1
|
Hahn A, Reed MB, Murgaš M, Vraka C, Klug S, Schmidt C, Godbersen GM, Eggerstorfer B, Gomola D, Silberbauer LR, Nics L, Philippe C, Hacker M, Lanzenberger R. Dynamics of human serotonin synthesis differentially link to reward anticipation and feedback. Mol Psychiatry 2025; 30:600-607. [PMID: 39179904 PMCID: PMC11746133 DOI: 10.1038/s41380-024-02696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Serotonin (5-HT) plays an essential role in reward processing, however, the possibilities to investigate 5-HT action in humans during emotional stimulation are particularly limited. Here we demonstrate the feasibility of assessing reward-specific dynamics in 5-HT synthesis using functional PET (fPET), combining its molecular specificity with the high temporal resolution of blood oxygen level dependent (BOLD) fMRI. Sixteen healthy volunteers underwent simultaneous fPET/fMRI with the radioligand [11C]AMT, a substrate for tryptophan hydroxylase. During the scan, participants completed the monetary incentive delay task and arterial blood samples were acquired for quantifying 5-HT synthesis rates. BOLD fMRI was recorded as a proxy of neuronal activation, allowing differentiation of reward anticipation and feedback. Monetary gain and loss resulted in substantial increases in 5-HT synthesis in the ventral striatum (VStr, +21% from baseline) and the anterior insula (+41%). In the VStr, task-specific 5-HT synthesis was further correlated with BOLD signal changes during reward feedback (ρ = -0.65), but not anticipation. Conversely, 5-HT synthesis in the anterior insula correlated with BOLD reward anticipation (ρ = -0.61), but not feedback. In sum, we provide a robust tool to identify task-induced changes in 5-HT action in humans, linking the dynamics of 5-HT synthesis to distinct phases of reward processing in a regionally specific manner. Given the relevance of altered reward processing in psychiatric disorders such as addiction, depression and schizophrenia, our approach offers a tailored assessment of impaired 5-HT signaling during cognitive and emotional processing.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Clemens Schmidt
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Benjamin Eggerstorfer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - David Gomola
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Li C, McCloskey NS, Inan S, Kirby LG. Role of serotonin neurons in the dorsal raphe nucleus in heroin self-administration and punishment. Neuropsychopharmacology 2025; 50:596-604. [PMID: 39300273 PMCID: PMC11735851 DOI: 10.1038/s41386-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
One hallmark of substance use disorder is continued drug use despite negative consequences. When drug-taking behavior is punished with aversive stimuli, i.e. footshock, rats can also be categorized into punishment-resistant or compulsive vs. punishment-sensitive or non-compulsive phenotypes. The serotonin (5-hydroxytryptamine, 5-HT) system modulates responses to both reward and punishment. The goal of the current study was to examine punishment phenotypes in heroin self-administration and to determine the role of dorsal raphe nucleus (DRN) 5-HT neurons in both basal and punished heroin self-administration. First, rats were exposed to punished heroin self-administration and neuronal excitability of DRN 5-HT neurons was compared between punishment-resistant and punishment-sensitive phenotypes using ex vivo electrophysiology. Second, DRN 5-HT neuronal activity was manipulated in vivo during basal and punished heroin self-administration using chemogenetic tools in a Tph2-iCre rat line. While rats separated into punishment-resistant and punishment-sensitive phenotypes for punished heroin self-administration, DRN 5-HT neuronal excitability did not differ between the phenotypes. While chemogenetic inhibition of DRN 5-HT neurons was without effect, chemogenetic activation of DRN 5-HT neurons increased both basal and punished heroin self-administration selectively in punishment-resistant animals. Additionally, the responsiveness to chemogenetic activation of DRN 5-HT neurons in basal self-administration and motivation for heroin in progressive ratio each predicted resistance to punishment. Therefore, our data support the role for the DRN 5-HT system in compulsive heroin self-administration.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.
| |
Collapse
|
3
|
Liu C, Zhuang K, Zeitlen DC, Chen Q, Wang X, Feng Q, Beaty RE, Qiu J. Neural, genetic, and cognitive signatures of creativity. Commun Biol 2024; 7:1324. [PMID: 39402209 PMCID: PMC11473644 DOI: 10.1038/s42003-024-07007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Creativity is typically operationalized as divergent thinking (DT) ability, a form of higher-order cognition which relies on memory, attention, and other component processes. Despite recent advances, creativity neuroscience lacks a unified framework to model its complexity across neural, genetic, and cognitive scales. Using task-based fMRI from two independent samples and MVPA, we identified a neural pattern that predicts DT, validated through cognitive decoding, genetic data, and large-scale resting-state fMRI. Our findings reveal that DT neural patterns span brain regions associated with diverse cognitive functions, with positive weights in the default mode and frontoparietal control networks and negative weights in the visual network. The high correlation with the primary gradient of functional connectivity suggests that DT involves extensive integration from concrete sensory information to abstract, higher-level cognition, distinguishing it from other advanced cognitive functions. Moreover, neurobiological analyses show that the DT pattern is positively correlated with dopamine-related neurotransmitters and genes influencing neurotransmitter release, advancing the neurobiological understanding of creativity.
Collapse
Affiliation(s)
- Cheng Liu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, Pennsylvania, USA
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qiuyang Feng
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, Pennsylvania, USA
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Alfaro-Rodríguez A, Reyes-Long S, Roldan-Valadez E, González-Torres M, Bonilla-Jaime H, Bandala C, Avila-Luna A, Bueno-Nava A, Cabrera-Ruiz E, Sanchez-Aparicio P, González Maciel A, Dotor-Llerena AL, Cortes-Altamirano JL. Association of the Serotonin and Kynurenine Pathways as Possible Therapeutic Targets to Modulate Pain in Patients with Fibromyalgia. Pharmaceuticals (Basel) 2024; 17:1205. [PMID: 39338367 PMCID: PMC11434812 DOI: 10.3390/ph17091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Fibromyalgia (FM) is a disorder characterized by widespread chronic pain, significant depression, and various neural abnormalities. Recent research suggests a reciprocal exacerbation mechanism between chronic pain and depression. In patients with FM, dysregulation of tryptophan (Trp) metabolism has been identified. Trp, an essential amino acid, serves as a precursor to serotonin (5-HT), a neuromodulator that influences mood, appetite, sleep, and pain perception through the receptors 5-HT1, 5-HT2, and 5-HT3. Additionally, Trp is involved in the kynurenine pathway, a critical route in the immune response, inflammation, and production of neuroactive substances and nicotinamide adenine dinucleotide (NAD+). The activation of this pathway by pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interferon gamma (IFN-γ), leads to the production of kynurenic acid (KYNA), which has neuroprotective properties, and quinolinic acid (QA), which is neurotoxic. These findings underscore the crucial balance between Trp metabolism, 5-HT, and kynurenine, where an imbalance can contribute to the dual burden of pain and depression in patients with FM. This review proposes a novel therapeutic approach for FM pain management, focusing on inhibiting QA synthesis while co-administering selective serotonin reuptake inhibitors to potentially increase KYNA levels, thus dampening pain perception and improving patient outcomes.
Collapse
Affiliation(s)
- Alfonso Alfaro-Rodríguez
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Samuel Reyes-Long
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Ernesto Roldan-Valadez
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Maykel González-Torres
- Conahcyt & Biotechnology Laboratory, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 03940, Mexico
| | - Herlinda Bonilla-Jaime
- Department of Reproductive Biology, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico
| | - Cindy Bandala
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alberto Avila-Luna
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Antonio Bueno-Nava
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Elizabeth Cabrera-Ruiz
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Pedro Sanchez-Aparicio
- Pharmacology Department, Facultad de Medicina Veterinaria, Universidad Autónoma del Estado de México, Toluca 50090, Mexico
| | - Angélica González Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Ana Lilia Dotor-Llerena
- Division of Clinic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - José Luis Cortes-Altamirano
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
- Department of Chiropractic, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos 55210, Mexico
| |
Collapse
|
5
|
Park M, Koh CS, Chang H, Kim TJ, Mun W, Chang JW, Jung HH. Low-frequency (5-Hz) stimulation of ventrolateral periaqueductal gray modulates the descending serotonergic system in the peripheral neuropathic pain. Pain 2024; 165:1774-1783. [PMID: 38422490 DOI: 10.1097/j.pain.0000000000003185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024]
Abstract
ABSTRACT Neuropathic pain is a type of chronic pain that entails severe prolonged sensory dysfunctions caused by a lesion of the somatosensory system. Many of those suffering from the condition do not experience significant improvement with existing medications, resulting in various side effects. In this study, Sprague-Dawley male rats were used, and long-term deep brain stimulation of the ventrolateral periaqueductal gray was conducted in a rat model of spared nerve injury. We found that 5-Hz deep brain stimulation effectively modulated mechanical allodynia and induced neuronal activation in the rostral ventromedial medulla, restoring impaired descending serotonergic system. At the spinal level, glial cells were still activated but only the 5-HT1a receptor in the spinal cord was activated, implying its inhibitory role in mechanical allodynia. This study found that peripheral neuropathy caused dysfunction in the descending serotonergic system, and prolonged stimulation of ventrolateral periaqueductal gray can modulate the pathway in an efficient manner. This work would provide new opportunities for the development of targeted and effective treatments for this debilitating disease, possibly giving us lower chances of side effects from repeated high-frequency stimulation or long-term use of medication.
Collapse
Affiliation(s)
- Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heesue Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Jun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonki Mun
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Neukam PT, Müller DK, Deza-Lougovski YI, Pooseh S, Witt SH, Rietschel M, Smolka MN. Connection Failure: Differences in White Matter Microstructure Are Associated with 5-HTTLPR but Not with Risk Seeking for Losses. Int J Mol Sci 2024; 25:6666. [PMID: 38928372 PMCID: PMC11203796 DOI: 10.3390/ijms25126666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
S/S carriers of 5-HTTLPR have been found to be more risk seeking for losses compared to L/L carriers. This finding may be the result of reduced top-down control from the frontal cortex due to altered signal pathways involving the amygdala and ventral striatum. The serotonergic system is known to be involved in neurodevelopment and neuroplasticity. Therefore, the aim of this study was to investigate whether structural differences in white matter can explain the differences in risk-seeking behaviour. Lower structural connectivity in S/S compared to L/L carriers and a negative relationship between risk seeking for losses and connectivity were assumed. Diffusion-weighted imaging was used to compute diffusion parameters for the frontostriatal and uncinate tract in 175 genotyped individuals. The results showed no significant relationship between diffusion parameters and risk seeking for losses. Furthermore, we did not find significant differences in diffusion parameters of the S/S vs. L/L group. There were only group differences in the frontostriatal tract showing stronger structural connectivity in the S/L group, which is also reflected in the whole brain approach. Therefore, the data do not support the hypothesis that the association between 5-HTTLPR and risk seeking for losses is related to differences in white matter pathways implicated in decision-making.
