1
|
Falcão M, Monteiro P, Jacinto L. Tactile sensory processing deficits in genetic mouse models of autism spectrum disorder. J Neurochem 2024; 168:2105-2123. [PMID: 38837765 DOI: 10.1111/jnc.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Altered sensory processing is a common feature in autism spectrum disorder (ASD), as recognized in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Although altered responses to tactile stimuli are observed in over 60% of individuals with ASD, the neurobiological basis of this phenomenon is poorly understood. ASD has a strong genetic component and genetic mouse models can provide valuable insights into the mechanisms underlying tactile abnormalities in ASD. This review critically addresses recent findings regarding tactile processing deficits found in mouse models of ASD, with a focus on behavioral, anatomical, and functional alterations. Particular attention was given to cellular and circuit-level functional alterations, both in the peripheral and central nervous systems, with the objective of highlighting possible convergence mechanisms across models. By elucidating the impact of mutations in ASD candidate genes on somatosensory circuits and correlating them with behavioral phenotypes, this review significantly advances our understanding of tactile deficits in ASD. Such insights not only broaden our comprehension but also pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Margarida Falcão
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Patricia Monteiro
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Luis Jacinto
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
2
|
Maeda K, Tanimura M, Masago Y, Horiyama T, Takemoto H, Sasaki T, Koyama R, Ikegaya Y, Ogawa K. Development of an in vitro compound screening system that replicate the in vivo spine phenotype of idiopathic ASD model mice. Front Pharmacol 2024; 15:1455812. [PMID: 39286633 PMCID: PMC11403255 DOI: 10.3389/fphar.2024.1455812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental condition characterized by core symptoms including social difficulties, repetitive behaviors, and sensory abnormalities. Aberrant morphology of dendritic spines within the cortex has been documented in genetic disorders associated with ASD and ASD-like traits. We hypothesized that compounds that ameliorate abnormalities in spine dynamics might have the potential to ameliorate core symptoms of ASD. Because the morphology of the spine is influenced by signal inputs from other neurons and various molecular interactions, conventional single-molecule targeted drug discovery methods may not suffice in identifying compounds capable of ameliorating spine morphology abnormalities. In this study, we focused on spine phenotypes in the cortex using BTBR T + Itpr3 tf /J (BTBR) mice, which have been used as a model for idiopathic ASD in various studies. We established an in vitro compound screening system using primary cultured neurons from BTBR mice to faithfully represent the spine phenotype. The compound library mainly comprised substances with known target molecules and established safety profiles, including those approved or validated through human safety studies. Following screening of this specialized library containing 181 compounds, we identified 15 confirmed hit compounds. The molecular targets of these hit compounds were largely focused on the 5-hydroxytryptamine receptor (5-HTR). Furthermore, both 5-HT1AR agonist and 5-HT3R antagonist were common functional profiles in hit compounds. Vortioxetine, possessing dual attributes as a 5-HT1AR agonist and 5-HT3R antagonist, was administered to BTBR mice once daily for a period of 7 days. This intervention not only ameliorated their spine phenotype but also alleviated their social behavior abnormality. These results of vortioxetine supports the usefulness of a spine phenotype-based assay system as a potent drug discovery platform targeting ASD core symptoms.
Collapse
Affiliation(s)
- Kazuma Maeda
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | - Miki Tanimura
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | - Yusaku Masago
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | - Tsukasa Horiyama
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | - Hiroshi Takemoto
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Ogawa
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| |
Collapse
|
3
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Curatolo P, Scheper M, Emberti Gialloreti L, Specchio N, Aronica E. Is tuberous sclerosis complex-associated autism a preventable and treatable disorder? World J Pediatr 2024; 20:40-53. [PMID: 37878130 DOI: 10.1007/s12519-023-00762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in the TSC1 and TSC2 genes, causing overactivation of the mechanistic (previously referred to as mammalian) target of rapamycin (mTOR) signaling pathway in fetal life. The mTOR pathway plays a crucial role in several brain processes leading to TSC-related epilepsy, intellectual disability, and autism spectrum disorder (ASD). Pre-natal or early post-natal diagnosis of TSC is now possible in a growing number of pre-symptomatic infants. DATA SOURCES We searched PubMed for peer-reviewed publications published between January 2010 and April 2023 with the terms "tuberous sclerosis", "autism", or "autism spectrum disorder"," animal models", "preclinical studies", "neurobiology", and "treatment". RESULTS Prospective studies have highlighted that developmental trajectories in TSC infants who were later diagnosed with ASD already show motor, visual and social communication skills in the first year of life delays. Reliable genetic, cellular, electroencephalography and magnetic resonance imaging biomarkers can identify pre-symptomatic TSC infants at high risk for having autism and epilepsy. CONCLUSIONS Preventing epilepsy or improving therapy for seizures associated with prompt and tailored treatment strategies for autism in a sensitive developmental time window could have the potential to mitigate autistic symptoms in infants with TSC.
