1
|
Gannot N, Li X, Phillips CD, Ozel AB, Uchima Koecklin KH, Lloyd JP, Zhang L, Emery K, Stern T, Li JZ, Li P. A vagal-brainstem interoceptive circuit for cough-like defensive behaviors in mice. Nat Neurosci 2024; 27:1734-1744. [PMID: 38977887 PMCID: PMC11374482 DOI: 10.1038/s41593-024-01712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Coughing is a respiratory behavior that plays a crucial role in protecting the respiratory system. Here we show that the nucleus of the solitary tract (NTS) in mice contains heterogenous neuronal populations that differentially control breathing. Within these subtypes, activation of tachykinin 1 (Tac1)-expressing neurons triggers specific respiratory behaviors that, as revealed by our detailed characterization, are cough-like behaviors. Chemogenetic silencing or genetic ablation of Tac1 neurons inhibits cough-like behaviors induced by tussive challenges. These Tac1 neurons receive synaptic inputs from the bronchopulmonary chemosensory and mechanosensory neurons in the vagal ganglion and coordinate medullary regions to control distinct aspects of cough-like defensive behaviors. We propose that these Tac1 neurons in the NTS are a key component of the airway-vagal-brain neural circuit that controls cough-like defensive behaviors in mice and that they coordinate the downstream modular circuits to elicit the sequential motor pattern of forceful expiratory responses.
Collapse
Affiliation(s)
- Noam Gannot
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - John P Lloyd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Lusi Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Katie Emery
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tomer Stern
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Trevizan-Baú P, Hayes JA, Bolser DC, Reznikov LR. Amygdalar involvement in respiratory dysfunction. Front Physiol 2024; 15:1424889. [PMID: 39263625 PMCID: PMC11387172 DOI: 10.3389/fphys.2024.1424889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
The brainstem has long been recognized as the major respiratory control center, but it has become increasingly appreciated that areas upstream of the brainstem modulate respiration and airway defensive behaviors. This review aims to define the role of the amygdala, a key temporal brain region essential for limbic function, in respiration and airway defenses. We summarize literature describing roles for the amygdala in control of respiration, swallow, cough, airway smooth muscle contraction, and mucus secretion. We emphasize the need to understand how the amygdala regulates these functions both at a local scale and network scale and identify knowledge gaps for current and future investigations. Lastly, we highlight literature suggesting that amygdala dysfunction may contribute to respiratory dysfunction.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - John A Hayes
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Donald C Bolser
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Leah R Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Verzele NAJ, Chua BY, Short KR, Moe AAK, Edwards IN, Bielefeldt-Ohmann H, Hulme KD, Noye EC, Tong MZW, Reading PC, Trewella MW, Mazzone SB, McGovern AE. Evidence for vagal sensory neural involvement in influenza pathogenesis and disease. PLoS Pathog 2024; 20:e1011635. [PMID: 38626267 PMCID: PMC11051609 DOI: 10.1371/journal.ppat.1011635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/26/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Influenza A virus (IAV) is a common respiratory pathogen and a global cause of significant and often severe morbidity. Although inflammatory immune responses to IAV infections are well described, little is known about how neuroimmune processes contribute to IAV pathogenesis. In the present study, we employed surgical, genetic, and pharmacological approaches to manipulate pulmonary vagal sensory neuron innervation and activity in the lungs to explore potential crosstalk between pulmonary sensory neurons and immune processes. Intranasal inoculation of mice with H1N1 strains of IAV resulted in stereotypical antiviral lung inflammation and tissue pathology, changes in breathing, loss of body weight and other clinical signs of severe IAV disease. Unilateral cervical vagotomy and genetic ablation of pulmonary vagal sensory neurons had a moderate effect on the pulmonary inflammation induced by IAV infection, but significantly worsened clinical disease presentation. Inhibition of pulmonary vagal sensory neuron activity via inhalation of the charged sodium channel blocker, QX-314, resulted in a moderate decrease in lung pathology, but again this was accompanied by a paradoxical worsening of clinical signs. Notably, vagal sensory ganglia neuroinflammation was induced by IAV infection and this was significantly potentiated by QX-314 administration. This vagal ganglia hyperinflammation was characterized by alterations in IAV-induced host defense gene expression, increased neuropeptide gene and protein expression, and an increase in the number of inflammatory cells present within the ganglia. These data suggest that pulmonary vagal sensory neurons play a role in the regulation of the inflammatory process during IAV infection and suggest that vagal neuroinflammation may be an important contributor to IAV pathogenesis and clinical presentation. Targeting these pathways could offer therapeutic opportunities to treat IAV-induced morbidity and mortality.
Collapse
Affiliation(s)
- Nathalie A. J. Verzele
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendon Y. Chua
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Aung Aung Kywe Moe
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Isaac N. Edwards
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Katina D. Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
| | - Ellesandra C. Noye
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
| | - Marcus Z. W. Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
| | - Patrick C. Reading
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Disease Reference Laboratory, Peter Doherty Institute for Infection, and Immunity, 792 Elizabeth St., Melbourne, Victoria, Australia
| | - Matthew W. Trewella
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alice E. McGovern
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Sugi T, Inubushi T, Ohno T, Onishi Y, Isobe T, Shigematsu T, Hanai S, Okada Y, Takahashi R, Tawara Y, Suzuki C, Kanno T, Magata Y, Fujishima I, Yoshikawa E, Ouchi Y. Neural substrates of cough control during coughing. Sci Rep 2024; 14:758. [PMID: 38191647 PMCID: PMC10774348 DOI: 10.1038/s41598-024-51477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Cough is known as a protective reflex to keep the airway free from harmful substances. Although brain activity during cough was previously examined mainly by functional magnetic resonance imaging (fMRI) with model analysis, this method does not capture real brain activity during cough. To obtain accurate measurements of brain activity during cough, we conducted whole-brain scans during different coughing tasks while correcting for head motion using a restraint-free positron emission tomography (PET) system. Twenty-four healthy right-handed males underwent multiple PET scans with [15O]H2O. Four tasks were performed during scans: "resting"; "voluntary cough (VC)", which simply repeated spontaneous coughing; "induced cough (IC)", where participants coughed in response to an acid stimulus in the cough-inducing method with tartaric acid (CiTA); and "suppressed cough (SC)", where coughing was suppressed against CiTA. The whole brain analyses of motion-corrected data revealed that VC chiefly activated the cerebellum extending to pons. In contrast, CiTA-related tasks (IC and SC) activated the higher sensory regions of the cerebral cortex and associated brain regions. The present results suggest that brain activity during simple cough is controlled chiefly by infratentorial areas, whereas manipulating cough predominantly requires the higher sensory brain regions to allow top-down control of information from the periphery.
Collapse
Affiliation(s)
- Takafumi Sugi
- Department of Biofunctional Imaging, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Tomoo Inubushi
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Tomohisa Ohno
- Department of Dentistry, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Yuya Onishi
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Takashi Isobe
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Takashi Shigematsu
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Satoshi Hanai
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Yoshiro Okada
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Ryosuke Takahashi
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Yuichi Tawara
- School of Rehabilitation Sciences, Seirei Christopher University, 3453, Mikatahara, Kita-ku, Hamamatsu, Shizuoka, 433-8105, Japan
| | - Chie Suzuki
- Department of Molecular Imaging, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Toshihiko Kanno
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Shizuoka, 434-0041, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Ichiro Fujishima
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, 1-6-1 Wagokita, Naka-ku, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Etsuji Yoshikawa
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Shizuoka, 434-0041, Japan.
| |
Collapse
|
5
|
Engel EA, Card JP, Enquist LW. Transneuronal Circuit Analysis with Pseudorabies Viruses. Curr Protoc 2023; 3:e841. [PMID: 37486157 PMCID: PMC10664030 DOI: 10.1002/cpz1.841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Our ability to understand the function of the nervous system is dependent upon defining the connections of its constituent neurons. Development of methods to define connections within neural networks has always been a growth industry in the neurosciences. Transneuronal spread of neurotropic viruses currently represents the best means of defining synaptic connections within neural networks. The method exploits the ability of viruses to invade neurons, replicate, and spread through the intimate synaptic connections that enable communication among neurons. Since the method was first introduced in the 1970s, it has benefited from an increased understanding of the virus life cycle, the function of viral genomes, and the ability to manipulate the viral genome in support of directional spread of virus and the expression of transgenes. In this article, we review these advances in viral tracing technology and the ways in which they may be applied for functional dissection of neural networks. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Retrograde infection of CNS circuits by peripheral injection of virus Basic Protocol 2: Transneuronal analysis by intracerebral injection Alternate Protocol 1: Transneuronal analysis with multiple recombinant strains Alternate Protocol 2: Conditional replication and spread of PRV Alternate Protocol 3: Conditional reporters of PRV infection and spread Alternate Protocol 4: Reporters of neural activity in polysynaptic circuits Support Protocol 1: Growing and titering a PRV viral stock Support Protocol 2: Immunohistochemical processing and detection Support Protocol 3: Dual-immunofluorescence localization.