Collapse
Affiliation(s)
- Philipp T. Neukam
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Dirk K. Müller
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Shakoor Pooseh
- Center for Interdisciplinary Digital Sciences (CIDS), Technische Universität Dresden, 01069 Dresden, Germany;
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany;
| |
Collapse
|
7
|
Flint HE, Weller JE, Parry-Howells N, Ellerby ZW, McKay SL, King T. Evaluation of indicators of acute emotional states in dogs. Sci Rep 2024; 14:6406. [PMID: 38493262 PMCID: PMC10944520 DOI: 10.1038/s41598-024-56859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
A complete assessment of animal welfare requires not just an understanding of negative emotional states, such as fear and anxiety, but also of positive states, such as calmness and happiness. However, few studies have identified accurate and reliable indicators of positive emotional states in dogs. This study aimed to identify parameters that may serve as indicators of short-term emotional states in dogs. Using a cross-over design, 60 dogs living at a research facility were exposed to six different 10-min scenarios expected to elicit responses varying in emotional valence and arousal. A range of behavioural and physiological parameters were collected and their relationship to anticipated emotional valence and arousal was analysed using linear and logistic mixed models. Cortisol, adrenocorticotropic hormone, heart rate variability, panting, whining, and body shake all demonstrated significant differences based on arousal levels, but only within negative valence scenarios. Scores from a qualitative behavioural assessment (QBA) were associated with both emotional valence and arousal and were considered the best indicator of positive valence. Activity, ear temperature, and sitting were associated with positive high arousal, although this may have been influenced by differing levels of movement induced during these scenarios. Meanwhile, heart rate, secretory immunoglobulin A, standing and lying all showed similar changes associated with arousal for both positive and negative valence scenarios. This study provides a critical first step towards identifying evidence-based indicators of short-term emotional states in dogs, while highlighting considerations that should be made when employing these parameters, including the influence of coder bias, food provision, exercise, and external temperature. Overall, it is recommended future dog emotion and welfare research use a combination of parameters including indicators of both emotional valence and arousal.
Collapse
Affiliation(s)
- Hannah E Flint
- Waltham Petcare Science Institute, Waltham on the Wolds, LE14 4RT, UK.
| | - Jennifer E Weller
- Waltham Petcare Science Institute, Waltham on the Wolds, LE14 4RT, UK
| | - Nia Parry-Howells
- Waltham Petcare Science Institute, Waltham on the Wolds, LE14 4RT, UK
| | - Zack W Ellerby
- Waltham Petcare Science Institute, Waltham on the Wolds, LE14 4RT, UK
| | - Stephanie L McKay
- Waltham Petcare Science Institute, Waltham on the Wolds, LE14 4RT, UK
| | - Tammie King
- Waltham Petcare Science Institute, Waltham on the Wolds, LE14 4RT, UK
| |
Collapse
|
8
|
Brietzke C, Vinícius Í, Ribeiro WA, Franco-Alvarenga PE, Canestri R, Vasconcelos GC, Hettinga FJ, Santos TM, Pires FO. Carbohydrate mouth rinse improves performance of mentally fatigued cyclists despite null effects on psychological responses. Physiol Behav 2024; 274:114428. [PMID: 38065422 DOI: 10.1016/j.physbeh.2023.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Mental fatigue reduces exercise performance through an impaired psychological response such as increased perceived exertion. Carbohydrate (CHO) mouth rinses improve exercise performance and perceived exertion likely due to an improved activation in cerebral reward areas, then we investigated if the CHO mouth rinse-improved exercise performance in mentally fatigued individuals was associated with ameliorated reward-related psychological responses. We hypothesised that CHO mouth rinse would be beneficial for mentally fatigued cyclists mainly in high-metabolic disturbance intensities. After familiarization and baseline sessions, well trained cyclists (n = 20) performed a maximal incremental test (MIT) after mental fatigue induction. They completed the MIT either without mouth rinse (MF) or rinsing their mouth with CHO (MF+CHO) or placebo (FM+PLA) solutions at every 25 % of the MIT. Psychological responses such as ratings of perceived exertion (RPE), affective valence, emotional arousal, and motivation were assessed throughout the MIT, while performance was assessed as peak power output and time of exercise. Mental fatigue reduced MIT performance (P < 0.05), but CHO mouth rinse was effective to counteract this deleterious mental fatigue effect (P < 0.05). However, we found null effects of CHO mouth rinses in psychological responses above the VT2 (P > 0.05) such as RPE, affective valence, emotional arousal, and motivation. Correlational analysis showed a significant, but moderate negative correlation between motivation and time of exercise above the VT2 when participants used CHO mouth rinse. In conclusion, the ergogenic CHO mouth rinse effects on MIT performance of mentally fatigued cyclists were irrespective of ameliorated psychological responses to exercise.
Collapse
Affiliation(s)
- Cayque Brietzke
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, 05508-060, Brazil; Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Avenida Sena Madureira 1500, Brazil.
| | - Ítalo Vinícius
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, 05508-060, Brazil
| | - Wesley Alves Ribeiro
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, 05508-060, Brazil
| | - Paulo Estevão Franco-Alvarenga
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, 05508-060, Brazil; Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Avenida Sena Madureira 1500, Brazil
| | - Raul Canestri
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, 05508-060, Brazil
| | - Gustavo César Vasconcelos
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, 05508-060, Brazil; Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Avenida Sena Madureira 1500, Brazil
| | - Florentina Johanna Hettinga
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, NE1 8ST, United Kingdom of Great Britain, Northern Ireland United Kingdom
| | - Tony Meireles Santos
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, 05508-060, Brazil; Physical Education Program, Research Center for Performance and Health, Federal University of Pernambuco, Recife, 52071-030, Brazil
| | - Flávio Oliveira Pires
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, 05508-060, Brazil; Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Avenida Sena Madureira 1500, Brazil
| |
Collapse
|
9
|
Chekani Azar S, Sabuncuoğlu Çoban N. Nesfatin-1 protects the reproductive health of male Sprague Dawley rats exposed to blue and white LED lights. Sci Rep 2023; 13:19962. [PMID: 37968298 PMCID: PMC10652020 DOI: 10.1038/s41598-023-46137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
There is little information on the effects of exposure to light emitting diode (LED) illumination on the welfare of laboratory animals. Nesfatin-1, a satiety-regulation peptide present in various tissues, is found in the central nervous system and participates in the stress response. The present study investigated whether exposure to blue and white LED lights for 14 weeks affected growth and reproductive, biochemical and histopathological parameters in male Sprague Dawley (SD) rats as well as whether subcutaneous (SC) injection of nesfatin-1 (0.5 mg/kg bodyweight) in the last two weeks of the experimental period alleviated these effects. Forty male SD rats (21 days of age) were randomly allotted to 6 groups. The animals were exposed to routine fluorescent light (the control [C] and control + sesame oil [CS] groups) or blue/white LEDs (the blue-LED and white-LED groups), accompanied by nesfatin-1 administration (the blue-LED-N1 and white-LED-N1 groups). White-LED rats had significantly higher testis weights (p < 0.05) than control and blue-LED rats. Serum melatonin levels were significantly lower in blue-LED rats, but nesfatin-1 injection rescued melatonin levels in blue-LED-N1 rats (p < 0.05). Blue-LED rats showed the highest serum nesfatin-1 levels, but nesfatin-1 injection decreased nesfatin-1 levels in blue-LED-N1 rats (p < 0.0001). Blue-LED rats showed a significant reduction in sperm motility compared to the other groups (p < 0.0001). White and blue LED exposure caused significant negative histopathological changes in the testes, but nesfatin-1 administration reduced edema in the intertubular spaces, hyperemia in the interstitial cells, degeneration of spermatocytes and thinning of the tubular wall in the testicular tissues; these restorative effects were larger in blue-LED-N1 rats than white-LED-N1 rats. Blue and white LED exposures had negative effects on melatonin levels, testis weights and tissue health. Nesfatin-1 alleviated some of the negative effects of LED lighting.
Collapse
Affiliation(s)
- Saeid Chekani Azar
- Department of Animal Science, Faculty of Veterinary Medicine, University of Atatürk, Erzurum, Turkey.
| | - Nilüfer Sabuncuoğlu Çoban
- Department of Animal Science, Faculty of Veterinary Medicine, University of Atatürk, Erzurum, Turkey
| |
Collapse
|
10
|
Smith ALW, Harmer CJ, Cowen PJ, Murphy SE. The Serotonin 1A (5-HT 1A) Receptor as a Pharmacological Target in Depression. CNS Drugs 2023; 37:571-585. [PMID: 37386328 DOI: 10.1007/s40263-023-01014-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
Clinical depression is a common, debilitating and heterogenous disorder. Existing treatments for depression are inadequate for a significant minority of patients and new approaches are urgently needed. A wealth of evidence implicates the serotonin 1A (5-HT1A) receptor in the pathophysiology of depression. Stimulation of the 5-HT1A receptor is an existing therapeutic target for treating depression and anxiety, using drugs such as buspirone and tandospirone. However, activation of 5-HT1A raphe autoreceptors has also been suggested to be responsible for the delay in the therapeutic action of conventional antidepressants such as selective serotonin reuptake inhibitors (SSRIs). This narrative review provides a brief overview of the 5-HT1A receptor, the evidence implicating it in depression and in the effects of conventional antidepressant treatment. We highlight that pre- and post-synaptic 5-HT1A receptors may have divergent roles in the pathophysiology and treatment of depression. To date, developing this understanding to progress therapeutic discovery has been limited, partly due to a paucity of specific pharmacological probes suitable for use in humans. The development of 5-HT1A 'biased agonism', using compounds such as NLX-101, offers the opportunity to further elucidate the roles of pre- and post-synaptic 5-HT1A receptors. We describe how experimental medicine approaches can be helpful in profiling the effects of 5-HT1A receptor modulation on the different clinical domains of depression, and outline some potential neurocognitive models that could be used to test the effects of 5-HT1A biased agonists.
Collapse
Affiliation(s)
- Alexander L W Smith
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip J Cowen
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Susannah E Murphy
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
11
|
Fusaroli M, Giunchi V, Battini V, Gringeri M, Rimondini R, Menchetti M, Radice S, Pozzi M, Nobile M, Clementi E, De Ponti F, Carnovale C, Raschi E, Poluzzi E. Exploring the underlying mechanisms of drug-induced impulse control disorders: a pharmacovigilance-pharmacodynamic study. Psychiatry Clin Neurosci 2023; 77:160-167. [PMID: 36436204 DOI: 10.1111/pcn.13511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Impulse control disorders (e.g. pathological gambling, hypersexuality) may develop as adverse reactions to drugs. Pathogenetic hypotheses have mainly focused on D3-receptor agonism, and switching to alternatives with different pharmacologic mechanisms represents a common management strategy. Nonetheless, treatment failure is common and gaining pathophysiological insights is needed. AIM We aimed to identify targets potentially contributing to pathologic impulsivity. METHOD We performed a pharmacovigilance-pharmacodynamic study on dopamine agonists and antipsychotics using the Food and Drug Administration Adverse Event Reporting System (January 2004-December 2021). We estimated disproportionate reporting using the Bayesian information component. Using online public databases (IUPHAR, ChEMBL, PDSP, DrugBank), we calculated drug occupancies. To identify the targets potentially contributing to impulsivity, we fitted univariate regression models interpolating information components and occupancies within dopamine agonists and antipsychotics. Sensitivity analyses were performed to check for the robustness of the results. RESULTS Among 19 887 reports of impulsivity, 5898 recorded an antipsychotic, and 3100 a dopamine agonist. The more robust signals concerned aripiprazole (N = 3091; median information component [95% confidence interval] = 4.51[4.45-4.55]) and brexpiprazole (229; 4.00[3.78-4.16]) for antipsychotics, pergolide (105; 5.82[5.50-6.06]) and pramipexole (2009; 5.43[5.36-5.48]) for dopamine agonists. Robust, significant positive associations between drug occupancy and impulsivity reporting were found for D3 within dopamine agonists (beta = 1.52; P-value = 0.047) and 5-HT1a within antipsychotics (1.92, 0.029). CONCLUSION Our results supported the role of D3-receptor agonism in inducing impulsivity in dopamine receptor agonists and identified a potential role of 5-HT1a receptor agonism in antipsychotics. Investigating these receptors may drive towards a better management of drug-induced impulsivity.
