1
|
Herhaus B, Heni M, Bloch W, Petrowski K. Dynamic interplay of cortisol and BDNF in males under acute and chronic psychosocial stress - A randomized controlled study. Psychoneuroendocrinology 2024; 170:107192. [PMID: 39332135 DOI: 10.1016/j.psyneuen.2024.107192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The neurotrophic protein brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain function and is affected by acute and chronic stress. We here investigate the patterns of BDNF and cortisol stress reactivity and recovery under the standardized stress protocol of the TSST and the effect of perceived chronic stress on the basal BDNF levels in healthy young men. Twenty-nine lean young men underwent the Trier Social Stress Test (TSST) and a resting condition. Serum BDNF and cortisol were measured before and repeatedly after both conditions. The perception of chronic stress was assessed by the Trier Inventory for Chronic Stress (TICS). After the TSST, there was a significant increase over time for BDNF and cortisol. Stronger increase in cortisol in response to stress was linked to an accelerated BDNF decline after stress. Basal resting levels of BDNF was significantly predicted by chronic stress perception. The increased BDNF level following psychosocial stress suggest a stress-induced neuroprotective mechanism. The presumed interplay between BDNF and the HPA-axis indicates an antagonistic relationship of cortisol on BDNF recovery post-stress. Chronically elevated high cortisol levels, as present in chronic stress, could thereby contribute to reduced neurogenesis, and an increased risk of neurodegenerative conditions in persons suffering from chronic stress.
Collapse
Affiliation(s)
- Benedict Herhaus
- Medical Psychology and Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany; Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Wilhelm Bloch
- Department Molecular and Cellular Sports Medicine, German Sport University Cologne, Institute of Cardiology and Sports Medicine, Cologne, Germany
| | - Katja Petrowski
- Medical Psychology and Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
AL-Eitan L, Abu Kharmah H, Alghamdi M. SNP analysis of stress-related genes reveals significant correlations with drug addiction in Jordan. Saudi Pharm J 2024; 32:102171. [PMID: 39318639 PMCID: PMC11419807 DOI: 10.1016/j.jsps.2024.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Objective Drug addiction is a complex disorder caused by multiple factors, including environmental and genetic factors. Stress-related genes such as Galanin (GAL) and Oxytocin (OXT) have been linked to the reward pathways that contribute to the development and progression of substance addiction. This study aimed to explore the correlation between several polymorphisms of stress-related genes and drug addiction among Jordanian males. Methods The study included 500 participants, consisting of both healthy controls and drug-addicted Jordanian males. The genetic material and clinical data were collected, and 18 SNPs in four candidate genes were genotyped using the Sequenom MassARRAY® system. Statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS) version 25.0 and the SNPStats website. Results The study identified a significant correlation between three SNPs of the GAL gene and drug addiction, specifically rs3136544, rs3136541, and rs694066. The study also found that different genotypes of these variants were significantly associated with drug addiction. Furthermore, different haplotypes of the GAL, GALR1, and OXTR polymorphisms were also significantly correlated with drug addiction. The study also identified a correlation between several drug addiction features and the studied variants, including the association of rs2717162 of Galanin receptor 1 (GALR1) with age at use onset and the association of rs3136541 of GAL with the type of substance and number of substances used. Conclusion Stress-related genes can play a significant role in the development and progression of addiction among the Jordanian population, and further investigations are necessary to understand the underlying mechanisms better and improve future treatment strategies.
Collapse
Affiliation(s)
- Laith AL-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - Hana Abu Kharmah
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
3
|
Li J, Wu X, Yan S, Shen J, Tong T, Aslam MS, Zeng J, Chen Y, Chen W, Li M, You Z, Gong K, Yang J, Zhu M, Meng X. Understanding the Antidepressant Mechanisms of Acupuncture: Targeting Hippocampal Neuroinflammation, Oxidative Stress, Neuroplasticity, and Apoptosis in CUMS Rats. Mol Neurobiol 2024:10.1007/s12035-024-04550-5. [PMID: 39422855 DOI: 10.1007/s12035-024-04550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Depression is recognized globally as one of the most intractable diseases, and its complexity and diversity make treatment extremely challenging. Acupuncture has demonstrated beneficial effects in various psychiatric disorders. However, the underlying mechanisms of acupuncture's antidepressant action, particularly in depression, remain elusive. Therefore, this study aimed to investigate the effects of acupuncture on chronic unpredictability stress (CUMS)-induced depressive symptoms in rats and to further elucidate its underlying molecular mechanisms. All rats were exposed to CUMS of two stressors every day for 28 days, except for the control group. One hour before CUMS, rats were given a treatment with acupuncture, electroacupuncture, sham-acupuncture, or fluoxetine (2.1 mg/kg). Behavioral tests and biological detection methods were conducted in sequence to evaluate depression-like phenotype in rats. The findings of this study demonstrate that acupuncture therapy effectively ameliorated depression-like behavior induced by CUMS in rats. Additionally, acupuncture exerted a restorative effect on the alterations induced by CUMS in the levels of malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), brain-derived neurotrophic factor (BDNF), cyclic AMP response element-binding protein (CREB), postsynaptic density95 (PSD95), gamma-aminobutyric acid (GABA), and acetylcholine (ACh). Additionally, our findings indicate that acupuncture also modulates the ERK and Caspase-3 apoptotic pathways in the hippocampus of CUMS rats. This study suggests that acupuncture may play a potential preventive role by regulating hippocampal neuroinflammatory response, levels of oxidative stress, apoptotic processes, and enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, People's Republic of China
| | - Xinhong Wu
- The Fifth Hospital of Xiamen, Xiamen, Fujian, People's Republic of China
| | - Simin Yan
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Junliang Shen
- Longyan Hospital of Traditional Chinese Medicine Affiliated to Xiamen University, Longyan, Fujian, People's Republic of China
| | - Tao Tong
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, People's Republic of China
| | | | - Jingyu Zeng
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiping Chen
- First Clinical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Wenjie Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Meng Li
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, People's Republic of China
| | - Zhuoran You
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, People's Republic of China
| | - Kaiyue Gong
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinghao Yang
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Maoshu Zhu
- The Fifth Hospital of Xiamen, Xiamen, Fujian, People's Republic of China.
| | - Xianjun Meng
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Hu L, Qiu MJ, Fan WJ, Wang WE, Liu SH, Liu XQ, Liu SW, Shen ZJ, Zheng YF, Liu GC, Jia ZY, Wang XQ, Fang N. Characterization of GABAergic marker expression in prefrontal cortex in dexamethasone induced depression/anxiety model. Front Endocrinol (Lausanne) 2024; 15:1433026. [PMID: 39483976 PMCID: PMC11524930 DOI: 10.3389/fendo.2024.1433026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background The pivotal responsibility of GABAergic interneurons is inhibitory neurotransmission; in this way, their significance lies in regulating the maintenance of excitation/inhibition (E/I) balance in cortical circuits. An abundance of glucocorticoids (GCs) exposure results in a disorder of GABAergic interneurons in the prefrontal cortex (PFC); the relationship between this status and an enhanced vulnerability to neuropsychiatric ailments, like depression and anxiety, has been identified, but this connection is still poorly understood because systematic and comprehensive research is lacking. Here, we aim to investigate the impact of dexamethasone (DEX, a GC receptor agonist) on GABAergic interneurons in the PFC of eight-week-old adult male mice. Methods A double-blind study was conducted where thirty-two mice were treated subcutaneously either saline or DEX (0.2 mg/10 ml per kg of body weight) dissolved in saline daily for 21 days. Weight measurements were taken at five-day intervals to assess the emotional changes in mice as well as the response to DEX treatment. Following the 21-day regimen of DEX injections, mice underwent examinations for depression/anxiety-like behaviours and GABAergic marker expression in PFC. Results In a depression/anxiety model generated by chronic DEX treatment, we found that our DEX procedure did trigger depression/anxiety-like behaviors in mice. Furthermore, DEX treatment reduced the expression levels of a GABA-synthesizing enzyme (GAD67), Reelin, calcium-binding proteins (parvalbumin and calretinin) and neuropeptides co-expressed in GABAergic neurons (somatostatin, neuropeptide Y and vasoactive intestinal peptide) in the PFC were reduced after 21 days of DEX treatment; these reductions were accompanied by decreases in brain size and cerebral cortex thickness. Conclusion Our results indicate that a reduction in the number of GABAergic interneurons may result in deficiencies in cortical inhibitory neurotransmission, potentially causing an E/I imbalance in the PFC; this insight suggests a potential breakthrough strategy for the treatment of depression and anxiety.
Collapse
Affiliation(s)
- Ling Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ming-Jing Qiu
- Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Juan Fan
- Luohe Medical College, Henan Province Engineering Research Center of Nutrition and Health, Luohe, China
| | - Wan-Er Wang
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Shao-Hao Liu
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xiao-Qi Liu
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Shi-Wei Liu
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Ze-Jin Shen
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Ya-Fei Zheng
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Guang-Chao Liu
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Zi-Yi Jia
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xiao-Qing Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Na Fang
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Sirois CL, Guo Y, Li M, Wolkoff NE, Korabelnikov T, Sandoval S, Lee J, Shen M, Contractor A, Sousa AMM, Bhattacharyya A, Zhao X. CGG repeats in the human FMR1 gene regulate mRNA localization and cellular stress in developing neurons. Cell Rep 2024; 43:114330. [PMID: 38865241 PMCID: PMC11240841 DOI: 10.1016/j.celrep.2024.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
The human genome has many short tandem repeats, yet the normal functions of these repeats are unclear. The 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene contains polymorphic CGG repeats, the length of which has differing effects on FMR1 expression and human health, including the neurodevelopmental disorder fragile X syndrome. We deleted the CGG repeats in the FMR1 gene (0CGG) in human stem cells and examined the effects on differentiated neurons. 0CGG neurons have altered subcellular localization of FMR1 mRNA and protein, and differential expression of cellular stress proteins compared with neurons with normal repeats (31CGG). In addition, 0CGG neurons have altered responses to glucocorticoid receptor (GR) activation, including FMR1 mRNA localization, GR chaperone HSP90α expression, GR localization, and cellular stress protein levels. Therefore, the CGG repeats in the FMR1 gene are important for the homeostatic responses of neurons to stress signals.
Collapse
Affiliation(s)
- Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalie E Wolkoff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tomer Korabelnikov
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoun Lee
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Amaya Contractor
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andre M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
6
|
Turner M. Neurobiological and psychological factors to depression. Int J Psychiatry Clin Pract 2024; 28:114-127. [PMID: 39101692 DOI: 10.1080/13651501.2024.2382091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Major Depressive Disorder (MDD) is a common condition with complex psychological and biological background. While its aetiology is still unclear, chronic stress stands amongst major risk factors to MDD pathogenesis. When researching on MDD, it is necessary to be familiar with the neurobiological effects of several prominent contributors to the chronic stress factor experienced across hypothalamic-pituitary-adrenal (HPA) axis, neurotransmission, immune system reflexivity, and genetic alterations. Bi-directional flow of MDD pathogenesis suggests that psychological factors produce biological effects. Here, a summary of how the MDD expresses its mechanisms of action across an overactive HPA axis, the negative impacts of reduced neurotransmitter functions, the inflammatory responses and their gene x environment interactions. This paper builds on these conceptual factors and their input towards the MDD symptomatology with a purpose of synthesising the current findings and create an integrated view of the MDD pathogenesis. Finally, relevant treatment implications will be summarised, along with recommendations to a multimodal clinical practice.
