1
|
Chen T, Bai D, Gong C, Cao Y, Yan X, Peng R. Hydrogen sulfide mitigates mitochondrial dysfunction and cellular senescence in diabetic patients: Potential therapeutic applications. Biochem Pharmacol 2024; 230:116556. [PMID: 39332692 DOI: 10.1016/j.bcp.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Diabetes induces a pro-aging state characterized by an increased abundance of senescent cells in various tissues, heightened chronic inflammation, reduced substance and energy metabolism, and a significant increase in intracellular reactive oxygen species (ROS) levels. This condition leads to mitochondrial dysfunction, including elevated oxidative stress, the accumulation of mitochondrial DNA (mtDNA) damage, mitophagy defects, dysregulation of mitochondrial dynamics, and abnormal energy metabolism. These dysfunctions result in intracellular calcium ion (Ca2+) homeostasis disorders, telomere shortening, immune cell damage, and exacerbated inflammation, accelerating the aging of diabetic cells or tissues. Hydrogen sulfide (H2S), a novel gaseous signaling molecule, plays a crucial role in maintaining mitochondrial function and mitigating the aging process in diabetic cells. This article systematically explores the specific mechanisms by which H2S regulates diabetes-induced mitochondrial dysfunction to delay cellular senescence, offering a promising new strategy for improving diabetes and its complications.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Dacheng Bai
- Guangdong Institute of Mitochondrial Biomedicine, Room 501, Coolpad Building, No.2 Mengxi Road, High-tech Industrial Park, Nanshan District, Shenzhen, Guangdong Province 518000, China
| | - Changyong Gong
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Lyu J, Gu Z, Zhang Y, Vu HS, Lechauve C, Cai F, Cao H, Keith J, Brancaleoni V, Granata F, Motta I, Cappellini MD, Huang LJS, DeBerardinis RJ, Weiss MJ, Ni M, Xu J. A glutamine metabolic switch supports erythropoiesis. Science 2024; 386:eadh9215. [PMID: 39541460 DOI: 10.1126/science.adh9215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 02/18/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024]
Abstract
Metabolic requirements vary during development, and our understanding of how metabolic activity influences cell specialization is incomplete. Here, we describe a switch from glutamine catabolism to synthesis required for erythroid cell maturation. Glutamine synthetase (GS), one of the oldest functioning genes in evolution, is activated during erythroid maturation to detoxify ammonium generated from heme biosynthesis, which is up-regulated to support hemoglobin production. Loss of GS in mouse erythroid precursors caused ammonium accumulation and oxidative stress, impairing erythroid maturation and recovery from anemia. In β-thalassemia, GS activity is inhibited by protein oxidation, leading to glutamate and ammonium accumulation, whereas enhancing GS activity alleviates the metabolic and pathological defects. Our findings identify an evolutionarily conserved metabolic adaptation that could potentially be leveraged to treat common red blood cell disorders.
Collapse
Affiliation(s)
- Junhua Lyu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhimin Gu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hieu S Vu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Feng Cai
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Cao
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Julia Keith
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Valentina Brancaleoni
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Granata
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Motta
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Maria Domenica Cappellini
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lily Jun-Shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min Ni
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jian Xu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Park SY, Kim KY, Gwak DS, Shin SY, Jun DY, Kim YH. L-Cysteine mitigates ROS-induced apoptosis and neurocognitive deficits by protecting against endoplasmic reticulum stress and mitochondrial dysfunction in mouse neuronal cells. Biomed Pharmacother 2024; 180:117538. [PMID: 39393330 DOI: 10.1016/j.biopha.2024.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
Oxidative stress and mitochondrial dysfunction play critical roles in neurodegenerative diseases. Glutathione (GSH), a key brain antioxidant, helps to neutralize reactive oxygen species (ROS) and maintain redox balance. We investigated the effectiveness of L-cysteine (L-Cys) in preventing apoptosis induced by the ROS generator 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) in mouse hippocampal neuronal HT22 cells, as well as alleviating memory and cognitive impairments caused by the GSH synthesis inhibitor L-buthionine sulfoximine (BSO) in mice. DMNQ-induced apoptotic events in HT22 cells, including elevated cytosolic and mitochondrial ROS levels, DNA fragmentation, endoplasmic reticulum stress, and mitochondrial damage-mediated apoptotic pathways were dose-dependently abrogated by L-Cys (0.5-2 mM). The reduced intracellular GSH level, caused by DMNQ treatment, was restored by L-Cys cotreatment. Although L-Cys did not significantly restore GSH in the presence of BSO, it prevented DMNQ-induced ROS elevation, mitochondrial damage, and apoptosis. Furthermore, compared to N-acetylcysteine and GSH, L-Cys had higher 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid radical-scavenging activity. L-Cys also restored mitochondrial respiration capacity in DMNQ-treated HT22 cells by reversing mitochondrial fission-fusion dynamic balance. BSO administration (500 mg/kg/day) in mice led to neuronal deficits, including memory and cognitive impairments, which were effectively mitigated by oral L-Cys (15 or 30 mg/kg/day). L-Cys also reduced BSO-induced ROS levels in the mice hippocampus and cortex. These findings suggest that even though it does not contribute to intracellular GSH synthesis, exogenous L-Cys protects neuronal cells against oxidative stress-induced mitochondrial damage and apoptosis, by acting as a ROS scavenger, which is beneficial in ameliorating neurocognitive deficits caused by oxidative stress.
Collapse
Affiliation(s)
- Shin Young Park
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ki Yun Kim
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dong Seol Gwak
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Youn Jun
- AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young Ho Kim
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
4
|
Kim HB, Kim YJ, Lee YJ, Yoo JY, Choi Y, Kim EM, Suh SW, Woo RS. N-Acetylcysteine Alleviates Depressive-Like Behaviors in Adolescent EAAC1 -/- Mice and Early Life Stress Model Rats. Int J Biol Sci 2024; 20:5450-5473. [PMID: 39494328 PMCID: PMC11528454 DOI: 10.7150/ijbs.97723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Exposure to adverse experiences during early life is associated with an increased risk of psychopathology during adolescence. In a previous study, we demonstrated that neonatal maternal separation (NMS) combined with social isolation led to impulsive and depressive-like behaviors in male adolescents. Additionally, it significantly reduced the expression of excitatory amino acid carrier 1 (EAAC1) in the hippocampus. Building upon this work, we investigated the effects of N-acetylcysteine (NAC), a precursor to glutathione, in early-life stress (ELS) model rats and in EAAC1-/- mice. EAAC1 plays a dual role in transporting both glutamate and cysteine into neurons. Our findings revealed that female adolescents subjected to in the ELS model also exhibited behavioral defects similar to those of males. NAC injection rescued depressive-like behaviors in both male and female NMS models, but it improved impulsive behavior only in males. Furthermore, we observed increased reactive oxidative stress (ROS) and neuroinflammation in the ventral hippocampus (vHPC) and prefrontal cortex of NMS model rats, which were mitigated by NAC treatment. Notably, NAC reversed the reduced expression of EAAC1 in the vHPC of NMS model rats. In EAAC1-/- mice, severe impulsive and depressive-like behaviors were evident, and the NAC intervention improved only depressive-like behaviors. Collectively, our results suggest that ELS contributes to depression and impulsive behaviors during adolescence. Moreover, the cysteine uptake function of EAAC1 in neurons may be specifically related to depression rather than impulsive behavior.
Collapse
Affiliation(s)
- Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Republic of Korea
| | - Yu-Jin Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Republic of Korea
| | - Ye-Ji Lee
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Republic of Korea
| | - Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Republic of Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Eun-Mee Kim
- Department of Paramedicine, Korea Nazarene University, Cheonan, 31172, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Republic of Korea
| |
Collapse
|
5
|
Khoury ES, Patel RV, O’Ferrall C, Fowler A, Sah N, Sharma A, Gupta S, Scafidi S, Kurtz J, Olmstead SJ, Kudchadkar SR, Kannan RM, Blue ME, Kannan S. Dendrimer nanotherapy targeting of glial dysfunction improves inflammation and neurobehavioral phenotype in adult female Mecp2-heterozygous mouse model of Rett syndrome. J Neurochem 2024; 168:841-854. [PMID: 37777475 PMCID: PMC11002961 DOI: 10.1111/jnc.15960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation of Mecp2 gene and primarily affects females. Glial cell dysfunction has been implicated in in Rett syndrome (RTT) both in patients and in mouse models of this disorder and can affect synaptogenesis, glial metabolism and inflammation. Here we assessed whether treatment of adult (5-6 months old) symptomatic Mecp2-heterozygous female mice with N-acetyl cysteine conjugated to dendrimer (D-NAC), which is known to target glia and modulate inflammation and oxidative injury, results in improved behavioral phenotype, sleep and glial inflammatory profile. We show that unbiased global metabolomic analysis of the hippocampus and striatum in adult Mecp2-heterozygous mice demonstrates significant differences in lipid metabolism associated with neuroinflammation, providing the rationale for targeting glial inflammation in this model. Our results demonstrate that treatment with D-NAC (10 mg/kg NAC) once weekly is more efficacious than equivalently dosed free NAC in improving the gross neurobehavioral phenotype in symptomatic Mecp2-heterozygous female mice. We also show that D-NAC therapy is significantly better than saline in ameliorating several aspects of the abnormal phenotype including paw clench, mobility, fear memory, REM sleep and epileptiform activity burden. Systemic D-NAC significantly improves microglial proinflammatory cytokine production and is associated with improvements in several aspects of the phenotype including paw clench, mobility, fear memory, and REM sleep, and epileptiform activity burden in comparison to saline-treated Mecp2-hetereozygous mice. Systemic glial-targeted delivery of D-NAC after symptom onset in an older clinically relevant Rett syndrome model shows promise in improving neurobehavioral impairments along with sleep pattern and epileptiform activity burden. These findings argue for the translational value of this approach for treatment of patients with Rett Syndrome.