Collapse
Affiliation(s)
- Michele Fusaroli
- Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy
| | - Valentina Giunchi
- Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy
| | - Vera Battini
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Michele Gringeri
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Roberto Rimondini
- Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy
| | - Marco Menchetti
- Unit of Psychiatry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna
| | - Sonia Radice
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Maria Nobile
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Fabrizio De Ponti
- Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy
| | - Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Emanuel Raschi
- Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy
| | - Elisabetta Poluzzi
- Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), Università di Bologna, Bologna, Italy
| |
Collapse
|
12
|
Nobis L, Maio MR, Saleh Y, Manohar S, Kienast A, McGann E, Husain M. Role of serotonin in modulation of decision-making in Parkinson's disease. J Psychopharmacol 2023; 37:420-431. [PMID: 36628992 PMCID: PMC10101180 DOI: 10.1177/02698811221144636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dysfunction of dopaminergic pathways has been considered to play a pivotal role in Parkinson's disease (PD), affecting the processing of emotional and rewarding information, and potentially leading to symptoms of depression or apathy. However, some aspects of motivation in PD might be affected by non-dopaminergic mechanisms. AIM AND METHOD The objective of this experimental medicine study was to investigate the contribution of serotonergic modulation via administration of citalopram (20 mg) for 7 days on motivated decision-making in twenty PD patients, measured using several different computerised tasks and clinical questionnaires that probe different aspects of decision-making. Twenty healthy controls were additionally tested without medication to assess any baseline differences between the two groups. RESULTS Results indicated that PD patients were overall less motivated than controls on an effort- and reward-based decision-making task. Citalopram increased or decreased willingness to exert effort for reward, depending on whether baseline motivation was high or low, respectively. A task assessing decision-making under risk revealed higher levels of risk aversion for potential losses in PD patients, which neither serotonin nor the patient's regular dopaminergic medication seemed to restore. However, citalopram in PD was associated with more risk-seeking choices for gains, although patients and controls did not differ on this at baseline. CONCLUSION The results provide evidence for a role of the serotonergic system in influencing some aspects of motivated decision-making in PD processes.
Collapse
Affiliation(s)
- Lisa Nobis
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Maria Raquel Maio
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Youssuf Saleh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sanjay Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Emily McGann
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Scuotto C, Ilardi CR, Maggi G, Ilardi A, Gamboz N, Staiano M, Borrelli G, La Marra M, Perrella R. What makes us more susceptible to false memories in the era of COVID-19? A focus on vaccines and Green Pass. Brain Behav 2023; 13:e2815. [PMID: 36448933 PMCID: PMC9847604 DOI: 10.1002/brb3.2815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION The coronavirus disease 2019 (COVID-19) pandemic was accompanied by an overabundance of fake news increasing the risk of developing false memories (FMs). Previous studies have shown that the relationship between fake news and FMs could be mediated by some individual variables, including attitudinal biases. We explored the role of these variables in true memories (TMs) and FMs formation, with special emphasis on vaccine- and Green Pass (GP)-related topics. METHOD We set up a large online survey exploring several constructs including media usage, attitude toward vaccines and GP, perceived (PK) and objective knowledge (OK) about COVID-19-related information, fear of the disease, depression and anxiety symptoms, coping mechanisms, and reasoning skills. Then, we asked participants whether they remembered certain news (true or fake), providing confidence ratings. RESULTS Data from 289 respondents (198 females) from the general population were analyzed. Participants with positive attitude reported a greater fear that their loved ones contracted the COVID-19, a more frequent use of traditional media, and a higher PK when compared with respondents with negative attitude. On the whole sample, participants reported higher confidence levels when required to judge their memory of true than fake news; however, participants with positive attitude reported a higher confidence for both true and fake news. The relationship between attitude and TM confidence was mediated by the PK, whereas the relationship between attitude and FM confidence was probably affected by OK. CONCLUSION Attitude can modulate individual behaviors in the context of health issues. The PK and OK may interact with attitude in the memory formation.
Collapse
Affiliation(s)
- Chiara Scuotto
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Ciro Rosario Ilardi
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Gianpaolo Maggi
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Alfonso Ilardi
- Inmates Ward, Department of Internal Medicine, Antonio Cardarelli Hospital, Naples, Italy
| | - Nadia Gamboz
- Laboratory of Experimental Psychology, Suor Orsola Benincasa University, Naples, Italy
| | - Maria Staiano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Borrelli
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaella Perrella
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
14
|
Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion. Nat Commun 2022; 13:7708. [PMID: 36550097 PMCID: PMC9780347 DOI: 10.1038/s41467-022-35346-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.
Collapse
|
15
|
Martins-Oliveira M, Akerman S, Holland PR, Tavares I, Goadsby PJ. Pharmacological modulation of ventral tegmental area neurons elicits changes in trigeminovascular sensory processing and is accompanied by glycemic changes: Implications for migraine. Cephalalgia 2022; 42:1359-1374. [PMID: 36259130 DOI: 10.1177/03331024221110111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Imaging migraine premonitory studies show increased midbrain activation consistent with the ventral tegmental area, an area involved in pain modulation and hedonic feeding. We investigated ventral tegmental area pharmacological modulation effects on trigeminovascular processing and consequent glycemic levels, which could be involved in appetite changes in susceptible migraine patients. METHODS Serotonin and pituitary adenylate cyclase-activating polypeptide receptors immunohistochemistry was performed in ventral tegmental area parabrachial pigmented nucleus of male Sprague Dawley rats. In vivo trigeminocervical complex neuronal responses to dura mater nociceptive electrical stimulation, and facial mechanical stimulation of the ophthalmic dermatome were recorded. Changes in trigeminocervical complex responses following ventral tegmental area parabrachial pigmented nucleus microinjection of glutamate, bicuculline, naratriptan, pituitary adenylate cyclase-activating polypeptide-38 and quinpirole were measured, and blood glucose levels assessed pre- and post-microinjection. RESULTS Glutamatergic stimulation of ventral tegmental area parabrachial pigmented nucleus neurons reduced nociceptive and spontaneous trigeminocervical complex neuronal firing. Naratriptan, pituitary adenylate cyclase-activating polypeptide-38 and quinpirole inhibited trigeminovascular spontaneous activity, and trigeminocervical complex neuronal responses to dural-evoked electrical and mechanical noxious stimulation. Trigeminovascular sensory processing through modulation of the ventral tegmental area parabrachial pigmented nucleus resulted in reduced circulating glucose levels. CONCLUSION Pharmacological modulation of ventral tegmental area parabrachial pigmented nucleus neurons elicits changes in trigeminovascular sensory processing. The interplay between ventral tegmental area parabrachial pigmented nucleus activity and the sensory processing by the trigeminovascular system may be relevant to understand associated sensory and homeostatic symptoms in susceptible migraine patients.
Collapse
Affiliation(s)
- Margarida Martins-Oliveira
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,Department of Nutrition and Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa; Lisboa, Portugal.,Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Philip R Holland
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Isaura Tavares
- Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,Department of Neurology, University of California, Los Angeles, Los Angeles CA USA
| |
Collapse
|
16
|
Hilz EN, Gore AC. Sex-specific Effects of Endocrine-disrupting Chemicals on Brain Monoamines and Cognitive Behavior. Endocrinology 2022; 163:bqac128. [PMID: 35939362 PMCID: PMC9419695 DOI: 10.1210/endocr/bqac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/19/2022]
Abstract
The period of brain sexual differentiation is characterized by the development of hormone-sensitive neural circuits that govern the subsequent presentation of sexually dimorphic behavior in adulthood. Perturbations of hormones by endocrine-disrupting chemicals (EDCs) during this developmental period interfere with an organism's endocrine function and can disrupt the normative organization of male- or female-typical neural circuitry. This is well characterized for reproductive and social behaviors and their underlying circuitry in the hypothalamus and other limbic regions of the brain; however, cognitive behaviors are also sexually dimorphic, with their underlying neural circuitry potentially vulnerable to EDC exposure during critical periods of brain development. This review provides recent evidence for sex-specific changes to the brain's monoaminergic systems (dopamine, serotonin, norepinephrine) after developmental EDC exposure and relates these outcomes to sex differences in cognition such as affective, attentional, and learning/memory behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Andrea C Gore
- Correspondence: Andrea C. Gore, PhD, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St, Box C0875, Austin, TX, 78712, USA.
| |
Collapse
|
17
|
Wu GR, Baeken C. Brainstem glucose metabolism predicts reward dependence scores in treatment-resistant major depression. Psychol Med 2022; 52:3260-3266. [PMID: 33504370 PMCID: PMC9693681 DOI: 10.1017/s0033291720005425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/22/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND It has been suggested that individual differences in temperament could be involved in the (non-)response to antidepressant (AD) treatment. However, how neurobiological processes such as brain glucose metabolism may relate to personality features in the treatment-resistant depressed (TRD) state remains largely unclear. METHODS To examine how brainstem metabolism in the TRD state may predict Cloninger's temperament dimensions Harm Avoidance (HA), Novelty Seeking (NS), and Reward Dependence (RD), we collected 18fluorodeoxyglucose positron emission tomography (18FDG PET) scans in 40 AD-free TRD patients. All participants were assessed with the Temperament and Character Inventory (TCI). We applied a multiple kernel learning (MKL) regression to predict the HA, NS, and RD from brainstem metabolic activity, the origin of respectively serotonergic, dopaminergic, and noradrenergic neurotransmitter (NT) systems. RESULTS The MKL model was able to significantly predict RD but not HA and NS from the brainstem metabolic activity. The MKL pattern regression model identified increased metabolic activity in the pontine nuclei and locus coeruleus, the medial reticular formation, the dorsal/median raphe, and the ventral tegmental area that contributed to the predictions of RD. CONCLUSIONS The MKL algorithm identified a likely metabolic marker in the brainstem for RD in major depression. Although 18FDG PET does not investigate specific NT systems, the predictive value of brainstem glucose metabolism on RD scores however indicates that this temperament dimension in the TRD state could be mediated by different monoaminergic systems, all involved in higher order reward-related behavior.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Faculty of Psychology, Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Chris Baeken
- Department of Psychiatry University Hospital (UZBrussel), Brussels, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
- Department of Head and Skin, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
18
|
Lan DCL, Browning M. What Can Reinforcement Learning Models of Dopamine and Serotonin Tell Us about the Action of Antidepressants? COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2022; 6:166-188. [PMID: 38774776 PMCID: PMC11104395 DOI: 10.5334/cpsy.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
Although evidence suggests that antidepressants are effective at treating depression, the mechanisms behind antidepressant action remain unclear, especially at the cognitive/computational level. In recent years, reinforcement learning (RL) models have increasingly been used to characterise the roles of neurotransmitters and to probe the computations that might be altered in psychiatric disorders like depression. Hence, RL models might present an opportunity for us to better understand the computational mechanisms underlying antidepressant effects. Moreover, RL models may also help us shed light on how these computations may be implemented in the brain (e.g., in midbrain, striatal, and prefrontal regions) and how these neural mechanisms may be altered in depression and remediated by antidepressant treatments. In this paper, we evaluate the ability of RL models to help us understand the processes underlying antidepressant action. To do this, we review the preclinical literature on the roles of dopamine and serotonin in RL, draw links between these findings and clinical work investigating computations altered in depression, and appraise the evidence linking modification of RL processes to antidepressant function. Overall, while there is no shortage of promising ideas about the computational mechanisms underlying antidepressant effects, there is insufficient evidence directly implicating these mechanisms in the response of depressed patients to antidepressant treatment. Consequently, future studies should investigate these mechanisms in samples of depressed patients and assess whether modifications in RL processes mediate the clinical effect of antidepressant treatments.