Collapse
Affiliation(s)
- Malini Turner
- School of Health, University of New England, Armidale, Australia
- Biomedical Sciences, Endeavour College of Natural Health, Brisbane, Australia
| |
Collapse
|
7
|
Wang Z, Zhang L, Yang J, Zeng Y, Su C, Yao M, Zhang H, Hu W, Liu Y, Lai Y, Wang X, Zeng J, Liu R. Chronic stress induces Alzheimer's disease-like pathologies through DNA damage-Chk1-CIP2A signaling. Aging (Albany NY) 2024; 16:9168-9187. [PMID: 38819231 PMCID: PMC11164505 DOI: 10.18632/aging.205862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
Stress is an important initiating factor in promoting Alzheimer's disease (AD) pathogenesis. However, the mechanism by which stress induces AD-like cognitive impairment remains to be clarified. Here, we demonstrate that DNA damage is increased in stress hormone Corticotropin-releasing factor (CRF)-treated cells and in brains of mice exposed to chronic restraint stress. Accumulation of DNA damage drives activation of cell cycle checkpoint protein kinase 1 (Chk1), upregulation of cancerous inhibitor of PP2A (CIP2A), tau hyperphosphorylation, and Aβ overproduction, eventually resulting in synaptic impairment and cognitive deficits. Pharmacological intervention targeting Chk1 by specific inhibitor and DNA damage by vitamin C, suppress DNA damage-Chk1-CIP2A signaling pathway in chronic stress animal model, which in turn attenuate AD-like pathologies, synaptic impairments and cognitive deficits. Our study uncovers a novel molecular mechanism of stress-induced AD-like pathologies and provides effective preventive and therapeutic strategies targeting this signaling pathway.
Collapse
Affiliation(s)
- Zhuoqun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Jiayu Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zeng
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengke Su
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengdong Yao
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiliang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Hu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yi Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwen Lai
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Ji Zeng
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Burenkova OV, Grigorenko EL. The role of epigenetic mechanisms in the long-term effects of early-life adversity and mother-infant relationship on physiology and behavior of offspring in laboratory rats and mice. Dev Psychobiol 2024; 66:e22479. [PMID: 38470450 PMCID: PMC10959231 DOI: 10.1002/dev.22479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Maternal care during the early postnatal period of altricial mammals is a key factor in the survival and adaptation of offspring to environmental conditions. Natural variations in maternal care and experimental manipulations with maternal-child relationships modeling early-life adversity (ELA) in laboratory rats and mice have a strong long-term influence on the physiology and behavior of offspring in rats and mice. This literature review is devoted to the latest research on the role of epigenetic mechanisms in these effects of ELA and mother-infant relationship, with a focus on the regulation of hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor. An important part of this review is dedicated to pharmacological interventions and epigenetic editing as tools for studying the causal role of epigenetic mechanisms in the development of physiological and behavioral profiles. A special section of the manuscript will discuss the translational potential of the discussed research.
Collapse
Affiliation(s)
- Olga V. Burenkova
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Research Administration, Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
9
|
Mora Álvarez MG, Hölzel BK, Bremer B, Wilhelm M, Hell E, Tavacioglu EE, Koch K, Torske A. Effects of web-based mindfulness training on psychological outcomes, attention, and neuroplasticity. Sci Rep 2023; 13:22635. [PMID: 38114554 PMCID: PMC10730881 DOI: 10.1038/s41598-023-48706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Mindfulness meditation training (MMT) reliably reduces stress and anxiety while also improving attention. The primary aim of this study was to investigate the relationship between MMT, stress and anxiety reduction, and its impact upon improvements in attention on the behavioral and neuronal levels. As a second aim, we sought to explore any relationship between MMT, attention, and modified states of mind such as flow. 118 healthy, meditation-naïve, participants were either assigned to a 31-day, web-based, MMT or an active control, health training (HT). Participants underwent functional magnetic resonance imaging while performing the attention network test (ANT) to assess functional and behavioural attentional changes, diffusion tensor imaging (DTI) to assess microstructural neuronal changes and completed relevant questionnaires to explore changes in psychological outcomes. Results confirmed a reduction in perceived stress and anxiety levels in the MMT group and significant improvements in the overall reaction time during the ANT, albeit no specific effects on the attentional components were observed. No statistically significant changes were found in the HT group. Interestingly, a significant group-by-time interaction was seen in flow experience. Functional data exhibited an increased activity in the superior frontal gyrus, posterior cingulate cortex, and right hippocampus during the alerting condition of the ANT after the MMT; decreased stress and trait anxiety were significantly correlated with the activation in the right hippocampus, and increased flow was also significantly correlated with all the aforementioned areas. DTI data showed increased fractional anisotropy values in the right uncinate fasciculus indicating white matter microarchitecture improvement between the right hippocampus and frontal areas of the brain. This study, therefore, demonstrates the effectiveness of web-based MMT on overall well-being and attentional performance, while also providing insight into the relationship between psychological outcomes, attention, and neuroplastic changes.
Collapse
Affiliation(s)
- María Guadalupe Mora Álvarez
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.
- TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Britta Karen Hölzel
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benno Bremer
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Wilhelm
- Center for Psychotherapy Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Elena Hell
- Department of Psychology, Ludwig Maximilians Universität München, Munich, Germany
| | - Ebru Ecem Tavacioglu
- TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychology, Ludwig Maximilians Universität München, Munich, Germany
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| | - Alyssa Torske
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| |
Collapse
|
10
|
Ditmer M, Gabryelska A, Turkiewicz S, Sochal M. Investigating the Role of BDNF in Insomnia: Current Insights. Nat Sci Sleep 2023; 15:1045-1060. [PMID: 38090631 PMCID: PMC10712264 DOI: 10.2147/nss.s401271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2025] Open
Abstract
Insomnia is a common disorder defined as frequent and persistent difficulty initiating, maintaining, or going back to sleep. A hallmark symptom of this condition is a sense of nonrestorative sleep. It is frequently associated with other psychiatric disorders, such as depression, as well as somatic ones, including immunomediated diseases. BDNF is a neurotrophin primarily responsible for synaptic plasticity and proper functioning of neurons. Due to its role in the central nervous system, it might be connected to insomnia of multiple levels, from predisposing traits (neuroticism, genetic/epigenetic factors, etc.) through its influence on different modes of neurotransmission (histaminergic and GABAergic in particular), maintenance of circadian rhythm, and sleep architecture, and changes occurring in the course of mood disturbances, substance abuse, or dementia. Extensive and interdisciplinary evaluation of the role of BDNF could aid in charting new areas for research and further elucidate the molecular background of sleep disorder. In this review, we summarize knowledge on the role of BDNF in insomnia with a focus on currently relevant studies and discuss their implications for future projects.
Collapse
Affiliation(s)
- Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| |
Collapse
|
11
|
Pavlou IA, Spandidos DA, Zoumpourlis V, Adamaki M. Nutrient insufficiencies and deficiencies involved in the pathogenesis of bruxism (Review). Exp Ther Med 2023; 26:563. [PMID: 37954114 PMCID: PMC10632959 DOI: 10.3892/etm.2023.12262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Stress has been well-documented to have a significant role in the etiopathogenesis of bruxism. Activation of the hypothalamic-pituitary-adrenal axis (HPA) and subsequent release of corticosteroids lead to increased muscle activity. Neurological studies have demonstrated that chronic stress exposure induces neurodegeneration of important neuronal structures and destabilization of the mesocortical dopaminergic pathway. These disruptions impair the abilities to counteract the overactivity of the HPA axis and disinhibit involuntary muscle activity, while at the same time, there is activation of the amygdala. Recent evidence shows that overactivation of the amygdala under stressful stimuli causes rhythmic jaw muscle activity by over activating the mesencephalic and motor trigeminal nuclei. The present review aimed to discuss the negative effects of certain vitamin and mineral deficiencies, such as vitamin D, magnesium, and omega-3 fatty acids, on the central nervous system. It provides evidence on how such insufficiencies may increase stress sensitivity and neuromuscular excitability and thereby reduce the ability to effectively respond to the overactivation of the sympathetic nervous system, and also how stress can in turn lead to these insufficiencies. Finally, the positive effects of individualized supplementation are discussed in the context of diminishing anxiety and oxidative stress, neuroprotection and in the reversal of neurodegeneration, and also in alleviating/reducing neuromuscular symptoms.
Collapse
Affiliation(s)
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
12
|
Lullmann O, van der Plas E, Harshman LA. Understanding the impact of pediatric kidney transplantation on cognition: A review of the literature. Pediatr Transplant 2023; 27:e14597. [PMID: 37664967 PMCID: PMC11034761 DOI: 10.1111/petr.14597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a relatively rare childhood disease that is associated with a wide array of medical comorbidities. Roughly half of all pediatric patients acquire CKD due to congenital anomalies of the kidneys and urinary tract, and of those with congenital disease, 50% will progress to end-stage kidney disease (ESKD) necessitating a kidney transplantation. The medical sequelae of advanced CKD/ESKD improve dramatically following successful kidney transplantation; however, the impact of kidney transplantation on neurocognition in children is less clear. It is generally thought that cognition improves following kidney transplantation; however, our knowledge on this topic is limited by the sparsity of high-quality data in the context of the relative rarity of pediatric CKD/ESKD. METHOD We conducted a narrative review to gauge the scope of the literature, using the PubMed database and the following keywords: cognition, kidney, brain, pediatric, neurocognition, intelligence, executive function, transplant, immunosuppression, and neuroimaging. RESULTS There are few published longitudinal studies, and existing work often includes wide heterogeneity in age at transplant, variable dialysis exposure/duration prior to transplant, and unaccounted cofounders which persist following transplantation, including socio-economic status. Furthermore, the impact of long-term maintenance immunosuppression on the brain and cognitive function of pediatric kidney transplant (KT) recipients remains unknown. CONCLUSION In this educational review, we highlight what is known on the topic of neurocognition and neuroimaging in the pediatric KT population.
Collapse
Affiliation(s)
- Olivia Lullmann
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine; Iowa City, IA
| | - Ellen van der Plas
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine; Iowa City, IA
- Department of Pediatrics, University of Arkansas for Medical Sciences College of Medicine; Little Rock, AR
| | - Lyndsay A. Harshman
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine; Iowa City, IA
| |
Collapse
|
13
|
Joseph J, Buss C, Knop A, de Punder K, Winter SM, Spors B, Binder E, Haynes JD, Heim C. Greater maltreatment severity is associated with smaller brain volume with implication for intellectual ability in young children. Neurobiol Stress 2023; 27:100576. [PMID: 37810429 PMCID: PMC10558820 DOI: 10.1016/j.ynstr.2023.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Background Childhood maltreatment profoundly alters trajectories of brain development, promoting markedly increased long-term health risks and impaired intellectual development. However, the immediate impact of maltreatment on brain development in children and the extent to which altered global brain volume contributes to intellectual development in children with maltreatment experience is currently unknown. We here utilized MRI data obtained from children within 6 months after the exposure to maltreatment to assess the association of maltreatment severity with global brain volume changes. We further assessed the association between maltreatment severity and intellectual development and tested for the mediating effect of brain volume on this association. Method We used structural MRI (3T) in a sample of 49 children aged 3-5 years with maltreatment exposure, i.e. emotional and physical abuse and/or neglect within 6 months, to characterize intracranial and tissue-specific volumes. Maltreatment severity was coded using the Maternal Interview for the Classification of Maltreatment. IQ was tested at study entry and after one year using the Snijders Oomen Nonverbal Test. Results Higher maltreatment severity was significantly correlated with smaller intracranial volume (r = -.393, p = .008), which was mainly driven by lower total brain volume (r = -.393, p = .008), which in turn was primarily due to smaller gray matter volume (r = -.454, p = .002). Furthermore, smaller gray matter volume was associated with lower IQ at study entry (r = -.548, p < .001) and predicted IQ one year later (r = -.493, p = .004.). The observed associations were independent of potential confounding variables, including height, socioeconomic status, age and sex. Importance We provide evidence that greater maltreatment severity in early childhood is related to smaller brain size at a very young age with significant consequences for intellectual ability, likely setting a path for far-reaching long-term disadvantages. Insights into the molecular and neural processes that underlie the impact of maltreatment on brain structure and function are urgently needed to derive mechanism-driven targets for early intervention.