Collapse
Affiliation(s)
- Elizabeth Smith Khoury
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ruchit V. Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Caroline O’Ferrall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amanda Fowler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nirnath Sah
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Siddharth Gupta
- Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Josh Kurtz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah J. Olmstead
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sapna R. Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Departments of Pediatrics and Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
- Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore MD, 21218
| | - Mary E. Blue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
| |
Collapse
|
6
|
Wei Y, Xu X, Guo Q, Zhao S, Qiu Y, Wang D, Yu W, Liu Y, Wang K. A novel dual serotonin transporter and M-channel inhibitor D01 for antidepression and cognitive improvement. Acta Pharm Sin B 2024; 14:1457-1466. [PMID: 38487010 PMCID: PMC10935023 DOI: 10.1016/j.apsb.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/07/2023] [Accepted: 11/17/2023] [Indexed: 03/17/2024] Open
Abstract
Cognitive dysfunction is a core symptom common in psychiatric disorders including depression that is primarily managed by antidepressants lacking efficacy in improving cognition. In this study, we report a novel dual serotonin transporter and voltage-gated potassium Kv7/KCNQ/M-channel inhibitor D01 (a 2-methyl-3-aryloxy-3-heteroarylpropylamines derivative) that exhibits both anti-depression effects and improvements in cognition. D01 inhibits serotonin transporters (Ki = 30.1 ± 6.9 nmol/L) and M channels (IC50 = 10.1 ± 2.4 μmol/L). D01 also reduces the immobility duration in the mouse FST and TST assays in a dose-dependent manner without a stimulatory effect on locomotion. Intragastric administrations of D01 (20 and 40 mg/kg) can significantly shorten the immobility time in a mouse model of chronic restraint stress (CRS)-induced depression-like behavior. Additionally, D01 dose-dependently improves the cognitive deficit induced by CRS in Morris water maze test and increases the exploration time with novel objects in normal or scopolamine-induced cognitive deficits in mice, but not fluoxetine. Furthermore, D01 reverses the long-term potentiation (LTP) inhibition induced by scopolamine. Taken together, our findings demonstrate that D01, a dual-target serotonin reuptake and M channel inhibitor, is highly effective in the treatment-resistant depression and cognitive deficits, thus holding potential for development as therapy of depression with cognitive deficits.
Collapse
Affiliation(s)
- Yaqin Wei
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiangqing Xu
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Qiang Guo
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Song Zhao
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Yinli Qiu
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Dongli Wang
- Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd. & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Wenwen Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong–Hong Kong–Macao Greater Bay Area, Guangzhou 510515, China
| |
Collapse
|
7
|
Tiouririne NAD, Kalelioglu T, Seneviratne C, Wang XQ. Safety and tolerability of topiramate and N-acetyl cysteine combination in individuals with alcohol use disorder: a 12 week, randomized, double-blind, pilot study. Alcohol Alcohol 2024; 59:agad082. [PMID: 38069498 DOI: 10.1093/alcalc/agad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 01/19/2024] Open
Abstract
Topiramate (TPM), a GABA/glutamate modulator, has shown positive results for treating alcohol use disorder (AUD), but causes significant cognitive adverse effects. TPM causes cognitive side effects by reducing glutathione levels in the frontal lobe. N-acetyl cysteine (NAC) increases level of intracellular glutathione. We hypothesized that combining NAC with TPM may mitigate the possible cognitive side effects of TPM, as well as working synergistically in reducing alcohol consumption more efficaciously than using TPM alone. A 12-week, double-blind randomized trial assessing the effects of combining NAC (1200 mg/day) with TPM (200 mg/day) vs TPM alone (i) cognitive side effects caused by TPM, (ii) percentage of heavy drinking days (PHDD) and percentage of days abstinent (PDA) using weekly calendar, and (iii) craving outcomes using the obsessive-compulsive drinking scale. Seventeen participants were randomized into the study (nine received TPM + NAC and eight matching TPM + Placebo). Cognitive adverse events were not significantly different between the treatment arms (P = 0.581). There was no difference in PHDD (P = 0.536) and in PDA over the entire study period (P = 0.892). However, both treatment groups at study end, compared with the baseline, significantly reduced their PHDD and increased their PDA. As for cravings: TPM + NAC group has shown higher level in automaticity of drinking (P = 0.029) and interference due to drinking (P = 0.014) subscales compared with the TPM + Placebo group. No difference was observed between groups in terms of Drinking Obsessions and Alcohol Consumption subscales. This pilot study indicates that combining NAC with TPM is overall safe, but the addition of NAC has no significant benefit over placebo in the incidence of TPM-related cognitive impairment, and alcohol drinking. Furthermore, craving outcomes may become worse with the addition of NAC.
Collapse
Affiliation(s)
- Nassima A-D Tiouririne
- Department of Psychiatry & Neurobehavioral Sciences, University of Virginia School of Medicine, 1300 Jefferson Park Ave. 22903 Charlottesville, VA, United States
| | - Tevfik Kalelioglu
- Department of Psychiatry & Neurobehavioral Sciences, University of Virginia School of Medicine, 1300 Jefferson Park Ave. 22903 Charlottesville, VA, United States
| | - Chamindi Seneviratne
- Department of Pharmacology, University of Maryland School of Medicine, 670 West Baltimore St, 21201 Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland School of Medicine, Health Sciences Facility III, 670 West Baltimore St, 21201 Baltimore, MD, United States
| | - Xin-Qun Wang
- Department of Public Health Sciences, University of Virginia School of Medicine, 200 Jeanette Lancaster Way 22903 Charlottesville, VA, United States
| |
Collapse
|
8
|
Zhu Z, Quadri Z, Crivelli SM, Elsherbini A, Zhang L, Tripathi P, Qin H, Roush E, Spassieva SD, Nikolova-Karakashian M, McClintock TS, Bieberich E. Neutral Sphingomyelinase 2 Mediates Oxidative Stress Effects on Astrocyte Senescence and Synaptic Plasticity Transcripts. Mol Neurobiol 2022; 59:3233-3253. [PMID: 35294731 PMCID: PMC9023069 DOI: 10.1007/s12035-022-02747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
We have shown that deficiency of neutral sphingomyelinase 2 (nSMase2), an enzyme generating the sphingolipid ceramide, improves memory in adult mice. Here, we performed sphingolipid and RNA-seq analyses on the cortex from 10-month-old nSMase2-deficient (fro/fro) and heterozygous (+ /fro) mice. fro/fro cortex showed reduced levels of ceramide, particularly in astrocytes. Differentially abundant transcripts included several functionally related groups, with decreases in mitochondrial oxidative phosphorylation and astrocyte activation transcripts, while axon guidance and synaptic transmission and plasticity transcripts were increased, indicating a role of nSMase2 in oxidative stress, astrocyte activation, and cognition. Experimentally induced oxidative stress decreased the level of glutathione (GSH), an endogenous inhibitor of nSMase2, and increased immunolabeling for ceramide in primary + /fro astrocytes, but not in fro/fro astrocytes. β-galactosidase activity was lower in 5-week-old fro/fro astrocytes, indicating delayed senescence due to nSMase2 deficiency. In fro/fro cortex, levels of the senescence markers C3b and p27 and the proinflammatory cytokines interleukin 1β, interleukin 6, and tumor necrosis factor α were reduced, concurrent with twofold decreased phosphorylation of their downstream target, protein kinase Stat3. RNA and protein levels of the ionotropic glutamate receptor subunit 2B (Grin2b/NR2B) were increased by twofold, which was previously shown to enhance cognition. This was consistent with threefold reduced levels of exosomes carrying miR-223-3p, a micro-RNA downregulating NR2B. In summary, our data show that nSMase2 deficiency prevents oxidative stress-induced elevation of ceramide and secretion of exosomes by astrocytes that suppress neuronal function, indicating a role of nSMase2 in the regulation of neuroinflammation and cognition.
Collapse
Affiliation(s)
- Zhihui Zhu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Zainuddin Quadri
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Simone M. Crivelli
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Ahmed Elsherbini
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Liping Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Priyanka Tripathi
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Haiyan Qin
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Emily Roush
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Stefka D. Spassieva
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | | | - Timothy S. McClintock
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Erhard Bieberich
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| |
Collapse
|
9
|
Kulkarni AS, Aleksic S, Berger DM, Sierra F, Kuchel G, Barzilai N. Geroscience-guided repurposing of FDA-approved drugs to target aging: A proposed process and prioritization. Aging Cell 2022; 21:e13596. [PMID: 35343051 PMCID: PMC9009114 DOI: 10.1111/acel.13596] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/11/2022] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
Common chronic diseases represent the greatest driver of rising healthcare costs, as well as declining function, independence, and quality of life. Geroscience-guided approaches seek to delay the onset and progression of multiple chronic conditions by targeting fundamental biological pathways of aging. This approach is more likely to improve overall health and function in old age than treating individual diseases, by addressing aging the largest and mostly ignored risk factor for the leading causes of morbidity in older adults. Nevertheless, challenges in repurposing existing and moving newly discovered interventions from the bench to clinical care have impeded the progress of this potentially transformational paradigm shift. In this article, we propose the creation of a standardized process for evaluating FDA-approved medications for their geroscience potential. Criteria for systematically evaluating the existing literature that spans from animal models to human studies will permit the prioritization of efforts and financial investments for translating geroscience and allow immediate progress on the design of the next Targeting Aging with MEtformin (TAME)-like study involving such candidate gerotherapeutics.