Collapse
Affiliation(s)
- Denis C. L. Lan
- Department of Experimental Psychology, University of Oxford, Oxford, GB
| | | |
Collapse
|
19
|
de la Puente B, Zamanillo D, Romero L, Carceller A, Vela JM, Merlos M, Portillo-Salido E. Comprehensive Preclinical Assessment of Sensory, Functional, Motivational-Affective, and Neurochemical Outcomes in Neuropathic Pain: The Case of the Sigma-1 Receptor. ACS Pharmacol Transl Sci 2022; 5:240-254. [PMID: 35434530 PMCID: PMC9003638 DOI: 10.1021/acsptsci.2c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Chronic pain remains a major health problem and is currently facing slow drug innovation. New drug treatments should address not only the sensory-discriminative but also functional and motivational-affective components of chronic pain. In a mouse model of neuropathic pain induced by partial sciatic nerve ligation (PSNL), we analyzed sensory and functional-like outcomes by hindpaw mechanical stimulation and automated gait analysis (CatWalk). We characterized over time a reward-seeking task based on diminished motivation for natural reinforcers (anhedonic-like behavior). To differentiate the appetitive ("wanting") and consummatory ("liking") aspects of motivational behavior, we quantified the latency and number of approaches to eat white chocolate, as well as the eating duration and amount consumed. We explored a putative chronic pain-induced dysregulation of monoamine function by measuring monoamine levels in the nucleus accumbens (NAc), a well-known brain reward area. Finally, we investigated the role of sigma-1 receptor (σ1R) modulation, a nonopioid target, in these multiple dimensions by genetic deletion and pharmacological dose-response studies. After 6 weeks, PSNL increased the approach latency and reduced the consumption of white chocolate in 20-25% of the mice, while around 50-60% had one or the other parameter affected independently. After 10 weeks, sham-operated mice also displayed anhedonic-like behavior. PSNL was associated with reduced extracellular baseline dopamine and increased norepinephrine in the NAc and with a suppression of increased dopamine and serotonin efflux in response to the rewarding stimulus. Genetic and pharmacological blockade of σ1R relieved these multiple alterations in nerve-injured mice. We comprehensively describe sensory, functional, and depression-like impairment of key components of motivated behavior associated with nerve injury. We provide a neurochemical substrate for the depressed mesocorticolimbic reward processing in chronic pain, with a potentially increased translational value. Our results also highlight σ1R for the therapeutic intervention of neuropathic pain.
Collapse
Affiliation(s)
| | - Daniel Zamanillo
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Luz Romero
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Alicia Carceller
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Manuel Merlos
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
20
|
Campos A, Port JD, Acosta A. Integrative Hedonic and Homeostatic Food Intake Regulation by the Central Nervous System: Insights from Neuroimaging. Brain Sci 2022; 12:431. [PMID: 35447963 PMCID: PMC9032173 DOI: 10.3390/brainsci12040431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Food intake regulation in humans is a complex process controlled by the dynamic interaction of homeostatic and hedonic systems. Homeostatic regulation is controlled by appetitive signals from the gut, adipose tissue, and the vagus nerve, while conscious and unconscious reward processes orchestrate hedonic regulation. On the one hand, sight, smell, taste, and texture perception deliver potent food-related feedback to the central nervous system (CNS) and influence brain areas related to food reward. On the other hand, macronutrient composition stimulates the release of appetite signals from the gut, which are translated in the CNS into unconscious reward processes. This multi-level regulation process of food intake shapes and regulates human ingestive behavior. Identifying the interface between hormones, neurotransmitters, and brain areas is critical to advance our understanding of conditions like obesity and develop better therapeutical interventions. Neuroimaging studies allow us to take a glance into the central nervous system (CNS) while these processes take place. This review focuses on the available neuroimaging evidence to describe this interaction between the homeostatic and hedonic components in human food intake regulation.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - John D. Port
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
21
|
Yee DM, Leng X, Shenhav A, Braver TS. Aversive motivation and cognitive control. Neurosci Biobehav Rev 2022; 133:104493. [PMID: 34910931 PMCID: PMC8792354 DOI: 10.1016/j.neubiorev.2021.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Aversive motivation plays a prominent role in driving individuals to exert cognitive control. However, the complexity of behavioral responses attributed to aversive incentives creates significant challenges for developing a clear understanding of the neural mechanisms of this motivation-control interaction. We review the animal learning, systems neuroscience, and computational literatures to highlight the importance of experimental paradigms that incorporate both motivational context manipulations and mixed motivational components (e.g., bundling of appetitive and aversive incentives). Specifically, we postulate that to understand aversive incentive effects on cognitive control allocation, a critical contextual factor is whether such incentives are associated with negative reinforcement or punishment. We further illustrate how the inclusion of mixed motivational components in experimental paradigms enables increased precision in the measurement of aversive influences on cognitive control. A sharpened experimental and theoretical focus regarding the manipulation and assessment of distinct motivational dimensions promises to advance understanding of the neural, monoaminergic, and computational mechanisms that underlie the interaction of motivation and cognitive control.
Collapse
Affiliation(s)
- Debbie M Yee
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA; Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA.
| | - Xiamin Leng
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Amitai Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA
| |
Collapse
|
22
|
Sheng JA, Tan SML, Hale TM, Handa RJ. Androgens and Their Role in Regulating Sex Differences in the Hypothalamic/Pituitary/Adrenal Axis Stress Response and Stress-Related Behaviors. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2022; 2:261-274. [PMID: 35024695 PMCID: PMC8744007 DOI: 10.1089/andro.2021.0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Androgens play a pivotal role during development. These gonadal hormones and their receptors exert organizational actions that shape brain morphology in regions controlling the stress regulatory systems in a male-specific manner. Specifically, androgens drive sex differences in the hypothalamic/pituitary/adrenal (HPA) axis and corresponding hypothalamic neuropeptides. While studies have examined the role of estradiol and its receptors in sex differences in the HPA axis and associated behaviors, the role of androgens remains far less studied. Androgens are generally thought to modulate the HPA axis through the activation of androgen receptors (ARs). They can also impact the HPA axis through reduction to estrogenic metabolites that can bind estrogen receptors in the brain and periphery. Such regulation of the HPA axis stress response by androgens can often result in sex-biased risk factors for stress-related disorders, such as anxiety and depression. This review focuses on the biosynthesis pathways and molecular actions of androgens and their nuclear receptors. The impact of androgens on hypothalamic neuropeptide systems (corticotropin-releasing hormone, arginine vasopressin, oxytocin, dopamine, and serotonin) that control the stress response and stress-related disorders is discussed. Finally, this review discusses potential therapeutics involving androgens (androgen replacement therapies, selective AR modulator therapies) and ongoing clinical trials.
Collapse
Affiliation(s)
- Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah M L Tan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taben M Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Arizona, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
23
|
Trotter PD, Smith SA, Moore DJ, O’Sullivan N, McFarquhar MM, McGlone FP, Walker SC. Acute tryptophan depletion alters affective touch perception. Psychopharmacology (Berl) 2022; 239:2771-2785. [PMID: 35554625 PMCID: PMC9385795 DOI: 10.1007/s00213-022-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Affiliative tactile interactions help regulate physiological arousal and confer resilience to acute and chronic stress. C-tactile afferents (CTs) are a population of unmyelinated, low threshold mechanosensitive cutaneous nerve fibres which respond optimally to a low force stimulus, moving at between 1 and 10 cm/s. As CT firing frequencies correlate positively with subjective ratings of touch pleasantness, they are hypothesised to form the first stage of encoding affiliative tactile interactions. Serotonin is a key modulator of social responses with known effects on bonding. OBJECTIVES The aim of the present study was to determine the effect of acutely lowering central serotonin levels on perceptions of CT-targeted affective touch. METHODS In a double blind, placebo-controlled design, the effect of acute tryptophan depletion (ATD) on 25 female participants' ratings of directly and vicariously experienced touch was investigated. Psychophysical techniques were used to deliver dynamic tactile stimuli; some velocities were targeted to optimally activate CTs (1-10 cm/s), whereas other, faster and slower strokes fell outside the CT optimal range. Discriminative tactile function, cold pain threshold and tolerance were also measured. RESULTS ATD significantly increased pleasantness ratings of both directly and vicariously experienced affective touch, increasing discrimination of the specific hedonic value of CT targeted velocities. While ATD had no effect on either tactile or cold pain thresholds, there was a trend for reduced tolerance to cold pain. CONCLUSIONS These findings are consistent with previous reports that depletion of central serotonin levels modulates neural and behavioural responsiveness to appetitive sensory signals.
Collapse
Affiliation(s)
- Paula D. Trotter
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| | - Sharon A. Smith
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| | - David J. Moore
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| | | | - Martyn M. McFarquhar
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| | - Francis P. McGlone
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK ,Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Susannah C. Walker
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
24
|
Neurotransmitter and Neurotransmitter Receptor Expression in the Saccule of the Human Vestibular System. Prog Neurobiol 2022; 212:102238. [DOI: 10.1016/j.pneurobio.2022.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
|
25
|
Scuotto C, Ilardi CR, Avallone F, Maggi G, Ilardi A, Borrelli G, Gamboz N, La Marra M, Perrella R. Objective Knowledge Mediates the Relationship between the Use of Social Media and COVID-19-Related False Memories. Brain Sci 2021; 11:1489. [PMID: 34827488 PMCID: PMC8615822 DOI: 10.3390/brainsci11111489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
The exposure to relevant social and/or historical events can increase the generation of false memories (FMs). The Coronavirus Disease 2019 (COVID-19) pandemic is a calamity challenging health, political, and journalistic bodies, with media generating confusion that has facilitated the spread of fake news. In this respect, our study aims at investigating the relationships between memories (true memories, TMs vs. FMs) for COVID-19-related news and different individual variables (i.e., use of traditional and social media, COVID-19 perceived and objective knowledge, fear of the disease, depression and anxiety symptoms, reasoning skills, and coping mechanisms). One hundred and seventy-one university students (131 females) were surveyed. Overall, our results suggested that depression and anxiety symptoms, reasoning skills, and coping mechanisms did not affect the formation of FMs. Conversely, the fear of loved ones contracting the infection was found to be negatively associated with FMs. This finding might be due to an empathy/prosociality-based positive bias boosting memory abilities, also explained by the young age of participants. Furthermore, objective knowledge (i) predicted an increase in TMs and decrease in FMs and (ii) significantly mediated the relationships between the use of social media and development of both TMs and FMs. In particular, higher levels of objective knowledge strengthened the formation of TMs and decreased the development of FMs following use of social media. These results may lead to reconsidering the idea of social media as the main source of fake news. This claim is further supported by either the lack of substantial differences between the use of traditional and social media among participants reporting FMs or the positive association between use of social media and levels of objective knowledge. The knowledge about the topic rather than the type of source would make a difference in the process of memory formation.