Collapse
Affiliation(s)
- Judith Joseph
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- Development, Health, and Disease Research Program, Department of Pediatrics, University of California, Irvine, Orange, CA, USA
| | - Andrea Knop
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Karin de Punder
- Department of Clinical Psychology, University of Innsbruck, Austria
| | - Sibylle M. Winter
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Berlin, Germany
| | - Birgit Spors
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Elisabeth Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - John-Dylan Haynes
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Neuroimaging, Berlin, Germany
- Department of Psychology, Humboldt Universitat zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Christine Heim
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
14
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Premoli M, Fyke W, Bellocchio L, Lemaire V, Wolley-Roberts M, Bontempi B, Pietropaolo S. Early Administration of the Phytocannabinoid Cannabidivarin Prevents the Neurobehavioral Abnormalities Associated with the Fmr1-KO Mouse Model of Fragile X Syndrome. Cells 2023; 12:1927. [PMID: 37566006 PMCID: PMC10416983 DOI: 10.3390/cells12151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value of phytocannabinoids for treating Fragile X syndrome (FXS), a major NDD, remains unexplored. Here, we characterized the neurobehavioral effects of CBDV at doses of 20 or 100 mg/kg in the Fmr1-knockout (Fmr1-KO) mouse model of FXS using two temporally different intraperitoneal regimens: subchronic 10-day delivery during adulthood (Study 1: rescue treatment) or chronic 5-week delivery at adolescence (Study 2: preventive treatment). Behavioral tests assessing FXS-like abnormalities included anxiety, locomotor, cognitive, social and sensory alterations. Expression of inflammatory and plasticity markers was investigated in the hippocampus and prefrontal cortex. When administered during adulthood (Study 1), the effects of CBDV were marginal, rescuing at the lower dose only the acoustic hyper-responsiveness of Fmr1-KO mice and at both doses their altered hippocampal expression of neurotrophins. When administered during adolescence (Study 2), CBDV at both doses prevented the cognitive, social and acoustic alterations of adult Fmr1-KO mice and modified the expression of several inflammatory brain markers in both wild-type littermates and mutants. These findings warrant the therapeutic potential of CBDV for preventing neurobehavioral alterations associated with FXS, highlighting the relevance of its early administration.
Collapse
Affiliation(s)
- Marika Premoli
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - William Fyke
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, University of Bordeaux, 33077 Bordeaux, France
| | - Valerie Lemaire
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
| | | |
Collapse
|
16
|
Mposhi A, Turner JD. How can early life adversity still exert an effect decades later? A question of timing, tissues and mechanisms. Front Immunol 2023; 14:1215544. [PMID: 37457711 PMCID: PMC10348484 DOI: 10.3389/fimmu.2023.1215544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Exposure to any number of stressors during the first 1000 days from conception to age 2 years is important in shaping an individual's life trajectory of health and disease. Despite the expanding range of stressors as well as later-life phenotypes and outcomes, the underlying molecular mechanisms remain unclear. Our previous data strongly suggests that early-life exposure to a stressor reduces the capacity of the immune system to generate subsequent generations of naïve cells, while others have shown that, early life stress impairs the capacity of neuronal stem cells to proliferate as they age. This leads us to the "stem cell hypothesis" whereby exposure to adversity during a sensitive period acts through a common mechanism in all the cell types by programming the tissue resident progenitor cells. Furthermore, we review the mechanistic differences observed in fully differentiated cells and suggest that early life adversity (ELA) may alter mitochondria in stem cells. This may consequently alter the destiny of these cells, producing the lifelong "supply" of functionally altered fully differentiated cells.
Collapse
|
17
|
Nilsson J, Ekblom M, Moberg M, Lövdén M. The role of acute changes in mBDNF, cortisol and pro-BDNF in predicting cognitive performance in old age. Sci Rep 2023; 13:9418. [PMID: 37296176 PMCID: PMC10256682 DOI: 10.1038/s41598-023-35847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The interplay between biomarkers of relevance to neuroplasticity and its association with learning and cognitive ability in old age remains poorly understood. The present study investigated acute changes in plasma concentrations of mature brain-derived neurotrophic factor (mBDNF), its precursor protein (pro-BDNF), and cortisol, in response to acute physical exercise and cognitive training interventions, their covariation and role in predicting cognitive performance. Confirmatory results provided no support for mBDNF, pro-BDNF and cortisol co-varying over time, as the acute interventions unfolded, but did confirm a positive association between mBDNF and pro-BDNF at rest. The confirmatory results did not support the hypothesis that mBDNF change following physical exercise were counteracted by temporally coupled changes in cortisol or pro-BDNF, or by cortisol at rest, in its previously demonstrated faciliatory effect on cognitive training outcome. Exploratory results instead provided indications of a general and trait-like cognitive benefit of exhibiting greater mBDNF responsiveness to acute interventions when coupled with lesser cortisol responsiveness, greater pro-BDNF responsiveness, and lower cortisol at rest. As such, the results call for future work to test whether certain biomarker profiles are associated with preserved cognition in old age.
Collapse
Affiliation(s)
- Jonna Nilsson
- Swedish School of Sport and Health Sciences, Stockholm, Sweden.
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
| | - Maria Ekblom
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Moberg
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Lullmann O, Conrad AL, Steinbach EJ, Wilgenbusch T, Harshman LA, van der Plas E. Neurocognitive deficits may not resolve following pediatric kidney transplantation. Pediatr Transplant 2023; 27:e14505. [PMID: 36932049 PMCID: PMC11001201 DOI: 10.1111/petr.14505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Pediatric chronic kidney disease (CKD) patients are at risk for cognitive deficits with worsening disease progression. Limited, existing cross-sectional studies suggest that cognitive deficits may improve following kidney transplantation. We sought to assess cognitive performance in relationship to kidney transplantation and kidney-specific medical variables in a sample of pediatric kidney transplant patients who provided cross-sectional and longitudinal observations. METHODS A retrospective chart review was conducted in patients who completed pre- and/or post-transplant neurocognitive testing at the University of Iowa from 2015-2021. Cognitive outcomes were investigated with developmentally appropriate, standardized measures. Mixed linear models estimated the impact of transplant status on cognitive function (z-scores). Subsequent post-hoc t-tests on change scores were limited to patients who had provided pre- and post-transplant assessments. RESULTS Thirty eight patients underwent cognitive assessments: 10 had both pre- and post-transplant cognitive assessments, 11 had pre-transplant assessments only, and 17 had post-transplant data only. Post-transplant status was associated with significantly lower full-scale IQ and slower processing speed compared to pre-transplant status (estimate = -0.32, 95% confidence interval [CI] = -0.52: -0.12; estimate = -0.86, CI = -1.17: -0.55, respectively). Post-hoc analyses confirmed results from the mixed models (FSIQ change score = -0.34, 95% CI = -0.56: -0.12; processing speed change score = -0.98, CI = -1.28: -0.68). Finally, being ≥80 months old at transplant was associated with substantially lower FSIQ compared to being <80 months (estimate = -1.25, 95% CI = -1.94: -0.56). CONCLUSIONS Our results highlight the importance of monitoring cognitive function following pediatric kidney transplant and identify older transplant age as a risk factor for cognitive deficits.
Collapse
Affiliation(s)
- Olivia Lullmann
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amy L Conrad
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Emily J Steinbach
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Tammy Wilgenbusch
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Lyndsay A Harshman
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ellen van der Plas
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences College of Medicine, Little Rock, Arkansas, USA
| |
Collapse
|
19
|
James KA, Stromin JI, Steenkamp N, Combrinck MI. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front Endocrinol (Lausanne) 2023; 14:1085950. [PMID: 36950689 PMCID: PMC10025564 DOI: 10.3389/fendo.2023.1085950] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Stress is viewed as a state of real or perceived threat to homeostasis, the management of which involves the endocrine, nervous, and immune systems. These systems work independently and interactively as part of the stress response. The scientific stress literature, which spans both animal and human studies, contains heterogeneous findings about the effects of stress on the brain and the body. This review seeks to summarise and integrate literature on the relationships between these systems, examining particularly the roles of physiological and psychosocial stress, the stress hormone cortisol, as controlled by the hypothalamic-pituitary-adrenal (HPA) axis, and the effects of stress on cognitive functioning. Health conditions related to impaired HPA axis functioning and their associated neuropsychiatric symptoms will also be considered. Lastly, this review will provide suggestions of clinical applicability for endocrinologists who are uniquely placed to measure outcomes related to endocrine, nervous and immune system functioning and identify areas of intervention.
Collapse
Affiliation(s)
- Katharine Ann James
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Juliet Ilena Stromin
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Nina Steenkamp
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Marc Irwin Combrinck
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Ferrero Restelli F, Federicci F, Ledda F, Paratcha G. Sprouty4 at the crossroads of Trk neurotrophin receptor signaling suppression by glucocorticoids. Front Mol Neurosci 2023; 16:1090824. [PMID: 36818650 PMCID: PMC9932978 DOI: 10.3389/fnmol.2023.1090824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Glucocorticoids (GC) affect neuronal plasticity, development and function of the nervous system by inhibiting neurotrophin-induced Trk signaling. It has been established that pretreatment with dexamethasone (DEX) restricts Neurotrophin-induced neurite outgrowth by inhibiting Trk-dependent activation of Ras-Erk1/2 signaling pathways. However, the precise molecular mechanism through which DEX interferes with neurotrophin signaling and Trk-mediated neurite outgrowth has not been clearly defined yet. Here, we observed that in PC12 cells DEX treatment promotes the transcription of Sprouty4, a regulatory molecule that is part of a negative feedback module that specifically abrogates Ras to Erk1/2 signaling in response to NGF. In line with this, either knockdown of Sprouty4 or overexpression of a dominant negative form of Sprouty4 (Y53A), rescue the inhibition of NGF/TrkA-promoted neurite outgrowth and Erk1/2 phosphorylation induced by DEX. Likewise, treatment of hippocampal neurons with DEX induces the expression of Sprouty4 and its knockdown abrogates the inhibitory effect of DEX on primary neurite formation, dendrite branching and Erk1/2 activation induced by BDNF. Thus, these results suggest that the induction of Sprouty4 mRNA by DEX translates into a significant inhibition of Trk to Erk1/2 signaling pathway. Together, these findings bring new insights into the crosstalk between DEX and neurotrophin signaling and demonstrate that Sprouty4 mediates the inhibitory effects of DEX on neurotrophin function.
