmitters is evident during seizures, which can induce excitotoxicity. The present study focused on understanding the molecular changes associated with Dopamine (DA) and glutamate signaling and their possible impact on the persistence of excitotoxicity and seizure recurrence in patients with drug-resistant TLE-HS who underwent surgery. According to the International League against Epilepsy (ILAE) suggested classification for seizure outcomes, the patients (n = 26) were classified as class 1 (no seizures) and class 2 (persistent seizures) using the latest post-surgery follow-up data to understand the prevalent molecular changes in seizure-free and seizure-recurrence patient groups. Our study uses thioflavin T assay, western blot analysis, immunofluorescence assays, and fluorescence resonance energy transfer (FRET) assays. We have observed a substantial increase in the DA and glutamate receptors that promote excitotoxicity. Patients who had seizure recurrence showed a significant increase in (pNR2B, p < 0.009; and pGluR1, p < 0.01), protein phosphatase1γ (PP1γ; p < 0.009), protein kinase A (PKAc; p < 0.001) and dopamine-cAMP regulated phospho protein32 (pDARPP32T34; p < 0.009) which are critical for long-term potentiation (LTP), excitotoxicity compared to seizure-free patients and controls. A significant increase in D1R downstream kinases like PKA (p < 0.001), pCAMKII (p < 0.009), and Fyn (p < 0.001) was observed in patient samples compared to controls. Anti-epileptic DA receptor D2R was found to be decreased in ILAE class 2 (p < 0.02) compared to class 1. Since upregulation of DA and glutamate signaling supports LTP and excitotoxicity, we believe it could impact seizure recurrence. Further studies about the impact of DA and glutamate signaling on the distribution of PP1γ at postsynaptic density and synaptic strength could help us understand the seizure microenvironment in patients. Dopamine, Glutamate signal crosstalk. Diagram representing the PP1γ regulation by NMDAR negative feedback inhibition signaling (green circle-left) and D1R signal (red circle-middle) domination over PP1γ though increased PKA, pDARPP32T34, and supports pGluR1, pNR2B in seizure recurrent patients. D1R-D2R hetero dimer activation (red circle-right) increases cellular Ca2+ and pCAMKIIα activation. All these events lead to calcium overload in HS patients and excitotoxicity, particularly in patients experiencing recurrent seizures.
Collapse
Affiliation(s)
- Kishore Madhamanchi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Pradeep Madhamanchi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Govt. Degree College for Men's, Srikakulam District, Andhra Pradesh, 532001, India
| | - Sita Jayalakshmi
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Manas Panigrahi
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Anuja Patil
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
2
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
3
|
Zhao F, Cheng Z, Piao J, Cui R, Li B. Dopamine Receptors: Is It Possible to Become a Therapeutic Target for Depression? Front Pharmacol 2022; 13:947785. [PMID: 36059987 PMCID: PMC9428607 DOI: 10.3389/fphar.2022.947785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine and its receptors are currently recognized targets for the treatment of several neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, some drug use addictions, as well as depression. Dopamine receptors are widely distributed in various regions of the brain, but their role and exact contribution to neuropsychiatric diseases has not yet been thoroughly studied. Based on the types of dopamine receptors and their distribution in different brain regions, this paper reviews the current research status of the molecular, cellular and circuit mechanisms of dopamine and its receptors involved in depression. Multiple lines of investigation of these mechanisms provide a new future direction for understanding the etiology and treatment of depression and potential new targets for antidepressant treatments.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
- *Correspondence: Bingjin Li,
| |
Collapse
|
4
|
Hasbi A, Madras BK, George SR. Daily THC and withdrawal increase dopamine D1-D2 receptor heteromer to mediate anhedonia and anxiogenic-like behavior through a dynorphin and kappa opioid receptor mechanism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519471 PMCID: PMC10382712 DOI: 10.1016/j.bpsgos.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Background Frequent cannabis use is associated with a higher risk of developing cannabis use disorder and other adverse consequences. However, rodent models studying the underlying mechanisms of the reinforcing and withdrawal effects of the primary constituent of cannabis, Δ9-tetrahydrocannabinol (THC), have been limited. Methods This study investigated the effects of daily THC (1 mg/kg, intraperitoneal, 9 days) and spontaneous withdrawal (7 days) on hedonic and aversion-like behaviors in male rats. In parallel, underlying neuroadaptive changes in dopaminergic, opioidergic, and cannabinoid signaling in the nucleus accumbens were evaluated, along with a candidate peptide designed to reverse altered signaling. Results Chronic THC administration induced anhedonic- and anxiogenic-like behaviors not attributable to altered locomotor activity. These effects persisted after drug cessation. In the nucleus accumbens, THC treatment and withdrawal catalyzed increased cannabinoid CB1 receptor activity without modifying receptor expression. Dopamine D1-D2 receptor heteromer expression rose steeply with THC, accompanied by increased calcium-linked signaling, activation of BDNF/TrkB (brain-derived neurotrophic factor/tropomyosin receptor kinase B) pathway, dynorphin expression, and kappa opioid receptor signaling. Disruption of the D1-D2 heteromer by an interfering peptide during withdrawal reversed the anxiogenic-like and anhedonic-like behaviors as well as the neurochemical changes. Conclusions Chronic THC increases nucleus accumbens dopamine D1-D2 receptor heteromer expression and function, which results in increased dynorphin expression and kappa opioid receptor activation. These changes plausibly reduce dopamine release to trigger anxiogenic- and anhedonic-like behaviors after daily THC administration that persist for at least 7 days after drug cessation. These findings conceivably provide a therapeutic strategy to alleviate negative symptoms associated with cannabis use and withdrawal.
Collapse
|
5
|
Kim H, Nam MH, Jeong S, Lee H, Oh SJ, Kim J, Choi N, Seong J. Visualization of differential GPCR crosstalk in DRD1-DRD2 heterodimer upon different dopamine levels. Prog Neurobiol 2022; 213:102266. [DOI: 10.1016/j.pneurobio.2022.102266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/13/2021] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
|
6
|
Liu PP, Chao CC, Liao RM. Task-Dependent Effects of SKF83959 on Operant Behaviors Associated With Distinct Changes of CaMKII Signaling in Striatal Subareas. Int J Neuropsychopharmacol 2021; 24:721-733. [PMID: 34049400 PMCID: PMC8453300 DOI: 10.1093/ijnp/pyab032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND SKF83959, an atypical dopamine (DA) D1 receptor agonist, has been used to test the functions of DA-related receptor complexes in vitro, but little is known about its impact on conditioned behavior. The present study examined the effects of SKF83959 on operant behaviors and assayed the neurochemical mechanisms involved. METHODS Male rats were trained and maintained on either a fixed-interval 30-second (FI30) schedule or a differential reinforcement of low-rate response 10-second (DRL10) schedule of reinforcement. After drug treatment tests, western blotting assayed the protein expressions of the calcium-/calmodulin-dependent protein kinase II (CaMKII) and the transcription factor cyclic AMP response element binding protein (CREB) in tissues collected from 4 selected DA-related areas. RESULTS SKF83959 disrupted the performance of FI30 and DRL10 behaviors in a dose-dependent manner by reducing the total number of responses in varying magnitudes. Moreover, the distinct profiles of the behavior altered by the drug were manifested by analyzing qualitative and quantitative measures on both tasks. Western-blot results showed that phospho-CaMKII levels decreased in the nucleus accumbens and the dorsal striatum of the drug-treated FI30 and DRL10 subjects, respectively, compared with their vehicle controls. The phospho-CREB levels decreased in the nucleus accumbens and the hippocampus of drug-treated FI30 subjects but increased in the nucleus accumbens of drug-treated DRL10 subjects. CONCLUSIONS Our results provide important insight into the neuropsychopharmacology of SKF83959, indicating that the drug-altered operant behavior is task dependent and related to regional-dependent changes of CaMKII-CREB signaling in the mesocorticolimbic DA systems.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan,National Cheng-Chi University, Taipei, Taiwan
| | - Chih-Chang Chao
- Institute of Neuroscience and Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan,National Cheng-Chi University, Taipei, Taiwan,Correspondence: Chih-Chang Chao, PhD, Institute of Neuroscience ()
| | - Ruey-Ming Liao
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan,Institute of Neuroscience and Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan,National Cheng-Chi University, Taipei, Taiwan,Correspondence: Ruey-Ming Liao, PhD, Department of Psychology, National Cheng-Chi University, 64, Sec. 2, Zhinan Road, Taipei City 116011, Taiwan ()
| |
Collapse
|
7
|
Liu PP, Chao CC, Liao RM. Lack of effect of dopamine receptor blockade on SKF83959-altered operant behavior in male rats. CHINESE J PHYSIOL 2021; 64:1-15. [PMID: 33642339 DOI: 10.4103/cjp.cjp_92_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Dopamine (DA) is important for the performance of operant behavior as revealed by psychopharmacological studies that manipulate the activity of DA subtype receptors. However, the effects of SKF83959, an atypical DA D1 receptor agonist, on operant behavior and the underlying pharmacological mechanisms remain unclear. The present study sought to determine whether blockade of DA D1- and D2-subtyped receptors would reverse the operant behavior altered by SKF83959. Male rats were trained to respond on either a fixed-interval 30 s (FI30) schedule or a differential reinforcement of low-rate response 10 s (DRL10) schedule, two timing-relevant tasks but with distinct reinforcement contingencies. Pharmacological evaluation was conducted with injection of a selective D1 (or D2) receptor antagonist alone or in combined with SKF83959 (1.0 mg/kg) following a stable baseline of behavioral performance. The results showed that SKF83959 treatment alone significantly disrupted the performance of FI30 and DRL10 behaviors mainly by showing the decreases of the response-related measures, and the distinct profiles of the behavior altered by the drug were manifested by the qualitative analysis of inter-response time data on both tasks. The effects of SKF83959 were not significantly affected/reversed by the pretreatment of either SCH23390 or eticlopride injected at the doses of 0.02 and 0.06 mg/kg; however, a subtle reversal effect was observed in the treatment of low-dose eticlopride. Despite that these results confirm the FI30 and DRL10 behaviors changed by SKF83959, the absence of pharmacological reversal effect by DA receptor antagonist suggests that either D1- or D2-subtyped receptors may not play a critical role in the alteration of timing-relevant operant behavior produced by SKF83959.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Department of Psychology, National Cheng-Chi University, Taipei, Taiwan
| | - Chih-Chang Chao
- Institute of Neuroscience; Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan
| | - Ruey-Ming Liao
- Department of Psychology; Institute of Neuroscience; Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei, Taiwan
| |
Collapse
|
8
|
Cardiac dopamine D1 receptor triggers ventricular arrhythmia in chronic heart failure. Nat Commun 2020; 11:4364. [PMID: 32868781 PMCID: PMC7459304 DOI: 10.1038/s41467-020-18128-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/30/2020] [Indexed: 01/25/2023] Open
Abstract
Pathophysiological roles of cardiac dopamine system remain unknown. Here, we show the role of dopamine D1 receptor (D1R)-expressing cardiomyocytes (CMs) in triggering heart failure-associated ventricular arrhythmia. Comprehensive single-cell resolution analysis identifies the presence of D1R-expressing CMs in both heart failure model mice and in heart failure patients with sustained ventricular tachycardia. Overexpression of D1R in CMs disturbs normal calcium handling while CM-specific deletion of D1R ameliorates heart failure-associated ventricular arrhythmia. Thus, cardiac D1R has the potential to become a therapeutic target for preventing heart failure-associated ventricular arrhythmia.