Collapse
Affiliation(s)
- Chiara Scuotto
- Department of Psychology, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (C.S.); (C.R.I.); (G.M.); (G.B.); (R.P.)
| | - Ciro Rosario Ilardi
- Department of Psychology, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (C.S.); (C.R.I.); (G.M.); (G.B.); (R.P.)
| | - Francesco Avallone
- Department of Family Medicine, McGill University, Montreal, QC H3S1Z1, Canada;
| | - Gianpaolo Maggi
- Department of Psychology, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (C.S.); (C.R.I.); (G.M.); (G.B.); (R.P.)
| | - Alfonso Ilardi
- Inmates Ward, Department of Internal Medicine, Antonio Cardarelli Hospital, 80131 Naples, Italy;
| | - Giovanni Borrelli
- Department of Psychology, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (C.S.); (C.R.I.); (G.M.); (G.B.); (R.P.)
| | - Nadia Gamboz
- Laboratory of Experimental Psychology, Suor Orsola Benincasa University, 80135 Naples, Italy;
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaella Perrella
- Department of Psychology, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (C.S.); (C.R.I.); (G.M.); (G.B.); (R.P.)
| |
Collapse
|
26
|
Hahn A, Reed MB, Pichler V, Michenthaler P, Rischka L, Godbersen GM, Wadsak W, Hacker M, Lanzenberger R. Functional dynamics of dopamine synthesis during monetary reward and punishment processing. J Cereb Blood Flow Metab 2021; 41:2973-2985. [PMID: 34053336 PMCID: PMC8543667 DOI: 10.1177/0271678x211019827] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The assessment of dopamine release with the PET competition model is thoroughly validated but entails disadvantages for the investigation of cognitive processes. We introduce a novel approach incorporating 6-[18F]FDOPA uptake as index of the dynamic regulation of dopamine synthesis enzymes by neuronal firing. The feasibility of this approach is demonstrated by assessing widely described sex differences in dopamine neurotransmission. Reward processing was behaviorally investigated in 36 healthy participants, of whom 16 completed fPET and fMRI during the monetary incentive delay task. A single 50 min fPET acquisition with 6-[18F]FDOPA served to quantify task-specific changes in dopamine synthesis. In men monetary gain induced stronger increases in ventral striatum dopamine synthesis than loss. Interestingly, the opposite effect was discovered in women. These changes were further associated with reward (men) and punishment sensitivity (women). As expected, fMRI showed robust task-specific neuronal activation but no sex difference. Our findings provide a neurobiological basis for known behavioral sex differences in reward and punishment processing, with important implications in psychiatric disorders showing sex-specific prevalence, altered reward processing and dopamine signaling. The high temporal resolution and magnitude of task-specific changes make fPET a promising tool to investigate functional neurotransmitter dynamics during cognitive processing and in brain disorders.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Hsu LM, Lane TJ, Wu CW, Lin CY, Yeh CB, Kao HW, Lin CP. Spontaneous thought-related network connectivity predicts sertraline effect on major depressive disorder. Brain Imaging Behav 2021; 15:1705-1717. [PMID: 32710339 DOI: 10.1007/s11682-020-00364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sertraline is one of the most commonly prescribed antidepressants. Major depressive disorder (MDD) is characterized by spontaneous thoughts that are laden with negative affect-a "malignant sadness". Prior neuroimaging studies have identified abnormal resting-state functional connectivity (rsFC) in the spontaneous brain networks of MDD patients. But how antidepressant medication acts to relieve the experience of depression as well as adjust its associated spontaneous networks and mood-regulation circuits remains an open question. In this study, we recruited 22 drug-naïve MDD patients along with 35 normal controls and investigated whether the functional integrity of cortical networks associated with spontaneous thoughts is modulated by sertraline treatment. We attempted to predict post-treatment effects based upon what we observed in the pre-treatment rsFC of drug-naïve MDD patients. In the result, we demonstrated that (1) after the sertraline treatment, the medial temporal lobe of default network (DNMTL) and mood regulation pathway-the fronto-parietal control network (FPCN), the thalamus, and the salience network (SN)-were restored to normal connectivity, relative to the pre-treatment condition; however, the altered connections of FPCN-core DN (DNCORE), FPCN-SN, and intra-FPCN among MDD patients remained impaired; (2) thalamo-prefrontal connectivity provides moderate predictive power (r2 = 0.63) for the effectiveness of sertraline treatment. In summary, our findings contribute to a body of evidence that suggests salubrious effects of sertraline treatment primarily involve the FPCN-thalamus-SN pathway. The pre-treatment rsFC in this pathway could serve as a predictor of sertraline treatment outcome.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Department of Radiology and Brain Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Timothy Joseph Lane
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
- Institute of European and American Studies, Academia Sinica, Taipei, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| | | | - Chi-Bin Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Hung-Wen Kao
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu District, Taipei City, 114, Taiwan.
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
28
|
Courtiol E, Menezes EC, Teixeira CM. Serotonergic regulation of the dopaminergic system: Implications for reward-related functions. Neurosci Biobehav Rev 2021; 128:282-293. [PMID: 34139249 PMCID: PMC8335358 DOI: 10.1016/j.neubiorev.2021.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
Serotonin is a critical neuromodulator involved in development and behavior. Its role in reward is however still debated. Here, we first review classical studies involving electrical stimulation protocols and pharmacological approaches. Contradictory results on the serotonergic' involvement in reward emerge from these studies. These differences might be ascribable to either the diversity of cellular types within the raphe nuclei or/and the specific projection pathways of serotonergic neurons. We continue to review more recent work, using optogenetic approaches to activate serotonergic cells in the Raphe to VTA pathway. From these studies, it appears that activation of this pathway can lead to reinforcement learning mediated through the excitation of dopaminergic neurons by serotonergic neurons co-transmitting glutamate. Finally, given the importance of serotonin during development on adult emotion, the effect of abnormal early-life levels of serotonin on the dopaminergic system will also be discussed. Understanding the interaction between the serotonergic and dopaminergic systems during development and adulthood is critical to gain insight into the specific facets of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Lyon Neuroscience Research Center, UMR 5292- INSERM U1028- Université Lyon 1, 69675 Bron Cedex, France
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
29
|
Shephard E, Stern ER, van den Heuvel OA, Costa DL, Batistuzzo MC, Godoy PB, Lopes AC, Brunoni AR, Hoexter MQ, Shavitt RG, Reddy JY, Lochner C, Stein DJ, Simpson HB, Miguel EC. Toward a neurocircuit-based taxonomy to guide treatment of obsessive-compulsive disorder. Mol Psychiatry 2021; 26:4583-4604. [PMID: 33414496 PMCID: PMC8260628 DOI: 10.1038/s41380-020-01007-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
An important challenge in mental health research is to translate findings from cognitive neuroscience and neuroimaging research into effective treatments that target the neurobiological alterations involved in psychiatric symptoms. To address this challenge, in this review we propose a heuristic neurocircuit-based taxonomy to guide the treatment of obsessive-compulsive disorder (OCD). We do this by integrating information from several sources. First, we provide case vignettes in which patients with OCD describe their symptoms and discuss different clinical profiles in the phenotypic expression of the condition. Second, we link variations in these clinical profiles to underlying neurocircuit dysfunctions, drawing on findings from neuropsychological and neuroimaging studies in OCD. Third, we consider behavioral, pharmacological, and neuromodulatory treatments that could target those specific neurocircuit dysfunctions. Finally, we suggest methods of testing this neurocircuit-based taxonomy as well as important limitations to this approach that should be considered in future research.
Collapse
Affiliation(s)
- Elizabeth Shephard
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil. .,Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.
| | - Emily R. Stern
- Department of Psychiatry, The New York University School of Medicine, New York, USA.,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Odile A. van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Daniel L.C. Costa
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo C. Batistuzzo
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Priscilla B.G. Godoy
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio C. Lopes
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Andre R. Brunoni
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Q. Hoexter
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roseli G. Shavitt
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Janardhan Y.C Reddy
- Department of Psychiatry OCD Clinic, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Christine Lochner
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - H. Blair Simpson
- Center for OCD and Related Disorders, New York State Psychiatric Institute and the Department of Psychiatry, Columbia University Irving Medical Center, New York New York
| | - Euripedes C. Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Meyer GM, Marco-Pallarés J, Boulinguez P, Sescousse G. Electrophysiological underpinnings of reward processing: Are we exploiting the full potential of EEG? Neuroimage 2021; 242:118478. [PMID: 34403744 DOI: 10.1016/j.neuroimage.2021.118478] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/21/2021] [Accepted: 08/14/2021] [Indexed: 11/27/2022] Open
Abstract
Understanding how the brain processes reward is an important and complex endeavor, which has involved the use of a range of complementary neuroimaging tools, including electroencephalography (EEG). EEG has been praised for its high temporal resolution but, because the signal recorded at the scalp is a mixture of brain activities, it is often considered to have poor spatial resolution. Besides, EEG data analysis has most often relied on event-related potentials (ERPs) which cancel out non-phase locked oscillatory activity, thus limiting the functional discriminative power of EEG attainable through spectral analyses. Because these three dimensions -temporal, spatial and spectral- have been unequally leveraged in reward studies, we argue that the full potential of EEG has not been exploited. To back up our claim, we first performed a systematic survey of EEG studies assessing reward processing. Specifically, we report on the nature of the cognitive processes investigated (i.e., reward anticipation or reward outcome processing) and the methods used to collect and process the EEG data (i.e., event-related potential, time-frequency or source analyses). A total of 359 studies involving healthy subjects and the delivery of monetary rewards were surveyed. We show that reward anticipation has been overlooked (88% of studies investigated reward outcome processing, while only 24% investigated reward anticipation), and that time-frequency and source analyses (respectively reported by 19% and 12% of the studies) have not been widely adopted by the field yet, with ERPs still being the dominant methodology (92% of the studies). We argue that this focus on feedback-related ERPs provides a biased perspective on reward processing, by ignoring reward anticipation processes as well as a large part of the information contained in the EEG signal. Finally, we illustrate with selected examples how addressing these issues could benefit the field, relying on approaches combining time-frequency analyses, blind source separation and source localization.