Collapse
Affiliation(s)
- Ameya S. Kulkarni
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Present address:
AbbVie Inc.North ChicagoIL60064USA.
| | - Sandra Aleksic
- Department of Medicine (Endocrinology and Geriatrics)Albert Einstein College of MedicineBronxNew YorkUSA
| | - David M. Berger
- Department of Medicine (Hospital Medicine)Montefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| | - Felipe Sierra
- Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - George A. Kuchel
- UConn Center on AgingUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
10
|
Ventriglio A, Bellomo A, Favale D, Bonfitto I, Vitrani G, Di Sabatino D, Cuozzo E, Di Gioia I, Mauro P, Giampaolo P, Alessandro V, De Berardis D. Oxidative Stress in the Early Stage of Psychosis. Curr Top Med Chem 2021; 21:1457-1470. [PMID: 34218786 DOI: 10.2174/1568026621666210701105839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the past few decades, increasing evidence in the literature has appeared describing the role of the antioxidant defense system and redox signaling in the multifactorial pathophysiology of psychosis. It is of interest to clinicians and researchers alike that abnormalities of the antioxidant defense system are associated with alterations of cellular membranes, immune functions and neurotransmission, all of which have some clinical implications. METHODS This narrative review summarizes the evidence regarding oxidative stress in the early stages of psychosis. We included 136 peer-reviewed articles published from 2007 to 2020 on PubMed EMBASE, The Cochrane Library and Google Scholar. RESULTS Patients affected by psychotic disorders show a decreased level of non-enzymatic antioxidants, an increased level of lipid peroxides, nitric oxides, and a homeostatic imbalance of purine catabolism. In particular, a significantly reduced antioxidant defense has been described in the early onset first episode of psychosis, including reduced levels of glutathione. Also, it has been shown that a decreased basal low -antioxidant capacity correlates with cognitive deficits and negative symptoms, mostly related to glutamate-receptor hypofunction. In addition, atypical antipsychotic drugs seem to show significant antioxidant activity. These factors are critical in order to treat cases of first-onset psychosis effectively. CONCLUSION This systematic review indicates the importance that must be given to anti-oxidant defense systems.
Collapse
Affiliation(s)
- Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Donato Favale
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Iris Bonfitto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanna Vitrani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Dario Di Sabatino
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Edwige Cuozzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Ilaria Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pettorruso Mauro
- Department of Neurosciences, Imaging and Clinical Sciences, Univerity of Chieti, Italy
| | - Perna Giampaolo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | |
Collapse
|
11
|
Wan X, Ma B, Wang X, Guo C, Sun J, Cui J, Li L. S-Adenosylmethionine Alleviates Amyloid-β-Induced Neural Injury by Enhancing Trans-Sulfuration Pathway Activity in Astrocytes. J Alzheimers Dis 2021; 76:981-995. [PMID: 32597804 DOI: 10.3233/jad-200103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Glutathione (GSH) is an important endogenous antioxidant protecting cells from oxidative injury. Cysteine (Cys), the substrate limiting the production of GSH, is mainly generated from the trans-sulfuration pathway. S-adenosylmethionine (SAM) is a critical molecule produced in the methionine cycle and can be utilized by the trans-sulfuration pathway. Reductions in GSH and SAM as well as dysfunction in the trans-sulfuration pathway have been documented in the brains of Alzheimer's disease (AD) patients. Our previous in vivo study revealed that SAM administration attenuated oxidative stress induced by amyloid-β (Aβ) through the enhancement of GSH. OBJECTIVE To investigate the effect of Aβ-induced oxidative stress on the trans-sulfuration pathway in astrocytes and neurons, respectively, and the protective effect of SAM on neurons. METHODS APP/PS1 transgenic mice and the primary cultured astrocytes, neurons, and HT22 cells were used in the current study. RESULTS SAM could rescue the low trans-sulfuration pathway activity induced by Aβ only in astrocytes, accompanying with increasing levels of Cys and GSH. The decrease of cellular viability of neurons caused by Aβ was greatly reversed when co-cultured with astrocytes with SAM intervention. Meanwhile, SAM improved cognitive performance in APP/PS1 mice. CONCLUSION In terms of astrocyte protection from oxidative stress, SAM might be a potent antioxidant in the therapy of AD patients.
Collapse
Affiliation(s)
- Xinkun Wan
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Ma
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoxuan Wang
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chenjia Guo
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Sun
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Cui
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liang Li
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Raghu G, Berk M, Campochiaro PA, Jaeschke H, Marenzi G, Richeldi L, Wen FQ, Nicoletti F, Calverley PMA. The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disorders Characterized by Oxidative Stress. Curr Neuropharmacol 2021; 19:1202-1224. [PMID: 33380301 PMCID: PMC8719286 DOI: 10.2174/1570159x19666201230144109] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress, which results in the damage of diverse biological molecules, is a ubiquitous cellular process implicated in the etiology of many illnesses. The sulfhydryl-containing tripeptide glutathione (GSH), which is synthesized and maintained at high concentrations in all cells, is one of the mechanisms by which cells protect themselves from oxidative stress. N-acetylcysteine (NAC), a synthetic derivative of the endogenous amino acid L-cysteine and a precursor of GSH, has been used for several decades as a mucolytic and as an antidote to acetaminophen (paracetamol) poisoning. As a mucolytic, NAC breaks the disulfide bonds of heavily cross-linked mucins, thereby reducing mucus viscosity. In vitro, NAC has antifibrotic effects on lung fibroblasts. As an antidote to acetaminophen poisoning, NAC restores the hepatic GSH pool depleted in the drug detoxification process. More recently, improved knowledge of the mechanisms by which NAC acts has expanded its clinical applications. In particular, the discovery that NAC can modulate the homeostasis of glutamate has prompted studies of NAC in neuropsychiatric diseases characterized by impaired glutamate homeostasis. This narrative review provides an overview of the most relevant and recent evidence on the clinical application of NAC, with a focus on respiratory diseases, acetaminophen poisoning, disorders of the central nervous system (chronic neuropathic pain, depression, schizophrenia, bipolar disorder, and addiction), cardiovascular disease, contrast-induced nephropathy, and ophthalmology (retinitis pigmentosa).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter M. A. Calverley
- Address correspondence to this author at Clinical Science Centre, University Hospital Aintree, Longmoor Lane, Liverpool UK L9 7AL; Tel: +44 151 529 5886, Fax: +44 151 529 5888; E-mail:
| |
Collapse
|
13
|
Guo W, Li K, Sun B, Xu D, Tong L, Yin H, Liao Y, Song H, Wang T, Jing B, Hu M, Liu S, Kuang Y, Ling J, Li Q, Wu Y, Wang Q, Yao F, Zhou BP, Lin SH, Deng J. Dysregulated Glutamate Transporter SLC1A1 Propels Cystine Uptake via Xc - for Glutathione Synthesis in Lung Cancer. Cancer Res 2020; 81:552-566. [PMID: 33229341 DOI: 10.1158/0008-5472.can-20-0617] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells need to generate large amounts of glutathione (GSH) to buffer oxidative stress during tumor development. A rate-limiting step for GSH biosynthesis is cystine uptake via a cystine/glutamate antiporter Xc-. Xc- is a sodium-independent antiporter passively driven by concentration gradients from extracellular cystine and intracellular glutamate across the cell membrane. Increased uptake of cystine via Xc- in cancer cells increases the level of extracellular glutamate, which would subsequently restrain cystine uptake via Xc-. Cancer cells must therefore evolve a mechanism to overcome this negative feedback regulation. In this study, we report that glutamate transporters, in particular SLC1A1, are tightly intertwined with cystine uptake and GSH biosynthesis in lung cancer cells. Dysregulated SLC1A1, a sodium-dependent glutamate carrier, actively recycled extracellular glutamate into cells, which enhanced the efficiency of cystine uptake via Xc- and GSH biosynthesis as measured by stable isotope-assisted metabolomics. Conversely, depletion of glutamate transporter SLC1A1 increased extracellular glutamate, which inhibited cystine uptake, blocked GSH synthesis, and induced oxidative stress-mediated cell death or growth inhibition. Moreover, glutamate transporters were frequently upregulated in tissue samples of patients with non-small cell lung cancer. Taken together, active uptake of glutamate via SLC1A1 propels cystine uptake via Xc- for GSH biosynthesis in lung tumorigenesis. SIGNIFICANCE: Cellular GSH in cancer cells is not only determined by upregulated Xc- but also by dysregulated glutamate transporters, which provide additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wenzheng Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Beibei Sun
- Translational Medical Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfeng Tong
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijing Yin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuli Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, the Ninth People's Hospital, College of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jing Ling
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yadi Wu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Translational Medical Research Center, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Blanco-Ayala T, Sathyasaikumar KV, Uys JD, Pérez-de-la-Cruz V, Pidugu LS, Schwarcz R. N-Acetylcysteine Inhibits Kynurenine Aminotransferase II. Neuroscience 2020; 444:160-169. [PMID: 32768617 DOI: 10.1016/j.neuroscience.2020.07.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/08/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022]
Abstract
The tryptophan metabolite kynurenic acid (KYNA) may play an important role in normal and abnormal cognitive processes, most likely by interfering with α7 nicotinic and NMDA receptor function. KYNA is formed from its immediate precursor kynurenine either by non-enzymatic oxidation or through irreversible transamination by kynurenine aminotransferases. In the mammalian brain, kynurenine aminotransferase II (KAT II) is the principal enzyme responsible for the neosynthesis of rapidly mobilizable KYNA, and therefore constitutes an attractive target for pro-cognitive interventions. N-acetylcysteine (NAC), a brain-penetrant drug with pro-cognitive efficacy in humans, has been proposed to exert its actions by increasing the levels of the anti-oxidant glutathione (GSH) in the brain. We report here that NAC, but not GSH, inhibits KAT II activity in brain tissue homogenates from rats and humans with IC50 values in the high micromolar to low millimolar range. With similar potency, the drug interfered with the de novo formation of KYNA in rat brain slices, and NAC was a competitive inhibitor of recombinant human KAT II (Ki: 450 μM). Furthermore, GSH failed to S-glutathionylate recombinant human KAT II treated with the dithiocarbamate drug disulfiram. Shown by microdialysis in the prefrontal cortex of rats treated with kynurenine (50 mg/kg, i.p.), peripheral administration of NAC (500 mg/kg, i.p., 120 and 60 min before the application of kynurenine) reduced KYNA neosynthesis by ∼50%. Together, these results suggest that NAC exerts its neurobiological effects at least in part by reducing cerebral KYNA formation via KAT II inhibition.