Collapse
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Mirte Scheper
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Millevert C, Vidas-Guscic N, Vanherp L, Jonckers E, Verhoye M, Staelens S, Bertoglio D, Weckhuysen S. Resting-State Functional MRI and PET Imaging as Noninvasive Tools to Study (Ab)Normal Neurodevelopment in Humans and Rodents. J Neurosci 2023; 43:8275-8293. [PMID: 38073598 PMCID: PMC10711730 DOI: 10.1523/jneurosci.1043-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Liesbeth Vanherp
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
6
|
Herrera K, Maldonado-Ruiz R, Camacho-Morales A, de la Garza AL, Castro H. Maternal methyl donor supplementation regulates the effects of cafeteria diet on behavioral changes and nutritional status in male offspring. Food Nutr Res 2023; 67:9828. [PMID: 37920679 PMCID: PMC10619398 DOI: 10.29219/fnr.v67.9828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023] Open
Abstract
Background Nutritional status and maternal feeding during the perinatal and postnatal periods can program the offspring to develop long-term health alterations. Epidemiologic studies have demonstrated an association between maternal obesity and intellectual disability/cognitive deficits like autism spectrum disorders (ASDs) in offspring. Experimental findings have consistently been indicating that maternal supplementation with methyl donors, attenuated the social alterations and repetitive behavior in offspring. Objective This study aims to analyze the effect of maternal cafeteria diet and methyl donor-supplemented diets on social, anxiety-like, and repetitive behavior in male offspring, besides evaluating weight gain and food intake in both dams and male offspring. Design C57BL/6 female mice were randomized into four dietary formulas: control Chow (CT), cafeteria (CAF), control + methyl donor (CT+M), and cafeteria + methyl donor (CAF+M) during the pre-gestational, gestational, and lactation period. Behavioral phenotyping in the offspring was performed by 2-month-old using Three-Chamber Test, Open Field Test, and Marble Burying Test. Results We found that offspring prenatally exposed to CAF diet displayed less social interaction index when compared with subjects exposed to Chow diet (CT group). Notably, offspring exposed to CAF+M diet recovered social interaction when compared to the CAF group. Discussion These findings suggest that maternal CAF diet is efficient in promoting reduced social interaction in murine models. In our study, we hypothesized that a maternal methyl donor supplementation could improve the behavioral alterations expected in maternal CAF diet offspring. Conclusions The CAF diet also contributed to a social deficit and anxiety-like behavior in the offspring. On the other hand, a maternal methyl donor-supplemented CAF diet normalized the social interaction in the offspring although it led to an increase in anxiety-like behaviors. These findings suggest that a methyl donor supplementation could protect against aberrant social behavior probably targeting key genes related to neurotransmitter pathways.
Collapse
Affiliation(s)
- Katya Herrera
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
| | - Roger Maldonado-Ruiz
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Alberto Camacho-Morales
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquímica. Monterrey, Nuevo León, México
| | - Ana Laura de la Garza
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Heriberto Castro
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| |
Collapse
|
7
|
Mount RA, Athif M, O’Connor M, Saligrama A, Tseng HA, Sridhar S, Zhou C, Bortz E, San Antonio E, Kramer MA, Man HY, Han X. The autism spectrum disorder risk gene NEXMIF over-synchronizes hippocampal CA1 network and alters neuronal coding. Front Neurosci 2023; 17:1277501. [PMID: 37965217 PMCID: PMC10641898 DOI: 10.3389/fnins.2023.1277501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Mutations in autism spectrum disorder (ASD) risk genes disrupt neural network dynamics that ultimately lead to abnormal behavior. To understand how ASD-risk genes influence neural circuit computation during behavior, we analyzed the hippocampal network by performing large-scale cellular calcium imaging from hundreds of individual CA1 neurons simultaneously in transgenic mice with total knockout of the X-linked ASD-risk gene NEXMIF (neurite extension and migration factor). As NEXMIF knockout in mice led to profound learning and memory deficits, we examined the CA1 network during voluntary locomotion, a fundamental component of spatial memory. We found that NEXMIF knockout does not alter the overall excitability of individual neurons but exaggerates movement-related neuronal responses. To quantify network functional connectivity changes, we applied closeness centrality analysis from graph theory to our large-scale calcium imaging datasets, in addition to using the conventional pairwise correlation analysis. Closeness centrality analysis considers both the number of connections and the connection strength between neurons within a network. We found that in wild-type mice the CA1 network desynchronizes during locomotion, consistent with increased network information coding during active behavior. Upon NEXMIF knockout, CA1 network is over-synchronized regardless of behavioral state and fails to desynchronize during locomotion, highlighting how perturbations in ASD-implicated genes create abnormal network synchronization that could contribute to ASD-related behaviors.
Collapse
Affiliation(s)
- Rebecca A. Mount
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Mohamed Athif
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | | | - Amith Saligrama
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Commonwealth School, Boston, MA, United States
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Sudiksha Sridhar
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Chengqian Zhou
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Emma Bortz
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Erynne San Antonio
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Mark A. Kramer
- Department of Mathematics, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
Carbonell AU, Freire-Cobo C, Deyneko IV, Dobariya S, Erdjument-Bromage H, Clipperton-Allen AE, Page DT, Neubert TA, Jordan BA. Comparing synaptic proteomes across five mouse models for autism reveals converging molecular similarities including deficits in oxidative phosphorylation and Rho GTPase signaling. Front Aging Neurosci 2023; 15:1152562. [PMID: 37255534 PMCID: PMC10225639 DOI: 10.3389/fnagi.2023.1152562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes. Comparative analyses of mouse models for Fragile X syndrome (Fmr1 knockout), cortical dysplasia focal epilepsy syndrome (Cntnap2 knockout), PTEN hamartoma tumor syndrome (Pten haploinsufficiency), ANKS1B syndrome (Anks1b haploinsufficiency), and idiopathic autism (BTBR+) revealed several common altered cellular and molecular pathways at the synapse, including changes in oxidative phosphorylation, and Rho family small GTPase signaling. Functional validation of one of these aberrant pathways, Rac1 signaling, confirms that the ANKS1B model displays altered Rac1 activity counter to that observed in other models, as predicted by the bioinformatic analyses. Overall similarity analyses reveal clusters of synaptic profiles, which may form the basis for molecular subtypes that explain genetic heterogeneity in ASD despite a common clinical diagnosis. Our results suggest that ASD-linked susceptibility genes ultimately converge on common signaling pathways regulating synaptic function and propose that these points of convergence are key to understanding the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Abigail U. Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carmen Freire-Cobo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ilana V. Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Saunil Dobariya
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Amy E. Clipperton-Allen
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Thomas A. Neubert
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
9
|
Maisterrena A, Matas E, Mirfendereski H, Balbous A, Marchand S, Jaber M. The State of the Dopaminergic and Glutamatergic Systems in the Valproic Acid Mouse Model of Autism Spectrum Disorder. Biomolecules 2022; 12:1691. [PMID: 36421705 PMCID: PMC9688008 DOI: 10.3390/biom12111691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/23/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a progressive neurodevelopmental disorder mainly characterized by deficits in social communication and stereotyped behaviors and interests. Here, we aimed to investigate the state of several key players in the dopamine and glutamate neurotransmission systems in the valproic acid (VPA) animal model that was administered to E12.5 pregnant females as a single dose (450 mg/kg). We report no alterations in the number of mesencephalic dopamine neurons or in protein levels of tyrosine hydroxylase in either the striatum or the nucleus accumbens. In females prenatally exposed to VPA, levels of dopamine were slightly decreased while the ratio of DOPAC/dopamine was increased in the dorsal striatum, suggesting increased turn-over of dopamine tone. In turn, levels of D1 and D2 dopamine receptor mRNAs were increased in the nucleus accumbens of VPA mice suggesting upregulation of the corresponding receptors. We also report decreased protein levels of striatal parvalbumin and increased levels of p-mTOR in the cerebellum and the motor cortex of VPA mice. mRNA levels of mGluR1, mGluR4, and mGluR5 and the glutamate receptor subunits NR1, NR2A, and NR2B were not altered by VPA, nor were protein levels of NR1, NR2A, and NR2B and those of BDNF and TrkB. These findings are of interest as clinical trials aiming at the dopamine and glutamate systems are being considered.