Collapse
Affiliation(s)
- Garance M Meyer
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, F-69000, France; CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, F-69000, France
| | - Josep Marco-Pallarés
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute, Spain
| | - Philippe Boulinguez
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, F-69000, France; CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, F-69000, France.
| | - Guillaume Sescousse
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, F-69000, France; CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, F-69000, France
| |
Collapse
|
31
|
Ellerbrock I, Sandström A, Tour J, Fanton S, Kadetoff D, Schalling M, Jensen KB, Sitnikov R, Kosek E. Serotonergic gene-to-gene interaction is associated with mood and GABA concentrations but not with pain-related cerebral processing in fibromyalgia subjects and healthy controls. Mol Brain 2021; 14:81. [PMID: 33980291 PMCID: PMC8117625 DOI: 10.1186/s13041-021-00789-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
The neurotransmitter serotonin, involved in the regulation of pain and emotion, is critically regulated by the 5‐HT1A autoreceptor and the serotonin transporter (5-HTT). Polymorphisms of these genes affect mood and endogenous pain modulation, both demonstrated to be altered in fibromyalgia subjects (FMS). Here, we tested the effects of genetic variants of the 5‐HT1A receptor (CC/G-carriers) and 5-HTT (high/intermediate/low expression) on mood, pain sensitivity, cerebral processing of evoked pain (functional MRI) and concentrations of GABA and glutamate (MR spectroscopy) in rostral anterior cingulate cortex (rACC) and thalamus in FMS and healthy controls (HC). Interactions between serotonin-relevant genes were found in affective characteristics, with genetically inferred high serotonergic signalling (5-HT1A CC/5-HTThigh genotypes) being more favourable across groups. Additionally, 5‐HT1A CC homozygotes displayed higher pain thresholds than G-carriers in HC but not in FMS. Cerebral processing of evoked pressure pain differed between groups in thalamus with HC showing more deactivation than FMS, but was not influenced by serotonin-relevant genotypes. In thalamus, we observed a 5‐HT1A-by-5-HTT and group-by-5-HTT interaction in GABA concentrations, with the 5-HTT high expressing genotype differing between groups and 5‐HT1A genotypes. No significant effects were seen for glutamate or in rACC. To our knowledge, this is the first report of this serotonergic gene-to-gene interaction associated with mood, both among FMS (depression) and across groups (anxiety). Additionally, our findings provide evidence of an association between the serotonergic system and thalamic GABA concentrations, with individuals possessing genetically inferred high serotonergic signalling exhibiting the highest GABA concentrations, possibly enhancing GABAergic inhibitory effects via 5-HT.
Collapse
Affiliation(s)
- Isabel Ellerbrock
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden. .,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology, Blekinge Hospital, Karlskrona, Sweden
| | - Silvia Fanton
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karin B Jensen
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Rouslan Sitnikov
- MRI Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Lewis CA, Mueller K, Zsido RG, Reinelt J, Regenthal R, Okon-Singer H, Forbes EE, Villringer A, Sacher J. A single dose of escitalopram blunts the neural response in the thalamus and caudate during monetary loss. J Psychiatry Neurosci 2021; 46:E319-E327. [PMID: 33904667 PMCID: PMC8327975 DOI: 10.1503/jpn.200121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) show acute effects on the neural processes associated with negative affective bias in healthy people and people with depression. However, whether and how SSRIs also affect reward and punishment processing on a similarly rapid time scale remains unclear. METHODS We investigated the effects of an acute and clinically relevant dose (20 mg) of the SSRI escitalopram on brain response during reward and punishment processing in 19 healthy participants. In a doubleblind, placebo-controlled study using functional MRI, participants performed a well-established monetary reward task at 3 time points: at baseline; after receiving placebo or escitalopram; and after receiving placebo or escitalopram following an 8-week washout period. RESULTS Acute escitalopram administration reduced blood-oxygen-level-dependent (BOLD) response during punishment feedback in the right thalamus (family-wise error corrected [FWE] p = 0.013 at peak level) and the right caudate head (pFWE = 0.011 at peak level) compared to placebo. We did not detect any significant BOLD changes during reward feedback. LIMITATIONS We included only healthy participants, so interpretation of findings are limited to the healthy human brain and require future testing in patient populations. The paradigm we used was based on monetary stimuli, and results may not be generalizable to other forms of reward. CONCLUSION Our findings extend theories of rapid SSRI action on the neural processing of rewarding and aversive stimuli and suggest a specific and acute effect of escitalopram in the punishment neurocircuitry.
Collapse
Affiliation(s)
- Carolin A Lewis
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Karsten Mueller
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Rachel G Zsido
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Janis Reinelt
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Ralf Regenthal
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Hadas Okon-Singer
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Erika E Forbes
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Arno Villringer
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Julia Sacher
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| |
Collapse
|
33
|
Tanwar S, Mattoo B, Kumar U, Dada R, Bhatia R. Does human serotonin-1A receptor polymorphism (rs6295) code for pain and associated symptoms in fibromyalgia syndrome? Reumatismo 2021; 73:24-31. [PMID: 33874644 DOI: 10.4081/reumatismo.2021.1312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
Genetic predisposition may play an important role in the development of fibromyalgia syndrome (FMS). Serotonin is known to be involved in pain modulation and serotonin-1A receptor plays a considerable role in determining the central 5-HT tone. Consequently, variation in 5-HT1A receptor gene (HTR1A) may be responsible for inter-individual variability in pain sensitivity and other clinical symptoms of FMS. Therefore, the objectives of this research work were to study the gene polymorphism of 5-HTR1A gene and to explore the correlation between rs6295 genotype (-1019C/G HTR1A) and duration of pain, pain intensity and pain related depression and anxiety, if any, in FMS. 5-HTR1A genotype for the C(-1019)G polymorphism was typed in 62 patients with FMS and 42 healthy subjects. Present pain intensity, components of pain and pain related depression and anxiety were assessed using the numerical pain rating scale, McGill pain questionnaire and Hamilton depression and anxiety rating scale respectively. 5-HTR1A gene was represented by three different genotypes, homozygous C/C, heterozygous C/G and homozygous G/G. Analysis of the 5-HTR1A gene showed a frequency of 58%, 31% and 11% for the C/C, C/G and G/G genotypes, respectively in FMS group. This proportion was 69%, 23% and 8% in healthy subjects. No significant correlation was observed between 5-HTR1A gene polymorphism and pain and related symptoms in FMS patients. To the best of our knowledge this is the first study which investigated the correlation between the 5-HTR1A gene polymorphism and pain intensity, the affective component of pain, pain related depression and anxiety in FMS.
Collapse
Affiliation(s)
- S Tanwar
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi.
| | - B Mattoo
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi.
| | - U Kumar
- Department of Rheumatology, All India Institute of Medical Sciences (AIIMS), New Delhi.
| | - R Dada
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi.
| | - R Bhatia
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi.
| |
Collapse
|
34
|
Kibitov AO, Mazo GE. [Anhedonia in depression: neurobiological and genetic aspects]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:146-154. [PMID: 33834733 DOI: 10.17116/jnevro2021121031146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anhedonia is indeed a pathogenetically important clinical phenotype and a promising endophenotype for depressive symptoms with a very high contribution of biological and genetic factors. Neurobiological mechanisms of anhedonia are impaired functioning of the reward system of the brain, which is confirmed by many neuroimaging, genetic and experimental studies. Anhedonia has a trans-diagnoctic character and should be understood as a complex phenomenon, and it is important to correctly evaluate it within the framework of a particular research paradigm. It seems optimal to form several complementary research strategies that evaluate the most important «facets» of anhedonia, regardless of the nosological form of the disease, within the framework of one study using various methods to search for adequate biomarkers of anhedonia severity (genetic, neuroimaging, biochemical). Given the high-quality organization of such comprehensive studies based on the correct methodology of evidence-based medicine, it is likely that significant biomarker systems will be available in the near future, which, if replicated in independent samples, can be used to personalize the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- A O Kibitov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia.,Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia
| | - G E Mazo
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
35
|
Seidemann R, Duek O, Jia R, Levy I, Harpaz-Rotem I. The Reward System and Post-Traumatic Stress Disorder: Does Trauma Affect the Way We Interact With Positive Stimuli? CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2021; 5:2470547021996006. [PMID: 33718742 PMCID: PMC7917421 DOI: 10.1177/2470547021996006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a highly prevalent disorder and a highly debilitating condition. Although anhedonia is an important construct of the disorder, the relationship between PTSD and reward functioning is still under-researched. To date, the majority of research on PTSD has focused on fear: fear learning, maintenance, and extinction. Here we review the relevant literature-including clinical observations, self-report data, neuroimaging research, and animal studies-in order to examine the potential effects of post-traumatic stress disorder on the reward system. Our current lack of sufficient insight into how trauma affects the reward system is one possible hindrance to clinical progress. The current review highlights the need for further investigation into the complex relationship between exposure to trauma and the reward system to further our understandings of the ethology of PTSD.
Collapse
Affiliation(s)
- Rebecca Seidemann
- Yale University School of Medicine, New Haven, CT, USA
- National Center for PTSD, West Haven, CT, USA
| | - Or Duek
- Yale University School of Medicine, New Haven, CT, USA
- National Center for PTSD, West Haven, CT, USA
| | - Ruonan Jia
- Yale University School of Medicine, New Haven, CT, USA
| | - Ifat Levy
- Yale University School of Medicine, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Yale University School of Medicine, New Haven, CT, USA
- National Center for PTSD, West Haven, CT, USA
| |
Collapse
|
36
|
Chakraborty S, Tripathi SJ, Raju TR, Shankaranarayana Rao BS. Brain stimulation rewarding experience attenuates neonatal clomipramine-induced adulthood anxiety by reversal of pathological changes in the amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:110000. [PMID: 32512130 DOI: 10.1016/j.pnpbp.2020.110000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is associated with enhanced anxiety and reduced reward processing leading to impaired cognitive flexibility. These pathological changes during depression are accompanied by dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and its impaired regulation by the amygdala. Notably, the electrical stimulation of brain reward areas produces an antidepressant effect in both MDD patients and animal models of depression. However, the effects of chronic electrical self-stimulation of lateral hypothalamus - medial forebrain bundle (LH-MFB) on depression-associated anxiety and accompanying changes in plasma corticosterone levels, structural, and neurochemical alterations in the amygdala are unknown. Here, we used the neonatal clomipramine (CLI) model of depression. During adulthood, neonatal CLI and vehicle administered rats were subjected to bilateral electrode implantation at LH-MFB and trained to receive intracranial self-stimulation (ICSS) for 14 days. Rats were then tested for anhedonic and anxiety-like behaviors, followed by estimation of plasma corticosterone levels, assessment of amygdalar volumes and neuronal/glial numbers, levels of monoamines and their metabolites in the amygdala. We found that chronic ICSS of LH-MFB reverses CLI-induced anhedonia and anxiety. Interestingly, amelioration of CLI-induced enhanced anhedonia and anxiety in ICSS rats was associated with partial reversal of enhanced plasma corticosterone levels, hypertrophy of basolateral amygdala (BLA), and altered noradrenaline (NA) metabolism in the amygdalar complex. We suggest that beneficial effects of ICSS on CLI-induced anxiety at least in part mediated by the restoration of amygdalar and HPA axis functioning. Our results support the hypothesis that brain stimulation rewarding experience might be evolved as a therapeutic strategy for reversal of amygdalar dysfunction in depression.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
37
|
|
38
|
Abstract
The brain serotonin systems participate in numerous aspects of reward processing, although it remains elusive how exactly serotonin signals regulate neural computation and reward-related behavior. The application of optogenetics and imaging techniques during the last decade has provided many insights. Here, we review recent progress on the organization and physiology of the dorsal raphe serotonin neurons and the relationships between their activity and behavioral functions in the context of reward processing. We also discuss several interesting theories on serotonin's function and how these theories may be reconciled by the possibility that serotonin, acting in synergy with coreleased glutamate, tracks and calculates the so-called beneficialness of the current state to guide an animal's behavior in dynamic environments.