Collapse
Affiliation(s)
- T Blanco-Ayala
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - V Pérez-de-la-Cruz
- Laboratorio de Neurobioquimica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A. Ciudad de México, Mexico
| | - L S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - R Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Suppression of the Reactive Oxygen Response Alleviates Experimental Autoimmune Uveitis in Mice. Int J Mol Sci 2020; 21:ijms21093261. [PMID: 32380695 PMCID: PMC7247341 DOI: 10.3390/ijms21093261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
Reactive oxygen species (ROS) are produced by host phagocytes and play an important role in antimicrobial actions against various pathogens. Autoimmune uveitis causes blindness and severe visual impairment in humans at all ages worldwide. However, the role of ROS in autoimmune uveitis remains unclear. We used ROS-deficient (Ncf1−/−) mice to investigate the role of ROS in experimental autoimmune uveitis (EAU). Besides, we also used the antioxidant N-acetylcysteine (NAC) treatment to evaluate the effect of suppression of ROS on EAU in mice. The EAU disease scores of Ncf1−/− mice were significantly lower than those of wild-type mice. EAU induction increased the levels of cytokines (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-12, IL-17, and tumor necrosis factor (TNF)-α) and chemokines (monocyte chemoattractant protein (MCP)-1) in the retinas of wild-type mice but not in those of Ncf1−/− mice. EAU induction enhanced the level of NF-κB activity in wild-type mice. However, the level of NF-κB activity in Ncf1−/− mice with EAU induction was low. Treatment with the antioxidant NAC also decreased the severity of EAU in mice with reduced levels of oxidative stress, inflammatory mediators, and NF-κB activation in the retina. We successfully revealed a novel role of ROS in the pathogenesis of EAU and suggest a potential antioxidant role for the treatment of autoimmune uveitis in the future.
Collapse
|
16
|
Emokpae O, Ben-Azu B, Ajayi AM, Umukoro S. D-ribose-L-cysteine enhances memory task, attenuates oxidative stress and acetyl-cholinesterase activity in scopolamine amnesic mice. Drug Dev Res 2020; 81:620-627. [PMID: 32219881 DOI: 10.1002/ddr.21663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
d-Ribose-l-cysteine (DRLC) is an analogue of cysteine that has been shown to boost cellular antioxidant capacity by enhancing intracellular biosynthesis of glutathione (GSH). Deficiency of GSH has been implicated in the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder associated with loss of memory. Thus, the use of antioxidants to prevent or retard the progression of memory deteriorations in persons with AD has been the focus of intense investigations. This study was carried out to evaluate the effects of DRLC on memory and scopolamine-induced amnesia, acetyl-cholinesterase activity, and oxidative stress in mice. Male Swiss mice were given oral administration of saline (10 ml/kg), DRLC (25, 50, and 100 mg/kg) or donepezil (1 mg/kg) 30 min before testing for memory performance using Y-maze and object recognition models. Another set of mice were also pretreated orally with saline, DRLC (25, 50, and 100 mg/kg) or donepezil (1 mg/kg) but in combination with scopolamine (3 mg/kg, i.p.) daily for 7 days. Thirty minutes after treatment on Day 7, memory function was then evaluated. The brain levels of acetyl-cholinesterase and oxidative stress parameters were assayed. DRLC significantly (p < .05) enhanced memory performance and attenuated scopolamine-induced amnesia. Increased acetyl-cholinesterase activity and oxidative stress, as shown by decreased antioxidant substrates (glutathione and catalase) and elevated malondialdehyde contents in mice with scopolamine amnesia were also attenuated by DRLC. Our findings suggest that inhibition of oxidative stress and acetyl-cholinesterase activity might contribute to the potential benefit of DRLC in persons with amnesia.
Collapse
Affiliation(s)
- Osagie Emokpae
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, River States, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
17
|
Harandi VM, Moreira Soares Oliveira B, Allamand V, Friberg A, Fontes-Oliveira CC, Durbeej M. Antioxidants Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin α2 Chain-Deficient Muscular Dystrophy. Antioxidants (Basel) 2020; 9:antiox9030244. [PMID: 32197453 PMCID: PMC7139799 DOI: 10.3390/antiox9030244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Congenital muscular dystrophy with laminin α2 chain-deficiency (LAMA2-CMD) is a severe neuromuscular disorder without a cure. Using transcriptome and proteome profiling as well as functional assays, we previously demonstrated significant metabolic impairment in skeletal muscle from LAMA2-CMD patients and mouse models. Reactive oxygen species (ROS) increase when oxygen homeostasis is not maintained and, here, we investigate whether oxidative stress indeed is involved in the pathogenesis of LAMA2-CMD. We also analyze the effects of two antioxidant molecules, N-acetyl-L-cysteine (NAC) and vitamin E, on disease progression in the dy2J/dy2J mouse model of LAMA2-CMD. We demonstrate increased ROS levels in LAMA2-CMD mouse and patient skeletal muscle. Furthermore, NAC treatment (150 mg/kg IP for 6 days/week for 3 weeks) led to muscle force loss prevention, reduced central nucleation and decreased the occurrence of apoptosis, inflammation, fibrosis and oxidative stress in LAMA2-CMD muscle. In addition, vitamin E (40 mg/kg oral gavage for 6 days/week for 2 weeks) improved morphological features and reduced inflammation and ROS levels in dy2J/dy2J skeletal muscle. We suggest that NAC and to some extent vitamin E might be potential future supportive treatments for LAMA2-CMD as they improve numerous pathological hallmarks of LAMA2-CMD.
Collapse
Affiliation(s)
- Vahid M. Harandi
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
- Correspondence: ; Tel.: +46-462-220-679
| | - Bernardo Moreira Soares Oliveira
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
- Functional Genomics & Metabolism Unit, Department of Biochemistry & Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Valérie Allamand
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, UMRS974, 75013 Paris, France
| | - Ariana Friberg
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
| | - Cibely C. Fontes-Oliveira
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
| | - Madeleine Durbeej
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
| |
Collapse
|
18
|
Lee YH, Lee SR. Neuroprotective effects of N-acetylcysteine via inhibition of matrix metalloproteinase in a mouse model of transient global cerebral ischemia. Brain Res Bull 2019; 154:142-150. [PMID: 31722253 DOI: 10.1016/j.brainresbull.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
N-acetylcysteine (NAC) is known to serve many biological functions including acting as an antioxidant, and electing antiinflammatory effects. Previous reports have revealed that NAC may have neuroprotective effects against the deleterious effects of brain ischemia. Despite of this, the mechanism by which NAC prevents neuronal damage after brain ischemia remains unclear. The current study aimed to investigate this mechanism in a mouse model of transient global brain ischemia. In the present study, mice were subjected to 20 min of transient global brain ischemia, proceeded by intraperitoneal administration of NAC (150 mg/kg) in one group. The mice were then euthanized 72 h after this ischemic insult for collection of experimental tissues. The effect of NAC on neuronal damage and matrix metalloproteinase (MMP)-9 activity were assessed and immunofluorescence, and hippocampal terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay experiments were conducted and results compared between NAC- and vehicle-treated groups. Neuronal damage was primarily observed in the hippocampal CA1 and CA2 regions. In NAC-treated mice, neuronal damage was significantly reduced after ischemia when compared to vehicle-treated animals. NAC also inhibited increased MMP-9 activity after global brain ischemia. NAC increased laminin and NeuN expression and inhibited increases in TUNEL-positive cells, all in the hippocampus. These results suggest that NAC reduces hippocampal neuronal damage following transient global ischemia, potentially via reductions in MMP-9 activity.
Collapse
Affiliation(s)
- Yoon-Hyung Lee
- Department of Pharmacology and ODR center, Brain Research Institute, School of Medicine, Keimyung University, Daegu, 42601, South Korea; Department of Urology, Fatima Hospital, Daegu, 42601, South Korea
| | - Seong-Ryong Lee
- Department of Pharmacology and ODR center, Brain Research Institute, School of Medicine, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
19
|
Malik AR, Willnow TE. Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System. Int J Mol Sci 2019; 20:ijms20225671. [PMID: 31726793 PMCID: PMC6888459 DOI: 10.3390/ijms20225671] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) encompass a class of five transporters with distinct expression in neurons and glia of the central nervous system (CNS). EAATs are mainly recognized for their role in uptake of the amino acid glutamate, the major excitatory neurotransmitter. EAATs-mediated clearance of glutamate released by neurons is vital to maintain proper glutamatergic signalling and to prevent toxic accumulation of this amino acid in the extracellular space. In addition, some EAATs also act as chloride channels or mediate the uptake of cysteine, required to produce the reactive oxygen speciesscavenger glutathione. Given their central role in glutamate homeostasis in the brain, as well as their additional activities, it comes as no surprise that EAAT dysfunctions have been implicated in numerous acute or chronic diseases of the CNS, including ischemic stroke and epilepsy, cerebellar ataxias, amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Here we review the studies in cellular and animal models, as well as in humans that highlight the roles of EAATs in the pathogenesis of these devastating disorders. We also discuss the mechanisms regulating EAATs expression and intracellular trafficking and new exciting possibilities to modulate EAATs and to provide neuroprotection in course of pathologies affecting the CNS.