Collapse
Affiliation(s)
- Alexandre Maisterrena
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
| | - Emmanuel Matas
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
| | - Helene Mirfendereski
- Pharmacologie des Agents Anti-Infectieux et Antibiorésistance, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| | - Anais Balbous
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| | - Sandrine Marchand
- Pharmacologie des Agents Anti-Infectieux et Antibiorésistance, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| | - Mohamed Jaber
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| |
Collapse
|
10
|
Yoo YE, Yoo T, Kang H, Kim E. Brain region and gene dosage-differential transcriptomic changes in Shank2-mutant mice. Front Mol Neurosci 2022; 15:977305. [PMID: 36311025 PMCID: PMC9612946 DOI: 10.3389/fnmol.2022.977305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/16/2022] [Indexed: 12/20/2022] Open
Abstract
Shank2 is an abundant excitatory postsynaptic scaffolding protein that has been implicated in various neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD), intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. Shank2-mutant mice show ASD-like behavioral deficits and altered synaptic and neuronal functions, but little is known about how different brain regions and gene dosages affect the transcriptomic phenotypes of these mice. Here, we performed RNA-Seq-based transcriptomic analyses of the prefrontal cortex, hippocampus, and striatum in adult Shank2 heterozygous (HT)- and homozygous (HM)-mutant mice lacking exons 6–7. The prefrontal cortical, hippocampal, and striatal regions showed distinct transcriptomic patterns associated with synapse, ribosome, mitochondria, spliceosome, and extracellular matrix (ECM). The three brain regions were also distinct in the expression of ASD-related and ASD-risk genes. These differential patterns were stronger in the prefrontal cortex where the HT transcriptome displayed increased synaptic gene expression and reverse-ASD patterns whereas the HM transcriptome showed decreased synaptic gene expression and ASD-like patterns. These results suggest brain region- and gene dosage-differential transcriptomic changes in Shank2-mutant mice.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Eunjoon Kim,
| |
Collapse
|
11
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
12
|
Chung C, Shin W, Kim E. Early and Late Corrections in Mouse Models of Autism Spectrum Disorder. Biol Psychiatry 2022; 91:934-944. [PMID: 34556257 DOI: 10.1016/j.biopsych.2021.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and repetitive symptoms. A key feature of ASD is early-life manifestations of symptoms, indicative of early pathophysiological mechanisms. In mouse models of ASD, increasing evidence indicates that there are early pathophysiological mechanisms that can be corrected early to prevent phenotypic defects in adults, overcoming the disadvantage of the short-lasting effects that characterize adult-initiated treatments. In addition, the results from gene restorations indicate that ASD-related phenotypes can be rescued in some cases even after the brain has fully matured. These results suggest that we need to consider both temporal and mechanistic aspects in studies of ASD models and carefully compare genetic and nongenetic corrections. Here, we summarize the early and late corrections in mouse models of ASD by genetic and pharmacological interventions and discuss how to better integrate these results to ensure efficient and long-lasting corrections for eventual clinical translation.
Collapse
Affiliation(s)
- Changuk Chung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
13
|
Pietropaolo S, Marsicano G. The role of the endocannabinoid system as a therapeutic target for autism spectrum disorder: Lessons from behavioral studies on mouse models. Neurosci Biobehav Rev 2021; 132:664-678. [PMID: 34813825 DOI: 10.1016/j.neubiorev.2021.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Recent years have seen an impressive amount of research devoted to understanding the etiopathology of Autism Spectrum Disorder (ASD) and developing therapies for this syndrome. Because of the lack of biomarkers of ASD, this work has been largely based on the behavioral characterization of rodent models, based on a multitude of genetic and environmental manipulations. Here we highlight how the endocannabinoid system (ECS) has recently emerged within this context of mouse behavioral studies as an etiopathological factor in ASD and a valid potential therapeutic target. We summarize the most recent results showing alterations of the ECS in rodent models of ASD, and demonstrating ASD-like behaviors in mice with altered ECS, induced either by genetic or pharmacological manipulations. We also give a critical overview of the most relevant advances in designing treatments and novel mouse models for ASD targeting the ECS, highlighting the relevance of thorough and innovative behavioral approaches to investigate the mechanisms acting underneath the complex features of ASD.
