1
|
Zarazúa-Guzmán S, Vicente-Martínez JG, Pinos-Rodríguez JM, Arevalo-Villalobos JI. An overview of major depression disorder: The endocannabinoid system as a potential target for therapy. Basic Clin Pharmacol Toxicol 2024; 135:669-684. [PMID: 39370369 DOI: 10.1111/bcpt.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Major depressive disorder is the psychiatric disease with the highest global prevalence, impacting social functioning and decreasing the quality of life. The partial pathophysiological knowledge of the disease, the economic burden and the low remission rates are sufficient justification to carry out an update on the subject in the search for new therapeutic approaches and targets. The endocannabinoid system has been linked to the development of depression, and its stimulation or antagonism is a promising approach in the treatment of major depressive disorder. Cannabidiol (CBD) and its properties have been widely studied recently; its analgesic, anti-inflammatory, antineoplastic and neuroprotective roles have even been reported in animal models and clinical trials, achieving its approved use for certain neurodegenerative pathologies. The use of CBD in depression biomodels and clinical trials has not been the exception, and here we contrast the current evidence of its administration and pharmacology against the pathological mechanisms of major depressive disorder.
Collapse
Affiliation(s)
- Sergio Zarazúa-Guzmán
- Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | | | | |
Collapse
|
2
|
Bortolato M, Braccagni G, Pederson CA, Floris G, Fite PJ. "Weeding out" violence? Translational perspectives on the neuropsychobiological links between cannabis and aggression. AGGRESSION AND VIOLENT BEHAVIOR 2024; 78:101948. [PMID: 38828012 PMCID: PMC11141739 DOI: 10.1016/j.avb.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Recent shifts in societal attitudes towards cannabis have led to a dramatic increase in consumption rates in many Western countries, particularly among young people. This trend has shed light on a significant link between cannabis use disorder (CUD) and pathological reactive aggression, a condition involving disproportionate aggressive and violent reactions to minor provocations. The discourse on the connection between cannabis use and aggression is frequently enmeshed in political and legal discussions, leading to a polarized understanding of the causative relationship between cannabis use and aggression. However, integrative analyses from both human and animal research indicate a complex, bidirectional interplay between cannabis misuse and pathological aggression. On the one hand, emerging research reveals a shared genetic and environmental predisposition for both cannabis use and aggression, suggesting a common underlying biological mechanism. On the other hand, there is evidence that cannabis consumption can lead to violent behaviors while also being used as a self-medication strategy to mitigate the negative emotions associated with pathological reactive aggression. This suggests that the coexistence of pathological aggression and CUD may result from overlapping vulnerabilities, potentially creating a self-perpetuating cycle where each condition exacerbates the other, escalating into externalizing and violent behaviors. This article aims to synthesize existing research on the intricate connections between these issues and propose a theoretical model to explain the neurobiological mechanisms underpinning this complex relationship.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Casey A. Pederson
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Paula J. Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
3
|
Fuentes JJ, Mayans J, Guarro M, Canosa I, Mestre-Pintó JI, Fonseca F, Torrens M. Peripheral endocannabinoids in major depressive disorder and alcohol use disorder: a systematic review. BMC Psychiatry 2024; 24:551. [PMID: 39118031 PMCID: PMC11308641 DOI: 10.1186/s12888-024-05986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) and Alcohol Use Disorder (AUD) are two high-prevalent conditions where the Endocannabinoid system (ECS) is believed to play an important role. The ECS regulates how different neurotransmitters interact in both disorders, which is crucial for controlling emotions and responses to stress and reward stimuli. Measuring peripheral endocannabinoids (eCBs) in human serum and plasma can help overcome the limitations of detecting endocannabinoid levels in the brain. This systematic review aims to identify levels of peripheral eCBs in patients with MDD and/or AUD and find eCBs to use as diagnostic, prognostic biomarkers, and potential therapeutic targets. METHODS We conducted a systematic literature search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines from the earliest manuscript until October 22, 2023, in three electronic databases. We included studies of human adults who had a current diagnosis of AUD and/or MDD and evaluated plasma or serum endocannabinoids. We carefully considered known variables that may affect endocannabinoid levels. RESULTS We included 17 articles in this systematic review, which measured peripheral eCBs in 170 AUD and 359 MDD patients. Stressors increase peripheral 2-arachidonyl-glycerol (2-AG) concentrations, and 2-AG may be a particular feature of depression severity and chronicity. Anxiety symptoms are negatively correlated with anandamide (AEA) concentrations, and AEA significantly increases during early abstinence in AUD. Studies suggest a negative correlation between Oleoylethanolamide (OEA) and length of abstinence in AUD patients. They also show a significant negative correlation between peripheral levels of AEA and OEA and fatty acid amide hydrolase (FAAH) activity. Eicosapentaenoylethanolamide (EPEA) is correlated to clinical remission rates in depression. Included studies show known variables such as gender, chronicity, symptom severity, comorbid psychiatric symptoms, length of abstinence in the case of AUD, and stress-inducibility that can affect peripheral eCBs. CONCLUSIONS This systematic review highlights the important role that the ECS plays in MDD and AUD. Peripheral eCBs appear to be useful biomarkers for these disorders, and further research may identify potential therapeutic targets. Using accessible biological samples such as blood in well-designed clinical studies is crucial to develop novel therapies for these disorders.
Collapse
Affiliation(s)
- J J Fuentes
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - J Mayans
- Department of Psychiatry, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - M Guarro
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
| | - I Canosa
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - J I Mestre-Pintó
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - F Fonseca
- Mental Health Institute, Hospital del Mar, Barcelona, Spain.
- Hospital del Mar Research Institute, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - M Torrens
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
4
|
Hen-Shoval D, Indig-Naimer T, Moshe L, Kogan NM, Zaidan H, Gaisler-Salomon I, Okun E, Mechoulam R, Shoval G, Zalsman G, Weller A. Unraveling the molecular basis of cannabidiolic acid methyl Ester's anti-depressive effects in a rat model of treatment-resistant depression. J Psychiatr Res 2024; 175:50-59. [PMID: 38704981 DOI: 10.1016/j.jpsychires.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Major depressive disorder (MDD) stands as a significant cause of disability globally. Cannabidiolic Acid-Methyl Ester (CBDA-ME) (EPM-301, HU-580), a derivative of Cannabidiol, demonstrates immediate antidepressant-like effects, yet it has undergone only minimal evaluation in psychopharmacology. Our goal was to investigate the behavioral and potential molecular mechanisms associated with the chronic oral administration of this compound in the Wistar Kyoto (WKY) genetic model of treatment-resistant depression. Male WKY rats were subjected to behavioral assessments before and after receiving chronic (14-day) oral doses of CBDA-ME (0.5 mg/kg), 15 mg/kg of imipramine or vehicle. At the end of the study, plasma corticosterone levels and mRNA expression of various genes in the medial Prefrontal Cortex and Hippocampus were measured. Behavioral outcomes from CBDA-ME treatment indicated an antidepressant-like effect similar to imipramine, as oral ingestion reduced immobility and increased swimming duration in the Forced Swim Test. Neither treatment influenced locomotion in the Open Field Test nor preference in the Saccharin Preference Test. The behavioral impact in WKY rats coincided with reduced corticosterone serum levels, upregulated mRNA expression of Cannabinoid receptor 1, Fatty Acid Amide Hydrolase, and Corticotropin-Releasing Hormone Receptor 1, alongside downregulation of the Serotonin Transporter in the hippocampus. Additionally, there was an upregulation of CB1 mRNA expression and downregulation of Brain-Derived Neurotrophic Factor in the mPFC. These findings contribute to our limited understanding of the antidepressant effects of CBDA-ME and shed light on its potential psychopharmacological mechanisms. This discovery opens up possibilities for utilizing cannabinoids in the treatment of major depressive disorder and related conditions.
Collapse
Affiliation(s)
- D Hen-Shoval
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
| | - T Indig-Naimer
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - L Moshe
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - N M Kogan
- Institute of Personalized and Translational Medicine, Molecular Biology, Ariel University, Ariel, 4070000, Israel
| | - H Zaidan
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - I Gaisler-Salomon
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - E Okun
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder laboratory for Alzheimer disease research, Bar-Ilan University, Ramat Gan, Israel; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - R Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel
| | - G Shoval
- Geha Mental Health Center, Petah Tiqva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - G Zalsman
- Geha Mental Health Center, Petah Tiqva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, NY, United States
| | - A Weller
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Han Y, Dong Q, Peng J, Li B, Sun C, Ma C. Laminar Distribution of Cannabinoid Receptor 1 in the Prefrontal Cortex of Nonhuman Primates. Mol Neurobiol 2024; 61:1-12. [PMID: 38062346 DOI: 10.1007/s12035-023-03828-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/23/2023] [Indexed: 07/11/2024]
Abstract
Cannabis is an annual herb of the genus Cannabis, with a history of medical use going back thousands of years. However, its abuse causes many side-effects, including confusion of consciousness, alienation, and mental disorders such as schizophrenia and depression. Research conducted on rodents suggests that there are two types of cannabinoid receptors-cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R). CB1R is found mostly in the central nervous system, particularly in the prefrontal cortex (PFC), and alterations in its expression in the PFC have been strongly linked to mental disorders. Within the layers of the PFC, Brodmann area 46 is associated with the processing of complex cognitive information. However, it remains unclear whether CB1R is expressed in the PFC 46 area of non-human primate. In this work, we applied western blotting along with immunofluorescent histochemical staining to investigate the distribution pattern of CB1R in the PFC of nonhuman primate, Our findings reveal that CB1R is highly expressed in the monkey PFC, especially in area 46. Furthermore, CB1R exhibits a layered distribution pattern within area 46 of the PFC, with the inner granular layer displaying the highest expression levels. Additionally, CB1R+PV+ cells are widely distributed in lay II-VI of area 46, with layer IV showing notable prevalence. In conclusion, CB1R is distributed in the PV interneurons in area 46 of the prefrontal cortex, particularly in layer IV, suggesting that cannabis may modulate PFC activities via regulating interneuron in the PFC. And cannabis-induced side effects may be caused by abnormal expression of CB1R.