Collapse
Affiliation(s)
- Anna R. Malik
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
- Correspondence:
| | | |
Collapse
|
20
|
Zhang Z, Dawson PA, Piper M, Simmons DG. Postnatal N-acetylcysteine administration rescues impaired social behaviors and neurogenesis in Slc13a4 haploinsufficient mice. EBioMedicine 2019; 43:435-446. [PMID: 30956169 PMCID: PMC6557756 DOI: 10.1016/j.ebiom.2019.03.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Background Sulfate availability is crucial for the sulfonation of brain extracellular matrix constituents, membrane phospholipids, neurosteroids, and neurotransmitters. Observations from humans and mouse models suggest dysregulated sulfate levels may be associated with neurodevelopmental disorders, such as autism. However, the cellular mechanisms governing sulfate homeostasis within the developing or adult brain are not fully understood. Methods We utilized a mouse model with a conditional allele for the sulfate transporter Slc13a4, and a battery of behavioral tests, to assess the effects of disrupted sulfate transport on maternal behaviors, social interactions, memory, olfaction, exploratory behavior, anxiety, stress, and metabolism. Immunohistochemistry examined neurogenesis within the stem cells niches. Findings The sulfate transporter Slc13a4 plays a critical role in postnatal brain development. Slc13a4 haploinsufficiency results in significant behavioral phenotypes in adult mice, notably impairments in social interaction and long-term memory, as well as increased neurogenesis in the subventricular stem cell niche. Conditional gene deletion shows these phenotypes have a developmental origin, and that full biallelic expression of Slc13a4 is required only in postnatal development. Furthermore, administration of N-acetylcysteine (NAC) within postnatal window P14-P30 prevents the onset of phenotypes in adult Slc13a4+/− mice. Interpretation Slc13a4 haploinsufficient mice highlight a requirement for adequate sulfate supply in postnatal development for the maturation of important social interaction and memory pathways. With evidence suggesting dysregulated sulfate biology may be a feature of some neurodevelopmental disorders, the utility of sulfate levels as a biomarker of disease and NAC administration as an early preventative measure should be further explored.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Paul Anthony Dawson
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Michael Piper
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - David Gordon Simmons
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
21
|
Sano H, Namekata K, Kimura A, Shitara H, Guo X, Harada C, Mitamura Y, Harada T. Differential effects of N-acetylcysteine on retinal degeneration in two mouse models of normal tension glaucoma. Cell Death Dis 2019; 10:75. [PMID: 30692515 PMCID: PMC6349904 DOI: 10.1038/s41419-019-1365-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/17/2018] [Accepted: 01/14/2019] [Indexed: 12/24/2022]
Abstract
N-acetylcysteine (NAC) is widely used as a mucolytic agent and as an antidote to paracetamol overdose. NAC serves as a precursor of cysteine and stimulates the synthesis of glutathione in neural cells. Suppressing oxidative stress in the retina may be an effective therapeutic strategy for glaucoma, a chronic neurodegenerative disease of the retinal ganglion cells (RGCs) and optic nerves. Here we examined the therapeutic potential of NAC in two mouse models of normal tension glaucoma, in which excitatory amino-acid carrier 1 (EAAC1) or glutamate/aspartate transporter (GLAST) gene was deleted. EAAC1 is expressed in retinal neurons including RGCs, whereas GLAST is mainly expressed in Müller glial cells. Intraperitoneal administration of NAC prevented RGC degeneration and visual impairment in EAAC1-deficient (knockout; KO) mice, but not in GLAST KO mice. In EAAC1 KO mice, oxidative stress and autophagy were suppressed with increased glutathione levels by NAC treatment. Our findings suggest a possibility that systemic administration of NAC may be available for some types of glaucoma patients.
Collapse
Affiliation(s)
- Hiroki Sano
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
22
|
Lee JH, Yoo JY, Kim HB, Yoo HI, Song DY, Min SS, Baik TK, Woo RS. Neuregulin1 Attenuates H 2O 2-Induced Reductions in EAAC1 Protein Levels and Reduces H 2O 2-Induced Oxidative Stress. Neurotox Res 2018; 35:401-409. [PMID: 30328584 PMCID: PMC6331506 DOI: 10.1007/s12640-018-9965-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 11/30/2022]
Abstract
Neuregulin 1 (NRG1) exhibits potent neuroprotective properties. The aim of the present study was to investigate the antioxidative effects and underlying mechanisms of NRG1 against H2O2-induced oxidative stress in primary rat cortical neurons. The expression level of the excitatory amino acid carrier 1 (EAAC1) protein was measured by Western blotting and immunocytochemistry. The levels of lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity, GPx activity, and mitochondrial membrane potential (∆ψm) were determined to examine cell death and the antioxidant properties of NRG1 in primary rat cortical neurons. H2O2 reduced the expression of EAAC1 in a dose-dependent manner. We found that pretreatment with NRG1 attenuated the H2O2-induced reduction in EAAC1 expression. Moreover, NRG1 reduced the cell death and oxidative stress induced by H2O2. In addition, NRG1 attenuated H2O2-induced reductions in antioxidant enzyme activity and ∆ψm. Our data indicate a role for NRG1 in protecting against oxidative stress via the regulation of EAAC1. These observations may provide novel insights into the mechanisms of NRG1 activity during oxidative stress and may reveal new therapeutic targets for regulating the oxidative stress associated with various neurological diseases.
Collapse
Affiliation(s)
- Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon, 34520, Republic of Korea
| | - Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Hong-Il Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Dae-Yong Song
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, College of Medicine, Eulji University, Daejeon, 34824, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea.
| |
Collapse
|
23
|
Garza-Lombó C, Petrosyan P, Tapia-Rodríguez M, Valdovinos-Flores C, Gonsebatt ME. Systemic L-buthionine-S-R-sulfoximine administration modulates glutathione homeostasis via NGF/TrkA and mTOR signaling in the cerebellum. Neurochem Int 2018; 121:8-18. [PMID: 30300680 DOI: 10.1016/j.neuint.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Glutathione (GSH) is an essential component of intracellular antioxidant systems that plays a primordial role in the protection of cells against oxidative stress, maintaining redox homeostasis and xenobiotic detoxification. GSH synthesis in the brain is limited by the availability of cysteine and glutamate. Cystine, the disulfide form of cysteine is transported into endothelial cells of the blood-brain barrier (BBB) and astrocytes via the system xc-, which is composed of xCT and the heavy chain of 4F2 cell surface antigen (4F2hc). Cystine is reduced inside the cells and the L-type amino acid transporter 1 (LAT1) transports cysteine from the endothelial cells into the brain, cysteine is transported into the neurons through the excitatory amino acid transporter 3 (EAAT3), also known as excitatory amino acid carrier 1 (EAAC1). The mechanistic/mammalian target of rapamycin (mTOR) and neurotrophins can activate signaling pathways that modulate amino acid transporters for GSH synthesis. The present study found that systemic L-buthionine-S-R-sulfoximine (BSO) administration selectively altered GSH homeostasis and EAAT3 levels in the mice cerebellum. Intraperitoneal treatment of mice with 6 mmol/kg of BSO depleted GSH and GSSG in the liver at 2 h of treatment. The cerebellum, but not other brain regions, exhibited a redox response. The mTOR and the neuronal growth factor (NGF)/tropomyosin receptor kinase A (TrkA) signaling pathways were activated and lead to an increase in the protein levels of the EAAT3 transporter, which was linked to an increase in the GSH/GSSG ratio and GSH concentration in the cerebellum at 0.5 and 2 h, respectively. Therefore, the cerebellum responds to peripheral GSH depletion via activation of the mTOR and NGF/TrkA pathways, which increase the transport of cysteine for GSH synthesis.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Miguel Tapia-Rodríguez
- Unidad de Microscopía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Cesar Valdovinos-Flores
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
24
|
Patel D, Mahimainathan L, Narasimhan M, Rathinam M, Henderson G. Ethanol (E) Impairs Fetal Brain GSH Homeostasis by Inhibiting Excitatory Amino-Acid Carrier 1 (EAAC1)-Mediated Cysteine Transport. Int J Mol Sci 2017; 18:ijms18122596. [PMID: 29206135 PMCID: PMC5751199 DOI: 10.3390/ijms18122596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023] Open
Abstract
Central among the fetotoxic responses to in utero ethanol (E) exposure is redox-shift related glutathione (GSH) loss and apoptosis. Previously, we reported that despite an E-generated Nrf2 upregulation, fetal neurons still succumb. In this study, we investigate if the compromised GSH results from an impaired inward transport of cysteine (Cys), a precursor of GSH in association with dysregulated excitatory amino acid carrier1 (EAAC1), a cysteine transporter. In utero binge model involves administration of isocaloric dextrose or 20% E (3.5 g/kg)/ by gavage at 12 h intervals to pregnant Sprague Dawley (SD) rats, starting gestation day (gd) 17 with a final dose on gd19, 2 h prior to sacrifice. Primary cerebral cortical neurons (PCNs) from embryonic day 16–17 fetal SD rats were the in vitro model. E reduced both PCN and cerebral cortical GSH and Cys up to 50% and the abridged GSH could be blocked by administration of N-acetylcysteine. E reduced EAAC1 protein expression in utero and in PCNs (p < 0.05). This was accompanied by a 60–70% decrease in neuron surface expression of EAAC1 along with significant reductions of EAAC1/Slc1a1 mRNA (p < 0.05). In PCNs, EAAC1 knockdown significantly decreased GSH but not oxidized glutathione (GSSG) illustrating that while not the sole provider of Cys, EAAC1 plays an important role in neuron GSH homeostasis. These studies strongly support the concept that in both E exposed intact fetal brain and cultured PCNs a mechanism underlying E impairment of GSH homeostasis is reduction of import of external Cys which is mediated by perturbations of EAAC1 expression/function.