Collapse
Affiliation(s)
- Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
- Current address: Spark Therapeutics, Philadelphia, PA, 19104
| | - J Patrick Card
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
6
|
Fischer KB, Collins HK, Pang Y, Roy DS, Zhang Y, Feng G, Li SJ, Kepecs A, Callaway EM. Monosynaptic restriction of the anterograde herpes simplex virus strain H129 for neural circuit tracing. J Comp Neurol 2023; 531:584-595. [PMID: 36606699 PMCID: PMC10040246 DOI: 10.1002/cne.25451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Identification of synaptic partners is a fundamental task for systems neuroscience. To date, few reliable techniques exist for whole brain labeling of downstream synaptic partners in a cell-type-dependent and monosynaptic manner. Herein, we describe a novel monosynaptic anterograde tracing system based on the deletion of the gene UL6 from the genome of a cre-dependent version of the anterograde Herpes Simplex Virus 1 strain H129. Given that this knockout blocks viral genome packaging and thus viral spread, we reasoned that co-infection of a HSV H129 ΔUL6 virus with a recombinant adeno-associated virus expressing UL6 in a cre-dependent manner would result in monosynaptic spread from target cre-expressing neuronal populations. Application of this system to five nonreciprocal neural circuits resulted in labeling of neurons in expected projection areas. While some caveats may preclude certain applications, this system provides a reliable method to label postsynaptic partners in a brain-wide fashion.
Collapse
Affiliation(s)
- Kyle B Fischer
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Hannah K Collins
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Yan Pang
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Dheeraj S Roy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ying Zhang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Shu-Jing Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Adam Kepecs
- Departments of Neuroscience and Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
7
|
Mini-review: Hypertussivity and allotussivity in chronic cough endotypes. Neurosci Lett 2023; 792:136934. [PMID: 36309151 DOI: 10.1016/j.neulet.2022.136934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
In recent years our understanding of the neurophysiological basis of cough has increased substantially. In conjunction, concepts around the drivers of chronic coughing in patients have also significantly evolved. Increasingly it is recognised that dysregulation of the neuronal pathways mediating cough play an important role in certain phenotypes of chronic cough and therefore pathological processes affecting the nervous system are likely to represent key endotypes in patients. Taking inspiration from the study of neuropathic pain, the term hypertussia has been employed to describe the phenomenon of abnormal excessive coughing in response to airway irritation and allotussia to describe coughing in response to stimuli not normally provoking cough. This review aims to summarise current clinical evidence supporting a role for the hyperexcitability of neuronal pathways contributing to chronic coughing and suggest how these might align with the clinical features observed in patients.
Collapse
|
8
|
Sykes DL, Zhang M, Morice AH. Treatment of chronic cough: P2X3 receptor antagonists and beyond. Pharmacol Ther 2022; 237:108166. [DOI: 10.1016/j.pharmthera.2022.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
9
|
Matloobi A, Buday T, Brozmanova M, Konarska M, Poliacek I, Martvon L, Plevkova J. The effect of stimulation and unloading of baroreceptors on cough in experimental conditions. Respir Physiol Neurobiol 2022; 303:103921. [PMID: 35595217 DOI: 10.1016/j.resp.2022.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Cough, the main airway defensive process, is modulated by multiple sensory inputs from the respiratory system and outside of it. This modulation is one of the mechanisms that contributes to the sensitization of cough pathways at the peripheral and/or central level via neuroplasticity and it manifests most often as augmented coughing. Cardiorespiratory coupling is an important mechanism responsible for a match between oxygenation and cardiac output and bidirectional relationships exist between respiration and cardiovascular function. While the impact of cough with the robust swings of the intrathoracic pressure on haemodynamic parameters and heart electrophysiology are well characterized, little is known about the modulation of cough by haemodynamic parameters - mainly the blood pressure. Some circumstantial findings from older animal studies and more recent sophisticated analysis confirm that baroreceptor stimulation and unloading alters coughing evoked in experiments. Clinical relevance of such findings is not presently known.
Collapse
Affiliation(s)
- A Matloobi
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - T Buday
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - M Brozmanova
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - M Konarska
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - I Poliacek
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - L Martvon
- Centre for Medical Education Support, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - J Plevkova
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic; Centre for Medical Education Support, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic.
| |
Collapse
|
10
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
11
|
Kurganov E, Okamoto K, Miyata S. Distribution of TRPM8-expressing trigeminal nerve fibers in the pons and medulla oblongata of the mouse brain. J Chem Neuroanat 2022; 122:102104. [PMID: 35561876 DOI: 10.1016/j.jchemneu.2022.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Transient receptor potential melastatin 8 (TRPM8), a cold-mediated ion channel, is well known to be expressed in primary sensory neurons; however, limited information is currently available on the distribution of TRPM8-expressing trigeminal nerve fibers in the brainstem. The present study showed the distribution of TRPM8-expressing fibers in the pons and medulla oblongata of the TRPM8 KO mice engineered by knocking in EGFP at the frame of the start codon of TRPM8. In addition, TRPM8-expressing fibers were also observed in the brachium pontis, middle cerebellar peduncle, the sensory root of the trigeminal nerve, and spinal trigeminal tract (sp5). Furthermore, TRPM8-expressing nerve fibers surrounded the somata of HuC/D-positive neurons in the sp5. Moreover, the distribution of TRPM8-expressing fibers from rostral to caudal was visualized in sagittal sections of the mouse brain. The present results also revealed that a high number of TRPM8-expressing fibers colocalized with CTB-labeled fibers in the sp5 following an injection of CTB into the whisker compared to mice's eye and ear. These results show the distribution pathway of TRPM8-expressing fibers in the pons and medulla oblongata and possible involvement in peripheral signaling from the trigeminal nerve.
Collapse
Affiliation(s)
- Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kaho Okamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
12
|
Hui Y, Zheng X, Zhang H, Li F, Yu G, Li J, Zhang J, Gong X, Guo G. Strategies for Targeting Neural Circuits: How to Manipulate Neurons Using Virus Vehicles. Front Neural Circuits 2022; 16:882366. [PMID: 35571271 PMCID: PMC9099413 DOI: 10.3389/fncir.2022.882366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Viral strategies are the leading methods for mapping neural circuits. Viral vehicles combined with genetic tools provide the possibility to visualize entire functional neural networks and monitor and manipulate neural circuit functions by high-resolution cell type- and projection-specific targeting. Optogenetics and chemogenetics drive brain research forward by exploring causal relationships among different brain regions. Viral strategies offer a fresh perspective for the analysis of the structure-function relationship of the neural circuitry. In this review, we summarize current and emerging viral strategies for targeting neural circuits and focus on adeno-associated virus (AAV) vectors.
Collapse
Affiliation(s)
- Yuqing Hui
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Huijie Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fang Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Guangyin Yu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- Jifeng Zhang,
| | - Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Xiaobing Gong,
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou
- *Correspondence: Guoqing Guo,
| |
Collapse
|
13
|
A novel H129-based anterograde monosynaptic tracer exhibits features of strong labeling intensity, high tracing efficiency, and reduced retrograde labeling. Mol Neurodegener 2022; 17:6. [PMID: 35012591 PMCID: PMC8744342 DOI: 10.1186/s13024-021-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/09/2021] [Indexed: 12/05/2022] Open
Abstract
Background Viral tracers are important tools for mapping brain connectomes. The feature of predominant anterograde transneuronal transmission offers herpes simplex virus-1 (HSV-1) strain H129 (HSV1-H129) as a promising candidate to be developed as anterograde viral tracers. In our earlier studies, we developed H129-derived anterograde polysynaptic tracers and TK deficient (H129-dTK) monosynaptic tracers. However, their broad application is limited by some intrinsic drawbacks of the H129-dTK tracers, such as low labeling intensity due to TK deficiency and potential retrograde labeling caused by axon terminal invasion. The glycoprotein K (gK) of HSV-1 plays important roles in virus entry, egress, and virus-induced cell fusion. Its deficiency severely disables virus egress and spread, while only slightly limits viral genome replication and expression of viral proteins. Therefore, we created a novel H129-derived anterograde monosynaptic tracer (H129-dgK) by targeting gK, which overcomes the limitations of H129-dTK. Methods Using our established platform and pipeline for developing viral tracers, we generated a novel tracer by deleting the gK gene from the H129-G4. The gK-deleted virus (H129-dgK-G4) was reconstituted and propagated in the Vero cell expressing wildtype H129 gK (gKwt) or the mutant gK (gKmut, A40V, C82S, M223I, L224V, V309M), respectively. Then the obtained viral tracers of gKmut pseudotyped and gKwt coated H129-dgK-G4 were tested in vitro and in vivo to characterize their tracing properties. Results H129-dgK-G4 expresses high levels of fluorescent proteins, eliminating the requirement of immunostaining for imaging detection. Compared to the TK deficient monosynaptic tracer H129-dTK-G4, H129-dgK-G4 labeled neurons with 1.76-fold stronger fluorescence intensity, and visualized 2.00-fold more postsynaptic neurons in the downstream brain regions. gKmut pseudotyping leads to a 77% decrease in retrograde labeling by reducing axon terminal invasion, and thus dramatically improves the anterograde-specific tracing of H129-dgK-G4. In addition, assisted by the AAV helper trans-complementarily expressing gKwt, H129-dgK-G4 allows for mapping monosynaptic connections and quantifying the circuit connectivity difference in the Alzheimer’s disease and control mouse brains. Conclusions gKmut pseudotyped H129-dgK-G4, a novel anterograde monosynaptic tracer, overcomes the limitations of H129-dTK tracers, and demonstrates desirable features of strong labeling intensity, high tracing efficiency, and improved anterograde specificity. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00508-6.