Collapse
Affiliation(s)
- Facundo Ferrero Restelli
- Division de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias Prof. E. De Robertis (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Federicci
- Division de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias Prof. E. De Robertis (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Fernanda Ledda
- Division de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias Prof. E. De Robertis (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias Prof. E. De Robertis (IBCN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina,*Correspondence: Gustavo Paratcha, ✉
| |
Collapse
|
21
|
Chojnowski K, Opiełka M, Gozdalski J, Radziwon J, Dańczyszyn A, Aitken AV, Biancardi VC, Winklewski PJ. The Role of Arginine-Vasopressin in Stroke and the Potential Use of Arginine-Vasopressin Type 1 Receptor Antagonists in Stroke Therapy: A Narrative Review. Int J Mol Sci 2023; 24:ijms24032119. [PMID: 36768443 PMCID: PMC9916514 DOI: 10.3390/ijms24032119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Stroke is a life-threatening condition in which accurate diagnoses and timely treatment are critical for successful neurological recovery. The current acute treatment strategies, particularly non-invasive interventions, are limited, thus urging the need for novel therapeutical targets. Arginine vasopressin (AVP) receptor antagonists are emerging as potential targets to treat edema formation and subsequent elevation in intracranial pressure, both significant causes of mortality in acute stroke. Here, we summarize the current knowledge on the mechanisms leading to AVP hyperexcretion in acute stroke and the subsequent secondary neuropathological responses. Furthermore, we discuss the work supporting the predictive value of measuring copeptin, a surrogate marker of AVP in stroke patients, followed by a review of the experimental evidence suggesting AVP receptor antagonists in stroke therapy. As we highlight throughout the narrative, critical gaps in the literature exist and indicate the need for further research to understand better AVP mechanisms in stroke. Likewise, there are advantages and limitations in using copeptin as a prognostic tool, and the translation of findings from experimental animal models to clinical settings has its challenges. Still, monitoring AVP levels and using AVP receptor antagonists as an add-on therapeutic intervention are potential promises in clinical applications to alleviate stroke neurological consequences.
Collapse
Affiliation(s)
- Karol Chojnowski
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Mikołaj Opiełka
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Jacek Gozdalski
- Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
- Correspondence: (J.G.); (P.J.W.)
| | - Jakub Radziwon
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Aleksandra Dańczyszyn
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Andrew Vieira Aitken
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Center for Neurosciences Initiative, Auburn University, Auburn, AL 36849, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Center for Neurosciences Initiative, Auburn University, Auburn, AL 36849, USA
| | - Paweł Jan Winklewski
- Department of Human Physiology, Medical University of Gdansk, 15 Tuwima Street, 80-210 Gdansk, Poland
- 2nd Department of Radiology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
- Correspondence: (J.G.); (P.J.W.)
| |
Collapse
|
22
|
Dutton M, Can AT, Lagopoulos J, Hermens DF. Stress, mental disorder and ketamine as a novel, rapid acting treatment. Eur Neuropsychopharmacol 2022; 65:15-29. [PMID: 36206584 DOI: 10.1016/j.euroneuro.2022.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 12/13/2022]
Abstract
The experience of stress is often utilised in models of emerging mental illness and neurobiological systems are implicated as the intermediary link between the experience of psychological stress and the development of a mental disorder. Chronic stress and prolonged glucocorticoid exposure have potent effects on neuronal architecture particularly in regions that modulate the hypothalamic-pituitary-adrenal (HPA) axis and are commonly associated with psychiatric disorders. This review provides an overview of stress modulating neurobiological and neurochemical systems which underpin stress-related structural and functional brain changes. These changes are thought to contribute not only to the development of disorders, but also to the treatment resistance and chronicity seen in some of our most challenging mental disorders. Reports to date suggest that stress-related psychopathology is the aetiological mechanism of these disorders and thus we review the rapid acting antidepressant ketamine as an effective emerging treatment. Ketamine, an N-methyl D-aspartate (NMDA) receptor antagonist, is shown to induce a robust treatment effect in mental disorders via enhanced synaptic strength and connectivity in key brain regions. Whilst ketamine's glutamatergic effect has been previously examined, we further consider ketamine's capacity to modulate the HPA axis and associated pathways.
Collapse
Affiliation(s)
- Megan Dutton
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia.
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| |
Collapse
|
23
|
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: Implications for depression pathology. Front Mol Neurosci 2022; 15:1028223. [PMID: 36466807 PMCID: PMC9708894 DOI: 10.3389/fnmol.2022.1028223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a prevalent mental health disorder and is the number one cause of disability worldwide. Risk factors for depression include genetic predisposition and stressful life events, and depression is twice as prevalent in women compared to men. Both clinical and preclinical research have implicated a critical role for brain-derived neurotrophic factor (BDNF) signaling in depression pathology as well as therapeutics. A preponderance of this research has focused on the role of BDNF and its primary receptor tropomyosin-related kinase B (TrkB) in the cortex and hippocampus. However, much of the symptomatology for depression is consistent with disruptions in functions of the hypothalamus including changes in weight, activity levels, responses to stress, and sociability. Here, we review evidence for the role of BDNF and TrkB signaling in the regions of the hypothalamus and their role in these autonomic and behavioral functions associated with depression. In addition, we identify areas for further research. Understanding the role of BDNF signaling in the hypothalamus will lead to valuable insights for sex- and stress-dependent neurobiological underpinnings of depression pathology.
Collapse
Affiliation(s)
- Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Anita E. Autry,
| |
Collapse
|
24
|
Gimsa U, Brückmann R, Tuchscherer A, Tuchscherer M, Kanitz E. Early-life maternal deprivation affects the mother-offspring relationship in domestic pigs, as well as the neuroendocrine development and coping behavior of piglets. Front Behav Neurosci 2022; 16:980350. [PMID: 36275850 PMCID: PMC9582528 DOI: 10.3389/fnbeh.2022.980350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Early-life adversity may have programming effects on the psychological and physiological development of offspring. Domestic pigs (Sus scrofa) are an excellent model species for studying these effects because of their many physiological similarities to humans. Piglets from 10 sows were subjected to daily 2-h maternal deprivation on postnatal days (PND) 2–15 alone (DA) or in a group of littermates (DG). Control piglets (C) from 10 sows stayed with their mothers. Mother-offspring interaction, milk oxytocin, and cortisol were analyzed. An open-field/novel-object (OF/NO) test was performed with piglets on PNDs 16 and 40. Plasma cortisol and immune parameters were determined on PND 5 and 16. Two piglets from each group and sow were sacrificed on PND 20 and stress-related gene expression in the limbic system and prefrontal cortex (PFC), as well as splenic lymphocyte proliferative abilities, were examined. The milk cortisol of sows increased during the first separation of mother and offspring on the second day of lactation, whereas milk oxytocin did not change. The increase in cortisol by the OF/NO test on PND 16 was greater in C piglets than in DA and DG ones. DA piglets showed less agitated behavior than DG and C piglets in the OF/NO test at PND 16, but appeared more fearful. On PND 40, DA piglets showed more arousal than DG and C piglets in the OF/NO test. Neither plasma IgA nor N/L ratios in blood nor mitogen-induced proliferation of spleen lymphocytes were affected by deprivation. We found a higher mRNA expression of CRHR1 in the hypothalamus and a higher expression of MR in the hippocampus in DA piglets than in DG ones. The expression of GR, MR, and CRHR1 genes in the PFC was reduced by maternal deprivation, however, the expression of arginine vasopressin and oxytocin receptors was not affected. Repeated maternal deprivation induces sustained effects on stress reactivity and behavior of domestic piglets. Some of these effects were buffered by the presence of littermates. In addition, we found sex-specific differences in behavior and gene expression.
Collapse
Affiliation(s)
- Ulrike Gimsa
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- *Correspondence: Ulrike Gimsa,
| | - Roberto Brückmann
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Armin Tuchscherer
- Service Group Statistical Consulting, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Margret Tuchscherer
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ellen Kanitz
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
25
|
Mohammed RA, Sayed RH, El-Sahar AE, Khattab MA, Saad MA. Insights into the role of pERK1/2 signaling in post-cerebral ischemia reperfusion sexual dysfunction in rats. Eur J Pharmacol 2022; 933:175258. [PMID: 36096157 DOI: 10.1016/j.ejphar.2022.175258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
The purpose of the present study was to investigate the effects of ERK1/2 inhibition on both the amygdala and hippocampal structures, and to investigate its role in regulating memory for sexual information. This study utilized a cerebral ischemia reperfusion (IR) model to produce a stressful brain condition that highlights the possible involvement of a hippocampal GC/pERK1/2/BDNF pathway in the resulting sexual consequences of this ailment. Male Wistar rats were divided into four groups: (1) sham; (2) IR: subjected to 45 min of ischemia followed by 48 h of reperfusion; (3) PD98059: received PD98059 at 0.3 mg/kg, i.p.; (4) IR + PD98059. This study provides new evidence for cerebral IR-induced amygdala injury and the sexual impairments that are associated with motor and cognitive deficits in rats. These findings were correlated with histopathological changes that are defined by extensive neuronal loss in both the hippocampus and the amygdala. The current study postulated that the ERK inhibitor PD98059 could reverse IR-induced injury in the amygdala as well as reversing IR-induced sexual impairments. This hypothesis is supported by the ability of PD98059 to: (1) restore luteinizing hormone and testosterone levels; (2) increase sexual arousal and copulatory performance (as evidenced by modulating mount, intromission, ejaculation latencies, and post-ejaculatory intervals); (3) improve the histological profile in the amygdala that is associated with reduced glutamate levels, c-Fos expression, and elevated gamma aminobutyric acid levels. In conclusion, the present findings introduce pERK1/2 inhibition as a possible strategy for enhancing sexual activity in survivors of IR.
Collapse
Affiliation(s)
- Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| |
Collapse
|
26
|
Ouanes S, Clark C, Richiardi J, Maréchal B, Lewczuk P, Kornhuber J, Kirschbaum C, Popp J. Cerebrospinal Fluid Cortisol and Dehydroepiandrosterone Sulfate, Alzheimer’s Disease Pathology, and Cognitive Decline. Front Aging Neurosci 2022; 14:892754. [PMID: 35875796 PMCID: PMC9301040 DOI: 10.3389/fnagi.2022.892754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction Elevated cortisol levels have been reported in Alzheimer’s disease (AD) and may accelerate the development of brain pathology and cognitive decline. Dehydroepiandrosterone sulfate (DHEAS) has anti-glucocorticoid effects and it may be involved in the AD pathophysiology. Objectives To investigate associations of cerebrospinal fluid (CSF) cortisol and DHEAS levels with (1) cognitive performance at baseline; (2) CSF biomarkers of amyloid pathology (as assessed by CSF Aβ levels), neuronal injury (as assessed by CSF tau), and tau hyperphosphorylation (as assessed by CSF p-tau); (3) regional brain volumes; and (4) clinical disease progression. Materials and Methods Individuals between 49 and 88 years (n = 145) with mild cognitive impairment or dementia or with normal cognition were included. Clinical scores, AD biomarkers, brain MRI volumetry along with CSF cortisol and DHEAS were obtained at baseline. Cognitive and functional performance was re-assessed at 18 and 36 months from baseline. We also assessed the following covariates: apolipoprotein E (APOE) genotype, BMI, and education. We used linear regression and mixed models to address associations of interest. Results Higher CSF cortisol was associated with poorer global cognitive performance and higher disease severity at baseline. Cortisol and cortisol/DHEAS ratio were positively associated with tau and p-tau CSF levels, and negatively associated with the amygdala and insula volumes at baseline. Higher CSF cortisol predicted more pronounced cognitive decline and clinical disease progression over 36 months. Higher CSF DHEAS predicted more pronounced disease progression over 36 months. Conclusion Increased cortisol in the CNS is associated with tau pathology and neurodegeneration, and with decreased insula and amygdala volume. Both CSF cortisol and DHEAS levels predict faster clinical disease progression. These results have implications for the identification of patients at risk of rapid decline as well as for the development of interventions targeting both neurodegeneration and clinical manifestations of AD.