Collapse
Affiliation(s)
- Dhyanesh Patel
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Lenin Mahimainathan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Marylatha Rathinam
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - George Henderson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| |
Collapse
|
25
|
Afshari P, Yao WD, Middleton FA. Reduced Slc1a1 expression is associated with neuroinflammation and impaired sensorimotor gating and cognitive performance in mice: Implications for schizophrenia. PLoS One 2017; 12:e0183854. [PMID: 28886095 PMCID: PMC5590851 DOI: 10.1371/journal.pone.0183854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
We previously reported a 84-Kb hemi-deletion copy number variant at the SLC1A1 gene locus that reduces its expression and appeared causally linked to schizophrenia. In this report, we characterize the in vivo and in vitro consequences of reduced expression of Slc1a1 in mice. Heterozygous (HET) Slc1a1+/- mice, which more closely model the hemi-deletion we found in human subjects, were examined in a series of behavioral, anatomical and biochemical assays. Knockout (KO) mice were also included in the behavioral studies for comparative purposes. Both HET and KO mice exhibited evidence of increased anxiety-like behavior, impaired working memory, decreased exploratory activity and impaired sensorimotor gating, but no changes in overall locomotor activity. The magnitude of changes was approximately equivalent in the HET and KO mice suggesting a dominant effect of the haploinsufficiency. Behavioral changes in the HET mice were accompanied by reduced thickness of the dorsomedial prefrontal cortex. Whole transcriptome RNA-Seq analysis detected expression changes of genes and pathways involved in cytokine signaling and synaptic functions in both brain and blood. Moreover, the brains of Slc1a1+/- mice displayed elevated levels of oxidized glutathione, a trend for increased oxidative DNA damage, and significantly increased levels of cytokines. This latter finding was further supported by SLC1A1 knockdown and overexpression studies in differentiated human neuroblastoma cells, which led to decreased or increased cytokine expression, respectively. Taken together, our results suggest that partial loss of the Slc1a1 gene in mice causes haploinsufficiency associated with behavioral, histological and biochemical changes that reflect an altered redox state and may promote the expression of behavioral features and inflammatory states consistent with those observed in schizophrenia.
Collapse
Affiliation(s)
- Parisa Afshari
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America
| | - Wei-Dong Yao
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America.,Department of Psychiatry & Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Frank A Middleton
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America.,Department of Psychiatry & Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States of America.,Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States of America
| |
Collapse
|
26
|
Spencer S, Kalivas PW. Glutamate Transport: A New Bench to Bedside Mechanism for Treating Drug Abuse. Int J Neuropsychopharmacol 2017; 20:797-812. [PMID: 28605494 PMCID: PMC5632313 DOI: 10.1093/ijnp/pyx050] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Drug addiction has often been described as a "hijacking" of the brain circuits involved in learning and memory. Glutamate is the principal excitatory neurotransmitter in the brain, and its contribution to synaptic plasticity and learning processes is well established in animal models. Likewise, over the past 20 years the addiction field has ascribed a critical role for glutamatergic transmission in the development of addiction. Chronic drug use produces enduring neuroadaptations in corticostriatal projections that are believed to contribute to a maladaptive deficit in inhibitory control over behavior. Much of this research focuses on the role played by ionotropic glutamate receptors directly involved in long-term potentiation and depression or metabotropic receptors indirectly modulating synaptic plasticity. Importantly, the balance between glutamate release and clearance tightly regulates the patterned activation of these glutamate receptors, emphasizing an important role for glutamate transporters in maintaining extracellular glutamate levels. Five excitatory amino acid transporters participate in active glutamate reuptake. Recent evidence suggests that these glutamate transporters can be modulated by chronic drug use at a variety of levels. In this review, we synopsize the evidence and mechanisms associated with drug-induced dysregulation of glutamate transport. We then summarize the preclinical and clinical data suggesting that glutamate transporters offer an effective target for the treatment of drug addiction. In particular, we focus on the role that altered glutamate transporters have in causing drug cues and contexts to develop an intrusive quality that guides maladaptive drug seeking behaviors.
Collapse
Affiliation(s)
- Sade Spencer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.,Correspondence: Sade Spencer, PhD, Medical University of South Carolina, 173 Ashley Avenue, BSB, 403- MSC 510, Charleston, SC 29425 ()
| | - Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
27
|
Skvarc DR, Dean OM, Byrne LK, Gray L, Lane S, Lewis M, Fernandes BS, Berk M, Marriott A. The effect of N-acetylcysteine (NAC) on human cognition - A systematic review. Neurosci Biobehav Rev 2017; 78:44-56. [PMID: 28438466 DOI: 10.1016/j.neubiorev.2017.04.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022]
Abstract
Oxidative stress, neuroinflammation and neurogenesis are commonly implicated as cognitive modulators across a range of disorders. N-acetylcysteine (NAC) is a glutathione precursor with potent antioxidant, pro-neurogenesis and anti-inflammatory properties and a favourable safety profile. A systematic review of the literature specifically examining the effect of NAC administration on human cognition revealed twelve suitable articles for inclusion: four examining Alzheimer's disease; three examining healthy participants; two examining physical trauma; one examining bipolar disorder, one examining schizophrenia, and one examining ketamine-induced psychosis. Heterogeneity of studies, insufficiently powered studies, infrequency of cognition as a primary outcome, heterogeneous methodologies, formulations, co-administered treatments, administration regimes, and assessment confounded the drawing of firm conclusions. The available data suggested statistically significant cognitive improvements following NAC treatment, though the paucity of NAC-specific research makes it difficult to determine if this effect is meaningful. While NAC may have a positive cognitive effect in a variety of contexts; larger, targeted studies are warranted, specifically evaluating its role in other clinical disorders with cognitive sequelae resulting from oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Australia
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia
| | - Stephen Lane
- Deakin University, School of Medicine, Geelong, Australia; Biostatistics Unit, Barwon Health, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Brisa S Fernandes
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
28
|
Evaluating the role of astrocytes on β-estradiol effect on seizures of Pilocarpine epileptic model. Eur J Pharmacol 2017; 797:32-38. [DOI: 10.1016/j.ejphar.2017.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/03/2017] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
|
29
|
Rossell SL, Francis PS, Galletly C, Harris A, Siskind D, Berk M, Bozaoglu K, Dark F, Dean O, Liu D, Meyer D, Neill E, Phillipou A, Sarris J, Castle DJ. N-acetylcysteine (NAC) in schizophrenia resistant to clozapine: a double blind randomised placebo controlled trial targeting negative symptoms. BMC Psychiatry 2016; 16:320. [PMID: 27629871 PMCID: PMC5024434 DOI: 10.1186/s12888-016-1030-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Clozapine is an effective treatment for a proportion of people with schizophrenia (SZ) who are resistant to the beneficial effects of other antipsychotic drugs. However, anything from 40-60 % of people on clozapine experience residual symptoms even on adequate doses of the medication, and thus could be considered 'clozapine resistant'. Agents that could work alongside clozapine to improve efficacy whilst not increasing the adverse effect burden are both desired and necessary to improve the lives of individuals with clozapine-resistant SZ. N-Acetylcysteine (NAC) is one such possible agent. Previous research from our research group provided promising pilot data suggesting the efficacy of NAC in this patient population. The aim of the study reported here is to expand this work by conducting a large scale clinical trial of NAC in the treatment of clozapine-resistant SZ. METHODS This study is an investigator initiated, multi-site, randomised, placebo-controlled trial. It aims to include 168 patients with clozapine-resistant SZ, divided into an intervention group (NAC) and a control group (placebo). Participants in the intervention group will receive 2 g daily of NAC. The primary outcome measures will be the negative symptom scores of the Positive and Negative Syndrome Scale (PANSS). Secondary outcome measures will include: changes in quality of life (QoL) as measured by the Lancashire Quality of Life Profile (LQoLP) and cognitive functioning as measured by the total score on the MATRICS. Additionally we will examine peripheral and cortical glutathione (GSH) concentrations as process outcomes. DISCUSSION This large scale clinical trial will investigate the efficacy of NAC as an adjunctive medication to clozapine. This trial, if successful, will establish a cheap, safe and easy-to-use agent (NAC) as a 'go to' adjunct in patients that are only partly responsive to clozapine. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registration Number: Current Randomised Controlled Trial ACTRN12615001273572 . The date of registration 23 November 2015.
Collapse
Affiliation(s)
- Susan L. Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC Australia
- St Vincent’s Mental Health Service, St Vincent’s Hospital, Melbourne, VIC Australia
- Monash Alfred Psychiatry Research Centre and The Voices Clinic, The Alfred, Melbourne, VIC Australia
| | - Paul S. Francis
- Centre for Chemistry and Biotechnology, School of Life & Environmental Sciences, Deakin University, Geelong, VIC Australia
| | - Cherrie Galletly
- Psychiatry Department, University of Adelaide, Adelaide, South Australia Australia
- Northern Adelaide Health Local Network, Adelaide, South Australia Australia
| | - Anthony Harris
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW Australia
- Brain Dynamics Centre, The Westmead Institute for Medical Research, University of Sydney, Sydney, NSW Australia
| | - Dan Siskind
- School of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, VIC Australia
| | - Kiymet Bozaoglu
- Baker IDI Heart & Diabetes Institute, Melbourne, VIC Australia
| | - Frances Dark
- Metro South Addiction and Mental Health Service, Brisbane, QLD Australia
| | - Olivia Dean
- IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, VIC Australia
| | - Dennis Liu
- Psychiatry Department, University of Adelaide, Adelaide, South Australia Australia
- Northern Adelaide Health Local Network, Adelaide, South Australia Australia
| | - Denny Meyer
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC Australia
- Department of Statistics, Data Science and Epidemiology, Swinburne University of Technology, Melbourne, VIC Australia
| | - Erica Neill
- St Vincent’s Mental Health Service, St Vincent’s Hospital, Melbourne, VIC Australia
| | - Andrea Phillipou
- St Vincent’s Mental Health Service, St Vincent’s Hospital, Melbourne, VIC Australia
| | - Jerome Sarris
- ARCADIA Mental Health Research Group, Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC Australia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC Australia
| | - David J. Castle
- St Vincent’s Mental Health Service, St Vincent’s Hospital, Melbourne, VIC Australia
- Department of Psychiatry, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
30
|
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176:52-71. [PMID: 26589391 DOI: 10.1016/j.schres.2015.06.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Anthony V Serritella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA.
| |
Collapse
|
31
|
Bjørn-Yoshimoto WE, Underhill SM. The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int 2016; 98:4-18. [PMID: 27233497 DOI: 10.1016/j.neuint.2016.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3.