Collapse
|
14
|
Su Y, Barr J, Jaquish A, Xu J, Verheyden JM, Sun X. Identification of lung innervating sensory neurons and their target specificity. Am J Physiol Lung Cell Mol Physiol 2022; 322:L50-L63. [PMID: 34755535 PMCID: PMC8721910 DOI: 10.1152/ajplung.00376.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Known as the gas exchange organ, the lung is also critical for responding to the aerosol environment in part through interaction with the nervous system. The diversity and specificity of lung innervating neurons remain poorly understood. Here, we interrogated the cell body location and molecular signature and projection pattern of lung innervating sensory neurons. Retrograde tracing from the lung coupled with whole tissue clearing highlighted neurons primarily in the vagal ganglia. Centrally, they project specifically to the nucleus of the solitary tract in the brainstem. Peripherally, they enter the lung alongside branching airways. Labeling of nociceptor Trpv1+ versus peptidergic Tac1+ vagal neurons showed shared and distinct terminal morphology and targeting to airway smooth muscles, vasculature including lymphatics, and alveoli. Notably, a small population of vagal neurons that are Calb1+ preferentially innervate pulmonary neuroendocrine cells, a demonstrated airway sensor population. This atlas of lung innervating neurons serves as a foundation for understanding their function in lung.
Collapse
Affiliation(s)
- Yujuan Su
- 1Department of Pediatrics, University of California, San Diego, California
| | - Justinn Barr
- 1Department of Pediatrics, University of California, San Diego, California
| | - Abigail Jaquish
- 1Department of Pediatrics, University of California, San Diego, California
| | - Jinhao Xu
- 1Department of Pediatrics, University of California, San Diego, California
| | - Jamie M. Verheyden
- 1Department of Pediatrics, University of California, San Diego, California
| | - Xin Sun
- 1Department of Pediatrics, University of California, San Diego, California,2Division of Biological Sciences, University of California, San Diego, California
| |
Collapse
|
15
|
Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep 2021; 36:109721. [PMID: 34551311 PMCID: PMC8506234 DOI: 10.1016/j.celrep.2021.109721] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/06/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
Cerebellar outputs take polysynaptic routes to reach the rest of the brain, impeding conventional tracing. Here, we quantify pathways between the cerebellum and forebrain by using transsynaptic tracing viruses and a whole-brain analysis pipeline. With retrograde tracing, we find that most descending paths originate from the somatomotor cortex. Anterograde tracing of ascending paths encompasses most thalamic nuclei, especially ventral posteromedial, lateral posterior, mediodorsal, and reticular nuclei. In the neocortex, sensorimotor regions contain the most labeled neurons, but we find higher densities in associative areas, including orbital, anterior cingulate, prelimbic, and infralimbic cortex. Patterns of ascending expression correlate with c-Fos expression after optogenetic inhibition of Purkinje cells. Our results reveal homologous networks linking single areas of the cerebellar cortex to diverse forebrain targets. We conclude that shared areas of the cerebellum are positioned to provide sensory-motor information to regions implicated in both movement and nonmotor function. Pisano et al. use transsynaptic tracing and whole-brain light-sheet microscopy to quantitatively map cerebellar paths to and from the forebrain, including relatively dense projections to the prefrontal neocortex. Divergence of paths from single injection sites suggests that a single cerebellar region can influence multiple thalamic and neocortical targets at once.
Collapse
|
16
|
Chen WG, Schloesser D, Arensdorf AM, Simmons JM, Cui C, Valentino R, Gnadt JW, Nielsen L, Hillaire-Clarke CS, Spruance V, Horowitz TS, Vallejo YF, Langevin HM. The Emerging Science of Interoception: Sensing, Integrating, Interpreting, and Regulating Signals within the Self. Trends Neurosci 2021; 44:3-16. [PMID: 33378655 DOI: 10.1016/j.tins.2020.10.007] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Interoception refers to the representation of the internal states of an organism, and includes the processes by which it senses, interprets, integrates, and regulates signals from within itself. This review presents a unified research framework and attempts to offer definitions for key terms to describe the processes involved in interoception. We elaborate on these definitions through illustrative research findings, and provide brief overviews of central aspects of interoception, including the anatomy and function of neural and non-neural pathways, diseases and disorders, manipulations and interventions, and predictive modeling. We conclude with discussions about major research gaps and challenges.
Collapse
Affiliation(s)
- Wen G Chen
- National Center for Complementary and Integrative Health (NCCIH), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Dana Schloesser
- Office of Behavioral and Social Sciences Research (OBSSR), NIH, Bethesda, MD 20892, USA
| | - Angela M Arensdorf
- National Center for Complementary and Integrative Health (NCCIH), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Janine M Simmons
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Changhai Cui
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, MD 20892, USA
| | - Rita Valentino
- National Institute on Drug Abuse (NIDA), NIH, Bethesda, MD 20892, USA
| | - James W Gnadt
- National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Lisbeth Nielsen
- National Institute on Aging (NIA), NIH, Bethesda, MD 20892, USA
| | | | - Victoria Spruance
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Todd S Horowitz
- National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Yolanda F Vallejo
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Helene M Langevin
- National Center for Complementary and Integrative Health (NCCIH), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Ying Y, Wang JZ. Illuminating Neural Circuits in Alzheimer's Disease. Neurosci Bull 2021; 37:1203-1217. [PMID: 34089505 PMCID: PMC8353043 DOI: 10.1007/s12264-021-00716-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/06/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and there is currently no cure. Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with AD. Therefore, it is important to understand the structural features and mechanisms underlying the deregulated circuits during AD progression, by which new tools for intervention can be developed. Here, we briefly summarize the most recently established cutting-edge experimental approaches and key techniques that enable neural circuit tracing and manipulation of their activity. We also discuss the advantages and limitations of these approaches. Finally, we review the applications of these techniques in the discovery of circuit mechanisms underlying β-amyloid and tau pathologies during AD progression, and as well as the strategies for targeted AD treatments.
Collapse
Affiliation(s)
- Yang Ying
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Verzele NAJ, Chua BY, Law CW, Zhang A, Ritchie ME, Wightman O, Edwards IN, Hulme KD, Bloxham CJ, Bielefeldt-Ohmann H, Trewella MW, Moe AAK, Chew KY, Mazzone SB, Short KR, McGovern AE. The impact of influenza pulmonary infection and inflammation on vagal bronchopulmonary sensory neurons. FASEB J 2021; 35:e21320. [PMID: 33660333 DOI: 10.1096/fj.202001509r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Influenza A virus (IAV) is rapidly detected in the airways by the immune system, with resident parenchymal cells and leukocytes orchestrating viral sensing and the induction of antiviral inflammatory responses. The airways are innervated by heterogeneous populations of vagal sensory neurons which also play an important role in pulmonary defense. How these neurons respond to IAV respiratory infection remains unclear. Here, we use a murine model to provide the first evidence that vagal sensory neurons undergo significant transcriptional changes following a respiratory IAV infection. RNA sequencing on vagal sensory ganglia showed that IAV infection induced the expression of many genes associated with an antiviral and pro-inflammatory response and this was accompanied by a significant increase in inflammatory cell recruitment into the vagal ganglia. Assessment of gene expression in single-vagal sensory neurons confirmed that IAV infection induced a neuronal inflammatory phenotype, which was most prominent in bronchopulmonary neurons, and also evident in some neurons innervating other organs. The altered transcriptome could be mimicked by intranasal treatment with cytokines and the lung homogenates of infected mice, in the absence of infectious virus. These data argue that IAV pulmonary infection and subsequent inflammation induces vagal sensory ganglia neuroinflammation and this may have important implications for IAV-induced morbidity.
Collapse
Affiliation(s)
- Nathalie A J Verzele
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Brendon Y Chua
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Albert Zhang
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Oliver Wightman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Isaac N Edwards
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Conor J Bloxham
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Matthew W Trewella
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Yang H, Xiong F, Song YG, Jiang HF, Qin HB, Zhou J, Lu S, Grieco SF, Xu X, Zeng WB, Zhao F, Luo MH. HSV-1 H129-Derived Anterograde Neural Circuit Tracers: Improvements, Production, and Applications. Neurosci Bull 2021; 37:701-719. [PMID: 33367996 PMCID: PMC8099975 DOI: 10.1007/s12264-020-00614-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/26/2020] [Indexed: 10/22/2022] Open
Abstract
Anterograde viral tracers are powerful and essential tools for dissecting the output targets of a brain region of interest. They have been developed from herpes simplex virus 1 (HSV-1) strain H129 (H129), and have been successfully applied to map diverse neural circuits. Initially, the anterograde polysynaptic tracer H129-G4 was used by many groups. We then developed the first monosynaptic tracer, H129-dTK-tdT, which was highly successful, yet improvements are needed. Now, by inserting another tdTomato expression cassette into the H129-dTK-tdT genome, we have created H129-dTK-T2, an updated version of H129-dTK-tdT that has improved labeling intensity. To help scientists produce and apply our H129-derived viral tracers, here we provide the protocol describing our detailed and standardized procedures. Commonly-encountered technical problems and their solutions are also discussed in detail. Broadly, the dissemination of this protocol will greatly support scientists to apply these viral tracers on a large scale.