Collapse
Affiliation(s)
- Sami Ouanes
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Christopher Clark
- Centre for Gerontopsychiatric Medicine, Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zurich, Switzerland
| | - Jonas Richiardi
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Bénédicte Maréchal
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Clemens Kirschbaum
- Chair of Biopsychology, Technische Universität Dresden, Andreas-Schubert-Bau, Dresden, Germany
| | - Julius Popp
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Centre for Gerontopsychiatric Medicine, Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zurich, Switzerland
- *Correspondence: Julius Popp,
| |
Collapse
|
27
|
Vatandoust SM, Meftahi GH. The Effect of Sericin on the Cognitive Impairment, Depression, and Anxiety Caused by Learned Helplessness in Male Mice. J Mol Neurosci 2022; 72:963-974. [PMID: 35165850 DOI: 10.1007/s12031-022-01982-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Learned helplessness (LH) induces cognitive and emotional abnormalities via alteration of synaptic and apoptotic markers in the hippocampus. Given the sericin's neuroprotective effects on different experimental models, this study aimed to address whether sericin is able to reduce LH-induced behavioral and molecular changes in the mouse model. Sixty male mice (3 months old) were randomly divided into control, normal saline (NS), and/or different doses of sericin (Ser [100, 200, and 300 mg/kg]) for 21 days. Accordingly, the animals in NS and sericin-treated groups were subjected to 1 day learned helplessness protocol. Behavioral deficits were evaluated and alterations in both synaptic and apoptotic factors were evaluated in the hippocampus. Induction of LH was associated with behavioral changes (depression and cognitive impairment). On the other hand, the administration of sericin effectively normalized these deficits. At molecular levels, sericin increased the levels of synaptophysin, synapsin-1, and PSD-95, and decreased apoptosis in the hippocampus. Although the exact mechanisms underlying the neuroprotective effects of sericin are not fully understood, our results showed that this effect mediated via modulation of the synaptic and apoptotic proteins in the hippocampus of LH-subjected mice.
Collapse
Affiliation(s)
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Markiewicz-Gospodarek A, Kuszta P, Baj J, Dobrowolska B, Markiewicz R. Can Neuropeptide S Be an Indicator for Assessing Anxiety in Psychiatric Disorders? Front Public Health 2022; 10:872430. [PMID: 35558538 PMCID: PMC9087177 DOI: 10.3389/fpubh.2022.872430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022] Open
Abstract
Neuropeptide S (NPS) is a neuropeptide primarily produced within three brainstem regions including locus coeruleus, trigeminal nerve nucleus, and lateral parabrachial nucleus. NPS is involved in the central regulation of stress, fear, and cognitive integration. NPS is a mediator of behavior, seeking food, and the proliferation of new adipocytes in the setting of obesity. So far, current research of NPS is only limited to animal models; data regarding its functions in humans is still scarce. Animal studies showed that anxiety and appetite might be suppressed by the action of NPS. The discovery of this neuromodulator peptide is effective considering its strong anxiolytic action, which has the potential to be an interesting therapeutic option in treating neuropsychiatric disorders. In this article, we aimed to analyze the pharmaceutical properties of NPS as well as its influence on several neurophysiological aspects-modulation of behavior, association with obesity, as well as its potential application in rehabilitation and treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | - Piotr Kuszta
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, Lublin, Poland
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
29
|
Chaudhari PR, Singla A, Vaidya VA. Early Adversity and Accelerated Brain Aging: A Mini-Review. Front Mol Neurosci 2022; 15:822917. [PMID: 35392273 PMCID: PMC8980717 DOI: 10.3389/fnmol.2022.822917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Early adversity is an important risk factor that influences brain aging. Diverse animal models of early adversity, including gestational stress and postnatal paradigms disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging. The process of brain aging is thought to involve hallmark features such as mitochondrial dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics. Furthermore, brain aging is associated with disrupted proteostasis, progressively defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory states, thus cumulatively driving cellular senescence, neuronal and cognitive decline. Early adversity is hypothesized to evoke an “allostatic load” via an influence on several of the key physiological processes that define the trajectory of healthy brain aging. In this review we discuss the evidence that animal models of early adversity impinge on fundamental mechanisms of brain aging, setting up a substratum that can accelerate and compromise the time-line and nature of brain aging, and increase risk for aging-associated neuropathologies.
Collapse
|
30
|
Yoshioka T, Yamada D, Kobayashi R, Segi-Nishida E, Saitoh A. Chronic vicarious social defeat stress attenuates new-born neuronal cell survival in mouse hippocampus. Behav Brain Res 2022; 416:113536. [PMID: 34416303 DOI: 10.1016/j.bbr.2021.113536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has shown that adult hippocampal neurogenesis is closely related to the pathophysiological condition of depressive disorders. Recently, chronic social defeat stress paradigms have been regarded as important animal models of depression, accompanied with neural plastic changes in the hippocampus. However, little is known about influences of non-physical stress on neurogenesis. In the present study, we focused on the chronic vicarious social defeat stress paradigm and examined the effect of psychological stress on mouse hippocampal neurogenesis. Immediately after the chronic psychological stress, the cell survival rate in the dentate gyrus of the hippocampus was significantly diminished without modifying the cell proliferation rate. The decreased ratio in cell survival persisted for 4 weeks after the stress-loading period, while the differentiation and maturity of new-born neurons were identical to control groups. Furthermore, treatment with the chronic antidepressant fluoxetine reversed the social behavioral deficits and promoted new-born neurons survival. These results demonstrate that emotional stress in the vicarious social defeat stress paradigm influences neuronal cell survival in the hippocampus, which reinforces its validity as an animal model of depression.
Collapse
Affiliation(s)
- Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Japan
| | - Riho Kobayashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Japan.
| |
Collapse
|
31
|
Abrial E, Chalancon B, Leaune E, Brunelin J, Wallon M, Moll F, Barakat N, Hoestlandt B, Fourier A, Simon L, Magnin C, Hermand M, Poulet E. Investigating Predictive Factors of Suicidal Re-attempts in Adolescents and Young Adults After a First Suicide Attempt, a Prospective Cohort Study. Study Protocol of the SURAYA Project. Front Psychiatry 2022; 13:916640. [PMID: 35845461 PMCID: PMC9276973 DOI: 10.3389/fpsyt.2022.916640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Suicide is the fourth leading cause of death in youth. Previous suicide attempts are among the strongest predictors of future suicide re-attempt. However, the lack of data and understanding of suicidal re-attempt behaviors in this population makes suicide risk assessment complex and challenging in clinical practice. The primary objective of this study is to determine the rate of suicide re-attempts in youth admitted to the emergency department after a first suicide attempt. The secondary objectives are to explore the clinical, socio-demographic, and biological risk factors that may be associated with re-attempted suicide in adolescents and young adults. METHODS We have developed a single-center prospective and naturalistic study that will follow a cohort of 200 young people aged 16 to 25 years admitted for a first suicide attempt to the emergency department of Lyon, France. The primary outcome measure will be the incidence rate of new suicide attempts during 3 months of follow-up. Secondary outcomes to investigate predictors of suicide attempts will include several socio-demographic, clinical and biological assessments: blood and hair cortisol levels, plasma pro- and mature Brain-Derived Neurotrophic Factor (BDNF) isoforms proportion, previous infection with toxoplasma gondii, and C-Reactive Protein (CRP), orosomucoid, fibrinogen, interleukin (IL)-6 inflammatory markers. DISCUSSION To our knowledge, the present study is the first prospective study specifically designed to assess the risk of re-attempting suicide and to investigate the multidimensional predictive factors associated with re-attempting suicide in youth after a first suicide attempt. The results of this study will provide a unique opportunity to better understand whether youth are an at-risk group for suicide re-attempts, and will help us identify predictive factors of suicide re-attempt risk that could be translated into clinical settings to improve psychiatric care in this population. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier: NCT03538197, first registered on 05/29/2018. The first patient was enrolled 05/22/2018.
Collapse
Affiliation(s)
- Erika Abrial
- Centre Hospitalier Le Vinatier, Bron, France.,INSERM U1028, CNRS UMR5292 Lyon Neuroscience Research Center, PSYR2 Team, Bron, France.,Lyon 1 University, Villeurbanne, France
| | | | - Edouard Leaune
- Centre Hospitalier Le Vinatier, Bron, France.,Lyon 1 University, Villeurbanne, France
| | - Jérôme Brunelin
- Centre Hospitalier Le Vinatier, Bron, France.,INSERM U1028, CNRS UMR5292 Lyon Neuroscience Research Center, PSYR2 Team, Bron, France.,Lyon 1 University, Villeurbanne, France
| | - Martine Wallon
- Lyon 1 University, Villeurbanne, France.,INSERM U1028, CNRS UMR5292 Lyon Neuroscience Research Center, WAKING Team, Bron, France
| | - Frédéric Moll
- University Hospital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Nadine Barakat
- Centre Hospitalier Le Vinatier, Bron, France.,INSERM U1028, CNRS UMR5292 Lyon Neuroscience Research Center, PSYR2 Team, Bron, France.,Lyon 1 University, Villeurbanne, France
| | - Benoit Hoestlandt
- University Hospital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Anthony Fourier
- Laboratory of Medical Biology and Anatomo-Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Louis Simon
- University Hospital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Charline Magnin
- University Hospital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Marianne Hermand
- Louis-Mourier Hospital, Assistance Publique Hôpitaux de Paris, Colombes, France
| | - Emmanuel Poulet
- Centre Hospitalier Le Vinatier, Bron, France.,INSERM U1028, CNRS UMR5292 Lyon Neuroscience Research Center, PSYR2 Team, Bron, France.,Lyon 1 University, Villeurbanne, France.,University Hospital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
32
|
Zhang Y, Luo Y, Hou X, Lu K, He Y, Yang B, Qin Y. Xiaoyao powder alleviates the hippocampal neuron damage in chronic unpredictable mild stress-induced depression model rats in hippocampus via connexin 43Cx43/glucocorticoid receptor/brain-derived neurotrophic factor signaling pathway. Bioengineered 2022; 13:383-394. [PMID: 34984950 PMCID: PMC8805874 DOI: 10.1080/21655979.2021.2005744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Xiaoyao Powder (XYP) has been widely applied in China to treat stress-related illnesses, such as migraine, depression, Parkinson’s disease, insomnia, and hypertension. Herein, this study aims to explore the effect of XYP on chronic unpredictable mild stress (CUMS)-induced depression and its underlying mechanisms. CUMS-induced depression rat models were established, they were subsequently randomly divided and treated with various conditions. Results of this study indicated that supplementation of XYP observably abolished CUMS-induced hippocampal damage and serum corticosterone (CORT) elevation. In mechanism, we discovered that CUMS induction could cause a prominent downregulation in glucocorticoid receptor (GR), phosphorylated-GR (p-GR), connexin 43 (Cx43), and brain-derived neurotrophic factor (BDNF), a remarkable upregulation in c-Src. While the introduction of XYP could reverse the changes in all of these indicators mediated by CUMS. Furthermore, we proved that Cx43 could interact with GR, and the protective effect of XYP on hippocampal neurons is realized by up-regulating GR. Summarized, this study indicated that XYP could ameliorate hippocampal neuron damage in CUMS-induced depression model rats through acting on Cx43/GR/BDNF axis.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Yong Luo
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Xuenan Hou
- The Forth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Kang Lu
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Yanhong He
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Baoying Yang
- The 3rd Departments of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou City, China
| | - Yi Qin
- Department of Orthopaedics, Zhuhai People's Hospital, Zhuhai City, China
| |
Collapse
|
33
|
Jo D, Song J. Irisin Acts via the PGC-1α and BDNF Pathway to Improve Depression-like Behavior. Clin Nutr Res 2021; 10:292-302. [PMID: 34796134 PMCID: PMC8575642 DOI: 10.7762/cnr.2021.10.4.292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
Depression is the most prevalent psychiatric disorder experienced by the world's population. Mechanisms associated with depression-like behavior have not been fully investigated. Among the therapeutic solution for depression, exercise is considered an important regulator attenuating depressive neuropathology. Exercise has been reported to boost the secretion of myokines such as irisin and myostatin in skeletal muscles. Myokines secreted during exercise are involved in various cellular responses including the endocrine and autocrine systems. Especially, irisin as a cleaved version of fibronectin domain-containing protein 5 has multiple functions such as white fat-browning, energy expenditure increase, anti-inflammatory effects, and mitochondrial function improvement in both systemic circulation and central nervous system. Furthermore, irisin activates energy metabolism-related signaling peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and memory formation-related signaling brain-derived neurotrophic factor involved in depression. However, the role and mechanism of irisin in depression disorder is not obvious until now. Here, we review recent evidences regarding the therapeutic effect of irisin in depression disorder. We suggest that irisin is a key molecule that suppresses several neuropathological mechanisms involved in depression.