Collapse
Affiliation(s)
- Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Suzanne M Underhill
- National Institute of Mental Health, National Institutes of Health, 35 Convent Drive Room 3A: 210 MSC3742, Bethesda, MD 20892-3742, USA.
| |
Collapse
|
32
|
Wang YL, Chen M, Huo TG, Zhang YH, Fang Y, Feng C, Wang SY, Jiang H. Effects of Glycyrrhetinic Acid on GSH Synthesis Induced by Realgar in the Mouse Hippocampus: Involvement of System X AG - $$ {\mathbf{X}}_{{\mathbf{AG}}^{-}} $$ , System X C - $$ {\mathbf{X}}_{{\mathbf{C}}^{-}} $$ , MRP-1, and Nrf2. Mol Neurobiol 2016; 54:3102-3116. [DOI: 10.1007/s12035-016-9859-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
33
|
Afshari P, Myles-Worsley M, Cohen OS, Tiobech J, Faraone SV, Byerley W, Middleton FA. Characterization of a Novel Mutation in SLC1A1 Associated with Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2015; 1:125-44. [PMID: 26380821 DOI: 10.1159/000433599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 01/25/2023]
Abstract
We have recently described a hemi-deletion on chromosome 9p24.2 at the SLC1A1 gene locus and its co-segregation with schizophrenia in an extended Palauan pedigree. This finding represents a point of convergence for several pathophysiological models of schizophrenia. The present report sought to characterize the biological consequences of this hemi-deletion. Dual luciferase assays demonstrated that the partially deleted allele (lacking exon 1 and the native promoter) can drive expression of a 5'-truncated SLC1A1 using sequence upstream of exon 2 as a surrogate promoter. However, confocal microscopy and electrophysiological recordings demonstrate that the 5'-truncated SLC1A1 lacks normal membrane localization and glutamate transport ability. To identify downstream consequences of the hemi-deletion, we first used a themed qRT-PCR array to compare expression of 84 GABA and glutamate genes in RNA from peripheral blood leukocytes in deletion carriers (n = 11) versus noncarriers (n = 8) as well as deletion carriers with psychosis (n = 5) versus those without (n = 3). Then, targeted RNA-Seq (TREx) was used to quantify expression of 375 genes associated with neuropsychiatric disorders in HEK293 cells subjected to either knockdown of SLC1A1 or overexpression of full-length or 5'-truncated SLC1A1. Expression changes of several genes strongly implicated in schizophrenia pathophysiology were detected (e.g. SLC1A2, SLC1A3, SLC1A6, SLC7A11, GRIN2A, GRIA1 and DLX1).
Collapse
Affiliation(s)
- Parisa Afshari
- Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, N.Y., USA
| | - Marina Myles-Worsley
- Departments of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, N.Y., USA
| | - Ori S Cohen
- Departments of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, N.Y., USA
| | | | - Stephen V Faraone
- Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, N.Y., USA; Departments of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, N.Y., USA
| | - William Byerley
- Department of Psychiatry, University of California at San Francisco, San Francisco, Calif., USA
| | - Frank A Middleton
- Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, N.Y., USA; Departments of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, N.Y., USA; Departments of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, N.Y., USA
| |
Collapse
|
34
|
Zaeri S, Emamghoreishi M. Acute and Chronic Effects of N-acetylcysteine on Pentylenetetrazole-induced Seizure and Neuromuscular Coordination in Mice. IRANIAN JOURNAL OF MEDICAL SCIENCES 2015; 40:118-24. [PMID: 25821291 PMCID: PMC4359931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/26/2014] [Accepted: 08/10/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND N-acetylcysteine (NAC) has been indicated against experimental seizures, but with relatively inconclusive results. This study was undertaken to evaluate whether NAC exerts a dose-dependent anticonvulsant effect and to determine NAC safe therapeutic dose range and its muscle-relaxant activity in both acute and chronic uses. METHODS Following intraperitoneal (i.p.) administration of N-acetylcysteine acutely (50-300 mg/kg) or chronically for 8 days (25-300 mg/kg), mice were injected with PTZ (90 mg/kg, i.p.) and latency times to the onset of myoclonic and clonic seizures and protection against death were recorded. Changes in body weight and mortality rate were considered as parameters for drug safety. The muscle-relaxant activity of NAC was assessed by rotarod test. RESULTS Acute and chronic treatment with NAC delayed latency times to myoclonic and clonic seizures in a dose-dependent manner, but with no significant prevention against PTZ-induced death. Chronic administration of 300 mg/kg NAC was fully lethal while lower doses (100 and 150 mg/kg) resulted in a significant weight loss and decreased stay time on rotarod. Acute treatment with NAC had no significant effect on stay time on rotarod at all studied doses. CONCLUSION NAC exerts a dose-dependent anticonvulsant effect in acute and chronic uses, with no muscle relaxant activity. NAC has higher efficacy in preventing seizure in chronic than acute treatment, but its chronic use at higher doses of 75 mg/kg may be associated with side effects and/or toxicity. These findings suggest that low doses of NAC may have a potential use as a prophylactic treatment for absence seizure in human.
Collapse
Affiliation(s)
- Sasan Zaeri
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Masoumeh Emamghoreishi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
,Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Langford MP, Redens TB, Texada DE. Excitatory Amino Acid Transporters, Xc− Antiporter, γ-Glutamyl Transpeptidase, Glutamine Synthetase, and Glutathione in Human Corneal Epithelial Cells. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-1-4939-1935-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Bianchi MG, Bardelli D, Chiu M, Bussolati O. Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell Mol Life Sci 2014; 71:2001-15. [PMID: 24162932 PMCID: PMC11113519 DOI: 10.1007/s00018-013-1484-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
Excitatory amino acid transporters (EAATs) are high-affinity Na(+)-dependent carriers of major importance in maintaining glutamate homeostasis in the central nervous system. EAAT3, the human counterpart of the rodent excitatory amino acid carrier 1 (EAAC1), is encoded by the SLC1A1 gene. EAAT3/EAAC1 is ubiquitously expressed in the brain, mostly in neurons but also in other cell types, such as oligodendrocyte precursors. While most of the glutamate released in the synapses is taken up by the "glial-type" EAATs, EAAT2 (GLT-1 in rodents) and EAAT1 (GLAST), the functional role of EAAT3/EAAC1 is related to the subtle regulation of glutamatergic transmission. Moreover, because it can also transport cysteine, EAAT3/EAAC1 is believed to be important for the synthesis of intracellular glutathione and subsequent protection from oxidative stress. In contrast to other EAATs, EAAT3/EAAC1 is mostly intracellular, and several mechanisms have been described for the rapid regulation of the membrane trafficking of the transporter. Moreover, the carrier interacts with several proteins, and this interaction modulates transport activity. Much less is known about the slow regulatory mechanisms acting on the expression of the transporter, although several recent reports have identified changes in EAAT3/EAAC1 protein level and activity related to modulation of its expression at the gene level. Moreover, EAAT3/EAAC1 expression is altered in pathological conditions, such as hypoxia/ischemia, multiple sclerosis, schizophrenia, and epilepsy. This review summarizes these results and provides an overall picture of changes in EAAT3/EAAC1 expression in health and disease.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
- Unit of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Donatella Bardelli
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Martina Chiu
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Ovidio Bussolati
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
37
|
Wang Z, Park SH, Zhao H, Peng S, Zuo Z. A critical role of glutamate transporter type 3 in the learning and memory of mice. Neurobiol Learn Mem 2014; 114:70-80. [PMID: 24818563 DOI: 10.1016/j.nlm.2014.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 11/19/2022]
Abstract
Hippocampus-dependent learning and memory are associated with trafficking of excitatory amino acid transporter type 3 (EAAT3) to the plasma membrane. To assess whether this trafficking is an intrinsic component of the biochemical responses underlying learning and memory, 7- to 9-week old male EAAT3 knockout mice and CD-1 wild-type mice were subjected to fear conditioning. Their hippocampal CA1 regions, amygdalae and entorhinal cortices were harvested before, or 30 min or 3 h after the fear conditioning stimulation. We found that EAAT3 knockout mice had worse contextual and tone-related learning and memory than did the wild-type mice. The expression of EAAT3, glutamate receptor (GluR)1 and GluR2 in the plasma membrane and of phospho-GluR1 (at Ser 831) and phospho-CaMKII in the hippocampus of the wild-type mice was increased at 30 min after the fear conditioning stimulation. Similar biochemical changes occurred in the amygdala. Fear conditioning also increased the expression of c-Fos and activity-regulated cytoskeleton-associated protein (Arc) in the CA1 regions and of Arc in the entorhinal cortices of the wild-type mice. These biochemical responses were attenuated in the EAAT3 knockout mice. These results suggest that EAAT3 plays a critical role in learning and memory. Our results also provide initial evidence that EAAT3 may have receptor-like functions to participate in the biochemical reactions underlying learning and memory.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Sang-Hon Park
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States; Department of Anesthesiology and Pain Management, Seoul National University Bundang Hospital, Bundang-Gu, Seongnam, Republic of Korea
| | - Huijuan Zhao
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States; Operating Room, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuling Peng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Krzyżanowska W, Pomierny B, Filip M, Pera J. Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol Sin 2014; 35:444-62. [PMID: 24681894 DOI: 10.1038/aps.2014.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/03/2014] [Indexed: 01/18/2023] Open
Abstract
In this review, we briefly describe glutamate (Glu) metabolism and its specific transports and receptors in the central nervous system (CNS). Thereafter, we focus on excitatory amino acid transporters, cystine/glutamate antiporters (system xc-) and vesicular glutamate transporters, specifically addressing their location and roles in CNS and the molecular mechanisms underlying the regulation of Glu transporters. We provide evidence from in vitro or in vivo studies concerning alterations in Glu transporter expression in response to hypoxia or ischemia, including limited human data that supports the role of Glu transporters in stroke patients. Moreover, the potential to induce brain tolerance to ischemia through modulation of the expression and/or activities of Glu transporters is also discussed. Finally we present strategies involving the application of ischemic preconditioning and pharmacological agents, eg β-lactam antibiotics, amitriptyline, riluzole and N-acetylcysteine, which result in the significant protection of nervous tissues against ischemia.