Collapse
|
9
|
Kumar SP, Babu PP. Aberrant Dopamine Receptor Signaling Plays Critical Role in the Impairment of Striatal Neurons in Experimental Cerebral Malaria. Mol Neurobiol 2020; 57:5069-5083. [PMID: 32833186 DOI: 10.1007/s12035-020-02076-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023]
Abstract
One-fourth survivors of cerebral malaria (CM) retain long-term cognitive and behavioral deficits. Structural abnormalities in striatum are reported in 80% of children with CM. Dopamine receptors (D1 and D2) are widely expressed in striatal medium spiny neurons (MSNs) that regulate critical physiological functions related to behavior and cognition. Dysregulation of dopamine receptors alters the expression of downstream proteins such as dopamine- and cAMP-regulated phosphoprotein (DARPP), Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα), and p25/cyclin-dependent kinase 5 (cdk5). However, the role of dopamine receptor signaling dysfunction on the outcome of striatal neuron degeneration is unknown underlying the pathophysiology of CM. Using experimental CM (ECM), the present study attempted to understand the role of aberrant dopamine receptor signaling and its possible relation in causing MSNs morphological impairment. The effect of antimalarial drug artemether (ARM) rescue therapy was also assessed after ECM on the outcome of dopamine receptors downstream signaling. ECM was induced in C57BL/6 mice (male and female) infecting with Plasmodium berghei ANKA (PbA) parasite that reiterates the clinical setting of CM. We demonstrated that ECM caused a significant increase in the expression of D1, D2 receptors, phosphorylated DARPP, p25, cdk5, CaMKIIα, and D1-D2 heteromers. A substantial increase in neuronal damage observed in the dorsolateral striatum region of ECM brains (particularly in MSNs) as revealed by increased Fluoro-Jade C staining, reduced dendritic spine density, and impaired dendritic arborization with varicosities. While the ARM rescue therapy significantly altered the effects of ECM induced dopamine receptor signaling dysfunction and neurodegeneration. Overall, our data suggest that dysregulation of dopamine receptor signaling plays an important role in the degeneration of MSNs, and the ARM rescue therapy might provide better insights to develop effective therapeutic strategies for CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- Neuroscience Laboratory (F-23/71), Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Phanithi Prakash Babu
- Neuroscience Laboratory (F-23/71), Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
10
|
Evolutionary conservation and functional impact of dopamine D2 receptor. Neurosci Lett 2020; 733:135081. [DOI: 10.1016/j.neulet.2020.135081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 11/19/2022]
|
11
|
Faron-Górecka A, Kuśmider M, Solich J, Górecki A, Dziedzicka-Wasylewska M. Genetic variants in dopamine receptors influence on heterodimerization in the context of antipsychotic drug action. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 169:279-296. [PMID: 31952689 DOI: 10.1016/bs.pmbts.2019.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human dopamine D2 receptor (D2R) gene has polymorphic variants, three of them alter its amino acid sequence: Val96Ala, Pro310Ser and Ser311Cys. Their functional role never became the object of extensive studies, even though there are some evidence that they correlate with schizophrenia. The present work reviews data indicating that these mutations play a role in dimer formation with dopamine D1 receptor (D1R), with the strongest effect observed for Ser311Cys variant. Similarly, the affinity for antipsychotic drugs of this genetic variant depends on whether it is expressed together with D1R or not. Better understanding of altered ability of genetic variants of D2R to form dimers with D1R, as well as of altered affinity for antipsychotic drugs, depending on the absence or presence of the second dopamine receptor is of great importance-since these two receptors are not always co-expressed in the same cell. It may well be that targeting new compounds toward the D1R-D2R dimers, which the most probably form under conditions of excessive dopamine release, will result in antipsychotic drugs devoid of serious side effects.
Collapse
Affiliation(s)
- Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Maciej Kuśmider
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland; Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
12
|
Xu L, Pan L, Zhang X, Wei C. Effects of crustacean hyperglycemic hormone (CHH) on regulation of hemocyte intracellular signaling pathways and phagocytosis in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 93:559-566. [PMID: 31330256 DOI: 10.1016/j.fsi.2019.07.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Shrimps like other arthropods rely on innate immune system, and may have some form of adaptive immunity in defending against pathogens. Phagocytosis is one of the oldest cellular processes, serving as a development process, a feeding mechanism and especially as a key defense reaction in innate immunity of all multicellular organisms. It is confirmed that crustacean hyperglycemic hormone (CHH) is one of the most important neuropeptides produced by Neuro-endocrine Immune (NEI) regulatory network, which undertakes important roles in various biological processes, especially in immune function and stress response. In this study, the recombinant Litopenaeus vannamei CHH (rLvCHH) was obtained from a bacterial expression system and the intracellular signaling pathways involved in the mechanism of phagocytosis after rLvCHH injection was investigated. The results showed that the contents of adenylyl cyclase (AC), phospholipase C (PLC) and calmodulin (CaM) in hemocytes were increased significantly after rLvCHH injection. Furthermore, the mRNA expression levels of NF-kB family members (relish and dorsal) and phagocytosis-related proteins in hemocytes were basically overexpressed after rLvCHH stimulation, while the expression level of NF-kB repressing factor (NKRF) gene was down-regulated significantly. Eventually, the total hemocyte count and phagocytic activity of hemocyte were dramatically enhanced within 3 h. Collectively, these results indicate that shrimps L. vannamei could carry out a simple but 'smart' NEI regulation through the action of neuroendocrine factors, which could couple with their receptors and trigger the downstream signaling pathways during the phagocytic responses of hemocytes.