Collapse
Affiliation(s)
- Danbi Jo
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea.,Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea.,Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| |
Collapse
|
34
|
Bryant J, Andhavarapu S, Bever C, Guda P, Katuri A, Gupta U, Arvas M, Asemu G, Heredia A, Gerzanich V, Simard JM, Makar TK. 7,8-Dihydroxyflavone improves neuropathological changes in the brain of Tg26 mice, a model for HIV-associated neurocognitive disorder. Sci Rep 2021; 11:18519. [PMID: 34531413 PMCID: PMC8446048 DOI: 10.1038/s41598-021-97220-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The combined antiretroviral therapy era has significantly increased the lifespan of people with HIV (PWH), turning a fatal disease to a chronic one. However, this lower but persistent level of HIV infection increases the susceptibility of HIV-associated neurocognitive disorder (HAND). Therefore, research is currently seeking improved treatment for this complication of HIV. In PWH, low levels of brain derived neurotrophic factor (BDNF) has been associated with worse neurocognitive impairment. Hence, BDNF administration has been gaining relevance as a possible adjunct therapy for HAND. However, systemic administration of BDNF is impractical because of poor pharmacological profile. Therefore, we investigated the neuroprotective effects of BDNF-mimicking 7,8 dihydroxyflavone (DHF), a bioactive high-affinity TrkB agonist, in the memory-involved hippocampus and brain cortex of Tg26 mice, a murine model for HAND. In these brain regions, we observed astrogliosis, increased expression of chemokine HIV-1 coreceptors CXCR4 and CCR5, neuroinflammation, and mitochondrial damage. Hippocampi and cortices of DHF treated mice exhibited a reversal of these pathological changes, suggesting the therapeutic potential of DHF in HAND. Moreover, our data indicates that DHF increases the phosphorylation of TrkB, providing new insights about the role of the TrkB-Akt-NFkB signaling pathway in mediating these pathological hallmarks. These findings guide future research as DHF shows promise as a TrkB agonist treatment for HAND patients in adjunction to the current antiviral therapies.
Collapse
Affiliation(s)
- Joseph Bryant
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Christopher Bever
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA
| | | | - Akhil Katuri
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | - Udit Gupta
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Girma Asemu
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland, Baltimore, MD, 21201, USA
| | - J Marc Simard
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA
- Department of Neurosurgery, University of Maryland, Baltimore, MD, 21201, USA
| | - Tapas Kumar Makar
- Institute of Human Virology, Baltimore, MD, 21201, USA.
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
35
|
CPEB3-dowregulated Nr3c1 mRNA translation confers resilience to developing posttraumatic stress disorder-like behavior in fear-conditioned mice. Neuropsychopharmacology 2021; 46:1669-1679. [PMID: 33941859 PMCID: PMC8280193 DOI: 10.1038/s41386-021-01017-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
Susceptibility or resilience to posttraumatic stress disorder (PTSD) depends on one's ability to appropriately adjust synaptic plasticity for coping with the traumatic experience. Activity-regulated mRNA translation synthesizes plasticity-related proteins to support long-term synaptic changes and memory. Hence, cytoplasmic polyadenylation element-binding protein 3-knockout (CPEB3-KO) mice, showing dysregulated translation-associated synaptic rigidity, may be susceptible to PTSD-like behavior. Here, using a context-dependent auditory fear conditioning and extinction paradigm, we found that CPEB3-KO mice exhibited traumatic intensity-dependent PTSD-like fear memory. A genome-wide screen of CPEB3-bound transcripts revealed that Nr3c1, encoding glucocorticoid receptor (GR), was translationally suppressed by CPEB3. Thus, CPEB3-KO neurons with elevated GR expression exhibited increased corticosterone-induced calcium influx and decreased mRNA and protein levels of brain-derived neurotrophic factor (Bdnf). Moreover, the reduced expression of BDNF was associated with increased GR level during fear extinction in CPEB3-KO hippocampi. Intracerebroventricular delivery of BDNF before extinction training mitigated spontaneous fear intrusion in CPEB3-KO mice during extinction recall. Analysis of two GEO datasets revealed decreased transcriptomic expression of CPEB3 but not NR3C1 in peripheral blood mononuclear cells of humans with PTSD. Collectively, this study reveals that CPEB3, as a potential PTSD-risk gene, downregulates Nr3c1 translation to maintain proper GR-BDNF signaling for fear extinction.
Collapse
|
36
|
Puhlmann LMC, Linz R, Valk SL, Vrticka P, Vos de Wael R, Bernasconi A, Bernasconi N, Caldairou B, Papassotiriou I, Chrousos GP, Bernhardt BC, Singer T, Engert V. Association between hippocampal structure and serum Brain-Derived Neurotrophic Factor (BDNF) in healthy adults: A registered report. Neuroimage 2021; 236:118011. [PMID: 33852941 PMCID: PMC8280951 DOI: 10.1016/j.neuroimage.2021.118011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023] Open
Abstract
The hippocampus is a highly plastic brain structure supporting functions central to human cognition. Morphological changes in the hippocampus have been implicated in development, aging, as well as in a broad range of neurological and psychiatric disorders. A growing body of research suggests that hippocampal plasticity is closely linked to the actions of brain-derived neurotrophic factor (BDNF). However, evidence on the relationship between hippocampal volume (HCV) and peripheral BDNF levels is scarce and limited to elderly and patient populations. Further, despite evidence that BDNF expression differs throughout the hippocampus and is implicated in adult neurogenesis specifically in the dentate gyrus, no study has so far related peripheral BDNF levels to the volumes of individual hippocampal subfields. Besides its clinical implications, BDNF-facilitated hippocampal plasticity plays an important role in regulating cognitive and affective processes. In the current registered report, we investigated how serum BDNF (sBDNF) levels relate to volumes of the hippocampal formation and its subfields in a large sample of healthy adults (N = 279, 160 f) with a broad age range (20-55 years, mean 40.5) recruited in the context of the ReSource Project. We related HCV to basal sBDNF and, in a subsample (n = 103, 57 f), to acute stress-reactive change in sBDNF. We further tested the role of age as a moderator of both associations. Contrary to our hypotheses, neither basal sBDNF levels nor stress-reactive sBDNF change were associated with total HCV or volume of the dentate gyrus/cornu ammonis 4 (DG/CA4) subfield. We also found no evidence for a moderating effect of age on any of these associations. Our null results provide a first point of reference on the relationship between sBDNF and HCV in healthy mid-age, in contrast to patient or aging populations. We suggest that sBDNF levels have limited predictive value for morphological differences of the hippocampal structure when notable challenge to its neuronal integrity or to neurotrophic capacity is absent.
Collapse
Affiliation(s)
- L M C Puhlmann
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Leibniz Institute for Resilience Research, Mainz, Germany.
| | - R Linz
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - S L Valk
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany; Otto Hahn Research Group "Cognitive Neurogenetics", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - P Vrticka
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| | - R Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - A Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - N Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - B Caldairou
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - I Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - G P Chrousos
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - B C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - T Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| | - V Engert
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
37
|
Frittoli RB, Pereira DR, Lapa AT, Postal M, Sinicato NA, Fernandes PT, Cendes F, Castellano G, Rittner L, Marini R, Niewold TB, Appenzeller S. Axonal dysfunction is associated with interferon-γ levels in childhood-onset systemic lupus erythematosus: a multivoxel magnetic resonance spectroscopy study. Rheumatology (Oxford) 2021; 61:1529-1537. [PMID: 34282445 DOI: 10.1093/rheumatology/keab530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/19/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Axonal/neuronal damage has been shown to be a pathological finding that precedes neuropsychiatric manifestations in systemic lupus erythematosus (SLE). Therefore, the objective of this study was to determine the presence of axonal dysfunction in childhood-onset SLE patients (cSLE) and to determine clinical, immunological, and treatment features associated with its occurrence. METHODS We included 86 consecutive cSLE patients [median age 17 years (range 5-28)] and 71 controls [median age 18 years (5-28)]. We performed Proton Magnetic Resonance Spectroscopic Imaging (1H-MRSI) using point resolved spectroscopy sequence (PRESS) over the superior-posterior region of the corpus callosum and signals from N-acetylaspartate compounds (NAA), choline-based compounds (CHO); creatine containing compounds (Cr), myo-inositol (mI), lactate (Lac), glutamate (Glu), glutamine (Gln) and lactate (Lac) were measured and metabolites/Cr ratios were determined. Complete clinical, laboratory and neurological evaluations were performed in all subjects. Sera IL-4, IL-5, IL-6, IL-10, IL-12, IL-17, TNF- α, INF- γ cytokines levels, antiribosomal P protein antibodies (anti-P) and S100β were measured by enzyme-linked immunosorbent assay (ELISA) using commercial kits. Data were compared by non-parametric tests. RESULTS NAA/Cr ratios (p= 0.035) and Lac/Cr ratios (p= 0.019) levels were significantly decreased in cSLE patients when compared with controls. In multivariate analysis, interferon (IFN) gamma (γ) levels (OR = 4.1; 95% 2.01-7.9) and depressive symptoms (OR = 1.9; 95%CI = 1.1-3.2) were associated with NAA/Cr ratio. Increased Cho/Cr was associated with the presence of cognitive impairment (OR = 3.4; p< 0.001; 95%CI = 2.034-5.078). mI/Cr ratio correlated with cumulative glucocorticoids dosage (r = 0.361; p= 0.014). CONCLUSION NAA and CHO ratios may be useful as biomarkers in neuropsychiatric cSLE. Longitudinal studies are necessary to determine whether they predict structural damage.