Collapse
Affiliation(s)
- Yingying Han
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qianyu Dong
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jiyun Peng
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Baoming Li
- Department of Physiology and Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chong Sun
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Chaolin Ma
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
6
|
Pipitone RN, Banai B, Walters J, Dautrich T, Schuller K, Rosenthal M. Using Smartphone Technology to Track Real-Time Changes in Anxiety/Depression Symptomatology Among Florida Cannabis Users. CANNABIS (ALBUQUERQUE, N.M.) 2024; 7:123-134. [PMID: 38975597 PMCID: PMC11225978 DOI: 10.26828/cannabis/2024/000223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Objective Recent scientific attention has focused on the therapeutic effectiveness of cannabis use on a variety of physical and mental ailments. The present study uses smartphone technology to assess self-reported experiences of Florida cannabis users to understand how cannabis may impact anxiety and depression symptomatology. Method Several hundred Releaf App™ users from the state of Florida provided anonymous, real-time reports of their symptoms of anxiety and/or depression immediately before and after cannabis use sessions. Linear mixed-effects modeling was used to analyze the data at the symptom and user level. Results Results showed that for the majority of users, cannabis use was associated with a significant decrease in depression and anxiety symptomatology. While symptom type, doses per session, consumption method, and CBD levels were significant predictors of relief change, their effect sizes were small and should be interpreted with caution. At the user level, those who had positive relief outcomes in anxiety reported more doses and sessions, and those in the depression group reported more sessions. Conclusions Our results generally support the therapeutic effectiveness of cannabis against depression/anxiety symptomatology. Future work should include standardized statistics and effect size estimates for a better understanding of each variable's practical contribution to this area of study.
Collapse
Affiliation(s)
| | - Benjamin Banai
- Banai Analitika, Josipa Jurja Strossmayera 341, 31000 Osijek, Croatia
| | - Jessica Walters
- CannaMD, 7932 West Sand Lake Road, Suite 205, Orlando, FL 32819
| | - Tyler Dautrich
- MoreBetter (Releaf App), PO Box 382, Hyattsville, MD 20781-0382
| | | | | |
Collapse
|
7
|
Wu Z, Shen Z, Xu Y, Chen S, Xiao S, Ye J, Zhang H, Ma X, Zhu Y, Zhu X, Jiang Y, Fang J, Liu B, He X, Gao S, Shao X, Liu J, Fang J. A neural circuit associated with anxiety-like behaviors induced by chronic inflammatory pain and the anxiolytic effects of electroacupuncture. CNS Neurosci Ther 2024; 30:e14520. [PMID: 38018559 PMCID: PMC11017463 DOI: 10.1111/cns.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/30/2023] Open
Abstract
AIMS Negative emotions induced by chronic pain are a serious clinical problem. Electroacupuncture (EA) is a clinically proven safe and effective method to manage pain-related negative emotions. However, the circuit mechanisms underlying the effect of EA treatment on negative emotions remain unclear. METHODS Plantar injection of complete Freund's adjuvant (CFA) was performed to establish a rat model of chronic inflammatory pain-induced anxiety-like behaviors. Adeno-associated virus (AAV) tracing was used to identify excitatory synaptic transmission from the rostral anterior cingulate cortex (rACC) to the dorsal raphe nucleus (DRN). Employing chemogenetic approaches, we examined the role of the rACC-DRN circuit in chronic pain-induced anxiety-like behaviors and investigated whether EA could reverse chronic pain-induced dysfunctions of the rACC-DRN circuit and anxiety-like behaviors. RESULTS We found that chemogenetic activation of the rACC-DRN circuit alleviated CFA-induced anxiety-like behaviors, while chemogenetic inhibition of the rACC-DRN circuit resulted in short-term CFA-induced anxiety-like behaviors. Further research revealed that the development of CFA-induced anxiety-like behaviors was attributed to the dysfunction of rACC CaMKII neurons projecting to DRN serotonergic neurons (rACCCaMKII-DRN5-HT neurons) but not rACC CaMKII neurons projecting to DRN GABAergic neurons (rACCCaMKII-DRNGABA neurons). This is supported by the findings that chemogenetic activation of the rACCCaMKII-DRN5-HT circuit alleviates anxiety-like behaviors in rats with chronic pain, whereas neither chemogenetic inhibition nor chemogenetic activation of the rACCCaMKII-DRNGABA circuit altered CFA chronic pain-evoked anxiety-like behaviors in rats. More importantly, we found that EA could reverse chronic pain-induced changes in the activity of rACC CaMKII neurons and DRN 5-HTergic neurons and that chemogenetic inhibition of the rACCCaMKII-DRN5-HT circuit blocked the therapeutic effects of EA on chronic pain-induced anxiety-like behaviors. CONCLUSIONS Our data suggest that the reversal of rACCCaMKII-DRN5-HT circuit dysfunction may be a mechanism underlying the therapeutic effect of EA on chronic pain-induced anxiety-like behaviors.
Collapse
Affiliation(s)
- Zemin Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
- Department of Acupuncture and Moxibustionthe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yingling Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Shaozong Chen
- Institution of Acupuncture and Moxibustion, Shandong University of Traditional Chinese MedicineJinanChina
| | - Siqi Xiao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jiayu Ye
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haiyan Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinyi Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yichen Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xixiao Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Junfan Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Shuzhong Gao
- Institution of Acupuncture and Moxibustion, Shandong University of Traditional Chinese MedicineJinanChina
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jinggen Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
- National Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
- Department of Acupuncture and Moxibustionthe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
8
|
Kim OY, Song J. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia. Life Sci 2024; 337:122356. [PMID: 38123015 DOI: 10.1016/j.lfs.2023.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Metabolic syndrome (MetS), which is characterized by insulin resistance, high blood glucose, obesity, and dyslipidemia, is known to increase the risk of dementia accompanied by memory loss and depression. The direct pathways and specific mechanisms in the central nervous system (CNS) for addressing fatty acid imbalances in MetS have not yet been fully elucidated. Among polyunsaturated acids, linoleic acid (LA, n6-PUFA) and α-linolenic acid (ALA, n3-PUFA), which are two essential fatty acids that should be provided by food sources (e.g., vegetable oils and seeds), have been reported to regulate various cellular mechanisms including apoptosis, inflammatory responses, mitochondrial biogenesis, and insulin signaling. Furthermore, inadequate intake of LA and ALA is reported to be involved in neuropathology and neuropsychiatric diseases as well as imbalanced metabolic conditions. Herein, we review the roles of LA and ALA on metabolic-related dementia focusing on insulin resistance, dyslipidemia, synaptic plasticity, cognitive function, and neuropsychiatric issues. This review suggests that LA and ALA are important fatty acids for concurrent treatment of both MetS and neurological problems.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Li M, Zhang J, Chen W, Liu S, Liu X, Ning Y, Cao Y, Zhao Y. Supraphysiologic doses of 17β-estradiol aggravate depression-like behaviors in ovariectomized mice possibly via regulating microglial responses and brain glycerophospholipid metabolism. J Neuroinflammation 2023; 20:204. [PMID: 37679787 PMCID: PMC10485970 DOI: 10.1186/s12974-023-02889-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND 17β-Estradiol (E2) is generally considered neuroprotective in humans. However, the current clinical use of estrogen replacement therapy (ERT) is based on the physiological dose of E2 to treat menopausal syndrome and has limited therapeutic efficacy. The efficacy and potential toxicity of superphysiological doses of ERT for menopausal neurodegeneration are unknown. METHODS In this study, we investigated the effect of E2 with a supraphysiologic dose (0.5 mg/kg, sE2) on the treatment of menopausal mouse models established by ovariectomy. We performed the open field, Y-maze spontaneous alternation, forced swim tests, and sucrose preference test to investigate behavioral alterations. Subsequently, the status of microglia and neurons was detected by immunohistochemistry, HE staining, and Nissl staining, respectively. Real-time PCR was used to detect neuroinflammatory cytokines in the hippocampus and cerebral cortex. Using mass spectrometry proteomics platform and LC-MS/ MS-based metabolomics platform, proteins and metabolites in brain tissues were extracted and analyzed. BV2 and HT22 cell lines and primary neurons and microglia were used to explore the underlying molecular mechanisms in vitro. RESULTS sE2 aggravated depression-like behavior in ovariectomized mice, caused microglia response, and increased proinflammatory cytokines in the cerebral cortex and hippocampus, as well as neuronal damage and glycerophospholipid metabolism imbalance. Subsequently, we demonstrated that sE2 induced the pro-inflammatory phenotype of microglia through ERα/NF-κB signaling pathway and downregulated the expression of cannabinoid receptor 1 in neuronal cells, which were important in the pathogenesis of depression. CONCLUSION These data suggest that sE2 may be nonhelpful or even detrimental to menopause-related depression, at least partly, by regulating microglial responses and glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Ming Li
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Wendi Chen
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shuang Liu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Xin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yunna Ning
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yueran Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Coelho A, Lima-Bastos S, Gobira P, Lisboa S. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal 2023; 7:NS20220034. [PMID: 37520658 PMCID: PMC10372471 DOI: 10.1042/ns20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases. Changes in several transmitters, including serotonin, dopamine, glutamate, gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psychiatric disorders or behavioral alterations in preclinical studies. Complex and interacting mechanisms make it very difficult to understand the physiopathology of psychiatry conditions; therefore, studying regulatory mechanisms that impact these alterations is a good approach. In the last decades, the impact of stress on biology through epigenetic markers, which directly impact gene expression, is under intense investigation; these mechanisms are associated with behavioral alterations in animal models after stress or drug exposure, for example. The endocannabinoid (eCB) system modulates stress response, reward circuits, and other physiological functions, including hypothalamus-pituitary-adrenal axis activation and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting the release of neurotransmitters, a mechanism implicated in the antidepressant and anxiolytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system molecules, which in turn can regulate epigenetic mechanisms. This review will present evidence of how the eCB system and epigenetic mechanisms interact and the consequences of this interaction in modulating behavioral changes after stress exposure in preclinical studies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB system and epigenetic mechanisms in drug abuse contexts will be discussed.