Collapse
Affiliation(s)
- Lijun Xu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Xin Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Cun Wei
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
13
|
Khoja S, Asatryan L, Jakowec MW, Davies DL. Dopamine Receptor Blockade Attenuates Purinergic P2X4 Receptor-Mediated Prepulse Inhibition Deficits and Underlying Molecular Mechanisms. Front Cell Neurosci 2019; 13:331. [PMID: 31396053 PMCID: PMC6664007 DOI: 10.3389/fncel.2019.00331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor gating refers to the ability to filter incoming sensory information in a stimulus-laden environment and disruption of this physiological process has been documented in psychiatric disorders characterized by cognitive aberrations. The effectiveness of current pharmacotherapies for treatment of sensorimotor gating deficits in the patient population still remains controversial. These challenges emphasize the need to better understand the biological underpinnings of sensorimotor gating which could lead to discovery of novel drug targets for therapeutic intervention. Notably, we recently reported a role for purinergic P2X4 receptors (P2X4Rs) in regulation of sensorimotor gating using prepulse inhibition (PPI) of acoustic startle reflex. P2X4Rs are ion channels gated by adenosine-5′-triphosphate (ATP). Ivermectin (IVM) induced PPI deficits in C57BL/6J mice in a P2X4R-specific manner. Furthermore, mice deficient in P2X4Rs [P2X4R knockout (KO)] exhibited PPI deficits that were alleviated by dopamine (DA) receptor antagonists demonstrating an interaction between P2X4Rs and DA receptors in PPI regulation. On the basis of these findings, we hypothesized that increased DA neurotransmission underlies IVM-mediated PPI deficits. To test this hypothesis, we measured the effects of D1 and D2 receptor antagonists, SCH 23390 and raclopride respectively and D1 agonist, SKF 82958 on IVM-mediated PPI deficits. To gain mechanistic insights, we investigated the interaction between IVM and dopaminergic drugs on signaling molecules linked to PPI regulation in the ventral striatum. SCH 23390 significantly attenuated the PPI disruptive effects of IVM to a much greater degree than that of raclopride. SKF 82958 failed to potentiate IVM-mediated PPI disruption. At the molecular level, modulation of D1 receptors altered IVM’s effects on dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa (DARPP-32) phosphorylation. Additionally, IVM interacted with the DA receptors antagonists and SKF 82958 in phosphorylation of Ca2+/calmodulin kinase IIα (CaMKIIα) and its downstream target, neuronal nitric oxide synthase (nNOS). Current findings suggest an involvement for D1 and D2 receptors in IVM-mediated PPI disruption via modulation of DARPP-32, CaMKIIα and nNOS. Taken together, the findings suggest that stimulation of P2X4Rs can lead to DA hyperactivity and disruption of information processing, implicating P2X4Rs as a novel drug target for treatment of psychiatric disorders characterized by sensorimotor gating deficits.
Collapse
Affiliation(s)
- Sheraz Khoja
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Intracerebral injection of R-(-)-Apomorphine into the nucleus accumbens decreased carbachol-induced 22-kHz ultrasonic vocalizations in rats. Behav Brain Res 2019; 364:264-273. [PMID: 30690109 DOI: 10.1016/j.bbr.2019.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/11/2023]
Abstract
Rats can produce ultrasonic vocalizations (USVs) in a variety of different contexts that signal their emotional state to conspecifics. Under distress, rats can emit 22-kHz USVs, while during positive pro-social interactions rats can emit frequency-modulated (FM) 50-kHz USVs. It has been previously reported that rats with increasing emission of FM 50-kHz USVs in anticipation of rewarding electrical stimulation or positive pro-social interaction decrease the number of emitted 22-kHz USVs. The purpose of the present investigation was to determine, in a pharmacological-behavioural experiment, if the positive emotional arousal of the rat indexed by the number of emitted FM 50-kHz USVs can decrease the magnitude of a subsequent negative emotional state indexed by the emission of 22-kHz USVs. To induce a positive emotional state, an intracerebral injection of a known D1/D2 agonist R-(-)-apomorphine (3.0 μg/0.3 μl) into the medial nucleus accumbens shell was used, while a negative emotional state was induced by intracerebral injection of carbachol (1.0 μg/0.3 μl), a known broad-spectrum muscarinic agonist, into the anterior hypothalamic-medial preoptic area. Our results demonstrated that initiation of a positive emotional state was able to significantly decrease the magnitude of subsequently expressed negative emotional state measured by the number of emitted 22-kHz USVs. The results suggest the neurobiological substrates that initiate positive emotional state indirectly antagonize the brain regions that initiate negative emotional states.
Collapse
|
15
|
Si L, Pan L, Wang H, Zhang X. Ammonia-N exposure alters neurohormone levels in the hemolymph and mRNA abundance of neurohormone receptors and associated downstream factors in the gills of Litopenaeus vannamei. J Exp Biol 2019; 222:jeb.200204. [DOI: 10.1242/jeb.200204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Effects of ammonia-N (0.05, 2, 10 and 20 mg L−1) on the neuroendocrine regulation of ammonia transport were investigated in Litopenaeus vannamei. The results showed that corticotrophin-releasing hormone, adrenocorticotropic hormone, dopamine, noradrenaline and 5-hydroxytryptamine concentration in all ammonia-N groups increased significantly between 3-12 h. Cortisol increased significantly between 3-24 h. All hormones except crustacean hyperglycemic hormone were reduced to control levels. mRNA abundance of guanylyl cyclase increased significantly during the experiment. Dopamine receptor D4 and α2 adrenergic receptor mRNA abundance in treatments decreased significantly at the beginning, and eventually returned to the control level, whereas mRNA abundance of 5-HT7 receptor increased significantly only within the first 12 h. Changes of protein kinases (PKA, PKG) mRNA abundance were similar to the patterns of biogenic amines and crustacean hyperglycemic hormone, peaking at 6 h and 12 h respectively, while PKC decreased within 24 h. 14-3-3 protein, FXYD2 and cAMP-response element binding protein mRNA abundance of treatments increased significantly and peaked at 6 h. β-catenin and T-cell factor mRNA abundance increased significantly throughout the experiment and peaked at 12 h. The up-regulation of Rh protein, K+-channel, Na+/K+-ATPase, V-type H+-ATPase and vesicle associated membrane protein (VAMP) mRNA, together with down-regulation of Na+/K+/2Cl− cotransporter mRNA indicated an adjustment of general branchial ion-/ammonia-regulatory mechanisms. Meanwhile, hemolymph ammonia concentration was significantly increased in most ammonia-N exposure groups. Histological investigation revealed the hepatopancreatic damage caused by ammonia-N. The results suggest hormones, biogenic amines and Wnt/β-catenin play a principal role in adapting to ammonia-N exposure and facilitating ammonia transport.
Collapse
Affiliation(s)
- Lingjun Si
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Hongdan Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
16
|
Zhang L, Pan L, Xu L, Si L. Independent and simultaneous effect of crustacean hyperglycemic hormone and dopamine on the hemocyte intracellular signaling pathways and immune responses in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 83:262-271. [PMID: 30217506 DOI: 10.1016/j.fsi.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Immune responses and intracellular signaling pathways were examined after hemolymph of Litopenaeus vannamei being incubated in Crustacean hyperglycemic hormone (CHH), dopamine (DA) and DA antagonist (Y). The results showed that the effect CHH and CHH + DA + Y on viability of hemocytes were no significant changes compared to the control group. However, in DA, DA + Y and CHH + DA groups, the viability of hemocytes decreased significantly. The phagocytic activity and the antibacterial activity of CHH group were increased significantly within 12h. Whereas the CHH + DA, DA were significantly lower than the control. PO in haemolymph was up-regulated after CHH and DA incubation. The proPO has the opposite change in all groups. In addition, DA + Y, CHH + DA + Y has a similar trend with the DA and CHH respectively. Furthermore, a significant increase of cAMP, CaM and cGMP were found in treatment groups except for the CaM concentration of the CHH group and the cGMP concentration of DA group. There is no significant change observed in the CHH group about CaM concentration. Whereas the cGMP of DA group decreased within 12h. The results suggest that DA could depress the immune responses by cAMP-, CaM-pathways. However, the CHH is on the contrary, which transduced the signals from cAMP, cGMP to PKA, PKC and PKG to enhance the immune response parameters.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Mariculture(Ocean University of CHINA), Ministry of Education, 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture(Ocean University of CHINA), Ministry of Education, 266003, PR China.
| | - Lijun Xu
- Key Laboratory of Mariculture(Ocean University of CHINA), Ministry of Education, 266003, PR China
| | - Lingjun Si
- Key Laboratory of Mariculture(Ocean University of CHINA), Ministry of Education, 266003, PR China
| |
Collapse
|
17
|
Endocytosis of G Protein-Coupled Receptors and Their Ligands: Is There a Role in Metal Trafficking? Cell Biochem Biophys 2018; 76:329-337. [PMID: 30022374 DOI: 10.1007/s12013-018-0850-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
The prevalence of metal dysregulation in many neurodegenerative and neurocognitive disorders has compelled many studying such diseases to investigate the mechanisms underlying metal regulation in the central nervous system. Metal homoeostasis is often complex, with sophisticated, multilayered pathways in operation. G protein-coupled receptors are omnipresent on cell membranes and have intriguing mechanisms of endocytosis and trafficking that may be useful in metal homoeostasis. Indeed, many receptors and/or their cognate ligands are able to bind metals, and in many cases metals are considered to have neuromodulatory roles as a result of receptor binding. In this mini-review, we outline the structural and functional aspects of G protein-coupled receptors with a focus on the mechanisms leading to endocytosis and cellular trafficking. We further highlight how this may help in the trafficking of metal ions, notably copper.