Collapse
Affiliation(s)
- Hong Yang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Xiong
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ge Song
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Fei Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Bin Qin
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sha Lu
- Shanghai Genechem Co. Ltd., Shanghai, 201203, China
| | - Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Abstract
The jugular-nodose ganglia contain the sensory peripheral neurons of the vagus nerve, linking visceral organs to the medulla oblongata. Accessing these ganglia in smaller animals without damaging the vascular and neural structures may be challenging, as ganglionic fibers imbed deeply into the carotid sheath, and vagal parasympathetic fibers cross through the interior of the ganglia. We describe a practical protocol for locating and accessing the mouse jugular-nodose ganglia in vivo, including instructions for intraganglionic injections and postperfusion dissection. For complete details on the use and execution of this protocol, please refer to Han et al. (2018). Practical approach to locate the mouse jugular-nodose ganglia Detailed instructions on how to perform intraganglionic injections Detailed description of ganglia-preserving postperfusion dissection
Collapse
|
21
|
Ramirez JM, Burgraff NJ, Wei AD, Baertsch NA, Varga AG, Baghdoyan HA, Lydic R, Morris KF, Bolser DC, Levitt ES. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. J Neurophysiol 2021; 125:1899-1919. [PMID: 33826874 DOI: 10.1152/jn.00017.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Opioid-induced respiratory depression (OIRD) represents the primary cause of death associated with therapeutic and recreational opioid use. Within the United States, the rate of death from opioid abuse since the early 1990s has grown disproportionally, prompting the classification as a nationwide "epidemic." Since this time, we have begun to unravel many fundamental cellular and systems-level mechanisms associated with opioid-related death. However, factors such as individual vulnerability, neuromodulatory compensation, and redundancy of opioid effects across central and peripheral nervous systems have created a barrier to a concise, integrative view of OIRD. Within this review, we bring together multiple perspectives in the field of OIRD to create an overarching viewpoint of what we know, and where we view this essential topic of research going forward into the future.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Aguan D Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Helen A Baghdoyan
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Ralph Lydic
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Plevkova J, Brozmanova M, Matloobi A, Poliacek I, Honetschlager J, Buday T. Animal models of cough. Respir Physiol Neurobiol 2021; 290:103656. [PMID: 33781930 DOI: 10.1016/j.resp.2021.103656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 01/10/2023]
Abstract
Cough is a vital airway reflex that keeps the respiratory tract wisely protected. It is also a sign of many diseases of the respiratory system and it may become a disease in its own right. Even though the efficacy of antitussive compounds is extensively studied in animal models with promising results, the treatment of pathological cough in humans is insufficient at the moment. The limited translational potential of animal models used to study cough causes, mechanisms and possible therapeutic targets stems from multiple sources. First of all, cough induced in the laboratory by mechanical or chemical stimuli is far from natural cough present in human disease. The main objective of this review is to provide a comprehensive summary of animal models currently used in cough research and to address their advantages and disadvantages. We also want to encourage cough researchers to call for precision is research by addressing the sex bias which has existed in basic cough research for decades and discuss the role of specific pathogen-free (SPF) animals.
Collapse
Affiliation(s)
- Jana Plevkova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pathophysiology, Martin, Slovakia
| | - Mariana Brozmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pathophysiology, Martin, Slovakia
| | - Alireza Matloobi
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pathophysiology, Martin, Slovakia
| | - Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Biophysics, Martin, Slovakia
| | - Jan Honetschlager
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Buday
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pathophysiology, Martin, Slovakia.
| |
Collapse
|
23
|
The Medullary Targets of Neurally Conveyed Sensory Information from the Rat Hepatic Portal and Superior Mesenteric Veins. eNeuro 2021; 8:ENEURO.0419-20.2021. [PMID: 33495245 PMCID: PMC8114873 DOI: 10.1523/eneuro.0419-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Vagal and spinal sensory endings in the wall of the hepatic portal and superior mesenteric veins (PMV) provide the brain with chemosensory information important for energy balance and other functions. To determine their medullary neuronal targets, we injected the transsynaptic anterograde viral tracer HSV-1 H129-772 (H129) into the PMV wall or left nodose ganglion (LNG) of male rats, followed by immunohistochemistry (IHC) and high-resolution imaging. We also determined the chemical phenotype of H129-infected neurons, and potential vagal and spinal axon terminal appositions in the dorsal motor nucleus of the vagus (DMX) and the nucleus of the solitary tract (NTS). PMV wall injections generated H129-infected neurons in both nodose ganglia and in thoracic dorsal root ganglia (DRGs). In the medulla, cholinergic preganglionic parasympathetic neurons in the DMX were virtually the only targets of chemosensory information from the PMV wall. H129-infected terminal appositions were identified on H129-infected somata and dendrites in the DMX, and on H129-infected DMX dendrites that extend into the NTS. Sensory transmission via vagal and possibly spinal routes from the PMV wall therefore reaches DMX neurons via axo-somatic appositions in the DMX and axo-dendritic appositions in the NTS. However, the dearth of H129-infected NTS neurons indicates that sensory information from the PMV wall terminates on DMX neurons without engaging NTS neurons. These previously underappreciated direct sensory routes into the DMX enable a vago-vagal and possibly spino-vagal reflexes that can directly influence visceral function.
Collapse
|
24
|
Feng M, Xiang B, Fan L, Wang Q, Xu W, Xiang H. Interrogating autonomic peripheral nervous system neurons with viruses - A literature review. J Neurosci Methods 2020; 346:108958. [PMID: 32979424 DOI: 10.1016/j.jneumeth.2020.108958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
How rich functionality emerges from the rather invariant structural architecture of the peripheral autonomic nervous system remains one of the major mysteries in neuroscience. The high incidence of patients with neural circuit-related autonomic nervous system diseases highlights the importance of fundamental research, among others with neurotracing methods, into autonomic neuron functionality. Due to the emergence of neurotropic virus-based tracing techniques in recent years the access to neuronal connectivity in the peripheral autonomic nervous system has greatly been improved. This review is devoted to the anatomical distribution of neural circuits in the periphery of the autonomous nervous system and to the interaction between the autonomic nervous system and vital peripheral organs or tissues. The experimental evidence available at present has greatly expanded our understanding of autonomic peripheral nervous system neurons.
Collapse
Affiliation(s)
- Maohui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan 430071, PR China
| | - Boqi Xiang
- University of California-Davis, Davis, CA 95616, USA
| | - Li Fan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Qian Wang
- Department Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - HongBing Xiang
- Department Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
25
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
26
|
Descending Modulation of Laryngeal Vagal Sensory Processing in the Brainstem Orchestrated by the Submedius Thalamic Nucleus. J Neurosci 2020; 40:9426-9439. [PMID: 33115928 DOI: 10.1523/jneurosci.2430-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
The nodose and jugular vagal ganglia supply sensory innervation to the airways and lungs. Jugular vagal airway sensory neurons wire into a brainstem circuit with ascending projections into the submedius thalamic nucleus (SubM) and ventrolateral orbital cortex (VLO), regions known to regulate the endogenous analgesia system. Here we investigate whether the SubM-VLO circuit exerts descending regulation over airway vagal reflexes in male and female rats using a range of neuroanatomical tracing, reflex physiology, and chemogenetic techniques. Anterograde and retrograde neuroanatomical tracing confirmed the connectivity of the SubM and VLO. Laryngeal stimulation in anesthetized rats reduced respiration, a reflex that was potently inhibited by activation of SubM. Conversely, inhibition of SubM potentiated laryngeal reflex responses, while prior lesions of VLO abolished the effects of SubM stimulation. In conscious rats, selective chemogenetic activation of SubM neurons specifically projecting to VLO significantly inhibited respiratory responses evoked by inhalation of the nociceptor stimulant capsaicin. Jugular vagal inputs to SubM via the medullary paratrigeminal nucleus were confirmed using anterograde transsynaptic conditional herpes viral tracing. Respiratory responses evoked by microinjections of capsaicin into the paratrigeminal nucleus were significantly attenuated by SubM stimulation, whereas those evoked via the nucleus of the solitary tract were unaltered. These data suggest that jugular vagal sensory pathways input to a nociceptive thalamocortical circuit capable of regulating jugular sensory processing in the medulla. This circuit organization suggests an intersection between vagal sensory pathways and the endogenous analgesia system, potentially important for understanding vagal sensory processing in health and mechanisms of hypersensitivity in disease.SIGNIFICANCE STATEMENT Jugular vagal sensory pathways are increasingly recognized for their important role in defensive respiratory responses evoked from the airways. Jugular ganglia neurons wire into a central circuit that is notable for overlapping with somatosensory processing networks in the brain rather than the viscerosensory circuits in receipt of inputs from the nodose vagal ganglia. Here we demonstrate a novel and functionally relevant example of intersection between vagal and somatosensory processing in the brain. The findings of the study offer new insights into interactions between vagal and spinal sensory processing, including the medullary targets of the endogenous analgesia system, and offer new insights into the central processes involved in airway defense in health and disease.