Collapse
Affiliation(s)
- Arthur A. Coelho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sávio Lima-Bastos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Pedro H. Gobira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sabrina F. Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
11
|
Oddi S, Fiorenza MT, Maccarrone M. Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective. Prog Lipid Res 2023; 91:101239. [PMID: 37385352 DOI: 10.1016/j.plipres.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers. These pleiotropic bioactive lipids can directly and/or indirectly influence adult hippocampal neurogenesis (AHN) by modulating, both positively and negatively, multiple molecular and cellular processes in the hippocampal niche, depending on the cell type or stage of differentiation. Firstly, eCBs act directly as cell-intrinsic factors, cell-autonomously produced by NSCs following their stimulation. Secondly, in many, if not all, niche-associated cells, including some local neuronal and nonneuronal elements, the eCB system indirectly modulates the neurogenesis, linking neuronal and glial activity to regulating distinct stages of AHN. Herein, we discuss the crosstalk of the eCB system with other neurogenesis-relevant signal pathways and speculate how the hippocampus-dependent neurobehavioral effects elicited by (endo)cannabinergic medications are interpretable in light of the key regulatory role that eCBs play on AHN.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Fiorenza
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio Snc, 67100 L'Aquila, Italy
| |
Collapse
|
12
|
Quan Z, Li H, Quan Z, Qing H. Appropriate Macronutrients or Mineral Elements Are Beneficial to Improve Depression and Reduce the Risk of Depression. Int J Mol Sci 2023; 24:7098. [PMID: 37108261 PMCID: PMC10138658 DOI: 10.3390/ijms24087098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Depression is a common mental disorder that seriously affects the quality of life and leads to an increasing global suicide rate. Macro, micro, and trace elements are the main components that maintain normal physiological functions of the brain. Depression is manifested in abnormal brain functions, which are considered to be tightly related to the imbalance of elements. Elements associated with depression include glucose, fatty acids, amino acids, and mineral elements such as lithium, zinc, magnesium, copper, iron, and selenium. To explore the relationship between these elements and depression, the main literature in the last decade was mainly searched and summarized on PubMed, Google Scholar, Scopus, Web of Science, and other electronic databases with the keywords "depression, sugar, fat, protein, lithium, zinc, magnesium, copper, iron, and selenium". These elements aggravate or alleviate depression by regulating a series of physiological processes, including the transmission of neural signals, inflammation, oxidative stress, neurogenesis, and synaptic plasticity, which thus affect the expression or activity of physiological components such as neurotransmitters, neurotrophic factors, receptors, cytokines, and ion-binding proteins in the body. For example, excessive fat intake can lead to depression, with possible mechanisms including inflammation, increased oxidative stress, reduced synaptic plasticity, and decreased expression of 5-Hydroxytryptamine (5-HT), Brain Derived Neurotrophic Factor (BDNF), Postsynaptic density protein 95(PSD-95), etc. Supplementing mineral elements, such as selenium, zinc, magnesium, or lithium as a psychotropic medication is mostly used as an auxiliary method to improve depression with other antidepressants. In general, appropriate nutritional elements are essential to treat depression and prevent the risk of depression.
Collapse
Affiliation(s)
| | | | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
13
|
Bright U, Akirav I. Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence. Int J Mol Sci 2022; 23:5526. [PMID: 35628337 PMCID: PMC9146799 DOI: 10.3390/ijms23105526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Depression is characterized by continuous low mood and loss of interest or pleasure in enjoyable activities. First-line medications for mood disorders mostly target the monoaminergic system; however, many patients do not find relief with these medications, and those who do suffer from negative side effects and a discouragingly low rate of remission. Studies suggest that the endocannabinoid system (ECS) may be involved in the etiology of depression and that targeting the ECS has the potential to alleviate depression. ECS components (such as receptors, endocannabinoid ligands, and degrading enzymes) are key neuromodulators in motivation and cognition as well as in the regulation of stress and emotions. Studies in depressed patients and in animal models for depression have reported deficits in ECS components, which is motivating researchers to identify potential diagnostic and therapeutic biomarkers within the ECS. By understanding the effects of cannabinoids on ECS components in depression, we enhance our understanding of which brain targets they hit, what biological processes they alter, and eventually how to use this information to design better therapeutic options. In this article, we discuss the literature on the effects of cannabinoids on ECS components of specific depression-like behaviors and phenotypes in rodents and then describe the findings in depressed patients. A better understanding of the effects of cannabinoids on ECS components in depression may direct future research efforts to enhance diagnosis and treatment.
Collapse
Affiliation(s)
- Uri Bright
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
14
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Canseco-Alba A, Sanabria B, Hammouda M, Bernadin R, Mina M, Liu QR, Onaivi ES. Cell-Type Specific Deletion of CB2 Cannabinoid Receptors in Dopamine Neurons Induced Hyperactivity Phenotype: Possible Relevance to Attention-Deficit Hyperactivity Disorder. Front Psychiatry 2022; 12:803394. [PMID: 35211038 PMCID: PMC8860836 DOI: 10.3389/fpsyt.2021.803394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022] Open
Abstract
DAT-Cnr2 mice are conditional knockout (cKO) animals that do not express cannabinoid CB2 receptors (CB2R), in midbrain dopamine neurons. The hyperactivity phenotype of DAT-Cnr2 cKO mice were paradoxically reduced by low dose of amphetamine. Here, we report on the locomotor activity analysis in male and female adolescent (PND 30 ± 2) mice in basal conditions and in response to different doses of amphetamine, using the Open Field (OF), Elevated Plus-Maze (EPM) tests and the Novel Object Recognition (NOR) task as a putative model of attention deficit hyperactivity disorder (ADHD). Results showed that both male and female adolescent DAT-Cnr2 mice displayed significant increases in distance traveled in the OF test compared with WT mice. However, 2 mg/kg dose of amphetamine reduced the distance traveled by the DAT-Cnr2 but was increased in the WT mice. In the EPM test of anxiety-like behavioral responses, DAT-Cnr2 spent more time in the open arms of the maze than the WT mice, suggesting a reduction in anxiety-like response. DAT-Cnr2 mice showed significant increase in the number of unprotected head dips in the maze test and in the cliff avoidance reaction (CAR) test demonstrating impulsivity and risky behavior. DAT-Cnr2 mice also exhibited deficient response in the delay decision making (DDM), with impulsive choice. Both DAT-Cnr2 and WT were able to recognize the new object in the NOR task, but the exploration by the DAT-Cnr2 was less than that of the WT mice. Following the administration of 2 mg/kg of amphetamine, the similarities and differential performances of the DAT-Cnr2 and WT mice in the EPM test and NOR task was probably due to increase in attention. Microglia activation detected by Cd11b immunolabelling was enhanced in the hippocampus in DAT-Cnr2 cKO than in WT mice, implicating neuro-immune modulatory effects of CB2R. The results demonstrates that DAT-Cnr2 cKO mice with cell-type specific deletion of CB2R in midbrain dopaminergic neurons may represent a possible model for studying the neurobiological basis of ADHD.
Collapse
Affiliation(s)
- Ana Canseco-Alba
- Dirección de Investigación, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Branden Sanabria
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Mariam Hammouda
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Rollanda Bernadin
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Marizel Mina
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Emmanuel S. Onaivi
- Department of Biology, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
16
|
Yang F, Zhao YJ, Chen SJ, Li YR, Yang PY, Qi JY, Wang XS, Wang M, Li XB, Feng B, Wu YM, Liu SB, Zhang K. Disrupting Cannabinoid Receptor Interacting Protein 1 Rescues Cognitive Flexibility in Long-Term Estrogen-Deprived Female Mice. Brain Res Bull 2022; 181:77-86. [DOI: 10.1016/j.brainresbull.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 11/02/2022]
|
17
|
Wieckiewicz G, Stokłosa I, Stokłosa M, Gorczyca P, Pudlo R. Cannabidiol (CBD) in the Self-Treatment of Depression-Exploratory Study and a New Phenomenon of Concern for Psychiatrists. Front Psychiatry 2022; 13:837946. [PMID: 35392393 PMCID: PMC8980587 DOI: 10.3389/fpsyt.2022.837946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/24/2022] [Indexed: 02/03/2023] Open
Abstract
Cannabis sativa, whose flowers are also known as marijuana or marihuana, is a recreational plant that contains many chemicals that are constantly being studied by scientists around the world. One of these substances is cannabidiol (CBD), which has gained widespread popularity on the internet as a cure for mental health problems, leading many people to use CBD to self-treat depression and anxiety. This article presents an exploratory cohort study (n = 90) of a group of people aged 16-69 using CBD to self-heal depression symptoms. The survey included basic sociodemographic questionnaire and validated Hospital Depression and Anxiety Scale. And was distributed via the Internet. The results were statistically analyzed. High school degree was the most commonly held education (46%), large city was the most popular place of living (33%) and majority of the respondents have a full-time job (53%). Only 19% of the respondents consult their doctor or pharmacists about taking CBD. On the group of psychiatric patients, only 49% of respondents tell their psychiatrist about using the compound. Psychiatrists should be aware of CBD use in their patients during their daily practice, as CBD use can be found within people from all walks of life, and due to public interest, there is a need for education and research on the efficacy and safety of CBD use for mental disorders.
Collapse
Affiliation(s)
- Gniewko Wieckiewicz
- Department and Clinic of Psychiatry, Medical University of Silesia, Tarnowskie Góry, Poland
| | - Iga Stokłosa
- Department and Clinic of Psychiatry, Medical University of Silesia, Tarnowskie Góry, Poland
| | - Maciej Stokłosa
- Department and Clinic of Psychiatry, Medical University of Silesia, Tarnowskie Góry, Poland
| | - Piotr Gorczyca
- Department and Clinic of Psychiatry, Medical University of Silesia, Tarnowskie Góry, Poland
| | - Robert Pudlo
- Department and Clinic of Psychiatry, Medical University of Silesia, Tarnowskie Góry, Poland
| |
Collapse
|
18
|
Gallego-Landin I, García-Baos A, Castro-Zavala A, Valverde O. Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression. Front Pharmacol 2021; 12:762738. [PMID: 34938182 PMCID: PMC8685322 DOI: 10.3389/fphar.2021.762738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder is a high-impact, debilitating disease and it is currently considered the most prevalent mental illness. It is associated with disability, as well as increased morbidity and mortality. Despite its significant repercussions in our society, its exact pathophysiology remains unclear and therefore, available antidepressant treatment options are limited and, in some cases, ineffective. In the past years, research has focused on the development of a multifactorial theory of depression. Simultaneously, evidence supporting the role of the endocannabinoid system in the neurobiology of neuropsychiatric diseases has emerged. Studies have shown that the endocannabinoid system strongly impacts neurotransmission, and the neuroendocrine and neuroimmune systems, which are known to be dysfunctional in depressive patients. Accordingly, common antidepressants were shown to have a direct impact on the expression of cannabinoid receptors throughout the brain. Therefore, the relationship between the endocannabinoid system and major depressive disorder is worth consideration. Nevertheless, most studies focus on smaller pieces of what is undoubtedly a larger mosaic of interdependent processes. Therefore, the present review summarizes the existing literature regarding the role of the endocannabinoid system in depression aiming to integrate this information into a holistic picture for a better understanding of the relationship between the two.
Collapse
Affiliation(s)
- Ines Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
19
|
Gawliński D, Gawlińska K, Smaga I. Maternal High-Fat Diet Modulates Cnr1 Gene Expression in Male Rat Offspring. Nutrients 2021; 13:nu13082885. [PMID: 34445045 PMCID: PMC8402185 DOI: 10.3390/nu13082885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
In recent years, strong evidence has emerged that exposure to a maternal high-fat diet (HFD) provokes changes in the structure, function, and development of the offspring’s brain and may induce several neurodevelopmental and psychiatric illnesses. The aims of this study were to evaluate the effects of a maternal HFD during pregnancy and lactation on depressive-like behavior and Cnr1 gene expression (encoding the CB1 receptor) in brain structures of rat offspring and to investigate the epigenetic mechanism involved in this gene expression. We found that a maternal HFD during pregnancy and lactation induced a depressive-like phenotype at postnatal days (PNDs) 28 and 63. We found that a maternal HFD decreased the Cnr1 mRNA levels in the prefrontal cortex with the increased levels of miR-212-5p and methylation of CpG islands at the Cnr1 promoter and reduced the level of Cnr1 gene expression in the dorsal striatum with an increased level of miR-154-3p in adolescent male offspring. A contrasting effect of a maternal HFD was observed in the hippocampus, where upregulation of Cnr1 gene expression was accompanied by a decrease of miR-154-3p (at PNDs 28 and 63) and miR-212-5p (at PND 63) expression and methylation of CpG islands at the Cnr1 promoter in male offspring. In summary, we showed that a maternal HFD during pregnancy and lactation triggered several epigenetic mechanisms in the brains of rat offspring, which may be related to long-lasting alterations in the next generation and produce behavioral changes in offspring, including a depressive-like phenotype.