Collapse
Affiliation(s)
- Renan Bazuco Frittoli
- Medical Physiopathology Program-School of Medical Science-, University of Campinas.,Rheumatology Lab, School of Medical Sciences, University of Campinas
| | - Danilo Rodrigues Pereira
- Medical Physiopathology Program-School of Medical Science-, University of Campinas.,Rheumatology Lab, School of Medical Sciences, University of Campinas
| | | | - Mariana Postal
- Rheumatology Lab, School of Medical Sciences, University of Campinas
| | | | | | - Fernando Cendes
- Department of Neurology, Faculty of Medical Science-University of Campinas
| | | | - Leticia Rittner
- School of Electrical and Computer Engineering, University of Campinas
| | - Roberto Marini
- Pediatric Rheumatology Unit, Departament of Pediatrics-, University of Campinas
| | - Timothy B Niewold
- Colton Center for Autoimmunity, NYU School of Medicine, New York, USA
| | - Simone Appenzeller
- Rheumatology Lab, School of Medical Sciences, University of Campinas.,Department of Medicine, Rheumatology Unit, School of Medical Science-University of Campinas
| |
Collapse
|
38
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|
39
|
Gulyaeva NV. Glucocorticoid Regulation of the Glutamatergic
Synapse: Mechanisms of Stress-Dependent Neuroplasticity. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Lanshakov DA, Sukhareva EV, Bulygina VV, Bannova AV, Shaburova EV, Kalinina TS. Single neonatal dexamethasone administration has long-lasting outcome on depressive-like behaviour, Bdnf, Nt-3, p75ngfr and sorting receptors (SorCS1-3) stress reactive expression. Sci Rep 2021; 11:8092. [PMID: 33854153 PMCID: PMC8046778 DOI: 10.1038/s41598-021-87652-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Elevated glucocorticoid level in the early postnatal period is associated with glucocorticoid therapy prescribed at preterm delivery most often has severe long-lasting neurodevelopmental and behavioural effects. Detailed molecular mechanisms of such programming action of antenatal glucocorticoids on behaviour are still poorly understood. To address this question we studied neurotrophins: Bdnf, Nt-3, Ngf and their receptors: p75ngfr, Sorcs3 expression changes after subcutaneous dexamethasone (DEX) 0.2 mg/kg injection to P2 rat pups. Neurotrophins expression level was studied in the hippocampus (HPC). Disturbances in these brain regions have been implicated in the emergence of multiple psychopathologies. p75ngfr and Sorcs3 expression was studied in the brainstem—region where monoamine neurons are located. Immunohistochemically P75NTR protein level changes after DEX were investigated in the brainstem Locus Coereleus norepinephrine neurons (NE). In the first hours after DEX administration elevation of neurotrophins expression in HPC and decline of receptor’s expression in the NE brainstem neurons were observed. Another critical time point during maturation is adolescence. Impact of elevated glucocorticoid level in the neonatal period and unpredictable stress (CMUS) at the end of adolescence on depressive-like behaviour was studied. Single neonatal DEX injection leads to decrease in depressive-like behaviour, observed in FST, independently from chronic stress. Neonatal DEX administration decreased Ntf3 and SorCS1 expression in the brainstem. Also Bdnf mRNA level in the brainstem of these animals didn’t decrease after FST. CMUS at the end of adolescence changed p75ngfr and SorCS3 expression in the brainstem in the animals that received single neonatal DEX administration.
Collapse
Affiliation(s)
- D A Lanshakov
- Laboratory of Postgenomics Neurobiology, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.
| | - E V Sukhareva
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - V V Bulygina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090
| | - A V Bannova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090
| | - E V Shaburova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - T S Kalinina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
41
|
Bliźniewska-Kowalska K, Gałecki P, Szemraj J, Talarowska M. Expression of Selected Genes Involved in Neurogenesis in the Etiopathogenesis of Depressive Disorders. J Pers Med 2021; 11:jpm11030168. [PMID: 33804468 PMCID: PMC7998568 DOI: 10.3390/jpm11030168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
(1) Background: The neurogenic theory suggests that impaired neurogenesis within the dentate gyrus of the hippocampus is one of the factors causing depression. Immunology also has an impact on neurotrophic factors. The aim of the study was to assess the importance of selected genes involved in the process of neurogenesis i.e., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) and neuron-restrictive silencer factor (REST gene) in the etiopathogenesis of depressive disorders. (2) Methods: A total of 189 subjects took part in the study (95 depressed patients, 94 healthy controls). Sociodemographic data were collected. The severity of depressive symptoms was assessed using the Hamilton Depression Rating Scale (HDRS). RT-PCR was used to assess gene expression at the mRNA levels, while Enzyme-Linked Immunosorbent Assay (ELISA) was used to assess gene expression at the protein level. (3) Results: Expression of NGF, BDNF, REST genes is lower in depressed patients than in the control group, whereas the expression of GDNF gene is higher in patients with depressive disorders than in the group of healthy volunteers. (4) Conclusions: The expression of selected genes might serve as a biomarker of depression.
Collapse
Affiliation(s)
- Katarzyna Bliźniewska-Kowalska
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
- Correspondence: ; Tel.: +48-608-203-624
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Monika Talarowska
- Department of Clinical Psychology, Institute of Psychology University of Lodz, 91-433 Lodz, Poland;
| |
Collapse
|
42
|
The downstream effects of forced exercise training and voluntary physical activity in an enriched environment on hippocampal plasticity in preadolescent rats. Brain Res 2021; 1759:147373. [PMID: 33600831 DOI: 10.1016/j.brainres.2021.147373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
During critical periods of brain development, exercise-induced physical fitness may greatly impact the brain structure and function. Nevertheless, forced and intensive physical activities may display negative effects, particularly in the pre-pubertal period. Preadolescent rats were exposed to an enriched environment and combined exercise training for three consecutive weeks in the present study. There was a large cage with enriching stimuli and voluntary physical activity opportunities as an enriched environment (EE). The combined exercise training (CET) consisted of aerobic and resistance training programs. The protein levels of corticosterone (CORT), glucocorticoid receptors (GRs), insulin-like growth factor-1 (IGF-1), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) were assessed using Enzyme-linked immunosorbent assay and western blotting. Cresyl violet staining was also used to evaluate the number of cells in the hippocampus. While GRs levels were significantly increased in both EE and CET groups (P < 0.001), decreased CORT levels were found in enriched rats (P < 0.05). Moreover, elevated BDNF levels were found in the EE (P < 0.01) and CET (P < 0.05) groups. Similarly, VEGF significantly increased in the EE (P < 0.01) and CET (P < 0.05) animals. However, IGF-1 levels were high only in trained rats (P < 0.05). The number of cells also significantly increased in the DG and CA1 region of the hippocampus after each intervention (P < 0.001). These findings clarified that combined exercise training and voluntary physical activity in an enriched environment during the preadolescent period might promote the downstream plasticity effects on the hippocampus.
Collapse
|
43
|
Mancini GF, Marchetta E, Pignani I, Trezza V, Campolongo P. Social Defeat Stress During Early Adolescence Confers Resilience Against a Single Episode of Prolonged Stress in Adult Rats. Cells 2021; 10:360. [PMID: 33572375 PMCID: PMC7916240 DOI: 10.3390/cells10020360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/19/2023] Open
Abstract
Early-life adverse experiences (first hit) lead to coping strategies that may confer resilience or vulnerability to later experienced stressful events (second hit) and the subsequent development of stress-related psychopathologies. Here, we investigated whether exposure to two stressors at different stages in life has long-term effects on emotional and cognitive capabilities, and whether the interaction between the two stressors influences stress resilience. Male rats were subjected to social defeat stress (SDS, first hit) in adolescence and to a single episode of prolonged stress (SPS, second hit) in adulthood. Behavioral outcomes, hippocampal expression of brain-derived neurotrophic factor, and plasma corticosterone levels were tested in adulthood. Rats exposed to both stressors exhibited resilience against the development of stress-induced alterations in emotional behaviors and spatial memory, but vulnerability to cued fear memory dysfunction. Rats subjected to both stressors demonstrated resilience against the SDS-induced alterations in hippocampal brain-derived neurotrophic factor expression and plasma corticosterone levels. SPS alone altered locomotion and spatial memory retention; these effects were absent in SDS-exposed rats later exposed to SPS. Our findings reveal that exposure to social stress during early adolescence influences the ability to cope with a second challenge experienced later in life.
Collapse
Affiliation(s)
- Giulia Federica Mancini
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.F.M.); (E.M.); (I.P.)
- Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Enrico Marchetta
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.F.M.); (E.M.); (I.P.)
- Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Irene Pignani
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.F.M.); (E.M.); (I.P.)
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University Roma Tre, 00146 Rome, Italy;
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.F.M.); (E.M.); (I.P.)
- Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| |
Collapse
|
44
|
Sharma VK, Singh TG. Navigating Alzheimer's Disease via Chronic Stress: The Role of Glucocorticoids. Curr Drug Targets 2021; 21:433-444. [PMID: 31625472 DOI: 10.2174/1389450120666191017114735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic intensifying incurable progressive disease leading to neurological deterioration manifested as impairment of memory and executive brain functioning affecting the physical ability like intellectual brilliance, common sense in patients. The recent therapeutic approach in Alzheimer's disease is only the symptomatic relief further emerging the need for therapeutic strategies to be targeted in managing the underlying silent killing progression of dreaded pathology. Therefore, the current research direction is focused on identifying the molecular mechanisms leading to the evolution of the understanding of the neuropathology of Alzheimer's disease. The resultant saturation in the area of current targets (amyloid β, τ Protein, oxidative stress etc.) has led the scientific community to rethink of the mechanistic neurodegenerative pathways and reprogram the current research directions. Although, the role of stress has been recognized for many years and contributing to the development of cognitive impairment, the area of stress has got the much-needed impetus recently and is being recognized as a modifiable menace for AD. Stress is an unavoidable human experience that can be resolved and normalized but chronic activation of stress pathways unsettle the physiological status. Chronic stress mediated activation of neuroendocrine stimulation is generally linked to a high risk of developing AD. Chronic stress-driven physiological dysregulation and hypercortisolemia intermingle at the neuronal level and leads to functional (hypometabolism, excitotoxicity, inflammation) and anatomical remodeling of the brain architecture (senile plaques, τ tangles, hippocampal atrophy, retraction of spines) ending with severe cognitive deterioration. The present review is an effort to collect the most pertinent evidence that support chronic stress as a realistic and modifiable therapeutic earmark for AD and to advocate glucocorticoid receptors as therapeutic interventions.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India.,Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| |
Collapse
|
45
|
Pignataro P, Dicarlo M, Zerlotin R, Zecca C, Dell’Abate MT, Buccoliero C, Logroscino G, Colucci S, Grano M. FNDC5/Irisin System in Neuroinflammation and Neurodegenerative Diseases: Update and Novel Perspective. Int J Mol Sci 2021; 22:ijms22041605. [PMID: 33562601 PMCID: PMC7915567 DOI: 10.3390/ijms22041605] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Irisin, the circulating peptide originating from fibronectin type III domain-containing protein 5 (FNDC5), is mainly expressed by muscle fibers under peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) control during exercise. In addition to several beneficial effects on health, physical activity positively affects nervous system functioning, particularly the hippocampus, resulting in amelioration of cognition impairments. Recently, FNDC5/irisin detection in hippocampal neurons and the presence of irisin in the cerebrospinal fluid opened a new intriguing chapter in irisin history. Interestingly, in the hippocampus of mice, exercise increases FNDC5 levels and upregulates brain-derived neurotrophic factor (BDNF) expression. BDNF, displaying neuroprotection and anti-inflammatory effects, is mainly produced by microglia and astrocytes. In this review, we discuss how these glial cells can morphologically and functionally switch during neuroinflammation by modulating the expression of a plethora of neuroprotective or neurotoxic factors. We also focus on studies investigating the irisin role in neurodegenerative diseases (ND). The emerging involvement of irisin as a mediator of the multiple positive effects of exercise on the brain needs further studies to better deepen this issue and the potential use in therapeutic approaches for neuroinflammation and ND.