Collapse
|
18
|
Gurevich VV, Gurevich EV. GPCRs and Signal Transducers: Interaction Stoichiometry. Trends Pharmacol Sci 2018; 39:672-684. [PMID: 29739625 DOI: 10.1016/j.tips.2018.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
Until the late 1990s, class A G protein-coupled receptors (GPCRs) were believed to function as monomers. Indirect evidence that they might internalize or even signal as dimers has emerged, along with proof that class C GPCRs are obligatory dimers. Crystal structures of GPCRs and their much larger binding partners were consistent with the idea that two receptors might engage a single G protein, GRK, or arrestin. However, recent biophysical, biochemical, and structural evidence invariably suggests that a single GPCR binds G proteins, GRKs, and arrestins. Here we review existing evidence of the stoichiometry of GPCR interactions with signal transducers and discuss potential biological roles of class A GPCR oligomers, including proposed homo- and heterodimers.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Zhang L, Pan L, Xu L, Si L. Effects of ammonia-N exposure on the concentrations of neurotransmitters, hemocyte intracellular signaling pathways and immune responses in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 75:48-57. [PMID: 29407613 DOI: 10.1016/j.fsi.2018.01.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/20/2018] [Accepted: 01/27/2018] [Indexed: 06/07/2023]
Abstract
The effects of ammonia-N exposure (transferred from 0.07 to 2, 10 and 20 mg L-1) on the mechanism of neuroendocrine-immunoregulatory network were investigated in Litopenaeus vannamei. The results showed that biogenic amines (dopamine, noradrenaline, 5-hydroxytryptamine) concentrations in treatment groups increased significantly within 12 h. The gene expression of guanylyl cyclase increased significantly from 3 h to 24 h. And dopamine receptor D4 and α2 adrenergic receptor gene expression in treatment groups decreased significantly within 12 h, whereas the mRNA expression of 5-HT7 receptor increased significantly within 3 h and reached the peak levels at 6 h. The second messengers (cAMP, cGMP) and Calmodulin (CaM) increased significantly in treatment groups after 3 h. The concentrations of protein kinases (PKA, PKG) shared a similar trend in cAMP and cGMP which were up-regulated and reached the peak value at 6 h, while the PKC decreased within 3 h and arrived at its bottom at 6 h. The nuclear factor kappa-b and cAMP-response element binding protein mRNA expression levels of treatment shrimps increased sharply and reached maximum values at 6 h. The total hemocyte count, phagocytic activity, antibacterial activity in treatment groups decreased dramatically within 48 h. Whereas the phenoloxidase activities slightly up-regulated. Then it was decreased significantly up to 48 h. α2-macroglobulin activity decreased at the first 3 h-stress. Then they up-regulated significantly in 6 h. The results suggest that there are two crucial neuroendocrine substances (biogenic amine and CHH), which play a principal role in adapting to ammonia-N exposure and cause immune response through cAMP-, CaM- and cGMP-dependent pathways.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China.
| | - Lijun Xu
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China
| | - Lingjun Si
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China
| |
Collapse
|
20
|
Ogundele OM, Lee CC. CaMKIIα expression in a mouse model of NMDAR hypofunction schizophrenia: Putative roles for IGF-1R and TLR4. Brain Res Bull 2018; 137:53-70. [PMID: 29137928 PMCID: PMC5835406 DOI: 10.1016/j.brainresbull.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Schizophrenia (SCZ) is a neuropsychiatric disorder that is linked to social behavioral deficits and other negative symptoms associated with hippocampal synaptic dysfunction. Synaptic mechanism of schizophrenia is characterized by loss of hippocampal N-Methyl-d-Aspartate Receptor (NMDAR) activity (NMDAR hypofunction) and dendritic spines. Previous studies show that genetic deletion of hippocampal synaptic regulatory calcium-calmodulin dependent kinase II alpha (CaMKIIα) cause synaptic and behavioral defects associated with schizophrenia in mice. Although CaMKIIα is involved in modulation of NMDAR activity, it is equally linked to inflammatory and neurotropin signaling in neurons. Based on these propositions, we speculate that non-neurotransmitter upstream receptors associated with neurotropic and inflammatory signaling activities of CaMKIIα may alter its synaptic function. Besides, how these receptors (i.e. inflammatory and neurotropic receptors) alter CaMKIIα function (phosphorylation) relative to hippocampal NMDAR activity in schizophrenia is poorly understood. Here, we examined the relationship between toll-like receptor (TLR4; inflammatory), insulin-like growth factor receptor 1 (IGF-1R; neurotropic) and CaMKIIα expression in the hippocampus of behaviorally deficient schizophrenic mice after we induced schizophrenia through NMDAR inhibition. Schizophrenia was induced in WT (C57BL/6) mice through intraperitoneal administration of 30mg/Kg ketamine (NMDAR antagonist) for 5days (WT/SCZ). Five days after the last ketamine treatment, wild type schizophrenic mice show deficiencies in sociability and social novelty behavior. Furthermore, there was a significant decrease in hippocampal CaMKIIα (p<0.001) and IGF-1R (p<0.001) expression when assessed through immunoblotting and confocal immunofluorescence microscopy. Additionally, WT schizophrenic mice show an increased percentage of phosphorylated CaMKIIα in addition to upregulated TLR4 signaling (TLR4, NF-κB, and MAPK/ErK) in the hippocampus. To ascertain the functional link between TLR4, IGF-1R and CaMKIIα relative to NMDAR hypofunction in schizophrenia, we created hippocampal-specific TLR4 knockdown mouse using AAV-driven Cre-lox technique (TLR4 KD). Subsequently, we inhibited NMDAR function in TLR4 KD mice in an attempt to induce schizophrenia (TLR4 KD SCZ). Interestingly, IGF-1R and CaMKIIα expressions were preserved in the TLR4 KD hippocampus after attenuation of NMDAR function. Furthermore, TLR4 KD SCZ mice showed no prominent defects in sociability and social novelty behavior when compared with the control (WT). Our results show that a sustained IGF-1R expression may preserve the synaptic activity of CaMKIIα while TLR4 signaling ablates hippocampal CaMKIIα expression in NMDAR hypofunction schizophrenia. Together, we infer that IGF-1R depletion and increased TLR4 signaling are non-neurotransmitter pro-schizophrenic cues that can reduce synaptic CaMKIIα activity in a pharmacologic mouse model of schizophrenia.
Collapse
Affiliation(s)
- O M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States.
| | - C C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States.
| |
Collapse
|
21
|
Hasbi A, Perreault ML, Shen MYF, Fan T, Nguyen T, Alijaniaram M, Banasikowski TJ, Grace AA, O'Dowd BF, Fletcher PJ, George SR. Activation of Dopamine D1-D2 Receptor Complex Attenuates Cocaine Reward and Reinstatement of Cocaine-Seeking through Inhibition of DARPP-32, ERK, and ΔFosB. Front Pharmacol 2018; 8:924. [PMID: 29354053 PMCID: PMC5758537 DOI: 10.3389/fphar.2017.00924] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
A significant subpopulation of neurons in rat nucleus accumbens (NAc) coexpress dopamine D1 and D2 receptors, which can form a D1-D2 receptor complex, but their relevance in addiction is not known. The existence of the D1-D2 heteromer in the striatum of rat and monkey was established using in situ PLA, in situ FRET and co-immunoprecipitation. In rat, D1-D2 receptor heteromer activation led to place aversion and abolished cocaine CPP and locomotor sensitization, cocaine intravenous self-administration and reinstatement of cocaine seeking, as well as inhibited sucrose preference and abolished the motivation to seek palatable food. Selective disruption of this heteromer by a specific interfering peptide induced reward-like effects and enhanced the above cocaine-induced effects, including at a subthreshold dose of cocaine. The D1-D2 heteromer activated Cdk5/Thr75-DARPP-32 and attenuated cocaine-induced pERK and ΔFosB accumulation, together with inhibition of cocaine-enhanced local field potentials in NAc, blocking thus the signaling pathway activated by cocaine: D1R/cAMP/PKA/Thr34-DARPP-32/pERK with ΔFosB accumulation. In conclusion, our results show that the D1-D2 heteromer exerted tonic inhibitory control of basal natural and cocaine reward, and therefore initiates a fundamental physiologic function that limits the liability to develop cocaine addiction.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | | - Maurice Y F Shen
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Tuan Nguyen
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | | - Tomek J Banasikowski
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian F O'Dowd
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Ang Z, Xiong D, Wu M, Ding JL. FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing. FASEB J 2017; 32:289-303. [PMID: 28883043 PMCID: PMC5731126 DOI: 10.1096/fj.201700252rr] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
Free fatty acid receptors 2 and 3 (FFAR2/FFA2/GPR43 and FFAR3/FFA3/GPR41) are mammalian receptors for gut microbiota-derived short-chain fatty acids (SCFAs). These receptors are promising drug targets for obesity, colitis, colon cancer, asthma, and arthritis. Here, we demonstrate that FFAR2 and FFAR3 interact to form a heteromer in primary human monocytes and macrophages via proximity ligation assay, and during heterologous expression in HEK293 cells via bimolecular fluorescence complementation and fluorescence resonance energy transfer. The FFAR2-FFAR3 heteromer displayed enhanced cytosolic Ca2+ signaling (1.5-fold increase relative to homomeric FFAR2) and β-arrestin-2 recruitment (30-fold increase relative to homomeric FFAR3). The enhanced heteromer signaling was attenuated by FFAR2 antagonism (CATPB), Gαq inhibition (YM254890), or Gαi inhibition (pertussis toxin). Unlike homomeric FFAR2/3, the heteromer lacked the ability to inhibit cAMP production but gained the ability to induce p38 phosphorylation in HEK293 and inflammatory monocytes via a CATPB- and YM254890-sensitive mechanism. Our data, taken together, reveal that FFAR2 and FFAR3 may interact to form a receptor heteromer with signaling that is distinct from the parent homomers-a novel pathway for drug targeting.-Ang, Z., Xiong, D., Wu, M., Ding, J. L. FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing.