Collapse
|
20
|
Yoon S, Myczek K, Penzes P. cAMP Signaling-Mediated Phosphorylation of Diacylglycerol Lipase α Regulates Interaction With Ankyrin-G and Dendritic Spine Morphology. Biol Psychiatry 2021; 90:263-274. [PMID: 34099188 PMCID: PMC8384113 DOI: 10.1016/j.biopsych.2021.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Diacylglycerol lipase α (DAGLα), a major biosynthetic enzyme for endogenous cannabinoid signaling, has emerged as a risk gene in multiple psychiatric disorders. However, its role in the regulation of dendritic spine plasticity is unclear. METHODS DAGLα wild-type or point mutants were overexpressed in primary cortical neurons or human embryonic kidney 293T cells. The effects of mutated variants on interaction, dendritic spine morphology, and dynamics were examined by proximity ligation assay or fluorescence recovery after photobleaching. Behavioral tests and immunohistochemistry were performed with ankyrin-G conditional knockout and wild-type male mice. RESULTS DAGLα modulated dendritic spine size and density, but the effects of changes in its protein level versus enzymatic activity were different, implicating either a 2-arachidonoylglycerol (2-AG)-dependent or -independent mechanism. The 2-AG-independent effects were mediated by the interaction of DAGLα with ankyrin-G, a multifunctional scaffold protein implicated in psychiatric disorders. Using superresolution microscopy, we observed that they colocalized in distinct nanodomains, which correlated with spine size. In situ proximity ligation assay combined with structured illumination microscopy revealed that DAGLα phosphorylation upon forskolin treatment enhanced the interaction with ankyrin-G in spines, leading to increased spine size and decreased DAGLα surface diffusion. Ankyrin-G conditional knockout mice showed significantly decreased DAGLα-positive neurons in the forebrain. In mice, ankyrin-G was required for forskolin-dependent reversal of depression-related behavior. CONCLUSIONS Taken together, ANK3 and DAGLA, both neuropsychiatric disorder genes, interact in a complex to regulate spine morphology. These data reveal novel synaptic signaling mechanisms and potential therapeutic avenues.
Collapse
Affiliation(s)
- Sehyoun Yoon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, and Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
21
|
Duffy KA, Bale TL, Epperson CN. Germ Cell Drivers: Transmission of Preconception Stress Across Generations. Front Hum Neurosci 2021; 15:642762. [PMID: 34322003 PMCID: PMC8311293 DOI: 10.3389/fnhum.2021.642762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to stress can accelerate maturation and hasten reproduction. Although potentially adaptive, the trade-off is higher risk for morbidity and mortality. In humans, the intergenerational effects of stress have been demonstrated, but the precise mechanisms are unknown. Strikingly, even if parental stress occurs prior to conception, as adults, their offspring show worse mental and physical health. Emerging evidence primarily from preclinical models suggests that epigenetic programming may encode preconception stress exposures in germ cells, potentially impacting the phenotype of the offspring. In this narrative review, we evaluate the strength of the evidence for this mechanism across animals and humans in both males and females. The strongest evidence comes from studies of male mice, in which paternal preconception stress is associated with a host of phenotypic changes in the offspring and stress-induced changes in the small non-coding RNA content in sperm have been implicated. Two recent studies in men provide evidence that some small non-coding RNAs in sperm are responsive to past and current stress, including some of the same ones identified in mice. Although preliminary evidence suggests that findings from mice may map onto men, the next steps will be (1) considering whether stress type, severity, duration, and developmental timing affect germ cell epigenetic markers, (2) determining whether germ cell epigenetic markers contribute to disease risk in the offspring of stress-exposed parents, and (3) overcoming methodological challenges in order to extend this research to females.
Collapse
Affiliation(s)
- Korrina A. Duffy
- Colorado Center for Women’s Behavioral Health and Wellness, Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - Tracy L. Bale
- Center for Epigenetic Research in Child Health and Brain Development, Department of Pharmacology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - C. Neill Epperson
- Colorado Center for Women’s Behavioral Health and Wellness, Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, CO, United States
- Helen and Arthur E. Johnson Depression Center, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
22
|
Li S, Luo H, Lou R, Tian C, Miao C, Xia L, Pan C, Duan X, Dang T, Li H, Fan C, Tang P, Zhang Z, Liu Y, Li Y, Xu F, Zhang Y, Zhong G, Hu J, Shui W. Multiregional profiling of the brain transmembrane proteome uncovers novel regulators of depression. SCIENCE ADVANCES 2021; 7:eabf0634. [PMID: 34290087 PMCID: PMC8294761 DOI: 10.1126/sciadv.abf0634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/03/2021] [Indexed: 05/09/2023]
Abstract
Transmembrane proteins play vital roles in mediating synaptic transmission, plasticity, and homeostasis in the brain. However, these proteins, especially the G protein-coupled receptors (GPCRs), are underrepresented in most large-scale proteomic surveys. Here, we present a new proteomic approach aided by deep learning models for comprehensive profiling of transmembrane protein families in multiple mouse brain regions. Our multiregional proteome profiling highlights the considerable discrepancy between messenger RNA and protein distribution, especially for region-enriched GPCRs, and predicts an endogenous GPCR interaction network in the brain. Furthermore, our new approach reveals the transmembrane proteome remodeling landscape in the brain of a mouse depression model, which led to the identification of two previously unknown GPCR regulators of depressive-like behaviors. Our study provides an enabling technology and rich data resource to expand the understanding of transmembrane proteome organization and dynamics in the brain and accelerate the discovery of potential therapeutic targets for depression treatment.
Collapse
Affiliation(s)
- Shanshan Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronghui Lou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuiping Tian
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Chen Miao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lisha Xia
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Pan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoxiao Duan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Ting Dang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Chengyu Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pan Tang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuangzhuang Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
23
|
Zádor F, Joca S, Nagy-Grócz G, Dvorácskó S, Szűcs E, Tömböly C, Benyhe S, Vécsei L. Pro-Inflammatory Cytokines: Potential Links between the Endocannabinoid System and the Kynurenine Pathway in Depression. Int J Mol Sci 2021; 22:ijms22115903. [PMID: 34072767 PMCID: PMC8199129 DOI: 10.3390/ijms22115903] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Substance use/abuse is one of the main causes of depressive symptoms. Cannabis and synthetic cannabinoids in particular gained significant popularity in the past years. There is an increasing amount of clinical data associating such compounds with the inflammatory component of depression, indicated by the up-regulation of pro-inflammatory cytokines. Pro-inflammatory cytokines are also well-known to regulate the enzymes of the kynurenine pathway (KP), which is responsible for metabolizing tryptophan, a precursor in serotonin synthesis. Enhanced pro-inflammatory cytokine levels may over-activate the KP, leading to tryptophan depletion and reduced serotonin levels, which can subsequently precipitate depressive symptoms. Therefore, such mechanism might represent a possible link between the endocannabinoid system (ECS) and the KP in depression, via the inflammatory and dysregulated serotonergic component of the disorder. This review will summarize the data regarding those natural and synthetic cannabinoids that increase pro-inflammatory cytokines. Furthermore, the data on such cytokines associated with KP activation will be further reviewed accordingly. The interaction of the ECS and the KP has been postulated and demonstrated in some studies previously. This review will further contribute to this yet less explored connection and propose the KP to be the missing link between cannabinoid-induced inflammation and depressive symptoms.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark;
| | - Gábor Nagy-Grócz
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary;
- Albert Szent-Györgyi Clinical Center, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
- Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Center, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Center, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-351
| |
Collapse
|
24
|
Chronic Inhibition of FAAH Reduces Depressive-Like Behavior and Improves Dentate Gyrus Proliferation after Chronic Unpredictable Stress Exposure. Behav Neurol 2021; 2021:6651492. [PMID: 33833828 PMCID: PMC8016565 DOI: 10.1155/2021/6651492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023] Open
Abstract
Symptoms of depressive disorders such as anhedonia and despair can be a product of an aberrant adaptation to stress conditions. Chronic unpredictable stress model (CUS) can generate an increase in the activity of the hypothalamic-pituitary-adrenal axis (HPA) and induce a reduction of neurotrophin signaling and the proliferation of neural progenitors in the adult dentate gyrus, together with increased oxidative stress. Levels of the endocannabinoid anandamide (AEA) seem to affect these depression-by-stress-related features and could be modulated by fatty acid amide hydrolase (FAAH). We aimed to evaluate the effects of FAAH inhibitor, URB597, on depressive-like behavior and neural proliferation of mice subjected to a model of CUS. URB597 was administered intraperitoneally at a dose of 0.2 mg/kg for 14 days after CUS. Depressive-like behaviors, anhedonia, and despair were evaluated in the splash and forced swimming tests, respectively. Alterations at the HPA axis level were analyzed using the relative weight of adrenal glands and serum corticosterone levels. Oxidative stress and brain-derived neurotrophic factor (BDNF) were also evaluated. Fluorescence immunohistochemistry tests were performed for the immunoreactivity of BrdU and Sox2 colabeling for comparison of neural precursors. The administration of URB597 was able to reverse the depressive-like behavior generated in mice after the model. Likewise, other physiological responses associated with CUS were reduced in the treated group, among them, increase in the relative weight of the adrenal glands, increased oxidative stress, and decreased BDNF and number of neural precursors. Most of these auspicious responses to enzyme inhibitor administration were blocked by employing a cannabinoid receptor antagonist. In conclusion, the chronic inhibition of FAAH generated an antidepressant effect, promoting neural progenitor proliferation and BDNF expression, while reducing adrenal gland weight and oxidative stress in mice under the CUS model.