Collapse
Affiliation(s)
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077, Bordeaux Cedex, France
| |
Collapse
|
14
|
Zebrafish, an In Vivo Platform to Screen Drugs and Proteins for Biomedical Use. Pharmaceuticals (Basel) 2021; 14:ph14060500. [PMID: 34073947 PMCID: PMC8225009 DOI: 10.3390/ph14060500] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
The nearly simultaneous convergence of human genetics and advanced molecular technologies has led to an improved understanding of human diseases. At the same time, the demand for drug screening and gene function identification has also increased, albeit time- and labor-intensive. However, bridging the gap between in vitro evidence from cell lines and in vivo evidence, the lower vertebrate zebrafish possesses many advantages over higher vertebrates, such as low maintenance, high fecundity, light-induced spawning, transparent embryos, short generation interval, rapid embryonic development, fully sequenced genome, and some phenotypes similar to human diseases. Such merits have popularized the zebrafish as a model system for biomedical and pharmaceutical studies, including drug screening. Here, we reviewed the various ways in which zebrafish serve as an in vivo platform to perform drug and protein screening in the fields of rare human diseases, social behavior and cancer studies. Since zebrafish mutations faithfully phenocopy many human disorders, many compounds identified from zebrafish screening systems have advanced to early clinical trials, such as those for Adenoid cystic carcinoma, Dravet syndrome and Diamond-Blackfan anemia. We also reviewed and described how zebrafish are used to carry out environmental pollutant detection and assessment of nanoparticle biosafety and QT prolongation.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Genetic mutations in animals advance our understanding of disease mechanisms and treatments of neurodevelopmental disorders. Research with mutant mouse models is being extended to nonhuman primates whose brain development is closer to that of humans. This review summaries advances in mouse and nonhuman primate models. RECENT FINDINGS Mutant mouse models recapitulate key symptoms in neurodevelopmental disorders. However, successful phenotypic reversal of symptoms in mouse models has not been replicated in human studies; this failure may be because of differences in the structure and physiology of the brain between rodents and humans. Rett syndrome MECP2 models and Phelan-McDermid syndrome where reduced expression of SH3 and multiple ankyrin repeat domains 3 (SHANK3) models have been introduced in nonhuman primates and are underway in other neurodevelopmental disorders. SUMMARY Mutant mouse models in neurogenetic disorders continued to be pursued along with gene-edited and cell-based models in nonhuman primates. Established ethical guidelines are being followed and infrastructure being established to facilitate dissemination of primate transgenic models as they become available.
Collapse
Affiliation(s)
- James C Harris
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Odent P, Creemers JW, Bosmans G, D'Hooge R. Spectrum of social alterations in the Neurobeachin haploinsufficiency mouse model of autism. Brain Res Bull 2020; 167:11-21. [PMID: 33197534 DOI: 10.1016/j.brainresbull.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a common and pervasive neurodevelopmental disorder, characterized by sexually divergent social deficits. Its etiology is multifactorial with an important contribution of genetic factors. Neurobeachin (Nbea), a brain-enriched multidomain scaffolding protein, is an ASD candidate gene that was found to be translocated or deleted in ASD patients. Nbea haploinsufficient (+/-) mice have been proposed as an ASD mouse model, but its broad-spectrum social phenotype, sexual divergence and age-related robustness remain unstudied. This study compared one-year-old male and female Nbea+/- mice and their control littermates in an extensive behavioral battery that focused on social behaviors and communication. Nbea haploinsufficiency was associated with selective, sex-dependent, quantitative and qualitative changes, including alterations in social interest and approach, ultrasonic vocalization (USV) between same-sex adult conspecifics, and preferred types of social interaction. Notably, Nbea+/- females (but not males) displayed a significantly higher number of calls, and the mean principal frequency of their calls was higher than those of normal female littermates. Our results demonstrate that Nbea haploinsufficiency alters various aspects of social performance that are also altered in clinical ASD. The phenotype was often different between male and female mice, even though this sexual divergence was sometimes counterintuitive to observations in people with ASD, and probably influenced by differences in social interaction between male and female mice. By and large, however, this study demonstrates the clinical validity and robustness of the ASD-like phenotype of Nbea+/- mice.
Collapse
Affiliation(s)
- Paulien Odent
- Research Groups of Biological Psychology, Tiensestraat 102, Leuven, Belgium(1)
| | - John W Creemers
- Research Groups of Biochemical Neuroendocrinology, Herestraat 49, Leuven, Belgium(1)
| | - Guy Bosmans
- Research Groups of Clinical Psychology, Tiensestraat 102, Leuven, Belgium(1)
| | - Rudi D'Hooge
- Research Groups of Biological Psychology, Tiensestraat 102, Leuven, Belgium(1).
| |
Collapse
|
17
|
Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020; 13:575575. [PMID: 33262688 PMCID: PMC7686559 DOI: 10.3389/fnmol.2020.575575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a highly variable and complex set of neurological disorders that alter neurodevelopment and cognitive function, which usually presents with social and learning impairments accompanied with other comorbid symptoms like hypersensitivity or hyposensitivity, or repetitive behaviors. Autism can be caused by genetic and/or environmental factors and unraveling the etiology of ASD has proven challenging, especially given that different genetic mutations can cause both similar and different phenotypes that all fall within the autism spectrum. Furthermore, the list of ASD risk genes is ever increasing making it difficult to synthesize a common theme. The use of rodent models to enhance ASD research is invaluable and is beginning to unravel the underlying molecular mechanisms of this disease. Recently, zebrafish have been recognized as a useful model of neurodevelopmental disorders with regards to genetics, pharmacology and behavior and one of the main foundations supporting autism research (SFARI) recently identified 12 ASD risk genes with validated zebrafish mutant models. Here, we describe what is known about those 12 ASD risk genes in human, mice and zebrafish to better facilitate this research. We also describe several non-genetic models including pharmacological and gnotobiotic models that are used in zebrafish to study ASD.