Collapse
Affiliation(s)
- Zhiwei Ang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Ding Xiong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, Singapore; and
| | - Min Wu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, Singapore; and.,Mechanobiology Institute, National University of Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore;
| |
Collapse
|
23
|
Grammatopoulos DK. Regulation of G-protein coupled receptor signalling underpinning neurobiology of mood disorders and depression. Mol Cell Endocrinol 2017; 449:82-89. [PMID: 28229904 DOI: 10.1016/j.mce.2017.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 02/08/2023]
Abstract
G-protein coupled receptors (GPCRs) have long been at the center of investigations of the neurobiology of depression and mood disorders. Different facets of GPCR signalling pathways, including those controlling monoaminergic and neuropeptidergic hormonal systems are believed to be dysregulated in major depressive and bipolar disorders. Although these receptors are key molecular targets for a variety of therapeutic agents and continue to be the focus of intense pharmaceutical development, the molecular mechanisms activated by these GPCRs and underpin the pathological basis of mood disorders remain poorly understood. This review will discuss some of the emerging regulatory mechanisms of GPCR signaling in the central nervous system (CNS) involving protein-protein interactions, downstream effectors and cross-talk with other signaling molecules and their potential involvement in the neurobiology of psychiatric disease.
Collapse
Affiliation(s)
- Dimitris K Grammatopoulos
- Translational Medicine, Warwick Medical School & Clinical Biochemistry, Coventry and Warwickshire Pathology Service, United Kingdom.
| |
Collapse
|
24
|
Han J, Gao L, Dong J, Wang Y, Zhang M, Zheng J. Dopamine attenuates ethanol-induced neuroapoptosis in the developing rat retina via the cAMP/PKA pathway. Mol Med Rep 2017; 16:1982-1990. [PMID: 28656313 PMCID: PMC5561998 DOI: 10.3892/mmr.2017.6823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/24/2017] [Indexed: 01/11/2023] Open
Abstract
Apoptosis has been identified as the primary cause of fetal alcohol spectrum disorder (FASD), and the development of methods to prevent and treat FASD have been based on the mechanisms of alcohol-induced apoptosis. The present study aimed to explore the effects of dopamine on alcohol-induced neuronal apoptosis using whole-mount cultures of rat retinas (postnatal day 7). Retinas were initially incubated with ethanol (100, 200 or 500 mM), and in subsequent analyses retinas were co-incubated with ethanol (200 mM) and dopamine (10 µM). In addition, several antagonists and inhibitors were used, including a D1 dopamine receptor (D1R) antagonist (SCH23390; 10 µM), a D2R antagonist (raclopride; 40 µM), an adenosine A2A receptor (AA2AR) antagonist (SCH58261; 100 nM), an adenylyl cyclase (AC) inhibitor (SQ22536; 100 µM) and a PKA inhibitor (H-89; 1 µM). The results demonstrated that exposure increased neuroapoptosis in the retinal ganglion cell layer (GCL) in a dose-dependent manner. Dopamine treatment significantly attenuated ethanol-induced neuronal apoptosis. D1R, D2R and AA2AR antagonists partially inhibited the protective effects of dopamine against ethanol-induced apoptosis; similar results were observed with AC and PKA inhibitor treatments. In summary, the present study demonstrated that dopamine treatment may be able to attenuate alcohol-induced neuroapoptosis in the developing rat retina by activating D1R, D2R and AA2AR, and by upregulating cyclic AMP/protein kinase A signaling.
Collapse
Affiliation(s)
- Junde Han
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Lingqi Gao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Jing Dong
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Yingtian Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Mazhong Zhang
- Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
25
|
Vekshina NL, Anokhin PK, Veretinskaya AG, Shamakina IY. Dopamine D1–D2 receptor heterodimers: A literature review. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s199075081702010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Vekshina N, Anokhin P, Veretinskaya A, Shamakina I. Heterodimeric D1-D2 dopamine receptors: a review. ACTA ACUST UNITED AC 2017. [DOI: 10.18097/pbmc20176301005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes modern data on the structure and functions ofheteromersformed by D1 and D2 dopamine receptors focusing on their role in the mechanisms of drug dependence. This article discusses potential functional significance of heterodimeric D1-D2 dopamine receptorsdue to their localization in the brain as well as unique pharmacological propertiesversus constituent monomers. It is shown that heteromerization results in dramatic changes in activated signaling pathways compare to the corresponding monomers. These studies update our current knowledge of ligand-receptor interactions and provide better understanding of dopamine receptors pharmacology. Furthermore elucidation of significance of heterodimeric D1-D2 dopamine receptors as drug targets is important for the development of new effective drug addiction treatment.
Collapse
Affiliation(s)
- N.L. Vekshina
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - P.K. Anokhin
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - A.G. Veretinskaya
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - I.Yu. Shamakina
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
27
|
Błasiak E, Łukasiewicz S, Szafran-Pilch K, Dziedzicka-Wasylewska M. Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor. Pharmacol Rep 2016; 69:235-241. [PMID: 28119185 DOI: 10.1016/j.pharep.2016.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND The human dopamine D2 receptor gene has three polymorphic variants that alter its amino acid sequence: alanine substitution by valine in position 96 (V96A), proline substitution by serine in position 310 (P310S) and serine substitution by cysteine in position 311 (S311C). Their functional role has never been the object of extensive studies, even though there is some evidence that their occurrence correlates with schizophrenia. METHODS The HEK293 cell line was transfected with dopamine D1 and D2 receptors (or genetic variants of the D2 receptor), coupled to fluorescent proteins which allowed us to measure the extent of dimerization of these receptors, using a highly advanced biophysical approach (FLIM-FRET). Additionally, Fluoro-4 AM was used to examine changes in the level of calcium release after ligand stimulation of cells expressing different combinations of dopamine receptors. RESULTS Using FLIM-FRET experiments we have shown that in HEK 293 expressing dopamine receptors, polymorphic mutations in the D2 receptor play a role in dimmer formation with the dopamine D1 receptor. The association level of dopamine receptors is affected by ligand administration, with variable effects depending on polymorphic variant of the D2 dopamine receptor. We have found that the level of heteromer formation is reflected by calcium ion release after ligand stimulation and have observed variations of this effect dependent on the polymorphic variant and the ligand. CONCLUSION The data presented in this paper support the hypothesis on the role of calcium signaling regulated by the D1-D2 heteromer which may be of relevance for schizophrenia etiology.
Collapse
Affiliation(s)
- Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Sylwia Łukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | | | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
28
|
Rico AJ, Dopeso-Reyes IG, Martínez-Pinilla E, Sucunza D, Pignataro D, Roda E, Marín-Ramos D, Labandeira-García JL, George SR, Franco R, Lanciego JL. Neurochemical evidence supporting dopamine D1-D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation. Brain Struct Funct 2016; 222:1767-1784. [PMID: 27612857 PMCID: PMC5406426 DOI: 10.1007/s00429-016-1306-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/06/2016] [Indexed: 11/13/2022]
Abstract
Although it has long been widely accepted that dopamine receptor types D1 and D2 form GPCR heteromers in the striatum, the presence of D1–D2 receptor heteromers has been recently challenged. In an attempt to properly characterize D1–D2 receptor heteromers, here we have used the in situ proximity ligation assay (PLA) in striatal sections comprising the caudate nucleus, the putamen and the core and shell territories of the nucleus accumbens. Experiments were carried out in control macaques as well as in MPTP-treated animals (with and without dyskinesia). Obtained data support the presence of D1–D2 receptor heteromers within all the striatal subdivisions, with the highest abundance in the accumbens shell. Dopamine depletion by MPTP resulted in an increase of D1–D2 density in caudate and putamen which was normalized by levodopa treatment. Two different sizes of heteromers were consistently found, thus suggesting that besides individual heteromers, D1–D2 receptor heteromers are sometimes organized in macromolecular complexes made of a number of D1–D2 heteromers. Furthermore, the PLA technique was combined with different neuronal markers to properly characterize the identities of striatal neurons expressing D1–D2 heteromers. We have found that striatal projection neurons giving rise to either the direct or the indirect basal ganglia pathways expressed D1–D2 heteromers. Interestingly, macromolecular complexes of D1–D2 heteromers were only found within cholinergic interneurons. In summary, here we provide overwhelming proof that D1 and D2 receptors form heteromeric complexes in the macaque striatum, thus representing a very appealing target for a number of brain diseases involving dopamine dysfunction.