Collapse
Affiliation(s)
- Zhixiang Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Tsinghua University, Beijing 100081, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
39
|
Greenberg T, Fournier J, Stiffler R, Chase HW, Almeida JR, Aslam H, Deckersbach T, Cooper C, Toups M, Carmody T, Kurian B, Peltier S, Adams P, McInnis MG, Oquendo MA, Fava M, Parsey R, McGrath PJ, Weissman M, Trivedi M, Phillips ML. Reward related ventral striatal activity and differential response to sertraline versus placebo in depressed individuals. Mol Psychiatry 2020; 25:1526-1536. [PMID: 31462766 PMCID: PMC7047617 DOI: 10.1038/s41380-019-0490-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022]
Abstract
Medications to treat major depressive disorder (MDD) are not equally effective across patients. Given that neural response to rewards is altered in MDD and given that reward-related circuitry is modulated by dopamine and serotonin, we examined, for the first time, whether reward-related neural activity moderated response to sertraline, an antidepressant medication that targets these neurotransmitters. A total of 222 unmedicated adults with MDD randomized to receive sertraline (n = 110) or placebo (n = 112) in the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study completed demographic and clinical assessments, and pretreatment functional magnetic resonance imaging while performing a reward task. We tested whether an index of reward system function in the ventral striatum (VS), a key reward circuitry region, moderated differential response to sertraline versus placebo, assessed with the Hamilton Rating Scale for Depression (HSRD) over 8 weeks. We observed a significant moderation effect of the reward index, reflecting the temporal dynamics of VS activity, on week-8 depression levels (Fs ≥ 9.67, ps ≤ 0.002). Specifically, VS responses that were abnormal with respect to predictions from reinforcement learning theory were associated with lower week-8 depression symptoms in the sertraline versus placebo arms. Thus, a more abnormal pattern of pretreatment VS dynamic response to reward expectancy (expected outcome value) and prediction error (difference between expected and actual outcome), likely reflecting serotonergic and dopaminergic deficits, was associated with better response to sertraline than placebo. Pretreatment measures of reward-related VS activity may serve as objective neural markers to advance efforts to personalize interventions by guiding individual-level choice of antidepressant treatment.
Collapse
Affiliation(s)
- Tsafrir Greenberg
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jay Fournier
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Richelle Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Henry W. Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Jorge R. Almeida
- Department of Psychiatry, University of Texas at Austin Dell Medical School
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | | | - Crystal Cooper
- Department of Psychiatry, University of Texas Southwestern Medical Center
| | - Marisa Toups
- Department of Psychiatry, University of Texas at Austin Dell Medical School
| | - Tom Carmody
- Department of Psychiatry, University of Texas Southwestern Medical Center
| | - Benji Kurian
- Department of Psychiatry, University of Texas Southwestern Medical Center
| | | | - Phillip Adams
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute
| | | | - Maria A. Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital
| | - Ramin Parsey
- Departments of Psychiatry and Behavioral Science & Radiology, Stony Brook University
| | - Patrick J. McGrath
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute
| | - Myrna Weissman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute
| | - Madhukar Trivedi
- Department of Psychiatry, University of Texas Southwestern Medical Center
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine
| |
Collapse
|
40
|
Choe WH, Lee KA, Goto Y, Lee YA. Concurrent and Delayed Behavioral and Monoamine Alterations by Excessive Sucrose Intake in Juvenile Mice. Front Neurosci 2020; 14:504. [PMID: 32508582 PMCID: PMC7248345 DOI: 10.3389/fnins.2020.00504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/22/2020] [Indexed: 01/21/2023] Open
Abstract
Our daily diet in the modern society has substantially changed from that in the ancient past. Consequently, new disorders associated with such dietary changes have emerged. For instance, excessive intake of compounds, such as sucrose (SUC), has recently been reported to induce pathological neuronal changes in adults, such as food addiction. It is still largely unclear whether and how excessive intake of such nutrients affects neurodevelopment. We investigated changes in behavior and monoamine signaling caused by excessive, semi-chronic intake of SUC and the non-caloric sweetener saccharin (SAC) in juvenile mice, using a battery of behavioral tests and high-performance liquid chromatography. Both SUC and SAC intake induced behavioral alterations such as altered amphetamine responses, sucrose preference, stress response, and anxiety, but did not affect social behavior and cognitive function such as attention in juvenile and adult mice. Moreover, SUC and SAC also altered dopamine and serotonin transmission in mesocorticolimbic regions. Some of these behavioral and neural alterations were triggered by SAC and SUC but others were distinct between the treatments. Moreover, alterations induced in juvenile mice were also different from those observed in adult mice. These results suggest that excessive SUC and SAC intake during the juvenile period may cause concurrent and delayed behavioral and monoamine signaling alterations in juvenile and adult mice, respectively.
Collapse
Affiliation(s)
- Won-Hui Choe
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| | - Kyung-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
41
|
Prakash N, Stark CJ, Keisler MN, Luo L, Der-Avakian A, Dulcis D. Serotonergic Plasticity in the Dorsal Raphe Nucleus Characterizes Susceptibility and Resilience to Anhedonia. J Neurosci 2020; 40:569-584. [PMID: 31792153 PMCID: PMC6961996 DOI: 10.1523/jneurosci.1802-19.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic stress induces anhedonia in susceptible but not resilient individuals, a phenomenon observed in humans as well as animal models, but the molecular mechanisms underlying susceptibility and resilience are not well understood. We hypothesized that the serotonergic system, which is implicated in stress, reward, and antidepressant therapy, may play a role. We found that plasticity of the serotonergic system contributes to the differential vulnerability to stress displayed by susceptible and resilient animals. Stress-induced anhedonia was assessed in adult male rats using social defeat and intracranial self-stimulation, while changes in serotonergic phenotype were investigated using immunohistochemistry and in situ hybridization. Susceptible, but not resilient, rats displayed an increased number of neurons expressing the biosynthetic enzyme for serotonin, tryptophan-hydroxylase-2 (TPH2), in the ventral subnucleus of the dorsal raphe nucleus (DRv). Further, a decrease in the number of DRv glutamatergic (VGLUT3+) neurons was observed in all stressed rats. This neurotransmitter plasticity is activity-dependent, as was revealed by chemogenetic manipulation of the central amygdala, a stress-sensitive nucleus that forms a major input to the DR. Activation of amygdalar corticotropin-releasing hormone (CRH)+ neurons abolished the increase in DRv TPH2+ neurons and ameliorated stress-induced anhedonia in susceptible rats. These findings show that activation of amygdalar CRH+ neurons induces resilience, and suppresses the gain of serotonergic phenotype in the DRv that is characteristic of susceptible rats. This molecular signature of vulnerability to stress-induced anhedonia and the active nature of resilience could be targeted to develop new treatments for stress-related disorders like depression.SIGNIFICANCE STATEMENT Depression and other mental disorders can be induced by chronic or traumatic stressors. However, some individuals are resilient and do not develop depression in response to chronic stress. A complete picture of the molecular differences between susceptible and resilient individuals is necessary to understand how plasticity of limbic circuits is associated with the pathophysiology of stress-related disorders. Using a rodent model, our study identifies a novel molecular marker of susceptibility to stress-induced anhedonia, a core symptom of depression, and a means to modulate it. These findings will guide further investigation into cellular and circuit mechanisms of resilience, and the development of new treatments for depression.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Christiana J Stark
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Maria N Keisler
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Lily Luo
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
42
|
Metzger M, Souza R, Lima LB, Bueno D, Gonçalves L, Sego C, Donato J, Shammah-Lagnado SJ. Habenular connections with the dopaminergic and serotonergic system and their role in stress-related psychiatric disorders. Eur J Neurosci 2019; 53:65-88. [PMID: 31833616 DOI: 10.1111/ejn.14647] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
The habenula (Hb) is a phylogenetically old epithalamic structure differentiated into two nuclear complexes, the medial (MHb) and lateral habenula (LHb). After decades of search for a great unifying function, interest in the Hb resurged when it was demonstrated that LHb plays a major role in the encoding of aversive stimuli ranging from noxious stimuli to the loss of predicted rewards. Consistent with a role as an anti-reward center, aberrant LHb activity has now been identified as a key factor in the pathogenesis of major depressive disorder. Moreover, both MHb and LHb emerged as new players in the reward circuitry by primarily mediating the aversive properties of distinct drugs of abuse. Anatomically, the Hb serves as a bridge that links basal forebrain structures with monoaminergic nuclei in the mid- and hindbrain. So far, research on Hb has focused on the role of the LHb in regulating midbrain dopamine release. However, LHb/MHb are also interconnected with the dorsal (DR) and median (MnR) raphe nucleus. Hence, it is conceivable that some of the habenular functions are at least partly mediated by the complex network that links MHb/LHb with pontomesencephalic monoaminergic nuclei. Here, we summarize research about the topography and transmitter phenotype of the reciprocal connections between the LHb and ventral tegmental area-nigra complex, as well as those between the LHb and DR/MnR. Indirect MHb outputs via interpeduncular nucleus to state-setting neuromodulatory networks will also be commented. Finally, we discuss the role of specific LHb-VTA and LHb/MHb-raphe circuits in anxiety and depression.
Collapse
Affiliation(s)
- Martin Metzger
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rudieri Souza
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro B Lima
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debora Bueno
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciano Gonçalves
- Department of Human Anatomy, Federal University of the Triângulo Mineiro, Uberaba, Brazil
| | - Chemutai Sego
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jose Donato
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sara J Shammah-Lagnado
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Gorbachevskaya AI, Saulskaya NB. Analysis of the Pathways of the Influences of the Dorsal Raphe Nucleus on the Basal Ganglia Based on the Topography of the Projections between Them. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s11055-019-00841-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Balasubramani PP, Chakravarthy VS. Bipolar oscillations between positive and negative mood states in a computational model of Basal Ganglia. Cogn Neurodyn 2019; 14:181-202. [PMID: 32226561 DOI: 10.1007/s11571-019-09564-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
Bipolar disorder is characterized by mood swings-oscillations between manic and depressive states. The swings (oscillations) mark the length of an episode in a patient's mood cycle (period), and can vary from hours to years. The proposed modeling study uses decision making framework to investigate the role of basal ganglia network in generating bipolar oscillations. In this model, the basal ganglia system performs a two-arm bandit task in which one of the arms (action responses) leads to a positive outcome, while the other leads to a negative outcome. We explore the dynamics of key reward and risk related parameters in the system while the model agent receives various outcomes. Particularly, we study the system using a model that represents the fast dynamics of decision making, and a module to capture the slow dynamics that describe the variation of some meta-parameters of fast dynamics over long time scales. The model is cast at three levels of abstraction: (1) a two-dimensional dynamical system model, that is a simple two variable model capable of showing bistability for rewarding and punitive outcomes; (2) a phenomenological basal ganglia model, to extend the implications from the reduced model to a cortico-basal ganglia setup; (3) a detailed network model of basal ganglia, that incorporates detailed cellular level models for a more realistic understanding. In healthy conditions, the model chooses positive action and avoids negative one, whereas under bipolar conditions, the model exhibits slow oscillations in its choice of positive or negative outcomes, reminiscent of bipolar oscillations. Phase-plane analyses on the simple reduced dynamical system with two variables reveal the essential parameters that generate pathological 'bipolar-like' oscillations. Phenomenological and network models of the basal ganglia extend that logic, and interpret bipolar oscillations in terms of the activity of dopaminergic and serotonergic projections on the cortico-basal ganglia network dynamics. The network's dysfunction, specifically in terms of reward and risk sensitivity, is shown to be responsible for the pathological bipolar oscillations. The study proposes a computational model that explores the effects of impaired serotonergic neuromodulation on the dynamics of the cortico basal ganglia network, and relates this impairment to abstract mood states (manic and depressive episodes) and oscillations of bipolar disorder.