Collapse
Affiliation(s)
- Patrizia Pignataro
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
| | - Manuela Dicarlo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
| | - Roberta Zerlotin
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari, “Pia Fondazione Card G. Panico” Hospital Tricase, 73039 Lecce, Italy; (C.Z.); (M.T.D.)
| | - Maria Teresa Dell’Abate
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari, “Pia Fondazione Card G. Panico” Hospital Tricase, 73039 Lecce, Italy; (C.Z.); (M.T.D.)
| | - Cinzia Buccoliero
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
| | - Giancarlo Logroscino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari, “Pia Fondazione Card G. Panico” Hospital Tricase, 73039 Lecce, Italy; (C.Z.); (M.T.D.)
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
- Correspondence: ; Tel.: +39-080-5478-361
| |
Collapse
|
46
|
Real AG, Fontanari AMV, Costa AB, Soll BMB, Bristot G, de Oliveira LF, Kamphorst AM, Schneider MA, Lobato MIR. Gender dysphoria: prejudice from childhood to adulthood, but no impact on inflammation. A cross-sectional controlled study. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2021; 43:37-46. [PMID: 33681906 PMCID: PMC7932037 DOI: 10.47626/2237-6089-2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Gender dysphoria (GD) is characterized by a marked incongruence between experienced gender and one's gender assigned at birth. Transsexual individuals present a higher prevalence of psychiatric disorders when compared to non-transsexual populations, and it has been proposed that minority stress, i.e., discrimination or prejudice, has a relevant impact on these outcomes. Transsexuals also show increased chances of having experienced maltreatment during childhood. Interleukin (IL)-1β, IL-6, IL-10 and tumor necrosis factor-alpha (TNF-α) are inflammatory cytokines that regulate our immune system. Imbalanced levels in such cytokines are linked to history of childhood maltreatment and psychiatric disorders. We compared differences in IL-1β, IL-6, IL-10 and TNF-α levels and exposure to traumatic events in childhood and adulthood in individuals with and without GD (DSM-5). METHODS Cross-sectional controlled study comparing 34 transsexual women and 31 non-transsexual men. They underwent a thorough structured interview, assessing sociodemographic information, mood and anxiety symptoms, childhood maltreatment, explicit discrimination and suicidal ideation. Inflammatory cytokine levels (IL-1β, IL-6, IL-10 and TNF-α) were measured by multiplex immunoassay. RESULTS Individuals with GD experienced more discrimination (p = 0.002) and childhood maltreatment (p = 0.046) than non-transsexual men. Higher suicidal ideation (p < 0.001) and previous suicide attempt (p = 0.001) rates were observed in transsexual women. However, no differences were observed in the levels of any cytokine. CONCLUSIONS These results suggest that transsexual women are more exposed to stressful events from childhood to adulthood than non-transsexual men and that GD per se does not play a role in inflammatory markers.
Collapse
Affiliation(s)
- André Gonzales Real
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Anna Martha Vaitses Fontanari
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Angelo Brandelli Costa
- Departamento de PsicologiaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreRSBrazilDepartamento de Psicologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| | - Bianca Machado Borba Soll
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Giovana Bristot
- INCT Translacional em MedicinaHospital de Clinicas de Porto AlegreUFRGSPorto AlegreRSBrazil Laboratório de Psiquiatria Molecular, INCT Translacional em Medicina, Hospital de Clinicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em BioquímicaUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Bioquímica, UFRGS, Porto Alegre, RS, Brazil.
| | - Larissa Fagundes de Oliveira
- INCT Translacional em MedicinaHospital de Clinicas de Porto AlegreUFRGSPorto AlegreRSBrazil Laboratório de Psiquiatria Molecular, INCT Translacional em Medicina, Hospital de Clinicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil.
| | - Ana Maria Kamphorst
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Maiko Abel Schneider
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Maria Inês Rodrigues Lobato
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
47
|
Cursano S, Battaglia CR, Urrutia-Ruiz C, Grabrucker S, Schön M, Bockmann J, Braumüller S, Radermacher P, Roselli F, Huber-Lang M, Boeckers TM. A CRHR1 antagonist prevents synaptic loss and memory deficits in a trauma-induced delirium-like syndrome. Mol Psychiatry 2021; 26:3778-3794. [PMID: 32051550 PMCID: PMC8550963 DOI: 10.1038/s41380-020-0659-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Older patients with severe physical trauma are at high risk of developing neuropsychiatric syndromes with global impairment of cognition, attention, and consciousness. We employed a thoracic trauma (TxT) mouse model and thoroughly analyzed age-dependent spatial and temporal posttraumatic alterations in the central nervous system. Up to 5 days after trauma, we observed a transient 50% decrease in the number of excitatory synapses specifically in hippocampal pyramidal neurons accompanied by alterations in attention and motor activity and disruption of contextual memory consolidation. In parallel, hippocampal corticotropin-releasing hormone (CRH) expression was highly upregulated, and brain-derived neurotrophic factor (BDNF) levels were significantly reduced. In vitro experiments revealed that CRH application induced neuronal autophagy with rapid lysosomal degradation of BDNF via the NF-κB pathway. The subsequent synaptic loss was rescued by BDNF as well as by specific NF-κB and CRH receptor 1 (CRHR1) antagonists. In vivo, the chronic application of a CRHR1 antagonist after TxT resulted in reversal of the observed histological, molecular, and behavioral alterations. The data suggest that neuropsychiatric syndromes (i.e., delirium) after peripheral trauma might be at least in part due to the activation of the hippocampal CRH/NF-κB/BDNF pathway, which results in a dramatic loss of synaptic contacts. The successful rescue by stress hormone receptor antagonists should encourage clinical trials focusing on trauma-induced delirium and/or other posttraumatic syndromes.
Collapse
Affiliation(s)
- Silvia Cursano
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany ,International Graduate School in Molecular Medicine, IGradU, 89081 Ulm, Germany
| | - Chiara R. Battaglia
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany ,International Graduate School in Molecular Medicine, IGradU, 89081 Ulm, Germany
| | - Carolina Urrutia-Ruiz
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stefanie Grabrucker
- grid.10049.3c0000 0004 1936 9692Department of Biological Sciences, University of Limerick, Limerick, V94 PH61 Ireland
| | - Michael Schön
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jürgen Bockmann
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sonja Braumüller
- grid.6582.90000 0004 1936 9748Institute for Anesthesiological Pathophysiology, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - Peter Radermacher
- grid.6582.90000 0004 1936 9748Institute for Anesthesiological Pathophysiology, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - Francesco Roselli
- grid.6582.90000 0004 1936 9748Clinic for Neurology, Ulm University, 89081 Ulm, Germany
| | - Markus Huber-Lang
- grid.6582.90000 0004 1936 9748Institute of Clinical and Experimental Trauma-Immunology, Ulm University, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
48
|
Huang YQ, Wang Y, Hu K, Lin S, Lin XH. Hippocampal Glycerol-3-Phosphate Acyltransferases 4 and BDNF in the Progress of Obesity-Induced Depression. Front Endocrinol (Lausanne) 2021; 12:667773. [PMID: 34054732 PMCID: PMC8158158 DOI: 10.3389/fendo.2021.667773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Obesity has been reported to lead to increased incidence of depression. Glycerol-3-phosphate acyltransferases 4 (GPAT4) is involved in triacylglycerol synthesis and plays an important role in the occurrence of obesity. GPAT4 is the only one of GPAT family expressed in the brain. The aim of this study is to investigate if central GPAT4 is associated with obesity-related depression and its underlying mechanism. RESULTS A high-fat diet resulted in increased body weight and blood lipid. HFD induced depression like behavior in the force swimming test, tail suspension test and sucrose preference test. HFD significantly up-regulated the expression of GPAT4 in hippocampus, IL-1β, IL-6, TNF-α and NF-κB, accompanied with down-regulation of BDNF expression in hippocampus and ventromedical hypothalamus, which was attributed to AMP-activated protein kinase (AMPK) and cAMP-response element binding protein (CREB). CONCLUSION Our findings suggest that hippocampal GPAT4 may participate in HFD induced depression through AMPK/CREB/BDNF pathway, which provides insights into a clinical target for obesity-associated depression intervention.
Collapse
Affiliation(s)
- Yin-qiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yaofeng Wang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Keyue Hu
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, Australia
- *Correspondence: Xia-hong Lin, ; Shu Lin,
| | - Xia-hong Lin
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Xia-hong Lin, ; Shu Lin,
| |
Collapse
|
49
|
Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. Promoting Successful Cognitive Aging: A Ten-Year Update. J Alzheimers Dis 2021; 81:871-920. [PMID: 33935078 PMCID: PMC8293659 DOI: 10.3233/jad-201462] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
A decade has passed since we published a comprehensive review in this journal addressing the topic of promoting successful cognitive aging, making this a good time to take stock of the field. Because there have been limited large-scale, randomized controlled trials, especially following individuals from middle age to late life, some experts have questioned whether recommendations can be legitimately offered about reducing the risk of cognitive decline and dementia. Despite uncertainties, clinicians often need to at least make provisional recommendations to patients based on the highest quality data available. Converging lines of evidence from epidemiological/cohort studies, animal/basic science studies, human proof-of-concept studies, and human intervention studies can provide guidance, highlighting strategies for enhancing cognitive reserve and preventing loss of cognitive capacity. Many of the suggestions made in 2010 have been supported by additional research. Importantly, there is a growing consensus among major health organizations about recommendations to mitigate cognitive decline and promote healthy cognitive aging. Regular physical activity and treatment of cardiovascular risk factors have been supported by all of these organizations. Most organizations have also embraced cognitively stimulating activities, a heart-healthy diet, smoking cessation, and countering metabolic syndrome. Other behaviors like regular social engagement, limiting alcohol use, stress management, getting adequate sleep, avoiding anticholinergic medications, addressing sensory deficits, and protecting the brain against physical and toxic damage also have been endorsed, although less consistently. In this update, we review the evidence for each of these recommendations and offer practical advice about behavior-change techniques to help patients adopt brain-healthy behaviors.
Collapse
Affiliation(s)
- Taylor J. Krivanek
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Seth A. Gale
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Brittany M. McFeeley
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Casey M. Nicastri
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Kirk R. Daffner
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| |
Collapse
|
50
|
Podgorny OV, Gulyaeva NV. Glucocorticoid-mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. J Neurochem 2020; 157:370-392. [PMID: 33301616 DOI: 10.1111/jnc.15265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
A comprehensive overview of the interplay between glucocorticoids (GCs) and adult hippocampal neurogenesis (AHN) is presented, particularly, in the context of a diseased brain. The effectors of GCs in the dentate gyrus neurogenic niche of the hippocampal are reviewed, and the consequences of the GC signaling on the generation and integration of new neurons are discussed. Recent findings demonstrating how GC signaling mediates impairments of the AHN in various brain pathologies are overviewed. GC-mediated effects on the generation and integration of adult-born neurons in the hippocampal dentate gyrus depend on the nature, severity, and duration of the acting stress factor. GCs realize their effects on the AHN primarily via specific glucocorticoid and mineralocorticoid receptors. Disruption of the reciprocal regulation between the hypothalamic-pituitary-adrenal (HPA) axis and the generation of the adult-born granular neurons is currently considered to be a key mechanism implicating the AHN into the pathogenesis of numerous brain diseases, including those without a direct hippocampal damage. These alterations vary from reduced proliferation of stem and progenitor cells to increased cell death and abnormalities in morphology, connectivity, and localization of young neurons. Although the involvement of the mutual regulation between the HPA axis and the AHN in the pathogenesis of cognitive deficits and mood impairments is evident, several unresolved critical issues are stated. Understanding the details of GC-mediated mechanisms involved in the alterations in AHN could enable the identification of molecular targets for ameliorating pathology-induced imbalance in the HPA axis/AHN mutual regulation to conquer cognitive and psychiatric disturbances.
Collapse
Affiliation(s)
- Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|