Collapse
Affiliation(s)
- Alberto J Rico
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Iria G Dopeso-Reyes
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eva Martínez-Pinilla
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diego Sucunza
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diego Pignataro
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elvira Roda
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Marín-Ramos
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain
| | - José L Labandeira-García
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Morphological Sciences, University of Santiago de Compostela, Santiago De Compostela, Spain
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Medicine and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Rafael Franco
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - José L Lanciego
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
29
|
Perreault ML, Hasbi A, Shen MYF, Fan T, Navarro G, Fletcher PJ, Franco R, Lanciego JL, George SR. Disruption of a dopamine receptor complex amplifies the actions of cocaine. Eur Neuropsychopharmacol 2016; 26:1366-1377. [PMID: 27480020 DOI: 10.1016/j.euroneuro.2016.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 11/27/2022]
Abstract
Cocaine-induced increases in dopamine signaling in nucleus accumbens (NAc) play a significant role in cocaine seeking behavior. The majority of cocaine addiction research has focused on neuroanatomically segregated dopamine D1 and D2 receptor-expressing neurons, yet an involvement for those NAc neurons coexpressing D1 and D2 receptors in cocaine addiction has never been explored. In situ proximity ligation assay, confocal fluorescence resonance energy transfer and coimmunoprecipitation were used to show native D1 and D2 receptors formed a heteromeric complex in D1/D2 receptor-coexpressing neurons in rat and non-human primate NAc. D1-D2 heteromer expression was lower in NAc of adolescent rats compared to their adult counterparts. Functional disruption of the dopamine D1-D2 receptor heteromer, using a peptide targeting the site of interaction between the D1 and D2 receptor, induced conditioned place preference and increased NAc expression of ∆FosB. D1-D2 heteromer disruption also resulted in the promotion, exacerbation and acceleration of the locomotor activating and incentive motivational effects of cocaine in the self-administration paradigm. These findings support a model for tonic inhibition of basal and cocaine-induced reward processes by the D1-D2 heteromer thus highlighting its potential value as a novel target for drug discovery in cocaine addiction. Given that adolescents show increased drug abuse susceptibility, an involvement for reduced D1-D2 heteromer function in the heightened sensitivity to the rewarding effects of cocaine in adolescence is also implicated.
Collapse
Affiliation(s)
- Melissa L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahmed Hasbi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Maurice Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rafael Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; CIBERNED, Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - José L Lanciego
- CIBERNED, Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Department of Neurosciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Frederick AL, Yano H, Trifilieff P, Vishwasrao HD, Biezonski D, Mészáros J, Sibley DR, Kellendonk C, Sonntag KC, Graham DL, Colbran RJ, Stanwood GD, Javitch JA, Javitch JA. Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry 2015; 20:1373-85. [PMID: 25560761 PMCID: PMC4492915 DOI: 10.1038/mp.2014.166] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
Abstract
Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation, because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer, ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout (KO) mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq KO mice, as well as in knock-in mice expressing a mutant Ala(286)-CaMKIIα that cannot autophosphorylate to become active. Moreover, we found that, in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1/D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies.
Collapse
Affiliation(s)
- Aliya L. Frederick
- Neuroscience Graduate Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hideaki Yano
- Departments of Psychiatry and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Pierre Trifilieff
- Nutrition and Integrative Neurobiology, INRA UMR 1286; University of Bordeaux, F-33076, Bordeaux, France,Center for Neuroscience. Columbia University, Kolb Research Building, New York, NY10032, USA
| | - Harshad D. Vishwasrao
- Center for Neuroscience. Columbia University, Kolb Research Building, New York, NY10032, USA
| | - Dominik Biezonski
- Departments of Psychiatry and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - József Mészáros
- Departments of Psychiatry and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Kellendonk
- Departments of Psychiatry and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Kai C. Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Devon L. Graham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Roger J. Colbran
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA,Vanderbilt Kennedy Center and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gregg D. Stanwood
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA,Vanderbilt Kennedy Center and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jonathan A. Javitch
- Departments of Psychiatry and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - J A Javitch
- Departments of Psychiatry and Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
31
|
Abstract
G protein-coupled receptors (GPCRs) compose one of the largest families of membrane proteins involved in intracellular signaling. They are involved in numerous physiological and pathological processes and are prime candidates for drug development. Over the past decade, an increasing number of studies have reported heteromerization between GPCRs. Many investigations in heterologous systems have provided important indications of potential novel pharmacology; however, the physiological relevance of these findings has yet to be established with endogenous receptors in native tissues. In this review, we focus on family A GPCRs and describe the techniques and criteria to assess their heteromerization. We conclude that advances in approaches to study receptor complex functionality in heterologous systems, coupled with techniques that enable specific examination of native receptor heteromers in vivo, are likely to establish GPCR heteromers as novel therapeutic targets.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - Mohammed Akli Ayoub
- Biologie et Bioinformatique des Systèmes de Signalisation (BIOS) Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, F-37380 Nouzilly, France
- LE STUDIUM Loire Valley Institute for Advanced Studies, F-45000 Orleans, France
| | - Wakako Fujita
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Current address: Department of Frontier Life Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8588, Japan
| | - Werner C Jaeger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Dimerix Bioscience Limited, Nedlands, Western Australia 6009, Australia
| | - Lakshmi A Devi
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
32
|
Ma J, Long LH, Hu ZL, Zhang H, Han J, Ni L, Wang F, Chen JG, Wu PF. Activation of D1-like receptor-dependent phosphatidylinositol signal pathway by SKF83959 inhibits voltage-gated sodium channels in cultured striatal neurons. Brain Res 2015; 1615:71-79. [PMID: 25912434 DOI: 10.1016/j.brainres.2015.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/07/2015] [Accepted: 04/16/2015] [Indexed: 11/15/2022]
Abstract
Dopamine, a key neurotransmitter mediating the rewarding effects, exerts some of its effects by modulating neuronal excitability of striatal medium spiny neurons. A D1-like dopamine receptor-dependent phosphatidylinositol signal pathway exists in the striatum, however little is known about its role in the dopaminergic modulation of striatal neuronal excitability. 3-Methyl-6-chloro-7, 8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) is a selective D1 receptor agonist with high-affinity. Here, we observed its effect on the voltage-gated sodium channels (VGSCs) in primary cultured striatal neurons by whole cell patch-clamp technique. We found that SKF83959 induced an inhibition on VGSCs in a dose-dependent manner in striatal neurons (IC50 value: 3.31 ± 0.39 μM), which could be prevented by antagonist of D1 receptor, but not that of D2, α1 adrenergic, or cholinoceptor. The effect of SKF83959 on VGSCs was also prevented by pretreatment with inhibitors of phospholipase C (PLC) and protein kinases C (PKC), but the inositol-1,4,5-phosphate 3 (IP3) antagonist did not occlude SKF83959 (1μM)-induced reduction of VGSCs. These data indicate that SKF83959 inhibits VGSCs in cultured striatal neurons via D1-like receptor-phosphatidylinositol-PKC pathway, which may underlie the dopaminergic modulation on striatal neuronal excitability.
Collapse
Affiliation(s)
- Jin Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China
| | - Hai Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Jun Han
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Lan Ni
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
33
|
Fujiyama F, Takahashi S, Karube F. Morphological elucidation of basal ganglia circuits contributing reward prediction. Front Neurosci 2015; 9:6. [PMID: 25698913 PMCID: PMC4318281 DOI: 10.3389/fnins.2015.00006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/08/2015] [Indexed: 11/26/2022] Open
Abstract
Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor–critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments.
Collapse
Affiliation(s)
- Fumino Fujiyama
- Laboratory of Neural Circuitry, Department of Systems Neuroscience, Graduate School of Brain Science, Doshisha University Kyoto, Japan ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency Tokyo, Japan
| | - Susumu Takahashi
- Laboratory of Neural Circuitry, Department of Systems Neuroscience, Graduate School of Brain Science, Doshisha University Kyoto, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Department of Systems Neuroscience, Graduate School of Brain Science, Doshisha University Kyoto, Japan
| |
Collapse
|
34
|
Shen MYF, Perreault ML, Fan T, George SR. The dopamine D1-D2 receptor heteromer exerts a tonic inhibitory effect on the expression of amphetamine-induced locomotor sensitization. Pharmacol Biochem Behav 2015; 128:33-40. [PMID: 25444866 PMCID: PMC4460003 DOI: 10.1016/j.pbb.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 01/08/2023]
Abstract
A role for the dopamine D1-D2 receptor heteromer in the regulation of reward and addiction-related processes has been previously implicated. In the present study, we examined the effects of D1-D2 heteromer stimulation by the agonist SKF 83959 and its disruption by a selective TAT-D1 peptide on amphetamine-induced locomotor sensitization, a behavioral model widely used to study the neuroadaptations associated with psychostimulant addiction. D1-D2 heteromer activation by SKF 83959 did not alter the acute locomotor effects of amphetamine but significantly inhibited amphetamine-induced locomotor responding across the 5day treatment regimen. In addition, a single injection of SKF 83959 was sufficient to abolish the expression of locomotor sensitization induced by a priming injection of amphetamine after a 72-hour withdrawal. Conversely, inhibition of D1-D2 heteromer activity by the TAT-D1 peptide enhanced subchronic amphetamine-induced locomotion and the expression of amphetamine locomotor sensitization. Treatment solely with the TAT-D1 disrupting peptide during the initial 5day treatment phase was sufficient to induce a sensitized locomotor phenotype in response to the priming injection of amphetamine. Together these findings demonstrate that the dopamine D1-D2 receptor heteromer exerts a tonic inhibitory control on neurobiological processes involved in sensitization to amphetamine, indicating that the dopamine D1-D2 receptor heteromer may be a novel molecular substrate in addiction processes involving psychostimulants.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Amphetamine/pharmacology
- Amphetamine-Related Disorders/physiopathology
- Amphetamine-Related Disorders/psychology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Central Nervous System Stimulants/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists/pharmacology
- Male
- Motor Activity/drug effects
- Motor Activity/physiology
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/physiology
- Peptide Fragments/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/chemistry
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/physiology
- Reward
Collapse
Affiliation(s)
- Maurice Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Melissa L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Theresa Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Perreault ML, Shen MYF, Fan T, George SR. Regulation of c-fos expression by the dopamine D1-D2 receptor heteromer. Neuroscience 2014; 285:194-203. [PMID: 25446350 DOI: 10.1016/j.neuroscience.2014.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022]
Abstract
The dopamine D1 and D2 receptors form the D1-D2 receptor heteromer in a subset of neurons and couple to the Gq protein to regulate intracellular calcium signaling. In the present study the effect of D1-D2 heteromer activation and disruption on neuronal activation in the rat brain was mapped. This was accomplished using the dopamine agonist SKF 83959 to activate the D1-D2 heteromer in combination with a TAT-D1 disrupting peptide we developed, and which has been shown to disrupt the D1/D2 receptor interaction and antagonize D1-D2 heteromer-induced cell signaling and behavior. Acute SKF 83959 administration to rats induced significant c-fos expression in the nucleus accumbens that was significantly inhibited by TAT-D1 pretreatment. No effects of SKF 83959 were seen in caudate putamen. D1-D2 heteromer disruption by TAT-D1 did not have any effects in any striatal subregions, but induced significant c-fos immunoreactivity in a number of cortical regions including the orbitofrontal cortex, prelimbic and infralimbic cortices and piriform cortex. The induction of c-fos by TAT-D1 was also evident in the anterior olfactory nucleus, as well as the lateral habenula and thalamic nuclei. These findings show for the first time that the D1-D2 heteromer can differentially regulate c-fos expression in a region-dependent manner either through its activation or through tonic inhibition of neuronal activity.