Collapse
|
39
|
Robert SM, Ogunrinu-Babarinde T, Holt KT, Sontheimer H. Role of glutamate transporters in redox homeostasis of the brain. Neurochem Int 2014; 73:181-91. [PMID: 24418113 DOI: 10.1016/j.neuint.2014.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 12/24/2022]
Abstract
Redox homeostasis is especially important in the brain where high oxygen consumption produces an abundance of harmful oxidative by-products. Glutathione (GSH) is a tripeptide non-protein thiol. It is the central nervous system's most abundant antioxidant and the master controller of brain redox homeostasis. The glutamate transporters, System xc(-) (SXC) and the Excitatory Amino Acid Transporters (EAAT), play important, synergistic roles in the synthesis of GSH. In glial cells, SXC mediates the uptake of cystine, which after intracellular reduction to cysteine, reacts with glutamate during the rate-limiting step of GSH synthesis. EAAT3 mediates direct cysteine uptake for neuronal GSH synthesis. SXC and EAAT work in concert in glial cells to provide two intracellular substrates for GSH synthesis, cystine and glutamate. Their cyclical basal function also prevents a buildup of extracellular glutamate, which SXC releases extracellularly in exchange for cystine uptake. Maintaining extracellular glutamate homeostasis is critical to prevent neuronal toxicity, as well as glutamate-mediated SXC inhibition, which could lead to a depletion of intracellular GSH and loss of cellular redox control. Many neurological diseases show evidence of GSH dysfunction, and increased GSH has been widely associated with chemotherapy and radiotherapy resistance of gliomas. We present evidence suggesting that gliomas expressing elevated levels of SXC are more reliant on GSH for growth and survival. They have an increased inherent radiation resistance, however, inhibition of SXC can increase tumor sensitivity at low radiation doses. GSH depletion through SXC inhibition may be a viable mechanism to enhance current glioma treatment strategies and make tumors more sensitive to radiation and chemotherapy protocols.
Collapse
Affiliation(s)
- Stephanie M Robert
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA.
| | - Toyin Ogunrinu-Babarinde
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA
| | - Kenneth T Holt
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA.
| |
Collapse
|
40
|
Glutamate transporter type 3 regulates mouse hippocampal GluR1 trafficking. Biochim Biophys Acta Gen Subj 2014; 1840:1640-5. [PMID: 24412196 DOI: 10.1016/j.bbagen.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 12/29/2013] [Accepted: 01/02/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Rapid trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) to the plasma membrane is considered a fundamental biological process for learning and memory. GluR1 is an AMPAR subunit. We have shown that mice with knockout of excitatory amino acid transporter type 3 (EAAT3), a neuronal glutamate transporter, have impaired learning and memory. The mechanisms for this impairment are not known and may be via regulation of AMPAR trafficking. METHODS Freshly prepared 300μm coronal hippocampal slices from wild-type or EAAT3 knockout mice were incubated with or without 25mM tetraethylammonium for 10min. The trafficking of GluR1, an AMPAR subunit, to the plasma membrane and its phosphorylation were measured. RESULTS Tetraethylammonium increased the trafficking of GluR1 and EAAT3 to the plasma membrane in the wild-type mouse hippocampal slices but did not cause GluR1 trafficking in the EAAT3 knockout mice. Tetraethylammonium also increased the phosphorylation of GluR1 at S845, a protein kinase A (PKA) site, in the wild-type mice but not in the EAAT3 knockout mice. The PKA antagonist KT5720 attenuated tetraethylammonium-induced GluR1 phosphorylation and trafficking in the wild-type mice. The PKA agonist 6-BNz-cAMP caused GluR1 trafficking to the plasma membrane in the EAAT3 knockout mice. In addition, EAAT3 was co-immunoprecipitated with PKA. CONCLUSIONS These results suggest that EAAT3 is upstream of PKA in a pathway to regulate GluR1 trafficking. GENERAL SIGNIFICANCE Our results provide initial evidence for the involvement of EAAT3 in the biochemical cascade of learning and memory.
Collapse
|
41
|
Miller JL, Angulo M. An open-label pilot study of N-acetylcysteine for skin-picking in Prader-Willi syndrome. Am J Med Genet A 2013; 164A:421-4. [PMID: 24311388 DOI: 10.1002/ajmg.a.36306] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 09/26/2013] [Indexed: 12/22/2022]
Abstract
Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by an abnormality on the long arm of chromosome 15 (q11-q13) that results in a host of behavioral characteristics including excessive interest in food, skin picking, difficulty with a change in routine, and obsessive and compulsive behaviors. Skin-picking can result in serious and potentially life-threatening infections. Recent evidence suggests that the excitatory neurotransmitter glutamate is dysregulated in obsessive-compulsive behaviors, and modulation of the glutaminergic pathway may decrease compulsive behaviors, such as recurrent hair pulling or skin-picking behaviors. N-acetylcysteine (NAC), a derivative of the amino acid cysteine, is thought to act either via modulation of NMDA glutamate receptors or by increasing glutathione in pilot studies. Thirty-five individuals with confirmed PWS (ages 5-39 years, 23 females/12 males) and skin-picking behavior for more than 1 year were treated with N-acetylcysteine (Pharma-NAC®) at a dose of 450-1,200 mg/day. Skin-picking symptoms and open lesions were assessed after 12 weeks of treatment by counting and measuring lesions before and after the medication. All 35 individuals had improvement in skin-picking behaviors. Ten (29%) individuals (six males and four females) did not have complete resolution of skin-picking behavior, but had significant reduction in the number of active lesions. Longer-term, placebo-controlled trials are needed to further assess the potential benefit of this treatment.
Collapse
Affiliation(s)
- Jennifer L Miller
- Department of Pediatrics-Endocrinology, University of Florida, Gainsville, Florida
| | | |
Collapse
|
42
|
Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta Gen Subj 2013; 1830:4117-29. [PMID: 23618697 DOI: 10.1016/j.bbagen.2013.04.016] [Citation(s) in RCA: 567] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND N-acetylcysteine (NAC) has been in clinical practice for several decades. It has been used as a mucolytic agent and for the treatment of numerous disorders including paracetamol intoxication, doxorubicin cardiotoxicity, ischemia-reperfusion cardiac injury, acute respiratory distress syndrome, bronchitis, chemotherapy-induced toxicity, HIV/AIDS, heavy metal toxicity and psychiatric disorders. SCOPE OF REVIEW The mechanisms underlying the therapeutic and clinical applications of NAC are complex and still unclear. The present review is focused on the chemistry of NAC and its interactions and functions at the organ, tissue and cellular levels in an attempt to bridge the gap between its recognized biological activities and chemistry. MAJOR CONCLUSIONS The antioxidative activity of NAC as of other thiols can be attributed to its fast reactions with OH, NO2, CO3(-) and thiyl radicals as well as to restitution of impaired targets in vital cellular components. NAC reacts relatively slowly with superoxide, hydrogen-peroxide and peroxynitrite, which cast some doubt on the importance of these reactions under physiological conditions. The uniqueness of NAC is most probably due to efficient reduction of disulfide bonds in proteins thus altering their structures and disrupting their ligand bonding, competition with larger reducing molecules in sterically less accessible spaces, and serving as a precursor of cysteine for GSH synthesis. GENERAL SIGNIFICANCE The outlined reactions only partially explain the diverse biological effects of NAC, and further studies are required for determining its ability to cross the cell membrane and the blood-brain barrier as well as elucidating its reactions with components of cell signaling pathways.
Collapse
|
43
|
Neuroprotective properties of the excitatory amino acid carrier 1 (EAAC1). Amino Acids 2013; 45:133-42. [PMID: 23462929 DOI: 10.1007/s00726-013-1481-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/23/2013] [Indexed: 01/09/2023]
Abstract
Extracellular glutamate should be maintained at low levels to conserve optimal neurotransmission and prevent glutamate neurotoxicity in the brain. Excitatory amino acid transporters (EAATs) play a pivotal role in removing extracellular glutamate in the central nervous system (CNS). Excitatory amino acid carrier 1 (EAAC1) is a high-affinity Na⁺-dependent neuronal EAAT that is ubiquitously expressed in the brain. However, most glutamate released in the synapses is cleared by glial EAATs, but not by EAAC1 in vivo. In the CNS, EAAC1 is widely distributed in somata and dendrites but not in synaptic terminals. The contribution of EAAC1 to the control of extracellular glutamate levels seems to be negligible in the brain. However, EAAC1 can transport not only extracellular glutamate but also cysteine into the neurons. Cysteine is an important substrate for glutathione (GSH) synthesis in the brain. GSH has a variety of neuroprotective functions, while its depletion induces neurodegeneration. Therefore, EAAC1 might exert a critical role for neuroprotection in neuronal GSH metabolism rather than glutamatergic neurotransmission, while EAAC1 dysfunction would cause neurodegeneration. Despite the potential importance of EAAC1 in the brain, previous studies have mainly focused on the glutamate neurotoxicity induced by glial EAAT dysfunction. In recent years, however, several studies have revealed regulatory mechanisms of EAAC1 functions in the brain. This review will summarize the latest information on the EAAC1-regulated neuroprotective functions in the CNS.
Collapse
|