Collapse
Affiliation(s)
| | - V Srinivasa Chakravarthy
- 2Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 36 India
| |
Collapse
|
45
|
Beversdorf DQ. Neuropsychopharmacological regulation of performance on creativity-related tasks. Curr Opin Behav Sci 2019; 27:55-63. [PMID: 31106256 PMCID: PMC6519931 DOI: 10.1016/j.cobeha.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of factors affect performance on tasks associated with creativity. Two pharmacological systems in particularly been identified as important for their impact on creativity, the noradrenergic system and the dopaminergic systems. Furthermore, stress is also established as an important factor impacting performance, most likely mediated by its effects on these neurotransmitter systems. Herein, we review the current literature on the relationships between stress, the noradrenergic system, the dopaminergic system, and other pharmacological factors and their effects on performance on tasks associated with creativity.
Collapse
Affiliation(s)
- David Q Beversdorf
- William and Nancy Thompson Endowed Chair in Radiology, University of Missouri
| |
Collapse
|
46
|
Fan F, Yang M, Geng X, Ma X, Sun H. Effects of Restraint Water-Immersion Stress-Induced Gastric Mucosal Damage on Astrocytes and Neurons in the Nucleus Raphe Magnus of Rats via the ERK1/2 Signaling Pathway. Neurochem Res 2019; 44:1841-1850. [PMID: 31119435 DOI: 10.1007/s11064-019-02818-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 01/31/2023]
Abstract
Restraint water-immersion stress (RWIS) consists of psychological and physical stimulation, and it has been utilized in the research of gastric mucosal damage. It has been shown by previous studies that the nucleus raphe magnus (NRM) is closely involved in the gastrointestinal function, but its functions on the stress-induced gastric mucosal injury (SGMI) have not been thoroughly elucidated to date. Consequently, in this research, we aim to measure the expression of astrocytic glial fibrillary acidic protein (GFAP), neuronal c-Fos, and phosphorylation extracellular signal regulated kinase 1/2 (p-ERK1/2) in the process of RWIS with immunohistochemistry and western blot methods. What is more, we detect the relation between astrocytes and neurons throughout the stress procedure and explore the regulation of the ERK1/2 signaling pathway on the activity of astrocytes and neurons after RWIS. The results indicated that all three proteins expression multiplied following peaked 3 h substantially. The SMGI, astrocyte and neuron activity were affected after the astrocytotoxin L-A-aminohexanedioic acid (L-AA) and c-fos antisense oligonucleotide (ASO) injections. After the injection of PD98059, the gastric mucosal injury, astrocyte and neuron activity significantly fell off. These results suggested that RWIS-induced activity of astrocytes and neurons in the NRM may play a significant part in gastric mucosa damage via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Fangcheng Fan
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Mengzhu Yang
- Qingdao No. 31 Middle School, Qingdao, 266041, China
| | - Xiwen Geng
- Shandong Traditional Chinese Medicine University, Jinan, 250014, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China.
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
47
|
Langenecker SA, Mickey BJ, Eichhammer P, Sen S, Elverman KH, Kennedy SE, Heitzeg MM, Ribeiro SM, Love TM, Hsu DT, Koeppe RA, Watson SJ, Akil H, Goldman D, Burmeister M, Zubieta JK. Cognitive Control as a 5-HT 1A-Based Domain That Is Disrupted in Major Depressive Disorder. Front Psychol 2019; 10:691. [PMID: 30984083 PMCID: PMC6450211 DOI: 10.3389/fpsyg.2019.00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Heterogeneity within Major Depressive Disorder (MDD) has hampered identification of biological markers (e.g., intermediate phenotypes, IPs) that might increase risk for the disorder or reflect closer links to the genes underlying the disease process. The newer characterizations of dimensions of MDD within Research Domain Criteria (RDoC) domains may align well with the goal of defining IPs. We compare a sample of 25 individuals with MDD compared to 29 age and education matched controls in multimodal assessment. The multimodal RDoC assessment included the primary IP biomarker, positron emission tomography (PET) with a selective radiotracer for 5-HT1A [(11C)WAY-100635], as well as event-related functional MRI with a Go/No-go task targeting the Cognitive Control network, neuropsychological assessment of affective perception, negative memory bias and Cognitive Control domains. There was also an exploratory genetic analysis with the serotonin transporter (5-HTTLPR) and monamine oxidase A (MAO-A) genes. In regression analyses, lower 5-HT1A binding potential (BP) in the MDD group was related to diminished engagement of the Cognitive Control network, slowed resolution of interfering cognitive stimuli, one element of Cognitive Control. In contrast, higher/normative levels of 5-HT1A BP in MDD (only) was related to a substantial memory bias toward negative information, but intact resolution of interfering cognitive stimuli and greater engagement of Cognitive Control circuitry. The serotonin transporter risk allele was associated with lower 1a BP and the corresponding imaging and cognitive IPs in MDD. Lowered 5HT 1a BP was present in half of the MDD group relative to the control group. Lowered 5HT 1a BP may represent a subtype including decreased engagement of Cognitive Control network and impaired resolution of interfering cognitive stimuli. Future investigations might link lowered 1a BP to neurobiological pathways and markers, as well as probing subtype-specific treatment targets.
Collapse
Affiliation(s)
- Scott A. Langenecker
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Brian J. Mickey
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Peter Eichhammer
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Srijan Sen
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | | | - Susan E. Kennedy
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mary M. Heitzeg
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Saulo M. Ribeiro
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Tiffany M. Love
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T. Hsu
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Robert A. Koeppe
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Stanley J. Watson
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Huda Akil
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Margit Burmeister
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Jon-Kar Zubieta
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
48
|
Khalil R, Godde B, Karim AA. The Link Between Creativity, Cognition, and Creative Drives and Underlying Neural Mechanisms. Front Neural Circuits 2019; 13:18. [PMID: 30967763 PMCID: PMC6440443 DOI: 10.3389/fncir.2019.00018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
Having a creative mind is one of the gateways for achieving fabulous success and remarkable progress in professional, personal and social life. Therefore, a better understanding of the neural correlates and the underlying neural mechanisms related to creative ideation is crucial and valuable. However, the current literature on neural systems and circuits underlying creative cognition, and on how creative drives such as motivation, mood states, and reward could shape our creative mind through the associated neuromodulatory systems [i.e., the dopaminergic (DA), the noradrenergic (NE) and the serotonergic (5-HT) system] seems to be insufficient to explain the creative ideation and production process. One reason might be that the mentioned systems and processes are usually investigated in isolation and independent of each other. Through this review, we aim at advancing the current state of knowledge by providing an integrative view on the interactions between neural systems underlying the creative cognition and the creative drive and associated neuromodulatory systems (see Figure 1).
Collapse
Affiliation(s)
- Radwa Khalil
- Department of Psychology and Methods, Jacobs University Bremen, Bremen, Germany
| | - Ben Godde
- Department of Psychology and Methods, Jacobs University Bremen, Bremen, Germany
| | - Ahmed A Karim
- Department of Psychology and Methods, Jacobs University Bremen, Bremen, Germany.,Department of Psychiatry and Psychotherapy, University Clinic Tübingen, Tübingen, Germany.,Department of Health Psychology and Neurorehabilitation, SRH Mobile University, Riedlingen, Germany
| |
Collapse
|
49
|
Serotonergic, Dopaminergic, and Noradrenergic Modulation of Erotic Stimulus Processing in the Male Human Brain. J Clin Med 2019; 8:jcm8030363. [PMID: 30875818 PMCID: PMC6463265 DOI: 10.3390/jcm8030363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023] Open
Abstract
Human sexual behavior is mediated by a complex interplay of cerebral and spinal centers, as well as hormonal, peripheral, and autonomic functions. Neuroimaging studies identified central neural signatures of human sexual responses comprising neural emotional, motivational, autonomic, and cognitive components. However, empirical evidence regarding the neuromodulation of these neural signatures of human sexual responses was scarce for decades. Pharmacological functional magnetic resonance imaging (fMRI) provides a valuable tool to examine the interaction between neuromodulator systems and functional network anatomy relevant for human sexual behavior. In addition, this approach enables the examination of potential neural mechanisms regarding treatment-related sexual dysfunction under psychopharmacological agents. In this article, we introduce common neurobiological concepts regarding cerebral sexual responses based on neuroimaging findings and we discuss challenges and findings regarding investigating the neuromodulation of neural sexual stimulus processing. In particular, we summarize findings from our research program investigating how neural correlates of sexual stimulus processing are modulated by serotonergic, dopaminergic, and noradrenergic antidepressant medication in healthy males.
Collapse
|
50
|
Hahn A, Lanzenberger R, Kasper S. Making Sense of Connectivity. Int J Neuropsychopharmacol 2019; 22:194-207. [PMID: 30544240 PMCID: PMC6403091 DOI: 10.1093/ijnp/pyy100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
In addition to the assessment of local alterations of specific brain regions, the investigation of entire networks with in vivo neuroimaging techniques has gained increasing attention. In general, connectivity analysis refers to the investigation of links between brain regions, with the aim to characterize their interactions and information transfer. These may represent or relate to different physiological characteristics (structural, functional, or metabolic information) and can be calculated across different levels of granularity (2 regions vs whole brain). In this article, we provide an overview of different connectivity analysis approaches with interpretations and limitations as well as examples in pharmacological imaging and clinical applications. Structural connectivity obtained from diffusion MRI enables the reconstruction of neuronal fiber tracts. These physical links represent major constraints of functional connections, which are in turn defined as correlations between signal time courses. In addition, molecular connectivity approaches based on PET imaging enable the assessment of interregional associations of metabolic demands and neurotransmitter systems. Application of these approaches in clinical investigations has demonstrated novel alterations in various neurological and psychiatric disorders on a network level. Future work should aim for the combined assessment of multiple imaging modalities and to establish robust biomarkers for clinical use. These advancements will further improve the biological interpretation of connectivity metrics and networks of the human brain.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|