Collapse
|
27
|
Paranathala MP, Mitchell P. Neurogenic Cough Associated with Hyperintensity in Dorsal Medulla: Case Report and Anatomical Discussion. World Neurosurg 2020; 144:196-198. [PMID: 32977030 DOI: 10.1016/j.wneu.2020.09.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The nucleus tractus solitarius and paratrigeminal nucleus, which are implicated in the processing of airway-derived sensory information, are found in the dorsal medulla. The mechanism and localization of higher-order processing of urge to cough is poorly understood, and much of the existing anatomical localization is limited to animal studies. CASE DESCRIPTION A 44-year-old Caucasian lady underwent elective foramen magnum decompression for symptomatic Chiari I malformation; postoperatively she had resolution of Chiari symptoms but developed an intractable neurogenic cough. She has no significant medical history or premorbid respiratory issues. Postoperative magnetic resonance imaging of her head demonstrated signal change in the left dorsal medulla, corresponding with the nucleus tractus solitarius and paratrigeminal nucleus. CONCLUSIONS We suggest that this lesion explains her isolated new cough and localizes the pathway for "urge to cough" to this region of the medulla.
Collapse
Affiliation(s)
| | - Patrick Mitchell
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle, UK
| |
Collapse
|
28
|
Singh N, Driessen AK, McGovern AE, Moe AAK, Farrell MJ, Mazzone SB. Peripheral and central mechanisms of cough hypersensitivity. J Thorac Dis 2020; 12:5179-5193. [PMID: 33145095 PMCID: PMC7578480 DOI: 10.21037/jtd-2020-icc-007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic cough is a difficult to treat symptom of many respiratory and some non-respiratory diseases, indicating that varied pathologies can underpin the development of chronic cough. However, clinically and experimentally it has been useful to collate these different pathological processes into the single unifying concept of cough hypersensitivity. Cough hypersensitivity syndrome is reflected by troublesome cough often precipitated by levels of stimuli that ordinarily don't cause cough in healthy people, and this appears to be a hallmark feature in many patients with chronic cough. Accordingly, a strong argument has emerged that changes in the excitability and/or normal regulation of the peripheral and central neural circuits responsible for cough are instrumental in establishing cough hypersensitivity and for causing excessive cough in disease. In this review, we explore the current peripheral and central neural mechanisms that are believed to be involved in altered cough sensitivity and present possible links to the mechanism of action of novel therapies that are currently undergoing clinical trials for chronic cough.
Collapse
Affiliation(s)
- Nabita Singh
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Alexandria K. Driessen
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Alice E. McGovern
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Michael J. Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
29
|
Fan L, Xiang B, Xiong J, He Z, Xiang H. Use of viruses for interrogating viscera-specific projections in central nervous system. J Neurosci Methods 2020; 341:108757. [PMID: 32371062 DOI: 10.1016/j.jneumeth.2020.108757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Each internal organ may perform many different functions under central regulation, yet how these processes are coordinated is poorly understood. The last three decades have witnessed a renaissance in tract tracing with genetically engineered strains of viruses that rapidly interrogate viscera-specific projections in the CNS. The application of novel methods to study cell type-specific projections through trans-synaptically transmitted virus 'label' highlights projections exclusively originating from neurons expressing a very specific molecular phenotype. This has opened the door to neuroanatomical studies interrogating organ-specific projections in the CNS at an unprecedented scale. In this contribution to the Special Issue we present an overview of the present state and of future opportunities in charting viscera-brain specific connectivity and in linking brain circuits to internal organ function.
Collapse
Affiliation(s)
- Li Fan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Boqi Xiang
- University of California-Davis, Davis, CA 95616, USA
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Zhigang He
- Department of Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, PR China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, PR China.
| |
Collapse
|
30
|
Driessen AK, McGovern AE, Behrens R, Moe AAK, Farrell MJ, Mazzone SB. A role for neurokinin 1 receptor expressing neurons in the paratrigeminal nucleus in bradykinin-evoked cough in guinea-pigs. J Physiol 2020; 598:2257-2275. [PMID: 32237239 DOI: 10.1113/jp279644] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Airway projecting sensory neurons arising from the jugular vagal ganglia terminate centrally in the brainstem paratrigeminal nucleus, synapsing upon neurons expressing the neurokinin 1 receptor. This study aimed to assess the involvement of paratrigeminal neurokinin 1 receptor neurons in the regulation of cough, breathing and airway defensive responses. Lesioning neurokinin 1 receptor expressing paratrigeminal neurons significantly reduced cough evoked by inhaled bradykinin but not inhaled ATP or tracheal mechanical stimulation. The reduction in bradykinin-evoked cough was not accompanied by changes in baseline or evoked respiratory variables (e.g. frequency, volume or timing), animal avoidance behaviours or the laryngeal apnoea reflex. These findings warrant further investigations into targeting the jugular ganglia and paratrigeminal nucleus as a therapy for treating cough in disease. ABSTRACT Jugular vagal ganglia sensory neurons innervate the large airways and are thought to mediate cough and associated perceptions of airway irritations to a range of chemical irritants. The central terminals of jugular sensory neurons lie within the brainstem paratrigeminal nucleus, where postsynaptic neurons can be differentiated based on the absence or presence of the neurokinin 1 (NK1) receptor. Therefore, in the present study, we set out to test the hypothesis that NK1 receptor expressing paratrigeminal neurons play a role in cough evoked by inhaled chemical irritants. To test this, we performed selective neurotoxin lesions of NK1 receptor expressing neurons in the paratrigeminal nucleus in guinea-pigs using substance P conjugated to saporin (SSP-SAP). Sham lesion control or SSP-SAP lesion guinea-pigs received nebulised challenges, with the pan-nociceptor stimulant bradykinin or the nodose ganglia specific stimulant adenosine 5'-triphosphate (ATP), in conscious whole-body plethysmography to study cough and associated behaviours. Laryngeal apnoea reflexes and cough evoked by mechanical stimulation of the trachea were additionally investigated in anaesthetised guinea-pigs. SSP-SAP significantly and selectively reduced the number of NK1 receptor expressing neurons in the paratrigeminal nucleus. This was associated with a significant reduction in bradykinin-evoked cough, but not ATP-evoked cough, mechanical cough or laryngeal apnoeic responses. These data provide further evidence for a role of jugular vagal pathways in cough, and additionally suggest an involvement of NK1 receptor expressing neurons in the paratrigeminal nucleus. Therefore, this neural pathway may provide novel therapeutic opportunities to treat conditions of chronic cough.
Collapse
Affiliation(s)
- Alexandria K Driessen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert Behrens
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
31
|
Li J, Liu T, Dong Y, Kondoh K, Lu Z. Trans-synaptic Neural Circuit-Tracing with Neurotropic Viruses. Neurosci Bull 2019; 35:909-920. [PMID: 31004271 PMCID: PMC6754522 DOI: 10.1007/s12264-019-00374-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022] Open
Abstract
A central objective in deciphering the nervous system in health and disease is to define the connections of neurons. The propensity of neurotropic viruses to spread among synaptically-linked neurons makes them ideal for mapping neural circuits. So far, several classes of viral neuronal tracers have become available and provide a powerful toolbox for delineating neural networks. In this paper, we review the recent developments of neurotropic viral tracers and highlight their unique properties in revealing patterns of neuronal connections.
Collapse
Affiliation(s)
- Jiamin Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taian Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Dong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
32
|
Driessen AK. Vagal Afferent Processing by the Paratrigeminal Nucleus. Front Physiol 2019; 10:1110. [PMID: 31555145 PMCID: PMC6722180 DOI: 10.3389/fphys.2019.01110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
The paratrigeminal nucleus is an obscure region in the dorsal lateral medulla, which has been best characterized as a collection of interstitial cells located in the dorsal tip of the spinal trigeminal tract. The paratrigeminal nucleus receives afferent input from the vagus, trigeminal, spinal, and glossopharyngeal nerves, which contribute to its long-known roles in the baroreceptor reflex and nociceptive processing. More recently, studies have shown that this region is also involved in the processing of airway-derived sensory information. Notably, these studies highlight an underappreciated complexity in the neuronal content and circuit connectivity of the paratrigeminal nucleus. However, much remains to be understood about how paratrigeminal processing of vagal afferents is altered in disease. The aim of the present review is to provide an update of the current understanding of vagal afferent processing in the paratrigeminal nucleus and to explore how dysregulation at this site may contribute to vagal sensory neural dysfunction during disease.
Collapse
Affiliation(s)
- Alexandria K Driessen
- School of Biomedical Science, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Saleeba C, Dempsey B, Le S, Goodchild A, McMullan S. A Student's Guide to Neural Circuit Tracing. Front Neurosci 2019; 13:897. [PMID: 31507369 PMCID: PMC6718611 DOI: 10.3389/fnins.2019.00897] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian nervous system is comprised of a seemingly infinitely complex network of specialized synaptic connections that coordinate the flow of information through it. The field of connectomics seeks to map the structure that underlies brain function at resolutions that range from the ultrastructural, which examines the organization of individual synapses that impinge upon a neuron, to the macroscopic, which examines gross connectivity between large brain regions. At the mesoscopic level, distant and local connections between neuronal populations are identified, providing insights into circuit-level architecture. Although neural tract tracing techniques have been available to experimental neuroscientists for many decades, considerable methodological advances have been made in the last 20 years due to synergies between the fields of molecular biology, virology, microscopy, computer science and genetics. As a consequence, investigators now enjoy an unprecedented toolbox of reagents that can be directed against selected subpopulations of neurons to identify their efferent and afferent connectomes. Unfortunately, the intersectional nature of this progress presents newcomers to the field with a daunting array of technologies that have emerged from disciplines they may not be familiar with. This review outlines the current state of mesoscale connectomic approaches, from data collection to analysis, written for the novice to this field. A brief history of neuroanatomy is followed by an assessment of the techniques used by contemporary neuroscientists to resolve mesoscale organization, such as conventional and viral tracers, and methods of selecting for sub-populations of neurons. We consider some weaknesses and bottlenecks of the most widely used approaches for the analysis and dissemination of tracing data and explore the trajectories that rapidly developing neuroanatomy technologies are likely to take.