Collapse
Affiliation(s)
| | - Terence J. Van Raay
- Dept of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Fertan E, Wong AA, Purdon MK, Weaver ICG, Brown RE. The effect of background strain on the behavioral phenotypes of the MDGA2 +/- mouse model of autism spectrum disorder. GENES BRAIN AND BEHAVIOR 2020; 20:e12696. [PMID: 32808443 DOI: 10.1111/gbb.12696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
The membrane-associated mucin (MAM) domain containing glycosylphosphatidylinositol anchor 2 protein single knock-out mice (MDGA2+/- ) are models of ASD. We examined the behavioral phenotypes of male and female MDGA2+/- and wildtype mice on C57BL6/NJ and C57BL6/N backgrounds at 2 months of age and measured MDGA2, neuroligin 1 and neuroligin 2 levels at 7 months. Mice on the C57BL6/NJ background performed better than those on the C57BL6/N background in visual ability and in learning and memory performance in the Morris water maze and differed in measures of motor behavior and anxiety. Mice with the MDGA2+/- genotype differed from WT mice in motor, social and repetitive behavior and anxiety, but most of these effects involved interactions between MDGA2+/- genotype and background strain. The background strain also influenced MDGA2 levels and NLGN2 association in MDGA2+/- mice. Our findings emphasize the importance of the background strain used in studies of genetically modified mice.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michaela K Purdon
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
19
|
Dysfunctional d-aspartate metabolism in BTBR mouse model of idiopathic autism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140531. [PMID: 32853769 DOI: 10.1016/j.bbapap.2020.140531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) comprise a heterogeneous group of neurodevelopmental conditions characterized by impairment in social interaction, deviance in communication, and repetitive behaviors. Dysfunctional ionotropic NMDA and AMPA receptors, and metabotropic glutamate receptor 5 activity at excitatory synapses has been recently linked to multiple forms of ASD. Despite emerging evidence showing that d-aspartate and d-serine are important neuromodulators of glutamatergic transmission, no systematic investigation on the occurrence of these D-amino acids in preclinical ASD models has been carried out. METHODS Through HPLC and qPCR analyses we investigated d-aspartate and d-serine metabolism in the brain and serum of four ASD mouse models. These include BTBR mice, an idiopathic model of ASD, and Cntnap2-/-, Shank3-/-, and 16p11.2+/- mice, three established genetic mouse lines recapitulating high confidence ASD-associated mutations. RESULTS Biochemical and gene expression mapping in Cntnap2-/-, Shank3-/-, and 16p11.2+/- failed to find gross cerebral and serum alterations in d-aspartate and d-serine metabolism. Conversely, we found a striking and stereoselective increased d-aspartate content in the prefrontal cortex, hippocampus and serum of inbred BTBR mice. Consistent with biochemical assessments, in the same brain areas we also found a robust reduction in mRNA levels of d-aspartate oxidase, encoding the enzyme responsible for d-aspartate catabolism. CONCLUSIONS Our results demonstrated the presence of disrupted d-aspartate metabolism in a widely used animal model of idiopathic ASD. GENERAL SIGNIFICANCE Overall, this work calls for a deeper investigation of D-amino acids in the etiopathology of ASD and related developmental disorders.
Collapse
|
20
|
Hulbert SW, Wang X, Gbadegesin SO, Xu Q, Xu X, Jiang YH. A Novel Chd8 Mutant Mouse Displays Altered Ultrasonic Vocalizations and Enhanced Motor Coordination. Autism Res 2020; 13:1685-1697. [PMID: 32815320 DOI: 10.1002/aur.2353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Abstract
Mutations in CHD8 are among the most common autism-causing genetic defects identified in human genomics studies. Therefore, many labs have attempted to model this disorder by generating mice with mutations in Chd8. Using a gene trap inserted after Exon 31, we created a novel Chd8 mutant mouse (Chd8+/E31T ) and characterized its behavior on several different assays thought to have face validity for the human condition, attempting to model both the core symptoms (repetitive behaviors and social communication impairments) and common comorbidities (motor deficits, anxiety, and intellectual disability). We found that Chd8+/E31T mice showed no difference compared to wild-type mice in amount of self-grooming, reproducing the negative finding most other studies have reported. Unlike some of the other published lines, Chd8+/E31T mice did not show deficits in the three-chamber test for social novelty preference. A few studies have examined ultrasonic vocalizations in Chd8 mutant mice, but we are the first to report an increase in call length for adult mice. Additionally, we found that in contrast to previous published lines, Chd8+/E31T mice displayed no anxiety-like behaviors or learning impairments but showed paradoxically significant improvement in motor function. The inconsistencies in behavioral phenotypes in the Chd8 mutant mice generated by different laboratories poses a challenge for modeling autism spectrum disorder and preclinical studies in mice going forward and warrants further investigation into the molecular consequences of the different mutations in Chd8 and the functional impact on behavior. LAY SUMMARY: Several different mouse models carrying mutations in the Chd8 gene have been created to study the effects of these autism-causing mutations in the laboratory. The current study characterizes a novel Chd8 mutant mouse model as well as summarizes data from previously published Chd8 mutant mice. The inconsistencies between different studies are concerning, but future research into the reasons why these inconsistencies occur may help us understand why patients with various mutations have different degrees of symptom severity. Autism Res 2020, 13: 1685-1697. © 2020 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Samuel W Hulbert
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoming Wang
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Simisola O Gbadegesin
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Qiong Xu
- The Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- The Children's Hospital of Fudan University, Shanghai, China
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
21
|
Kayarian FB, Jannati A, Rotenberg A, Santarnecchi E. Targeting Gamma-Related Pathophysiology in Autism Spectrum Disorder Using Transcranial Electrical Stimulation: Opportunities and Challenges. Autism Res 2020; 13:1051-1071. [PMID: 32468731 PMCID: PMC7387209 DOI: 10.1002/aur.2312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
A range of scalp electroencephalogram (EEG) abnormalities correlates with the core symptoms of autism spectrum disorder (ASD). Among these are alterations of brain oscillations in the gamma-frequency EEG band in adults and children with ASD, whose origin has been linked to dysfunctions of inhibitory interneuron signaling. While therapeutic interventions aimed to modulate gamma oscillations are being tested for neuropsychiatric disorders such as schizophrenia, Alzheimer's disease, and frontotemporal dementia, the prospects for therapeutic gamma modulation in ASD have not been extensively studied. Accordingly, we discuss gamma-related alterations in the setting of ASD pathophysiology, as well as potential interventions that can enhance gamma oscillations in patients with ASD. Ultimately, we argue that transcranial electrical stimulation modalities capable of entraining gamma oscillations, and thereby potentially modulating inhibitory interneuron circuitry, are promising methods to study and mitigate gamma alterations in ASD. Autism Res 2020, 13: 1051-1071. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain functions are mediated by various oscillatory waves of neuronal activity, ranging in amplitude and frequency. In certain neuropsychiatric disorders, such as schizophrenia and Alzheimer's disease, reduced high-frequency oscillations in the "gamma" band have been observed, and therapeutic interventions to enhance such activity are being explored. Here, we review and comment on evidence of reduced gamma activity in ASD, arguing that modalities used in other disorders may benefit individuals with ASD as well.