Collapse
|
25
|
Cannabinoid receptor 1 signalling modulates stress susceptibility and microglial responses to chronic social defeat stress. Transl Psychiatry 2021; 11:164. [PMID: 33723234 PMCID: PMC7961142 DOI: 10.1038/s41398-021-01283-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Psychosocial stress is one of the main environmental factors contributing to the development of psychiatric disorders. In humans and rodents, chronic stress is associated with elevated inflammatory responses, indicated by increased numbers of circulating myeloid cells and activation of microglia, the brain-resident immune cells. The endocannabinoid system (ECS) regulates neuronal and endocrine stress responses via the cannabinoid receptor 1 (CB1). CB1-deficient mice (Cnr1-/-) are highly sensitive to stress, but if this involves altered inflammatory responses is not known. To test this, we exposed Cnr1+/+ and Cnr1-/- mice to chronic social defeat stress (CSDS). Cnr1-/- mice were extremely sensitive to a standard protocol of CSDS, indicated by an increased mortality rate. Therefore, a mild CSDS protocol was established, which still induced a behavioural phenotype in susceptible Cnr1-/- mice. These mice also showed altered glucocorticoid levels after mild CSDS, suggesting dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Mild CSDS induced weak myelopoiesis in the periphery, but no recruitment of myeloid cells to the brain. In contrast, mild CSDS altered microglial activation marker expression and morphology in Cnr1-/- mice. These microglial changes correlated with the severity of the behavioural phenotype. Furthermore, microglia of Cnr1-/- mice showed increased expression of Fkbp5, an important regulator of glucocorticoid signalling. Overall, the results confirm that CB1 signalling protects the organism from the physical and emotional harm of social stress and implicate endocannabinoid-mediated modulation of microglia in the development of stress-related pathologies.
Collapse
|
26
|
Region-specific dysregulation of endocannabinoid system in learned helplessness model of depression. Neuroreport 2021; 32:345-351. [PMID: 33661802 DOI: 10.1097/wnr.0000000000001601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Researches have indicated that the endocannabinoid system (ECS) plays a crucial role in pathophysiology of depressive disorder. However, both hypo- and hyperfunction of the ECS were reported in depressive patients or animal models of depression. We proposed that the dual functional changes of the ECS in depression might be due to its region-specific dysregulation. Therefore, we investigated the mRNA expression of genes coding for the components of the ECS in the key depression-associated brain regions of the mouse learned helplessness model of depression. We found that in the mPFC, mRNA of transient receptor potential vanilloid type 1 (TRPV1) was significantly decreased in learned helplessness-resilient mice, whereas diacylglycerol lipases-α (DAGL-α) was decreased in both learned helplessness and learned helplessness-resilient mice. In the hippocampus, a significant increase of DAGL-α was observed in learned helplessness-resilient mice. In the amygdala, G-protein-coupled receptor 55 (GPR55) and DAGL-α were significantly decreased in both learned helplessness and learned helplessness-resilient mice. Meanwhile, fatty acid amide hydrolase (FAAH) was significantly decreased only in learned helplessness-resilient mice. In the LHb, the GPR55 was significantly decreased in both learned helplessness and learned helplessness-resilient mice, whereas the DAGL-β and FAAH were significantly downregulated only in learned helplessness-resilient mice. Therefore, our study reveals novel implications of the ECS in the development of depression-like or depression-resilient behaviors and discloses a region-specific manner of the ECS dysregulation by learned helplessness stress, suggesting that brain region-specific strategy might be necessary for the ECS to be intervened for the precise treatment of depression.
Collapse
|
27
|
Bitencourt RM, Takahashi RN, Carlini EA. From an Alternative Medicine to a New Treatment for Refractory Epilepsies: Can Cannabidiol Follow the Same Path to Treat Neuropsychiatric Disorders? Front Psychiatry 2021; 12:638032. [PMID: 33643100 PMCID: PMC7905048 DOI: 10.3389/fpsyt.2021.638032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
Although cannabis has been known for ages as an "alternative medicine" to provide relief from seizures, pain, anxiety, and inflammation, there had always been a limited scientific review to prove and establish its use in clinics. Early studies carried out by Carlini's group in Brazil suggested that cannabidiol (CBD), a non-psychotropic phytocannabinoid present in Cannabis sativa, has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Over the past few years, the potential use of cannabis extract in refractory epilepsy, including childhood epilepsies such as Dravet's syndrome and Lennox-Gastaut Syndrome, has opened a new era of treating epileptic patients. Thus, a considerable number of pre-clinical and clinical studies have provided strong evidence that phytocannabinoids has anticonvulsant properties, as well as being promising in the treatment of different neuropsychiatric disorders, such as depression, anxiety, post-traumatic stress disorder (PTSD), addiction, neurodegenerative disorders and autism spectrum disorder (ASD). Given the advances of cannabinoids, especially CBD, in the treatment of epilepsy, would the same expectation regarding the treatment of other neuropsychiatric disorders be possible? The present review highlights some contributions from Brazilian researchers and other studies reported elsewhere on the history, pre-clinical and clinical data underlying the use of cannabinoids for the already widespread treatment of refractory epilepsies and the possibility of use in the treatment of some neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rafael M. Bitencourt
- Laboratory of Behavioral Neuroscience, Graduate Program in Health Sciences, University of Southern Santa Catarina, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Reinaldo N. Takahashi
- Post Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elisaldo A. Carlini
- Centro Brasileiro de Informações Sobre Drogas Psicotrópicas (CEBRID), Department of Preventive Medicine, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| |
Collapse
|
28
|
Jenkins BW, Khokhar JY. Cannabis Use and Mental Illness: Understanding Circuit Dysfunction Through Preclinical Models. Front Psychiatry 2021; 12:597725. [PMID: 33613338 PMCID: PMC7892618 DOI: 10.3389/fpsyt.2021.597725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with a serious mental illness often use cannabis at higher rates than the general population and are also often diagnosed with cannabis use disorder. Clinical studies reveal a strong association between the psychoactive effects of cannabis and the symptoms of serious mental illnesses. Although some studies purport that cannabis may treat mental illnesses, others have highlighted the negative consequences of use for patients with a mental illness and for otherwise healthy users. As epidemiological and clinical studies are unable to directly infer causality or examine neurobiology through circuit manipulation, preclinical animal models remain a valuable resource for examining the causal effects of cannabis. This is especially true considering the diversity of constituents in the cannabis plant contributing to its effects. In this mini-review, we provide an updated perspective on the preclinical evidence of shared neurobiological mechanisms underpinning the dual diagnosis of cannabis use disorder and a serious mental illness. We present studies of cannabinoid exposure in otherwise healthy rodents, as well as rodent models of schizophrenia, depression, and bipolar disorder, and the resulting impact on electrophysiological indices of neural circuit activity. We propose a consolidated neural circuit-based understanding of the preclinical evidence to generate new hypotheses and identify novel therapeutic targets.
Collapse
Affiliation(s)
| | - Jibran Y. Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
29
|
Colangeli R, Teskey GC, Di Giovanni G. Endocannabinoid-serotonin systems interaction in health and disease. PROGRESS IN BRAIN RESEARCH 2021; 259:83-134. [PMID: 33541682 DOI: 10.1016/bs.pbr.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocannabinoid (eCB) and serotonin (5-HT) neuromodulatory systems work both independently and together to finely orchestrate neuronal activity throughout the brain to strongly sculpt behavioral functions. Surprising parallelism between the behavioral effects of 5-HT and eCB activity has been widely reported, including the regulation of emotional states, stress homeostasis, cognitive functions, food intake and sleep. The distribution pattern of the 5-HT system and the eCB molecular elements in the brain display a strong overlap and several studies report a functional interplay and even a tight interdependence between eCB/5-HT signaling. In this review, we examine the available evidence of the interaction between the eCB and 5-HT systems. We first introduce the eCB system, then we describe the eCB/5-HT crosstalk at the neuronal and synaptic levels. Finally, we explore the potential eCB/5-HT interaction at the behavioral level with the implication for psychiatric and neurological disorders. The precise elucidation of how this neuromodulatory interaction dynamically regulates biological functions may lead to the development of more targeted therapeutic strategies for the treatment of depressive and anxiety disorders, psychosis and epilepsy.
Collapse
Affiliation(s)
- Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
30
|
Portugalov A, Akirav I. Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models. Int J Mol Sci 2021; 22:ijms22020730. [PMID: 33450928 PMCID: PMC7828431 DOI: 10.3390/ijms22020730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
There have been growing concerns about the protracted effects of cannabis use in adolescents on emotion and cognition outcomes, motivated by evidence of growing cannabis use in adolescents, evidence linking cannabis use to various psychiatric disorders, and the increasingly perceived notion that cannabis is harmless. At the same time, studies suggest that cannabinoids may have therapeutic potential against the impacts of stress on the brain and behavior, and that young people sometimes use cannabinoids to alleviate feelings of depression and anxiety (i.e., “self-medication”). Exposure to early adverse life events may predispose individuals to developing psychopathology in adulthood, leading researchers to study the causality between early life factors and cognitive and emotional outcomes in rodent models and to probe the underlying mechanisms. In this review, we aim to better understand the long-term effects of cannabinoids administered in sensitive developmental periods (mainly adolescence) in rodent models of early life stress. We suggest that the effects of cannabinoids on emotional and cognitive function may vary between different sensitive developmental periods. This could potentially affect decisions regarding the use of cannabinoids in clinical settings during the early stages of development and could raise questions regarding educating the public as to potential risks associated with cannabis use.
Collapse
Affiliation(s)
- Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, 3498838 Haifa, Israel;
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 3498838 Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, 3498838 Haifa, Israel;
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 3498838 Haifa, Israel
- Correspondence:
| |
Collapse
|
31
|
Soriano D, Brusco A, Caltana L. Further evidence of anxiety- and depression-like behavior for total genetic ablation of cannabinoid receptor type 1. Behav Brain Res 2020; 400:113007. [PMID: 33171148 DOI: 10.1016/j.bbr.2020.113007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Cannabinoid receptor type 1 (CB1R) is the most abundant cannabinoid receptor in central nervous system. Clinical studies and animal models have shown that the attenuation of endocannabinoid system signaling correlates with the development of psychiatric disorders such as anxiety, depression and schizophrenia. In the present work, multiple behavioral tests were performed to evaluate behaviors related to anxiety and depression in CB1R+/- and CB1R-/-. CB1R+/- mice had anxiety-related behavior similar to wild type (CB1R+/+) mice, whereas CB1R-/- mice displayed an anxious-like phenotype, which indicates that lower expression of CB1R is sufficient to maintain the neural circuits modulating anxiety. In addition, CB1R-/- mice exhibited alterations in risk assessment and less exploration, locomotion, grooming, body weight and appetite. These phenotypic characteristics observed in CB1R-/- mice could be associated with symptoms observed in human psychiatric disorders such as depression. A better knowledge of the neuromodulatory role of CB1R may contribute to understand scope and limitations of the development of medical treatments.