Collapse
Affiliation(s)
- Christine Saleeba
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- The School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bowen Dempsey
- CNRS, Hindbrain Integrative Neurobiology Laboratory, Neuroscience Paris-Saclay Institute (Neuro-PSI), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sheng Le
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ann Goodchild
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Simon McMullan
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
34
|
Gagliuso AH, Chapman EK, Martinelli GP, Holstein GR. Vestibular neurons with direct projections to the solitary nucleus in the rat. J Neurophysiol 2019; 122:512-524. [PMID: 31166818 PMCID: PMC6734410 DOI: 10.1152/jn.00082.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Anterograde and retrograde tract tracing were combined with neurotransmitter and modulator immunolabeling to identify the chemical anatomy of vestibular nuclear neurons with direct projections to the solitary nucleus in rats. Direct, sparsely branched but highly varicose axonal projections from neurons in the caudal vestibular nuclei to the solitary nucleus were observed. The vestibular neurons giving rise to these projections were predominantly located in ipsilateral medial vestibular nucleus. The cell bodies were intensely glutamate immunofluorescent, and their axonal processes contained vesicular glutamate transporter 2, supporting the interpretation that the cells utilize glutamate for neurotransmission. The glutamate-immunofluorescent, retrogradely filled vestibular cells also contained the neuromodulator imidazoleacetic acid ribotide, which is an endogenous CNS ligand that participates in blood pressure regulation. The vestibulo-solitary neurons were encapsulated by axo-somatic GABAergic terminals, suggesting that they are under tight inhibitory control. The results establish a chemoanatomical basis for transient vestibular activation of the output pathways from the caudal and intermediate regions of the solitary nucleus. In this way, changes in static head position and movement of the head in space may directly influence heart rate, blood pressure, respiration, as well as gastrointestinal motility. This would provide one anatomical explanation for the synchronous heart rate and blood pressure responses observed after peripheral vestibular activation, as well as disorders ranging from neurogenic orthostatic hypotension, postural orthostatic tachycardia syndrome, and vasovagal syncope to the nausea and vomiting associated with motion sickness.NEW & NOTEWORTHY Vestibular neurons with direct projections to the solitary nucleus utilize glutamate for neurotransmission, modulated by imidazoleacetic acid ribotide. This is the first direct demonstration of the chemical neuroanatomy of the vestibulo-solitary pathway.
Collapse
Affiliation(s)
- Amelia H Gagliuso
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily K Chapman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
35
|
Bautista TG, Leech J, Mazzone SB, Farrell MJ. Regional brain stem activations during capsaicin inhalation using functional magnetic resonance imaging in humans. J Neurophysiol 2019; 121:1171-1182. [DOI: 10.1152/jn.00547.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coughing is an airway protective behavior elicited by airway irritation. Animal studies show that airway sensory information is relayed via vagal sensory fibers to termination sites within dorsal caudal brain stem and thereafter relayed to more rostral sites. Using functional magnetic resonance imaging (fMRI) in humans, we previously reported that inhalation of the tussigenic stimulus capsaicin evokes a perception of airway irritation (“urge to cough”) accompanied by activations in a widely distributed brain network including the primary sensorimotor, insular, prefrontal, and posterior parietal cortices. Here we refine our imaging approach to provide a directed survey of brain stem areas activated by airway irritation. In 15 healthy participants, inhalation of capsaicin at a maximal dose that elicits a strong urge to cough without behavioral coughing was associated with activation of medullary regions overlapping with the nucleus of the solitary tract, paratrigeminal nucleus, spinal trigeminal nucleus and tract, cardiorespiratory regulatory areas homologous to the ventrolateral medulla in animals, and the midline raphe. Interestingly, the magnitude of activation within two cardiorespiratory regulatory areas was positively correlated ( r2 = 0.47, 0.48) with participants’ subjective ratings of their urge to cough. Capsaicin-related activations were also observed within the pons and midbrain. The current results add to knowledge of the representation and processing of information regarding airway irritation in the human brain, which is pertinent to the pursuit of novel cough therapies. NEW & NOTEWORTHY Functional brain imaging in humans was optimized for the brain stem. We provide the first detailed description of brain stem sites activated in response to airway irritation. The results are consistent with findings in animal studies and extend our foundational knowledge of brain processing of airway irritation in humans.
Collapse
Affiliation(s)
- Tara G. Bautista
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennifer Leech
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Stuart B. Mazzone
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J. Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
36
|
Driessen AK, Farrell MJ, Dutschmann M, Stanic D, McGovern AE, Mazzone SB. Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Struct Funct 2018; 223:4005-4022. [PMID: 30116890 DOI: 10.1007/s00429-018-1732-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023]
Abstract
Sensory neurons of the jugular vagal ganglia innervate the respiratory tract and project to the poorly studied medullary paratrigeminal nucleus. In the present study, we used neuroanatomical tracing, pharmacology and physiology in guinea pig to investigate the paratrigeminal neural circuits mediating jugular ganglia-evoked respiratory reflexes. Retrogradely traced laryngeal jugular ganglia neurons were largely (> 60%) unmyelinated and expressed the neuropeptide substance P and calcitonin gene-related peptide, although a population (~ 30%) of larger diameter myelinated jugular neurons was defined by the expression of vGlut1. Within the brainstem, vagal afferent terminals were confined to the caudal two-thirds of the paratrigeminal nucleus. Electrical stimulation of the laryngeal mucosa evoked a vagally mediated respiratory slowing that was mimicked by laryngeal capsaicin application. These laryngeal reflexes were modestly reduced by neuropeptide receptor antagonist microinjections into the paratrigeminal nucleus, but abolished by ionotropic glutamate receptor antagonists. D,L-Homocysteic acid microinjections into the paratrigeminal nucleus mimicked the laryngeal-evoked respiratory slowing, whereas capsaicin microinjections evoked a persistent tachypnoea that was insensitive to glutamatergic inhibition but abolished by neuropeptide receptor antagonists. Extensive projections from paratrigeminal neurons were anterogradely traced throughout the pontomedullary respiratory column. Dual retrograde tracing from pontine and ventrolateral medullary termination sites, as well as immunohistochemical staining for calbindin and neurokinin 1 receptors, supported the existence of different subpopulations of paratrigeminal neurons. Collectively, these data provide anatomical and functional evidence for at least two types of post-synaptic paratrigeminal neurons involved in respiratory reflexes, highlighting an unrecognised complexity in sensory processing in this region of the brainstem.
Collapse
Affiliation(s)
- Alexandria K Driessen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Mathias Dutschmann
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Davor Stanic
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
37
|
Chen Z, Sun L, Chen H, Gu D, Zhang W, Yang Z, Peng T, Dong R, Lai K. Dorsal Vagal Complex Modulates Neurogenic Airway Inflammation in a Guinea Pig Model With Esophageal Perfusion of HCl. Front Physiol 2018; 9:536. [PMID: 29867575 PMCID: PMC5962767 DOI: 10.3389/fphys.2018.00536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/24/2018] [Indexed: 12/29/2022] Open
Abstract
Neurogenic airway inflammation in chronic cough and bronchial asthma related to gastroesophageal reflux (GER) is involved in the esophageal–bronchial reflex, but it is unclear whether this reflex is mediated by central neurons. This study aimed to investigate the regulatory effects of the dorsal vagal complex (DVC) on airway inflammation induced by the esophageal perfusion of hydrochloric acid (HCl) following the microinjection of nuclei in the DVC in guinea pigs. Airway inflammation was evaluated by measuring the extravasation of Evans blue dye (EBD) and substance P (SP) expression in the airway. Neuronal activity was indicated by Fos expression in the DVC. The neural pathways from the lower esophagus to the DVC and the DVC to the airway were identified using DiI tracing and pseudorabies virus Bartha (PRV-Bartha) retrograde tracing, respectively. HCl perfusion significantly increased plasma extravasation, SP expression in the trachea, and the expression of SP and Fos in the medulla oblongata nuclei, including the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus (DMV). The microinjection of glutamic acid (Glu) or exogenous SP to enhance neuronal activity in the DVC significantly potentiated plasma extravasation and SP release induced by intra-esophageal perfusion. The microinjection of γ-aminobutyric acid (GABA), lidocaine to inhibit neuronal activity or anti-SP serum in the DVC alleviated plasma extravasation and SP release. In conclusion, airway inflammation induced by the esophageal perfusion of HCl is regulated by DVC. This study provides new insight for the mechanism of airway neurogenic inflammation related to GER.