Collapse
Affiliation(s)
- Fae B. Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Barnett BR, Casey CP, Torres-Velázquez M, Rowley PA, Yu JPJ. Convergent brain microstructure across multiple genetic models of schizophrenia and autism spectrum disorder: A feasibility study. Magn Reson Imaging 2020; 70:36-42. [PMID: 32298718 PMCID: PMC7685399 DOI: 10.1016/j.mri.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies of psychiatric illness have revealed a broad spectrum of structural and functional perturbations that have been attributed in part to the complex genetic heterogeneity underpinning these disorders. These perturbations have been identified in both preclinical genetic models and in patients when compared to control populations, but recent work has also demonstrated strong evidence for genetic, molecular, and structural convergence of several psychiatric diseases. We explored potential similarities in neural microstructure in preclinical genetic models of ASD (Fmr1, Nrxn1, Pten) and schizophrenia (Disc1 svΔ2) and in age- and sex-matched control animals with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Our findings demonstrate a convergence in brain microstructure across these four genetic models with both tract-based and region-of-interest based analyses, which continues to buttress an emerging understanding of converging neural microstructure in psychiatric disease.
Collapse
Affiliation(s)
- Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cameron P Casey
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
23
|
Quinlan MA, Robson MJ, Ye R, Rose KL, Schey KL, Blakely RD. Ex vivo Quantitative Proteomic Analysis of Serotonin Transporter Interactome: Network Impact of the SERT Ala56 Coding Variant. Front Mol Neurosci 2020; 13:89. [PMID: 32581705 PMCID: PMC7295033 DOI: 10.3389/fnmol.2020.00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Altered serotonin (5-HT) signaling is associated with multiple brain disorders, including major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and autism spectrum disorder (ASD). The presynaptic, high-affinity 5-HT transporter (SERT) tightly regulates 5-HT clearance after release from serotonergic neurons in the brain and enteric nervous systems, among other sites. Accumulating evidence suggests that SERT is dynamically regulated in distinct activity states as a result of environmental and intracellular stimuli, with regulation perturbed by disease-associated coding variants. Our lab identified a rare, hypermorphic SERT coding substitution, Gly56Ala, in subjects with ASD, finding that the Ala56 variant stabilizes a high-affinity outward-facing conformation (SERT∗) that leads to elevated 5-HT uptake in vitro and in vivo. Hyperactive SERT Ala56 appears to preclude further activity enhancements by p38α mitogen-activated protein kinase (MAPK) and can be normalized by pharmacological p38α MAPK inhibition, consistent with SERT Ala56 mimicking, constitutively, a high-activity conformation entered into transiently by p38α MAPK activation. We hypothesize that changes in SERT-interacting proteins (SIPs) support the shift of SERT into the SERT∗ state which may be captured by comparing the composition of SERT Ala56 protein complexes with those of wildtype (WT) SERT, defining specific interactions through comparisons of protein complexes recovered using preparations from SERT–/– (knockout; KO) mice. Using quantitative proteomic-based approaches, we identify a total of 459 SIPs, that demonstrate both SERT specificity and sensitivity to the Gly56Ala substitution, with a striking bias being a loss of SIP interactions with SERT Ala56 compared to WT SERT. Among this group are previously validated SIPs, such as flotillin-1 (FLOT1) and protein phosphatase 2A (PP2A), whose functions are believed to contribute to SERT microdomain localization and regulation. Interestingly, our studies nominate a number of novel SIPs implicated in ASD, including fragile X mental retardation 1 protein (FMR1) and SH3 and multiple ankyrin repeat domains protein 3 (SHANK3), of potential relevance to long-standing evidence of serotonergic contributions to ASD. Further investigation of these SIPs, and the broader networks they engage, may afford a greater understanding of ASD as well as other brain and peripheral disorders associated with perturbed 5-HT signaling.
Collapse
Affiliation(s)
- Meagan A Quinlan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Ran Ye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
24
|
Lo LHY, Lai KO. Dysregulation of protein synthesis and dendritic spine morphogenesis in ASD: studies in human pluripotent stem cells. Mol Autism 2020; 11:40. [PMID: 32460854 PMCID: PMC7251853 DOI: 10.1186/s13229-020-00349-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain disorder that involves changes in neuronal connections. Abnormal morphology of dendritic spines on postsynaptic neurons has been observed in ASD patients and transgenic mice that model different monogenetic causes of ASD. A number of ASD-associated genetic variants are known to disrupt dendritic local protein synthesis, which is essential for spine morphogenesis, synaptic transmission, and plasticity. Most of our understanding on the molecular mechanism underlying ASD depends on studies using rodents. However, recent advance in human pluripotent stem cells and their neural differentiation provides a powerful alternative tool to understand the cellular aspects of human neurological disorders. In this review, we summarize recent progress on studying mRNA targeting and local protein synthesis in stem cell-derived neurons, and discuss how perturbation of these processes may impact synapse development and functions that are relevant to cognitive deficits in ASD.