Collapse
Affiliation(s)
- M L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - T Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - S R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
36
|
Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities. Mol Psychiatry 2014; 19:1133-42. [PMID: 24934177 PMCID: PMC4317257 DOI: 10.1038/mp.2014.61] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 12/14/2022]
Abstract
Intellectual disabilities (IDs) and autism spectrum disorders link to human APC inactivating gene mutations. However, little is known about adenomatous polyposis coli's (APC's) role in the mammalian brain. This study is the first direct test of the impact of APC loss on central synapses, cognition and behavior. Using our newly generated APC conditional knock-out (cKO) mouse, we show that deletion of this single gene in forebrain neurons leads to a multisyndromic neurodevelopmental disorder. APC cKO mice, compared with wild-type littermates, exhibit learning and memory impairments, and autistic-like behaviors (increased repetitive behaviors, reduced social interest). To begin to elucidate neuronal changes caused by APC loss, we focused on the hippocampus, a key brain region for cognitive function. APC cKO mice display increased synaptic spine density, and altered synaptic function (increased frequency of miniature excitatory synaptic currents, modestly enhanced long-term potentiation). In addition, we found excessive β-catenin levels and associated changes in canonical Wnt target gene expression and N-cadherin synaptic adhesion complexes, including reduced levels of presenilin1. Our findings identify some novel functional and molecular changes not observed previously in other genetic mutant mouse models of co-morbid cognitive and autistic-like disabilities. This work thereby has important implications for potential therapeutic targets and the impact of their modulation. We provide new insights into molecular perturbations and cell types that are relevant to human ID and autism. In addition, our data elucidate a novel role for APC in the mammalian brain as a hub that links to and regulates synaptic adhesion and signal transduction pathways critical for normal cognition and behavior.
Collapse
|
37
|
Hasbi A, Perreault ML, Shen MYF, Zhang L, To R, Fan T, Nguyen T, Ji X, O'Dowd BF, George SR. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. FASEB J 2014; 28:4806-20. [PMID: 25063849 DOI: 10.1096/fj.14-254037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues (404)Glu and (405)Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; and Department of Pharmacology and
| | - Melissa L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; and Department of Pharmacology and
| | - Maurice Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; and Department of Pharmacology and
| | | | - Ryan To
- Department of Pharmacology and
| | - Theresa Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; and Department of Pharmacology and
| | - Tuan Nguyen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; and Department of Pharmacology and
| | | | - Brian F O'Dowd
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; and Department of Pharmacology and
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; and Department of Pharmacology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Dopamine receptor heteromeric complexes and their emerging functions. PROGRESS IN BRAIN RESEARCH 2014; 211:183-200. [DOI: 10.1016/b978-0-444-63425-2.00008-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Perreault ML, Hasbi A, O'Dowd BF, George SR. Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 2014; 39:156-68. [PMID: 23774533 PMCID: PMC3857642 DOI: 10.1038/npp.2013.148] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/29/2013] [Accepted: 05/10/2013] [Indexed: 12/13/2022]
Abstract
The pharmacological modification of dopamine transmission has long been employed as a therapeutic tool in the treatment of many mental health disorders. However, as many of the pharmacotherapies today are not without significant side effects, or they alleviate only a particular subset of symptoms, the identification of novel therapeutic targets is imperative. In light of these challenges, the recognition that dopamine receptors can form heteromers has significantly expanded the range of physiologically relevant signaling complexes as well as potential drug targets. Furthermore, as the physiology and disease relevance of these receptor heteromers is further understood, their ability to exhibit pharmacological and functional properties distinct from their constituent receptors, or modulate the function of endogenous homomeric receptor complexes, may allow for the development of alternate therapeutic strategies and provide new avenues for drug design. In this review, we describe the emerging neurobiology of the known dopamine receptor heteromers, their physiological relevance in brain, and discuss the potential role of these receptor complexes in neuropsychiatric disease. We highlight their value as targets for future drug development and discuss innovative research strategies designed to selectively target these dopamine receptor heteromers in the search for novel and clinically efficacious pharmacotherapies.
Collapse
Affiliation(s)
- Melissa L Perreault
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed Hasbi
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Brian F O'Dowd
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Susan R George
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Perreault ML, O'Dowd BF, George SR. Dopamine D1-D2Receptor Heteromer Regulates Signaling Cascades Involved in Addiction: Potential Relevance to Adolescent Drug Susceptibility. Dev Neurosci 2014; 36:287-96. [DOI: 10.1159/000360158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
|
41
|
Falsafi SK, Roßner S, Ghafari M, Groessl M, Morawski M, Gerner C, Lubec G. Changes of several brain receptor complexes in the cerebral cortex of patients with Alzheimer disease: probable new potential pharmaceutical targets. Amino Acids 2013; 46:223-33. [PMID: 24292102 DOI: 10.1007/s00726-013-1623-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022]
Abstract
Although Alzheimer disease (AD) has been linked to defects in major brain receptors, studies thus far have been limited to the determination of receptor subunits or specific ligand binding studies. However, the availability of current technology enables the determination and quantification of brain receptor complexes. Thus, we examined levels of native receptor complexes in the brains of patients with AD. Cortical tissue was obtained from control subjects (n = 12 females and 12 males) and patients with AD (n = 12 females and 12 males) within a 3-h postmortem time period. The tissues were kept frozen until further biochemical analyses. Membrane proteins were extracted and subsequently enriched by ultracentrifugation using a sucrose gradient. Membrane proteins were then electrophoresed onto native gels and immunoblotted using antibodies against individual brain receptors. We found that the levels were comparable for complexes containing GluR2, GluR3 and GluR4 as well as 5-HT1A. Moreover, the levels of complexes containing muscarinic AChR M1, NR1 and GluR1 were significantly increased in male patients with AD. Nicotinic AChRs 4 and 7 as well as dopaminergic receptors D1 and D2 were also increased in males and females with AD. These findings reveal a pattern of altered receptor complex levels that may contribute to the deterioration of the concerted activity of these receptors and thus result in cognitive deficits observed in patients with AD. It should be emphasised that receptor complexes function as working units rather than individual subunits. Thus, the receptor deficits identified may be relevant for the design of experimental therapies. Therefore, specific pharmacological modulation of these receptors is within the pharmaceutical repertoire.