Collapse
Affiliation(s)
- Zhe Chen
- The First People's Hospital of Kunshan, Jiangsu University, Kunshan, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lejia Sun
- Department of Hepatobiliary Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Hui Chen
- ICU, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dachuan Gu
- Department of Cardiothoracic Surgery, Fu Wai Hospital, Beijing, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rong Dong
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats. Exp Neurol 2018; 300:135-148. [DOI: 10.1016/j.expneurol.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/21/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022]
|
39
|
Driessen AK, McGovern AE, Narula M, Yang SK, Keller JA, Farrell MJ, Mazzone SB. Central mechanisms of airway sensation and cough hypersensitivity. Pulm Pharmacol Ther 2017; 47:9-15. [DOI: 10.1016/j.pupt.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
40
|
Foster SL, Seehus CR, Woolf CJ, Talbot S. Sense and Immunity: Context-Dependent Neuro-Immune Interplay. Front Immunol 2017; 8:1463. [PMID: 29163530 PMCID: PMC5675863 DOI: 10.3389/fimmu.2017.01463] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
The sensory nervous and immune systems, historically considered autonomous, actually work in concert to promote host defense and tissue homeostasis. These systems interact with each other through a common language of cell surface G protein-coupled receptors and receptor tyrosine kinases as well as cytokines, growth factors, and neuropeptides. While this bidirectional communication is adaptive in many settings, helping protect from danger, it can also become maladaptive and contribute to disease pathophysiology. The fundamental logic of how, where, and when sensory neurons and immune cells contribute to either health or disease remains, however, unclear. Our lab and others’ have begun to explore how this neuro-immune reciprocal dialog contributes to physiological and pathological immune responses and sensory disorders. The cumulative results collected so far indicate that there is an important role for nociceptors (noxious stimulus detecting sensory neurons) in driving immune responses, but that this is highly context dependent. To illustrate this concept, we present our findings in a model of airway inflammation, in which nociceptors seem to have major involvement in type 2 but not type 1 adaptive immunity.
Collapse
Affiliation(s)
- Simmie L Foster
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, United States
| | - Corey R Seehus
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
41
|
Sex differences in cough reflex. Respir Physiol Neurobiol 2017; 245:122-129. [DOI: 10.1016/j.resp.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022]
|
42
|
McGovern AE, Ajayi IE, Farrell MJ, Mazzone SB. A neuroanatomical framework for the central modulation of respiratory sensory processing and cough by the periaqueductal grey. J Thorac Dis 2017; 9:4098-4107. [PMID: 29268420 DOI: 10.21037/jtd.2017.08.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sensory information arising from the airways is processed in a distributed brain network that encodes for the discriminative and affective components of the resultant sensations. These higher brain networks in turn regulate descending motor control circuits that can both promote or suppress behavioural responses. Here we explore the existence of possible descending neural control pathways that regulate airway afferent processing in the brainstem, analogous to the endogenous descending analgesia system described for noxious somatosensation processing and placebo analgesia. A key component of this circuitry is the midbrain periaqueductal grey, a region of the brainstem recently highlighted for its altered activity in patients with chronic cough. Understanding the nature and plasticity of descending neural control may help identify novel central therapeutic targets to alleviate the neuronal hypersensitivity underpinning many symptoms of respiratory disease.
Collapse
Affiliation(s)
- Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville VIC 3010, Australia
| | - Itopa E Ajayi
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville VIC 3010, Australia
| | - Michael J Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton VIC 3800, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville VIC 3010, Australia
| |
Collapse
|
43
|
Cavallari P, Bolzoni F, Esposti R, Bruttini C. Cough-Anal Reflex May Be the Expression of a Pre-Programmed Postural Action. Front Hum Neurosci 2017; 11:475. [PMID: 29021750 PMCID: PMC5624195 DOI: 10.3389/fnhum.2017.00475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/12/2017] [Indexed: 01/23/2023] Open
Abstract
When coughing, an involuntary contraction of the external anal sphincter occurs, in order to prevent unwanted leakages or sagging of the pelvis muscular wall. Literature originally described such cough-anal response as a reflex elicited by cough, therefore identifying a precise cause-effect relationship. However, recent studies report that the anal contraction actually precedes the rise in abdominal pressure during cough expiratory effort, so that the sphincter activity should be pre-programmed. In recent years, an important family of pre-programmed muscle activities has been well documented to precede voluntary movements: these anticipatory actions play a fundamental role in whole body and segmental postural control, hence they are referred to as anticipatory postural adjustments (APAs). On these basis, we searched in literature for similarities between APAs and the cough-anal response, observing that both follow the same predictive homeostatic principle, namely that anticipatory collateral actions are needed to prevent the unwanted mechanical consequences induced by the primary movement. We thus propose that the cough-anal response also belongs to the family of pre-programmed actions, as it may be interpreted as an APA acting on the abdominal-thoracic compartment; in other words, the cough-anal response may actually be an Anticipatory Sphincter Adjustment, the visceral counterpart of APAs.
Collapse
Affiliation(s)
- Paolo Cavallari
- Human Motor Control and Posture Lab, Section Human Physiology of the Department of Pathophysiology and Transplantation, Università degli Studi di MilanoMilan, Italy
| | - Francesco Bolzoni
- Human Motor Control and Posture Lab, Section Human Physiology of the Department of Pathophysiology and Transplantation, Università degli Studi di MilanoMilan, Italy
| | - Roberto Esposti
- Human Motor Control and Posture Lab, Section Human Physiology of the Department of Pathophysiology and Transplantation, Università degli Studi di MilanoMilan, Italy
| | - Carlo Bruttini
- Human Motor Control and Posture Lab, Section Human Physiology of the Department of Pathophysiology and Transplantation, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
44
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
45
|
Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 2017; 18:222-235. [PMID: 28303019 PMCID: PMC5708544 DOI: 10.1038/nrn.2017.15] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modern optogenetics can be tuned to evoke activity that corresponds to naturally occurring local or global activity in timing, magnitude or individual-cell patterning. This outcome has been facilitated not only by the development of core features of optogenetics over the past 10 years (microbial-opsin variants, opsin-targeting strategies and light-targeting devices) but also by the recent integration of optogenetics with complementary technologies, spanning electrophysiology, activity imaging and anatomical methods for structural and molecular analysis. This integrated approach now supports optogenetic identification of the native, necessary and sufficient causal underpinnings of physiology and behaviour on acute or chronic timescales and across cellular, circuit-level or brain-wide spatial scales.
Collapse
Affiliation(s)
- Christina K Kim
- Neurosciences Program, Stanford University, 318 Campus Drive, Stanford, California 94305, USA
| | - Avishek Adhikari
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University, 318 Campus Drive, Stanford, California 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, 318 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
46
|
Tiotiu A, Chenuel B, Foucaud L, Demoulin B, Demoulin-Alexikova S, Christov C, Poussel M. Lack of desensitization of the cough reflex in ovalbumin-sensitized rabbits during exercise. PLoS One 2017; 12:e0171862. [PMID: 28182749 PMCID: PMC5300204 DOI: 10.1371/journal.pone.0171862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/26/2017] [Indexed: 12/04/2022] Open
Abstract
Introduction Cough is a major symptom of asthma frequently experienced during exercise but little is known about interactions between cough and exercise. The goal of our study was to clarify the potential modulation of the cough reflex (CR) by exercise in a spontaneously breathing anaesthetized animal model of airway eosinophilic inflammation. Materials & methods Ten ovalbumin (OVA) sensitized adult rabbits and 8 controls were studied. The ventilatory response to direct tracheal stimulation, performed both at rest and during exercise was determined to quantify the incidence and the sensitivity of the CR. Broncho-alveolar lavages (BAL) and cell counts were performed to assess the level of the airway inflammation following OVA-induced sensitization. Exercise was mimicked by Electrically induced hindlimb Muscular Contractions (EMC). Results Among 494 tracheal stimulations, 261 were performed at rest and 233 at exercise. OVA challenges in sensitized rabbits caused a significant increase in the percentage of eosinophils (p = 0.008) in BAL. EMC increased minute ventilation by 36% and 35% in OVA and control rabbits respectively, compared to rest values. The sensitivity of the CR decreased during exercise compared to baseline in control rabbits (p = 0.0313) while it remained unchanged in OVA rabbits. Conclusion The desensitization of the CR during exercise in control rabbits was abolished in OVA rabbits. The precise role of airway inflammation in this lack of CR desensitization needs to be further investigated but it might contribute to the exercise-induced cough in asthmatics.