Collapse
Affiliation(s)
- Louisa Hoi-Ying Lo
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Kwok-On Lai
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
25
|
Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci 2019; 20:298-313. [PMID: 30923348 DOI: 10.1038/s41583-019-0152-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cerebellum has a protracted developmental timeline compared with the neocortex, expanding the window of vulnerability to neurological disorders. As the cerebellum is critical for motor behaviour, it is not surprising that most neurodevelopmental disorders share motor deficits as a common sequela. However, evidence gathered since the late 1980s suggests that the cerebellum is involved in motor and non-motor function, including cognition and emotion. More recently, evidence indicates that major neurodevelopmental disorders such as intellectual disability, autism spectrum disorder, attention-deficit hyperactivity disorder and Down syndrome have potential links to abnormal cerebellar development. Out of recent findings from clinical and preclinical studies, the concept of the 'cerebellar connectome' has emerged that can be used as a framework to link the role of cerebellar development to human behaviour, disease states and the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Aaron Sathyanesan
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Scafidi
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.,George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA. .,George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
26
|
Hodges SL, Nolan SO, Tomac LA, Muhammad IDA, Binder MS, Taube JH, Lugo JN. Lipopolysaccharide-induced inflammation leads to acute elevations in pro-inflammatory cytokine expression in a mouse model of Fragile X syndrome. Physiol Behav 2019; 215:112776. [PMID: 31838149 DOI: 10.1016/j.physbeh.2019.112776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a single genetic mutation in the Fmr1 gene, serving as the largest genetic cause of intellectual disability. Trinucleotide expansion mutations in Fmr1 result in silencing and hypermethylation of the gene, preventing synthesis of the RNA binding protein Fragile X mental retardation protein which functions as a translational repressor. Abnormal immune responses have been demonstrated to play a role in FXS pathophysiology, however, whether these alterations impact how those with FXS respond to an immune insult behaviorally is not entirely known. In the current study, we examine how Fmr1 knockout (KO) and wild type (WT) mice respond to the innate immune stimulus lipopolysaccharide (LPS), both on a molecular and behavioral level, to determine if Fmr1 mutations impact the normal physiological response to an immune insult. In response to LPS, Fmr1 KO mice had elevated hippocampal IL-1β and IL-6 mRNA levels 4 h post-treatment compared to WT mice, with no differences detected in any cytokines at baseline or between genotypes 24 h post-LPS administration. Fmr1 KO mice also had upregulated hippocampal BDNF gene expression 4 h post-treatment compared to WT mice, which was not dependent on LPS administration. There were no differences in hippocampal protein expression between genotypes in microglia (Iba1) or astrocyte (GFAP) reactivity. Further, both genotypes displayed the typical sickness response following LPS stimulation, demonstrated by a significant reduction in food burrowed by LPS-treated mice in a burrowing task. Additional investigation is critical to determine if the transient increases in cytokine expression could lead to long-term changes in downstream molecular signaling in FXS.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Lindsay A Tomac
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Ilyasah D A Muhammad
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Joseph H Taube
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
27
|
Pharmacological, non-pharmacological and stem cell therapies for the management of autism spectrum disorders: A focus on human studies. Pharmacol Res 2019; 152:104579. [PMID: 31790820 DOI: 10.1016/j.phrs.2019.104579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 01/03/2023]
Abstract
In the last decade, the prevalence of autism spectrum disorders (ASD) has dramatically escalated worldwide. Currently available drugs mainly target some co-occurring symptoms of ASD, but are not effective on the core symptoms, namely impairments in communication and social interaction, and the presence of restricted and repetitive behaviors. On the other hand, transplantation of hematopoietic and mesenchymal stem cells in ASD children has been shown promising to stimulate the recruitment, proliferation, and differentiation of tissue-residing native stem cells, reducing inflammation, and improving some ASD symptoms. Moreover, several comorbidities have also been associated with ASD, such as immune dysregulation, gastrointestinal issues and gut microbiota dysbiosis. Non-pharmacological approaches, such as dietary supplementations with certain vitamins, omega-3 polyunsaturated fatty acids, probiotics, some phytochemicals (e.g., luteolin and sulforaphane), or overall diet interventions (e.g., gluten free and casein free diets) have been considered for the reduction of such comorbidities and the management of ASD. Here, interventional studies describing pharmacological and non-pharmacological treatments in ASD children and adolescents, along with stem cell-based therapies, are reviewed.
Collapse
|
28
|
Modi ME, Sahin M. A unified circuit for social behavior. Neurobiol Learn Mem 2019; 165:106920. [PMID: 30149055 PMCID: PMC6387844 DOI: 10.1016/j.nlm.2018.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Recent advances in circuit manipulation technologies have enabled the association of distinct neural circuits with complex social behaviors. The brain areas identified through historical anatomical characterizations as mediators of sexual and parental behaviors can now be functionally linked to adult social behaviors within a unified circuit. In vivo electrophysiology, optogenetics and chemogenetics have been used to follow the processing of social sensory stimuli from perception by the olfactory system to valence detection by the amygdala and mesolimbic dopamine system to integration by the cerebral and cerebellar cortices under modulation of hypothalamic neuropeptides. Further, these techniques have been able to identify the distinct functional changes induced by social as opposed to non-social stimuli. Together this evidence suggests that there is a distinct, functionally coupled circuit that is selectively activated by social stimuli. A unified social circuit provides a new framework against which synaptopathic autism related mutations can be considered and novel pharmacotherapeutic strategies can be developed.