Collapse
Affiliation(s)
- Soheil Keihan Falsafi
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
42
|
Chun LS, Free RB, Doyle TB, Huang XP, Rankin ML, Sibley DR. D1-D2 dopamine receptor synergy promotes calcium signaling via multiple mechanisms. Mol Pharmacol 2013; 84:190-200. [PMID: 23680635 PMCID: PMC3716318 DOI: 10.1124/mol.113.085175] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/16/2013] [Indexed: 01/11/2023] Open
Abstract
The D(1) dopamine receptor (D(1)R) has been proposed to form a hetero-oligomer with the D(2) dopamine receptor (D(2)R), which in turn results in a complex that couples to phospholipase C-mediated intracellular calcium release. We have sought to elucidate the pharmacology and mechanism of action of this putative signaling pathway. Dopamine dose-response curves assaying intracellular calcium mobilization in cells heterologously expressing the D(1) and D(2) subtypes, either alone or in combination, and using subtype selective ligands revealed that concurrent stimulation is required for coupling. Surprisingly, characterization of a putative D(1)-D(2) heteromer-selective ligand, 6-chloro-2,3,4,5-tetrahydro-3-methyl-1-(3-methylphenyl)-1H-3-benzazepine-7,8-diol (SKF83959), found no stimulation of calcium release, but it did find a broad range of cross-reactivity with other G protein-coupled receptors. In contrast, SKF83959 appeared to be an antagonist of calcium mobilization. Overexpression of G(qα) with the D(1) and D(2) dopamine receptors enhanced the dopamine-stimulated calcium response. However, this was also observed in cells expressing G(qα) with only the D1R. Inactivation of Gi or Gs with pertussis or cholera toxin, respectively, largely, but not entirely, reduced the calcium response in D(1)R and D(2)R cotransfected cells. Moreover, sequestration of G(βγ) subunits through overexpression of G protein receptor kinase 2 mutants either completely or largely eliminated dopamine-stimulated calcium mobilization. Our data suggest that the mechanism of D(1)R/D(2)R-mediated calcium signaling involves more than receptor-mediated G(q) protein activation, may largely involve downstream signaling pathways, and may not be completely heteromer-specific. In addition, SKF83959 may not exhibit selective activation of D(1)-D(2) heteromers, and its significant cross-reactivity to other receptors warrants careful interpretation of its use in vivo.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Line
- Dopamine/pharmacology
- GTP-Binding Proteins/metabolism
- HEK293 Cells
- Humans
- Ligands
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
Collapse
Affiliation(s)
- Lani S Chun
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-9405, USA
| | | | | | | | | | | |
Collapse
|
43
|
Milligan G. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol Pharmacol 2013; 84:158-69. [PMID: 23632086 PMCID: PMC3684826 DOI: 10.1124/mol.113.084780] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/30/2013] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, ideas and experimental support for the hypothesis that G protein-coupled receptors may exist as dimeric or oligomeric complexes moved initially from heresy to orthodoxy, to the current situation in which the capacity of such receptors to interact is generally accepted but the prevalence, maintenance, and relevance of such interactions to both pharmacology and function remain unclear. A vast body of data obtained following transfection of cultured cells is still to be translated to native systems and, even where this has been attempted, results often remain controversial and contradictory. This review will consider approaches that are currently being applied and why these might be challenging to interpret, and will suggest means to overcome these limitations.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
44
|
Ogata G, Stradleigh TW, Partida GJ, Ishida AT. Dopamine and full-field illumination activate D1 and D2-D5-type receptors in adult rat retinal ganglion cells. J Comp Neurol 2013; 520:4032-49. [PMID: 22678972 DOI: 10.1002/cne.23159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dopamine can regulate signal generation and transmission by activating multiple receptors and signaling cascades, especially in striatum, hippocampus, and cerebral cortex. Dopamine modulates an even larger variety of cellular properties in retina, yet has been reported to do so by only D1 receptor-driven cyclic adenosine monophosphate (cAMP) increases or D2 receptor-driven cAMP decreases. Here, we test the possibility that dopamine operates differently on retinal ganglion cells, because the ganglion cell layer binds D1 and D2 receptor ligands, and displays changes in signaling components other than cAMP under illumination that should release dopamine. In adult rat retinal ganglion cells, based on patch-clamp recordings, Ca(2+) imaging, and immunohistochemistry, we find that 1) spike firing is inhibited by dopamine and SKF 83959 (an agonist that does not activate homomeric D1 receptors or alter cAMP levels in other systems); 2) D1 and D2 receptor antagonists (SCH 23390, eticlopride, raclopride) counteract these effects; 3) these antagonists also block light-induced rises in cAMP, light-induced activation of Ca(2+) /calmodulin-dependent protein kinase II, and dopamine-induced Ca(2+) influx; and 4) the Ca(2+) rise is markedly reduced by removing extracellular Ca(2+) and by an IP3 receptor antagonist (2-APB). These results provide the first evidence that dopamine activates a receptor in adult mammalian retinal neurons that is distinct from classical D1 and D2 receptors, and that dopamine can activate mechanisms in addition to cAMP and cAMP-dependent protein kinase to modulate retinal ganglion cell excitability.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
45
|
A physiological role for the dopamine D5 receptor as a regulator of BDNF and Akt signalling in rodent prefrontal cortex. Int J Neuropsychopharmacol 2013; 16:477-83. [PMID: 22827965 PMCID: PMC3802523 DOI: 10.1017/s1461145712000685] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The dopamine D5 receptor (D5R) exhibits a wide distribution in prefrontal cortex (PFC) but its role in this region has not yet been elucidated. In the present study, we identified a novel physiological function for the D(5)R as a regulator of brain-derived neurotrophic factor (BDNF) and Akt signalling in PFC. Specifically, acute activation of the D(5)R by the dopamine agonist SKF 83959 enhanced BDNF expression and signalling through its receptor, tropomyosin receptor kinase B (TrkB), in rats and in mice gene-deleted for the D1 receptor but not the D(5)R. These changes were concomitant with increased expression of GAD67, a protein whose down-regulation has been implicated in the aetiology of schizophrenia. Furthermore, D(5)R activation increased phosphorylation of Akt at the Ser(473) site, consequently decreasing the activity of its substrate GSK-3β. These findings could have wide-reaching implications given evidence showing activation of these pathways in PFC has therapeutic effects in neuropsychiatric disorders such as drug addiction, schizophrenia and depression.
Collapse
|
46
|
Kravitz AV, Kreitzer AC. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology (Bethesda) 2012; 27:167-77. [PMID: 22689792 PMCID: PMC3880226 DOI: 10.1152/physiol.00004.2012] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Direct and indirect pathway striatal neurons are known to exert opposing control over motor output. In this review, we discuss a hypothetical extension of this framework, in which direct pathway striatal neurons also mediate reinforcement and reward, and indirect pathway neurons mediate punishment and aversion.
Collapse
Affiliation(s)
- Alexxai V. Kravitz
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California
| | - Anatol C. Kreitzer
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California
- Departments of Physiology and Neurology, University of California, San Francisco, California
| |
Collapse
|
47
|
Wani KA, Catanese M, Normantowicz R, Herd M, Maher KN, Chase DL. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons. PLoS One 2012; 7:e37831. [PMID: 22629462 PMCID: PMC3357403 DOI: 10.1371/journal.pone.0037831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/27/2012] [Indexed: 11/18/2022] Open
Abstract
Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.
Collapse
Affiliation(s)
- Khursheed A. Wani
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Mary Catanese
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Robyn Normantowicz
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Muriel Herd
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kathryn N. Maher
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Daniel L. Chase
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Xu Z, Dong S, Du D, Jiang N, Sun P, Wang H, Yin L, Zhang X, Cao X, Zhen X, Hu Y. Generation and characterization of hD5 and C-terminal Mutant hD(5m) transgenic rats. Brain Res 2012; 1448:27-41. [PMID: 22386496 DOI: 10.1016/j.brainres.2012.01.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/21/2012] [Accepted: 01/28/2012] [Indexed: 11/17/2022]
Abstract
Dopamine D1-like receptors play important roles in many brain activities such as cognition and emotion. We have generated human hD5 and mutant human hD5 (hD(5m)) transgenic rats. The C-terminal juxtamembrane domain of mutant hD5 was identical to that of hD5 pseudogenes. The transgenes were driven by the CAMKII promoter that led the expression mainly in the cerebral cortex and hippocampus. We have used different dopamine receptor agonists to compare the pharmacological profiles of the human hD5 and hD(5m) receptors. The results showed that they exhibited distinct pharmacological properties. Our results of pharmacological studies indicated that the C-terminal of D5 receptor could play important roles in agonist binding affinity. Hippocampal long-term potentiation (LTP) evoked by tetanic stimulation was significantly reduced in both transgenic rats. In addition, we found that the overexpression of dopamine hD5 and hD(5m) receptors in the rat brain resulted in memory impairments. Interestingly, an atypical D1-like receptor agonist, SKF83959, could induce anxiety in hD(5m) receptor transgenic rats but had no effect on the anxiety-like behavior in D5 receptor transgenic and wild-type rats.
Collapse
Affiliation(s)
- Zhiliang Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fukunaga K, Shioda N. Novel dopamine D2 receptor signaling through proteins interacting with the third cytoplasmic loop. Mol Neurobiol 2011; 45:144-52. [PMID: 22183739 DOI: 10.1007/s12035-011-8227-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/07/2011] [Indexed: 01/09/2023]
Abstract
The diverse activities of dopamine D2-like receptors, including D2, D3, and D4 receptors, are mediated by proteins that interact with the third cytoplasmic loop and regulate receptor signaling, receptor trafficking, and apoptosis. Such interacting proteins include calmodulin, the N-methyl-D: -aspartate receptor 2B subunit, calcium/calmodulin-dependent protein kinase II, prostate apoptosis response-4, and β-arrestins, which regulate receptor signaling and the pharmacological action through D2 receptor. The gene encoding the D2 receptor gives rise to two isoforms, termed the dopamine D2 receptor long isoform (D2L) and the dopamine D2 receptor short isoform; the latter lacks 29 amino acids of the D2L receptor within the third cytoplasmic loop. In this review, we first focus on novel functions of the hetero-oligomeric D1/D2 and D2/adenosine A(2A) receptors. We next discuss novel signaling through proteins interacting with the D2 receptor third cytoplasmic loop and define the function of a novel binding protein, heart-type fatty acid binding protein, which interacts with the D2L third cytoplasmic loop.
Collapse
Affiliation(s)
- Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan.
| | | |
Collapse
|
50
|
Abstract
Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.
Collapse
Affiliation(s)
- Ines Armando
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Van Anthony M. Villar
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Pedro A. Jose
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| |
Collapse
|