Collapse
Affiliation(s)
- Delia Soriano
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina
| | - Laura Caltana
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina.
| |
Collapse
|
32
|
Gellner AK, Voelter J, Schmidt U, Beins EC, Stein V, Philipsen A, Hurlemann R. Molecular and neurocircuitry mechanisms of social avoidance. Cell Mol Life Sci 2020; 78:1163-1189. [PMID: 32997200 PMCID: PMC7904739 DOI: 10.1007/s00018-020-03649-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Humans and animals live in social relationships shaped by actions of approach and avoidance. Both are crucial for normal physical and mental development, survival, and well-being. Active withdrawal from social interaction is often induced by the perception of threat or unpleasant social experience and relies on adaptive mechanisms within neuronal networks associated with social behavior. In case of confrontation with overly strong or persistent stressors and/or dispositions of the affected individual, maladaptive processes in the neuronal circuitries and its associated transmitters and modulators lead to pathological social avoidance. This review focuses on active, fear-driven social avoidance, affected circuits within the mesocorticolimbic system and associated regions and a selection of molecular modulators that promise translational potential. A comprehensive review of human research in this field is followed by a reflection on animal studies that offer a broader and often more detailed range of analytical methodologies. Finally, we take a critical look at challenges that could be addressed in future translational research on fear-driven social avoidance.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jella Voelter
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany
| | - Ulrike Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Psychiatry Und Psychotherapy, University of Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Eva Carolina Beins
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, 53115, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - René Hurlemann
- Division of Medical Psychology, Department of Psychiatry, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany. .,Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
33
|
Schuele LL, Glasmacher S, Gertsch J, Roggan MD, Transfeld JL, Bindila L, Lutz B, Kolbe CC, Bilkei-Gorzo A, Zimmer A, Leidmaa E. Diacylglycerol lipase alpha in astrocytes is involved in maternal care and affective behaviors. Glia 2020; 69:377-391. [PMID: 32876968 DOI: 10.1002/glia.23903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/05/2023]
Abstract
Genetic deletion of cannabinoid CB1 receptors or diacylglycerol lipase alpha (DAGLa), the main enzyme involved in the synthesis of the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG), produced profound phenotypes in animal models of depression-related behaviors. Furthermore, clinical studies have shown that antagonists of CB1 can increase the incidence and severity of major depressive episodes. However, the underlying pathomechanisms are largely unknown. In this study, we have focused on the possible involvement of astrocytes. Using the highly sensitive RNAscope technology, we show for the first time that a subpopulation of astrocytes in the adult mouse brain expresses Dagla, albeit at low levels. Targeted lipidomics revealed that astrocytic DAGLa only accounts for a minor percentage of the steady-state brain 2-AG levels and other arachidonic acid derived lipids like prostaglandins. Nevertheless, the deletion of Dagla in adult mouse astrocytes had profound behavioral consequences with significantly increased depressive-like behavioral responses and striking effects on maternal behavior, corresponding with increased levels of serum progesterone and estradiol. Our findings therefore indicate that lipids from the DAGLa metabolic axis in astrocytes play a key regulatory role in affective behaviors.
Collapse
Affiliation(s)
- Lena-Louise Schuele
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Marie Denise Roggan
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Janis-Lisa Transfeld
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Soriano D, Vacotto M, Brusco A, Caltana L. Neuronal and synaptic morphological alterations in the hippocampus of cannabinoid receptor type 1 knockout mice. J Neurosci Res 2020; 98:2245-2262. [DOI: 10.1002/jnr.24694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/28/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Delia Soriano
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Marina Vacotto
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Laura Caltana
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
35
|
Wang T, Niu K, Fan A, Bi N, Tao H, Chen XT, Wang HL. Dietary intake of polyunsaturated fatty acids alleviates cognition deficits and depression-like behaviour via cannabinoid system in sleep deprivation rats. Behav Brain Res 2020; 384:112545. [PMID: 32035867 DOI: 10.1016/j.bbr.2020.112545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 01/01/2023]
Abstract
Sleep deprivation (SD) is a common feature in modern society. Prolonged sleep deprivation causes cognition deficits and depression-like behavior in the model of animal experiments. Endocannabinoid system are key modulators of synaptic function, which were related to memory and mood. Although the underlying mechanism remains unknown, several studies indicated the benefits of polyunsaturated fatty acids (PUFAs, linolenic acid, 39.7 %; linoleic acid, 28 %; and oleic acid, 22 %) on brain function through the endocannabinoid system. The present study aimed to evaluate the influence of dietary PUFAs on cognition deficits induced by sleep deprivation in Sprague Dawley rats. The rats were sleep deprivation continuously for 7 days and fed with PUFAs at three different dosages (2, 4 and 8 μl/g body weight) at the meantime. The effect of PUFAs on cognition was investigated by object recognition test while depressive-like behavior were detected using sucrose preference test and forced swim test. The mechanism of PUFAs was elucidated by hippocampal synaptic transmission analyses. The resluts revealed that SD led to the disorder of cognition and mood which was improved by the supplement of PUFAs. SD significantly increased the mEPSC frequency, and decreased the protein level of cannabinoid type-1 receptors (CB1R). These changes were restored by supplement of PUFAs, which showed a similar level to the control group. Behaviour tests showed that the positive effects on repairing cognition and anxiety disorders were almost completely abolished when the CB1R receptor antagonist rimonabant was applied to the SD rats. These findings indicated that PUFAs are a factor regulating cognition deficits and depression induced by SD via cannabinoid type-1 receptors.
Collapse
Affiliation(s)
- Tiandong Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Kang Niu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Anni Fan
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Nanxi Bi
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Han Tao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiang-Tao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, PR China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
36
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
37
|
Dellazizzo L, Potvin S, Athanassiou M, Dumais A. Violence and Cannabis Use: A Focused Review of a Forgotten Aspect in the Era of Liberalizing Cannabis. Front Psychiatry 2020; 11:567887. [PMID: 33192691 PMCID: PMC7525024 DOI: 10.3389/fpsyt.2020.567887] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
There has been a shift surrounding societal and legal perspectives on cannabis reflecting changing public attitudes towards the perceived safety and social acceptability of cannabis use. With cannabis liberalization internationally, the focus of most cannabis-related harms has been on effects with users themselves. Harm-to-others including injuries from violence have nevertheless been unfortunately largely overlooked. While studies remain heterogeneous, there is meta-analytical evidence pointing towards an association. The aims of this focused review are two-fold: (I) review the evidence from meta-analyses on the association between cannabis and violence; and (II) provide an overview of possible mechanisms relating cannabis use to violence. First, evidence from meta-analytical studies in youths, intimate partners, and individuals with severe mental disorders have shown that there is a global moderate association between cannabis use and violence, which is stronger in the latter more at-risk population. Preliminary data has even highlighted a potential dose-response relationship with larger effects in more frequent users. Although of importance, this subject has remained essentially forgotten as a public health concern. While literature remains inconclusive, data has suggested potential increases in cannabis use following liberalization policies. This may increase violent outcomes if the effect is directly related to the use of cannabis by means of its psychophysiological modifications. However, for the moment, the mechanisms associating cannabis use and violence remain to be clearly resolved. Considering the recency of policy changes on cannabis, further methodologically sound research using longitudinal designs should examine the effects that cannabis use may have on different forms of violence and the trends that emerge, while evaluating the effects of possible confounding factors (e.g. other substance use). In addition, as evidence-based research from meta-analyses have shown that cannabis use is associated with violence, measures must be taken to mitigate the risks.
Collapse
Affiliation(s)
- Laura Dellazizzo
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Athanassiou
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alexandre Dumais
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Institut national de psychiatrie légale Philippe-Pinel, Montreal, QC, Canada
| |
Collapse
|
38
|
Goldstein Ferber S, Trezza V, Weller A. Early life stress and development of the endocannabinoid system: A bidirectional process in programming future coping. Dev Psychobiol 2019; 63:143-152. [PMID: 31849055 DOI: 10.1002/dev.21944] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system (ECS) critically regulates stress responsivity and emotional behavior throughout development. It regulates anxiety-like behaviors in humans and animal models. In addition, it is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain. The ECS modulates the neuroendocrine and behavioral effects of stress, and is also capable of being affected by stress exposure itself. Early life stress interferes with the development of corticolimbic circuits, a major location of endocannabinoid receptors, and increases vulnerability to adult psychopathology. Early life stress alters the ontogeny of the ECS, resulting in a sustained deficit in its function, particularly within the hippocampus. Specifically, exposure to early stress results in bidirectional changes in anandamide and 2-AG tissue levels within the amygdala and hippocampus and reduces hippocampal endocannabinoid function at puberty. CB1 receptor densities across all brain regions are downregulated later in life following exposure to early life stress. Manipulations affecting the glucocorticoid and the endocannabinoid systems persistently adjust individual emotional responses and synaptic plasticity. This review aims to show the bidirectional trajectories of endocannabinoid modulation of emotionality in reaction to early life stress.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | | | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
39
|
Kong X, Miao Q, Lu X, Zhang Z, Chen M, Zhang J, Zhai J. The association of endocannabinoid receptor genes (CNR1 and CNR2) polymorphisms with depression: A meta-analysis. Medicine (Baltimore) 2019; 98:e17403. [PMID: 31725603 PMCID: PMC6867758 DOI: 10.1097/md.0000000000017403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Studies investigating the association between gene variants and depression susceptibility found inconsistent data. The present study aimed to clarify whether CNR1rs1049353, CNR1 AAT triplet repeat, and CNR2rs2501432 polymorphisms confer higher risk for depressive disorder.Literature from PubMed, Medline, Embase, Scopus, Cochrance Library, and Wanfang databases was searched (up to August 20, 2018). Seven case-control studies with various comorbidities were eligible. We targeted CNR single-nucleotide polymorphisms (SNPs) that have been reported by 2 or more studies to be involved in the current meta-analysis, resulting in a final list of 3 SNPs: CNR1rs1049353, CNR1 AAT triplet repeat polymorphism, and CNR2rs2501432. Odds ratios (ORs) and 95% confidence intervals (CIs) for allele and homozygote comparisons, dominant and recessive models, and triplet repeat polymorphism ((AAT)n≥5, ≥5 vs (AAT)n<5, <5 or <5, ≥5) were assessed using a random effect model as measures of association. Heterogeneity among included studies was analyzed using sensitivity test. Publication bias was also explored by Egger and rank correlation test.overall, no significant association was found between depression and CNR1rs1049353 (G vs A: OR [95% CI] = 1.09 [0.61-1.95]; GG vs AA: 1.29 [0.73-2.26]; GG vs GA+AA: 1.10 [0.57-2.10]; GG+GA vs AA: 1.25 [0.72-2.18]; and AAT triplet repeat polymorphism ((AAT)n≥5, ≥5 vs (AAT)n<5, <5 or <5, ≥5): 1.92 [0.59-6.27]. In contrast, a significant association between CNR2rs2501432 and depression was detected, and the ORs and 95% CIs are as follows: allele contrast (OR = 1.39, 95% CI = [1.12-1.72], P = .003); homozygous (OR = 2.19, 95% CI = [1.34-3.59], P = .002); dominant (OR = 1.93,95% CI = [1.23-3.04], P = .005); and recessive (OR = 1.41, 95% CI = [1.04-1.92], P = .03).This meta-analysis revealed that CNR1rs1049353 or AAT triplet repeat polymorphism had no association with susceptibility to depression, while CNR2rs2501432 polymorphism was a remarkable mark for depression patients.