Collapse
Affiliation(s)
- Angelica Tiotiu
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory regulations and motor control, Université de Lorraine, Vandoeuvre-les-Nancy, France
- Pulmonology Department, CHRU Nancy, Nancy, France
- * E-mail:
| | - Bruno Chenuel
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory regulations and motor control, Université de Lorraine, Vandoeuvre-les-Nancy, France
- Pulmonary Function Testing and Exercise Physiology, CHRU Nancy, Nancy, France
| | - Laurent Foucaud
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory regulations and motor control, Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Bruno Demoulin
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory regulations and motor control, Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Silvia Demoulin-Alexikova
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory regulations and motor control, Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Christo Christov
- Department of Histology, Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Mathias Poussel
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory regulations and motor control, Université de Lorraine, Vandoeuvre-les-Nancy, France
- Pulmonary Function Testing and Exercise Physiology, CHRU Nancy, Nancy, France
| |
Collapse
|
47
|
McDougall SJ, Guo H, Andresen MC. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala. J Physiol 2016; 595:901-917. [PMID: 27616729 DOI: 10.1113/jp272898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Emotions are accompanied by concordant changes in visceral function, including cardiac output, respiration and digestion. One major forebrain integrator of emotional responses, the amygdala, is considered to rely on embedded visceral afferent information, although few details are known. In the present study, we retrogradely transported dye from the central nucleus of the amygdala (CeA) to identify CeA-projecting nucleus of the solitary tract (NTS) neurons for synaptic characterization and compared them with unlabelled, near-neighboor NTS neurons. Solitary tract (ST) afferents converged onto NTS-CeA second-order sensory neurons in greater numbers, as well as indirectly via polysynaptic pathways. Unexpectedly, all mono- and polysynaptic ST afferent pathways to NTS-CeA neurons were organized exclusively as either transient receptor potential cation channel subfamily V member 1 (TRPV1)-sensitive or TRPV1-resistant, regardless of whether intervening neurons were excitatory or inhibitory. This strict sorting provides viscerosensory signals to CeA about visceral conditions with respect to being either 'normal' via A-fibres or 'alarm' via TRPV1 expressing C-fibres and, accordingly, this pathway organization probably encodes interoceptive status. ABSTRACT Emotional state is impacted by changes in visceral function, including blood pressure, breathing and digestion. A main line of viscerosensory information processing occurs first in the nucleus of the solitary tract (NTS). In the present study conducted in rats, we examined the synaptic characteristics of visceral afferent pathways to the central nucleus of the amygdala (CeA) in brainstem slices by recording from retrogradely labelled NTS projection neurons. We simultaneously recorded neuron pairs: one dye positive (i.e. NTS-CeA) and a second unlabelled neighbour. Graded shocks to the solitary tract (ST) always (93%) triggered EPSCs at CeA projecting NTS neurons. Half of the NTS-CeA neurons received at least one primary afferent input (classed 'second order') indicating that viscerosensory information arrives at the CeA conveyed via a pathway involving as few as two synapses. The remaining NTS-CeA neurons received viscerosensory input only via polysynaptic pathways. By contrast, ∼3/4 of unlabelled neighbouring neurons were directly connected to ST. NTS-CeA neurons received greater numbers of ST-related inputs compared to unlabelled NTS neurons, indicating that highly convergent viscerosensory signals reach the CeA. Remarkably, despite multifibre convergence, all single NTS-CeA neurons received inputs derived from only unmyelinated afferents [transient receptor potential cation channel subfamily V member 1 (TRPV1) expressing C-fibres] or only non-TRPV1 ST afferent inputs, and never a combination of both. Such segregation means that visceral afferent information followed separate lines to reach the CeA. Their very different physiological activation profiles mean that these parallel visceral afferent pathways encode viscerosensory signals to the amygdala that may provide interoceptive assessments to impact on behaviours.
Collapse
Affiliation(s)
- Stuart J McDougall
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Haoyao Guo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael C Andresen
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
48
|
Pitts T, Morris KF, Segers LS, Poliacek I, Rose MJ, Lindsey BG, Davenport PW, Howland DR, Bolser DC. Feed-forward and reciprocal inhibition for gain and phase timing control in a computational model of repetitive cough. J Appl Physiol (1985) 2016; 121:268-78. [PMID: 27283917 PMCID: PMC4967248 DOI: 10.1152/japplphysiol.00790.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/08/2016] [Indexed: 11/22/2022] Open
Abstract
We investigated the hypothesis, motivated in part by a coordinated computational cough network model, that second-order neurons in the nucleus tractus solitarius (NTS) act as a filter and shape afferent input to the respiratory network during the production of cough. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms of the parasternal (inspiratory) and rectus abdominis (expiratory) muscles and esophageal pressure were recorded. In vivo data revealed that expiratory motor drive during bouts of repetitive coughs is variable: peak expulsive amplitude increases from the first cough, peaks about the eighth or ninth cough, and then decreases through the remainder of the bout. Model simulations indicated that feed-forward inhibition of a single second-order neuron population is not sufficient to account for this dynamic feature of a repetitive cough bout. When a single second-order population was split into two subpopulations (inspiratory and expiratory), the resultant model produced simulated expiratory motor bursts that were comparable to in vivo data. However, expiratory phase durations during these simulations of repetitive coughing had less variance than those in vivo. Simulations in which reciprocal inhibitory processes between inspiratory-decrementing and expiratory-augmenting-late neurons were introduced exhibited increased variance in the expiratory phase durations. These results support the prediction that serial and parallel processing of airway afferent signals in the NTS play a role in generation of the motor pattern for cough.
Collapse
Affiliation(s)
- Teresa Pitts
- Department of Neurologic Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville, Louisville, Kentucky; Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida;
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Ivan Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; Institute of Medical Biophysics, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
| | - Melanie J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Dena R Howland
- Department of Neurologic Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville, Louisville, Kentucky
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
49
|
Lv H, Yue J, Chen Z, Chai S, Cao X, Zhan J, Ji Z, Zhang H, Dong R, Lai K. Effect of transient receptor potential vanilloid-1 on cough hypersensitivity induced by particulate matter 2.5. Life Sci 2016; 151:157-166. [PMID: 26926080 DOI: 10.1016/j.lfs.2016.02.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 12/29/2022]
Abstract
AIMS The mechanism of cough hypersensitivity induced by particulate matter 2.5 (PM2.5) remains elusive. The current study was designed to explore the effect of transient receptor potential vanilloid-1 (TRPV1) on cough hypersensitivity in airway and central nervous system. MAIN METHODS The PM2.5-induced chronic cough model of guinea pig was established by exposure to different doses of PM2.5 for three weeks. After exposure, the animals were microinjected with TRPV1 agonist capsaicine, antagonist capsazepine in the dorsal vagal complex respectively. Cough sensitivity was measured by determining the provocative concentration of citric acid inducing 5 or more coughs (C5). Airway inflammation was detected by hematoxylin eosin (HE) staining and Evans blue fluorescence, and substance P (SP) and TRPV1 expressions in airway were observed by immunohistochemical staining. TRPV1 expressions in the dorsal vagal complex were observed by immunofluorescence. Retrograde tracing by pseudorabies virus-Bartha (PRV-Bartha) was conducted to confirm the regulatory pathway between airway and central nervous system. KEY FINDINGS PM2.5 induced TRPV1 expressions in both of airway and dorsal vagal complex and airway neurogenic inflammation. Airway vascular permeability increased after being exposed to PM2.5. The expressions of SP in the airway and airway inflammation was increased after microinjecting TRPV1 agonist, and decreased after microinjecting TRPV1 antagonist. PRV infected neurons in medulla oblongata mainly located in the dorsal vagal complex. SIGNIFICANCE These findings show that TRPV1 in the dorsal vagal complex could promote airway neurogenic inflammation and cough reflex sensitivity through neural pathways of vagal complex-airways, which indicate the therapeutic potential of specific inhibition of TRPV1 for chronic cough induced by PM2.5.
Collapse
Affiliation(s)
- Haining Lv
- Medical School, Southeast University, China
| | | | - Zhe Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China
| | | | - Xu Cao
- Medical School, Southeast University, China
| | - Jie Zhan
- Medical School, Southeast University, China
| | - Zhenjun Ji
- Medical School, Southeast University, China
| | - Hui Zhang
- Key Laboratory of Environmental Medicine and Engineering Ministry of Education, School of Public Health, Southeast University, China
| | - Rong Dong
- Department of Physiology and Pharmacology, Southeast University, China.
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China.
| |
Collapse
|
50
|
Bolser DC, Pitts TE, Davenport PW, Morris KF. Role of the dorsal medulla in the neurogenesis of airway protection. Pulm Pharmacol Ther 2015; 35:105-10. [PMID: 26549786 DOI: 10.1016/j.pupt.2015.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
The dorsal medulla encompassing the nucleus of the tractus solitarius (NTS) and surrounding reticular formation (RF) has an important role in processing sensory information from the upper and lower airways for the generation and control of airway protective behaviors. These behaviors, such as cough and swallow, historically have been studied in isolation. However, recent information indicates that these and other airway protective behaviors are coordinated to minimize risk of aspiration. The dorsal medullary neural circuits that include the NTS are responsible for rhythmogenesis for repetitive swallowing, but previous models have assigned a role for this portion of the network for coughing that is restricted to monosynaptic sensory processing. We propose a more complex NTS/RF circuit that controls expression of swallowing and coughing and the coordination of these behaviors. The proposed circuit is supported by recordings of activity patterns of selected neural elements in vivo and simulations of a computational model of the brainstem circuit for breathing, coughing, and swallowing. This circuit includes separate rhythmic sub-circuits for all three behaviors. The revised NTS/RF circuit can account for the mode of action of antitussive drugs on the cough motor pattern, as well as the unique coordination of cough and swallow by a meta-behavioral control system for airway protection.
Collapse
Affiliation(s)
- Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0144, USA.
| | - Teresa E Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0144, USA
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612-4799, USA
| |
Collapse
|