Collapse
Affiliation(s)
- Xiangjuan Kong
- Department of Clinical Psychology, Jining Psychiatric Hospital
| | - Qingshan Miao
- Department of Clinical Psychology, Jining Psychiatric Hospital
| | - Xiaozi Lu
- Department of Clinical Psychology, Qindao Mental Health Center
| | - Zeng Zhang
- Department of Clinical Psychology, Jining Psychiatric Hospital
| | - Min Chen
- School of Mental Health, Jining Medical University, Shandong, China
| | - Jinxiang Zhang
- Department of Clinical Psychology, Jining Psychiatric Hospital
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, Shandong, China
| |
Collapse
|
40
|
Scheyer AF, Melis M, Trezza V, Manzoni OJJ. Consequences of Perinatal Cannabis Exposure. Trends Neurosci 2019; 42:871-884. [PMID: 31604585 DOI: 10.1016/j.tins.2019.08.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/10/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
Cannabis exposure during the perinatal period results in varied and significant consequences in affected offspring. The prevalence of detrimental outcomes of perinatal cannabis exposure is likely to increase in tandem with the broadening of legalization and acceptance of the drug. As such, it is crucial to highlight the immediate and protracted consequences of cannabis exposure on pre- and postnatal development. Here, we identify lasting changes in neurons' learning flexibility (synaptic plasticity) and epigenetic misregulation in animal models of perinatal cannabinoid exposure (using synthetic cannabinoids or active components of the cannabis plant), in addition to significant alterations in social behavior and executive functions. These findings are supported by epidemiological data indicating similar behavioral outcomes throughout life in human offspring exposed to cannabis during pregnancy. Further, we indicate important lingering questions regarding accurate modeling of perinatal cannabis exposure as well as the need for sex- and age-dependent outcome measures in future studies.
Collapse
Affiliation(s)
- Andrew F Scheyer
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Provence, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University, Provence, France/Indiana University, Bloomington, IN, USA
| | - Miriam Melis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; National Institute of Neuroscience, Cagliari, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Olivier J J Manzoni
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Provence, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University, Provence, France/Indiana University, Bloomington, IN, USA.
| |
Collapse
|
41
|
Xue SS, Xue F, Ma QR, Wang SQ, Wang Y, Tan QR, Wang HN, Zhou CH, Peng ZW. Repetitive high-frequency transcranial magnetic stimulation reverses depressive-like behaviors and protein expression at hippocampal synapses in chronic unpredictable stress-treated rats by enhancing endocannabinoid signaling. Pharmacol Biochem Behav 2019; 184:172738. [PMID: 31229467 DOI: 10.1016/j.pbb.2019.172738] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
The anti-depressant effect of repetitive transcranial magnetic stimulation (rTMS), a clinically-useful treatment for depression, is associated with changes to the endocannabinoid system (ECS). However, it is currently unknown whether different frequencies of rTMS alter the ECS differently. To test this, rats exposed to chronic unpredictable stress (CUS) were treated with rTMS at two different frequencies (5 (high) or 1 Hz (low), 1.26 Tesla) for 7 consecutive days. Twenty-four hours after the final rTMS treatment, we evaluated depressive-like behaviors and the expression of several synaptic proteins and ECS-related proteins in the hippocampus. In addition, we knocked-down diacylglycerol lipase alpha (DAGLα) and cannabinoid type 1 receptor (CB1R), two important components of the ECS, and measured depressive-like behaviors and synaptic protein expression following rTMS. Furthermore, we measured the expression levels of several components of the ECS system in hippocampal-derived astrocytes and neurons exposed to repetitive magnetic stimulation (rMS) with different parameters (5 or 1 Hz, 0.84 or 1.26 Tesla). Interestingly, we found that only high-frequency rTMS ameliorated depressive-like behaviors and normalized the expression of hippocampal synaptic proteins in CUS-treated rats; this effect was eliminated by knockdown of DAGLα or CB1R. Moreover, we found that rMS at 5 Hz increased the expression of DAGLα and CB1R in hippocampal astrocytes and neurons. Collectively, our results suggest that high-frequency rTMS exerts its anti-depressant effect by up-regulating DAGLα and CB1R.
Collapse
Affiliation(s)
- Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Quan-Rui Ma
- Department of Human Anatomy and Histology and Embryology, Basic Medical College, Ningxia Medical University, 750004, China
| | - Shi-Quan Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
42
|
Kleckner AS, Kleckner IR, Kamen CS, Tejani MA, Janelsins MC, Morrow GR, Peppone LJ. Opportunities for cannabis in supportive care in cancer. Ther Adv Med Oncol 2019; 11:1758835919866362. [PMID: 31413731 PMCID: PMC6676264 DOI: 10.1177/1758835919866362] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Cannabis has the potential to modulate some of the most common and debilitating symptoms of cancer and its treatments, including nausea and vomiting, loss of appetite, and pain. However, the dearth of scientific evidence for the effectiveness of cannabis in treating these symptoms in patients with cancer poses a challenge to clinicians in discussing this option with their patients. A review was performed using keywords related to cannabis and important symptoms of cancer and its treatments. Literature was qualitatively reviewed from preclinical models to clinical trials in the fields of cancer, human immunodeficiency virus (HIV), multiple sclerosis, inflammatory bowel disease, post-traumatic stress disorder (PTSD), and others, to prudently inform the use of cannabis in supportive and palliative care in cancer. There is a reasonable amount of evidence to consider cannabis for nausea and vomiting, loss of appetite, and pain as a supplement to first-line treatments. There is promising evidence to treat chemotherapy-induced peripheral neuropathy, gastrointestinal distress, and sleep disorders, but the literature is thus far too limited to recommend cannabis for these symptoms. Scant, yet more controversial, evidence exists in regard to cannabis for cancer- and treatment-related cognitive impairment, anxiety, depression, and fatigue. Adverse effects of cannabis are documented but tend to be mild. Cannabis has multifaceted potential bioactive benefits that appear to outweigh its risks in many situations. Further research is required to elucidate its mechanisms of action and efficacy and to optimize cannabis preparations and doses for specific populations affected by cancer.
Collapse
Affiliation(s)
- Amber S Kleckner
- Cancer Control and Survivorship, University of Rochester Medical Center, CU 420658, 265 Crittenden Blvd., Rochester, NY 14642, USA
| | - Ian R Kleckner
- Cancer Control and Survivorship, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles S Kamen
- Cancer Control and Survivorship, University of Rochester Medical Center, Rochester, NY, USA
| | - Mohamedtaki A Tejani
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michelle C Janelsins
- Cancer Control and Survivorship, University of Rochester Medical Center, Rochester, NY, USA
| | - Gary R Morrow
- Cancer Control and Survivorship, University of Rochester Medical Center, Rochester, NY, USA
| | - Luke J Peppone
- Cancer Control and Survivorship, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
43
|
Abstract
OBJECTIVE Bipolar disorder (BD) is a debilitating, lifelong neuropsychiatric illness characterised by unsteady mood states which vacillate from (hypo)mania to depression. Despite the availability of pharmaceutical agents which can be effective in ameliorating the acute affective symptoms and prevent episodic relapse, BD is inadequately treated in a subset of patients. The endocannabinoid system (ECS) is known to exert neuromodulatory effects on other neurotransmitter systems critical in governing emotions. Several studies ranging from clinical to molecular, as well as anecdotal evidence, have placed a spotlight on the potential role of the ECS in the pathophysiology of BD. In this perspective, we present advantages and disadvantages of cannabis use in the management of illness course of BD and provide mechanistic insights into how this system might contribute to the pathophysiology of BD. RESULTS We highlight the putative role of selective cannabinoid receptor 2 (CB2) agonists in BD and briefly discuss findings which provide a rationale for targeting the ECS to assuage the symptoms of BD. Further, data encourage basic and clinical studies to determine how cannabis and cannabinoids (CBs) can affect mood and to investigate emerging CB-based options as probable treatment approaches. CONCLUSION The probable role of the ECS has been almost neglected in BD; however, from data available which suggest a role of ECS in mood control, it is justified to support conducting comprehensive studies to determine whether ECS manipulation could positively affect BD. Based on the limited available data, we suggest that activation of CB2 may stabilise mood in this disorder.
Collapse
|
44
|
Dai Z, Li Q, Yang G, Wang Y, Liu Y, Zheng Z, Tu Y, Yang S, Yu B. Using literature-based discovery to identify candidate genes for the interaction between myocardial infarction and depression. BMC MEDICAL GENETICS 2019; 20:104. [PMID: 31185929 PMCID: PMC6560897 DOI: 10.1186/s12881-019-0841-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Background A multidirectional relationship has been demonstrated between myocardial infarction (MI) and depression. However, the causal genetic factors and molecular mechanisms underlying this interaction remain unclear. The main purpose of this study was to identify potential candidate genes for the interaction between the two diseases. Methods Using a bioinformatics approach and existing gene expression data in the biomedical discovery support system (BITOLA), we defined the starting concept X as “Myocardial Infarction” and end concept Z as “Major Depressive Disorder” or “Depressive disorder”. All intermediate concepts relevant to the “Gene or Gene Product” for MI and depression were searched. Gene expression data and tissue-specific expression of potential candidate genes were evaluated using the Human eFP (electronic Fluorescent Pictograph) Browser, and intermediate concepts were filtered by manual inspection. Results Our analysis identified 128 genes common to both the “MI” and “depression” text mining concepts. Twenty-three of the 128 genes were selected as intermediates for this study, 9 of which passed the manual filtering step. Among the 9 genes, LCAT, CD4, SERPINA1, IL6, and PPBP failed to pass the follow-up filter in the Human eFP Browser, due to their low levels in the heart tissue. Finally, four genes (GNB3, CNR1, MTHFR, and NCAM1) remained. Conclusions GNB3, CNR1, MTHFR, and NCAM1 are putative new candidate genes that may influence the interactions between MI and depression, and may represent potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zhenguo Dai
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Guang Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yini Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yang Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zhilei Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yingfeng Tu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Shuang Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China. .,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China. .,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
45
|
Khakpai F, Ebrahimi-Ghiri M, Alijanpour S, Zarrindast MR. Ketamine-induced antidepressant like effects in mice: A possible involvement of cannabinoid system. Biomed Pharmacother 2019; 112:108717. [PMID: 30970516 DOI: 10.1016/j.biopha.2019.108717] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to explore the possible interaction between ketamine and cannabinoid system in the modulation of depression-related responses using the forced swimming test (FST), tail suspension test (TST) and open-field test (OFT) in mice. Our results revealed that intra-peritoneal (i.p.) injection of ketamine (5 and 10 mg/kg), a non-competitive NMDA antagonist, dose-dependently produced antidepressant-like effect in the FST. Moreover, i.p. administration of both CB1 and CB2 receptor drugs: ACPA (1 mg/kg; CB1 receptor agonist), AM251 (1 mg/kg; CB1 receptor antagonist), GP1a (2 mg/kg; CB2 receptor agonist) and AM630 (0.5 mg/kg; CB2 receptor antagonist) exhibited antidepressant action. Interestingly, the concomitant administration of ineffective doses of ketamine and cannabinoid receptor antagonists provoked the antidepressant-like effects as compared to control group. It should be considered, all above mentioned doses of drugs could not change locomotor activity in the OFT. It seems that possible interaction between ketamine and cannabinoid system may modulate depression-related behavior.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat Med 2019; 25:337-349. [DOI: 10.1038/s41591-018-0299-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023]
|
47
|
Caraci F, Calabrese F, Molteni R, Bartova L, Dold M, Leggio GM, Fabbri C, Mendlewicz J, Racagni G, Kasper S, Riva MA, Drago F. International Union of Basic and Clinical Pharmacology CIV: The Neurobiology of Treatment-resistant Depression: From Antidepressant Classifications to Novel Pharmacological Targets. Pharmacol Rev 2018; 70:475-504. [PMID: 29884653 DOI: 10.1124/pr.117.014977] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses and a major cause of morbidity worldwide. Currently available antidepressants are effective for most patients, although around 30% are considered treatment resistant (TRD), a condition that is associated with a significant impairment of cognitive function and poor quality of life. In this respect, the identification of the molecular mechanisms contributing to TRD represents an essential step for the design of novel and more efficacious drugs able to modify the clinical course of this disorder and increase remission rates in clinical practice. New insights into the neurobiology of TRD have shed light on the role of a number of different mechanisms, including the glutamatergic system, immune/inflammatory systems, neurotrophin function, and epigenetics. Advances in drug discovery processes in TRD have also influenced the classification of antidepressant drugs and novel classifications are available, such as the neuroscience-based nomenclature that can incorporate such advances in drug development for TRD. This review aims to provide an up-to-date description of key mechanisms in TRD and describe current therapeutic strategies for TRD before examining novel approaches that may ultimately address important neurobiological mechanisms not targeted by currently available antidepressants. All in all, we suggest that drug targeting different neurobiological systems should be able to restore normal function but must also promote resilience to reduce the long-term vulnerability to recurrent depressive episodes.
Collapse
Affiliation(s)
- F Caraci
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - F Calabrese
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - R Molteni
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - L Bartova
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - M Dold
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - G M Leggio
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - C Fabbri
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - J Mendlewicz
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - G Racagni
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - S Kasper
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - M A Riva
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| | - F Drago
- Departments of Drug Sciences (F.Car.) and Biomedical and Biotechnological Sciences, School of Medicine (G.M.L., F.D.), University of Catania, Catania, Italy; Oasi-Research-Institute-IRCCS, Troina, Italy (F.Car.); Departments of Pharmacological and Biomolecular Sciences (F.Cal., G.R., M.A.R.) and Medical Biotechnology and Translational Medicine (R.M.), Università degli Studi di Milano, Milan, Italy; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria (L.B., M.D., S.K.); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (C.F.); and School of Medicine, Universite' Libre de Bruxelles, Bruxelles, Belgium (J.M.)
| |
Collapse
|
48
|
Vangopoulou C, Bourmpoula MT, Koupourtidou C, Giompres P, Stamatakis A, Kouvelas ED, Mitsacos A. Effects of an early life experience on rat brain cannabinoid receptors in adolescence and adulthood. IBRO Rep 2018; 5:1-9. [PMID: 30135950 PMCID: PMC6095101 DOI: 10.1016/j.ibror.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/14/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
Neonatal handling is an experimental model of early life experience associated with resilience in later life challenges, altering the ability of animals to respond to stress. The endocannabinoid system of the brain modulates the neuroendocrine and behavioral effects of stress, while this system is also capable of being modulated by stress exposure itself. The present study has addressed the question of whether neonatal handling in rats could affect cannabinoid receptors, in an age- and sex-dependent manner, using in situ hybridization and receptor binding techniques. Different effects of neonatal handling were observed in adolescent and adult brain on CB1 receptor mRNA and [3H]CP55,940 binding levels, which in some cases were sexually dimorphic. Neonatal handling interfered in the developmental trajectories of CB1 receptor mRNA levels in striatum and amygdaloid nuclei, as well as of [3H]CP55,940 binding levels in almost all regions studied. Adult handled rats showed reduced [3H]CP55,940 binding levels in the prefrontal cortex, striatum, nucleus accumbens and basolateral amygdala, while binding levels in prefrontal cortex of adolescent handled rats were increased. Finally, handling resulted in decreases in female [3H]CP55,940 binding levels in the striatum, nucleus accumbens, CA3 and DG of dorsal hippocampus and basolateral amygdala. Our results suggest that a brief and repeated maternal separation during the neonatal period induces changes on cannabinoid receptors differently manifested between adolescence and adulthood, male and female brain, which could be correlated to their stress response.
Collapse
Key Words
- 2-AG, 2-arachidonoylglycerol
- ANOVA, analysis of variance
- Adolescence
- BLA, basolateral nucleus of amygdala
- BSA, bovine serum albumin
- CA1, dorsal field 1 of Ammon’s horn
- CA3, dorsal field 3 of Ammon’s horn
- CB1 cannabinoid receptors
- CB1, cannabinoid receptor 1
- CPu-DL, dorsolateral striatum
- CPu-VM, ventromedial striatum
- CeA, central amygdaloid nucleus
- Cg1, anterior cingulate cortex
- DG, dentate gyrus
- Female rat brain
- GR, glucocorticoid receptors
- GrDG, dentate gyrus granule cell layer
- HPA, hypothalamic-pituitary-adrenal
- IL, infralimbic cortex
- LTD, long-term depression
- MO, medial orbital cortex
- Male rat brain
- Maternal separation
- MoDG, dentate gyrus molecular layer
- NAc, nucleus accumbens
- NS, not significant
- Neonatal handling
- PFC, prefrontal cortex
- PND, postnatal day
- PrL, prelimbic cortex
- ROD, relative optical density
- RT, room temperature
- eCB, endocannabinoid
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Chara Vangopoulou
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| | - Maria T. Bourmpoula
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| | | | - Panagiotis Giompres
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 265040, Patras, Greece
| | - Antonios Stamatakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, University of Athens, 11527, Athens, Greece
| | - Elias D. Kouvelas
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| | - Ada Mitsacos
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| |
Collapse
|
49
|
Abstract
INTRODUCTION Depression and posttraumatic stress disorder (PTSD) are two complex and debilitating psychiatric disorders that result in poor life and destructive behaviors against self and others. Currently, diagnosis is based on subjective rather than objective determinations leading to misdiagnose and ineffective treatments. Advances in novel neurobiological methods have allowed assessment of promising biomarkers to diagnose depression and PTSD, which offers a new means of appropriately treating patients. Areas covered: Biomarkers discovery in blood represents a fundamental tool to predict, diagnose, and monitor treatment efficacy in depression and PTSD. The potential role of altered HPA axis, epigenetics, NPY, BDNF, neurosteroid biosynthesis, the endocannabinoid system, and their function as biomarkers for mood disorders is discussed. Insofar, we propose the identification of a biomarker axis to univocally identify and discriminate disorders with large comorbidity and symptoms overlap, so as to provide a base of support for development of targeted treatments. We also weigh in on the feasibility of a future blood test for early diagnosis. Expert commentary: Potential biomarkers have already been assessed in patients' blood and need to be further validated through multisite large clinical trial stratification. Another challenge is to assess the relation among several interdependent biomarkers to form an axis that identifies a specific disorder and secures the best-individualized treatment. The future of blood-based tests for PTSD and depression is not only on the horizon but, possibly, already around the corner.
Collapse
Affiliation(s)
- Dario Aspesi
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| | - Graziano Pinna
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
50
|
Mato S, Pilar-Cuéllar F, Valdizán EM, González-Maeso J, Rodríguez-Puertas R, Meana J, Sallés J, Crespo-Facorro B, Pazos Á. Selective up-regulation of cannabinoid CB 1 receptor coupling to Go-proteins in suicide victims with mood disorders. Biochem Pharmacol 2018; 157:258-265. [PMID: 30099006 PMCID: PMC6263149 DOI: 10.1016/j.bcp.2018.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 01/11/2023]
Abstract
Brain endocannabinoid system is proposed to play a role in the pathogenesis of affective disorders. In the present study, we analyzed the functionality of the cannabinoid receptor type 1 (CB1 receptor) at different transduction levels in prefrontal cortex (PFC) of depressed suicide victims. We examined stimulation of [35S]GTPγS binding, activation of Gα protein subunits and inhibition of adenylyl cyclase by the cannabinoid agonist WIN55,212-2, as well as [3H]CP55,940 binding, in PFC homogenates from suicide victims with major depression (MD) and matched control subjects. CB1 receptor-stimulated [35S]GTPγS binding was significantly greater in the PFC of MD compared with matched controls (23%, p < 0.05). This increase was most evident in the PFC from MD subgroup with negative blood test for antidepressants (AD) at the time of death (AD-free) (38%, p < 0.05), being absent when comparing the AD-treated MD cases with their controls. The density of CB1 receptors and their coupling to adenylyl cyclase were similar between MD and control cases, regardless of the existence of AD intake. Analysis of [35S]GTPγS-labelled Gα subunits allowed for the detection of upregulated CB1 receptor coupling to Gαo, but not to Gαi1, Gαi2, Gαi3, Gαz subunits, in the PFC from AD-free MD suicides. These results suggest that increased CB1 receptor functionality at the Gαi/o protein level in the PFC of MD subjects is due to enhanced coupling to Gαo proteins and might be modulated by AD intake. These data provide new insights into the role of endocannabinoid neurotransmission in the pathobiology of MD and suggest its regulation by ADs.
Collapse
Affiliation(s)
- Susana Mato
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain
| | - Fuencisla Pilar-Cuéllar
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), E-39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain
| | - Elsa M Valdizán
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), E-39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain
| | - Javier González-Maeso
- Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | | | - Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | - Joan Sallés
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain; Hospital Universitario Marqués de Valdecilla, University of Cantabria-IDIVAL, School of Medicine, Department of Psychiatry, Santander, Spain
| | - Ángel Pazos
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), E-39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain.
| |
Collapse
|