Collapse
Affiliation(s)
- Meera E Modi
- Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, United States
| | - Mustafa Sahin
- Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, United States.
| |
Collapse
|
29
|
Hodges SL, Reynolds CD, Nolan SO, Huebschman JL, Okoh JT, Binder MS, Lugo JN. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res 2019; 157:106193. [PMID: 31520894 PMCID: PMC6823160 DOI: 10.1016/j.eplepsyres.2019.106193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability and a significant genetic contributor to Autism spectrum disorder. In addition to autistic-like phenotypes, individuals with FXS are subject to developing numerous comorbidities, one of the most prevalent being seizures. In the present study, we investigated how a single early-life seizure superimposed on a genetic condition impacts the autistic-like behavioral phenotype of the mouse. We induced status epilepticus (SE) on postnatal day (PD) 10 in Fmr1 wild type (WT) and knockout (KO) mice. We then tested the mice in a battery of behavioral tests during adulthood (PD90) to examine the long-term impact of an early-life seizure. Our findings replicated prior work that reported a single instance of SE results in behavioral deficits, including increases in repetitive behavior, enhanced hippocampal-dependent learning, and reduced sociability and prepulse inhibition (p < 0.05). We also observed genotypic differences characteristic of the FXS phenotype in Fmr1 KO mice, such as enhanced prepulse inhibition and repetitive behavior, hyperactivity, and reduced startle responses (p < 0.05). Superimposing a seizure on deletion of Fmr1 significantly impacted repetitive behavior in a nosepoke task. Specifically, a single early-life seizure increased consecutive nose poking behavior in the task in WT mice (p < 0.05), yet seizures did not exacerbate the elevated stereotypy observed in Fmr1 KO mice (p > 0.05). Overall, these findings help to elucidate how seizures in a critical period of development can impact long-term behavioral manifestations caused by underlying gene mutations in Fmr1. Utilizing double-hit models, such as superimposing seizures on the Fmr1 mutation, can help to enhance our understanding of comorbidities in disease models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Conner D Reynolds
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth TX, 76107, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | | | - James T Okoh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
30
|
Yook C, Kim K, Kim D, Kang H, Kim SG, Kim E, Kim SY. A TBR1-K228E Mutation Induces Tbr1 Upregulation, Altered Cortical Distribution of Interneurons, Increased Inhibitory Synaptic Transmission, and Autistic-Like Behavioral Deficits in Mice. Front Mol Neurosci 2019; 12:241. [PMID: 31680851 PMCID: PMC6797848 DOI: 10.3389/fnmol.2019.00241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Mutations in Tbr1, a high-confidence ASD (autism spectrum disorder)-risk gene encoding the transcriptional regulator TBR1, have been shown to induce diverse ASD-related molecular, synaptic, neuronal, and behavioral dysfunctions in mice. However, whether Tbr1 mutations derived from autistic individuals cause similar dysfunctions in mice remains unclear. Here we generated and characterized mice carrying the TBR1-K228E de novo mutation identified in human ASD and identified various ASD-related phenotypes. In heterozygous mice carrying this mutation (Tbr1+/K228E mice), levels of the TBR1-K228E protein, which is unable to bind target DNA, were strongly increased. RNA-Seq analysis of the Tbr1+/K228E embryonic brain indicated significant changes in the expression of genes associated with neurons, astrocytes, ribosomes, neuronal synapses, and ASD risk. The Tbr1+/K228E neocortex also displayed an abnormal distribution of parvalbumin-positive interneurons, with a lower density in superficial layers but a higher density in deep layers. These changes were associated with an increase in inhibitory synaptic transmission in layer 6 pyramidal neurons that was resistant to compensation by network activity. Behaviorally, Tbr1+/K228E mice showed decreased social interaction, increased self-grooming, and modestly increased anxiety-like behaviors. These results suggest that the human heterozygous TBR1-K228E mutation induces ASD-related transcriptomic, protein, neuronal, synaptic, and behavioral dysfunctions in mice.
Collapse
Affiliation(s)
- Chaehyun Yook
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Sun-Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Soo Young Kim
- College of Pharmacy, Yeongnam University, Gyeongsan, South Korea
| |
Collapse
|
31
|
Yi SY, Barnett BR, Yu JPJ. Preclinical neuroimaging of gene-environment interactions in psychiatric disease. Br J Radiol 2019; 92:20180885. [PMID: 30982323 PMCID: PMC6732909 DOI: 10.1259/bjr.20180885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/21/2019] [Accepted: 03/13/2019] [Indexed: 01/30/2023] Open
Abstract
Psychiatric disease is one of the leading causes of disability worldwide. Despite the global burden and need for accurate diagnosis and treatment of mental illness, psychiatric diagnosis remains largely based on patient-reported symptoms, allowing for immense symptomatic heterogeneity within a single disease. In renewed efforts towards improved diagnostic specificity and subsequent evaluation of treatment response, a greater understanding of the underlying of the neuropathology and neurobiology of neuropsychiatric disease is needed. However, dissecting these mechanisms of neuropsychiatric illness in clinical populations are problematic with numerous experimental hurdles limiting hypothesis-driven studies including genetic confounds, variable life experiences, different environmental exposures, therapeutic histories, as well as the inability to investigate deeper molecular changes in vivo . Preclinical models, where many of these confounding factors can be controlled, can serve as a crucial experimental bridge for studying the neurobiological origins of mental illness. Furthermore, although behavioral studies and molecular studies are relatively common in these model systems, focused neuroimaging studies are very rare and represent an opportunity to link the molecular changes in psychiatric illness with advanced quantitative neuroimaging studies. In this review, we present an overview of well-validated genetic and environmental models of psychiatric illness, discuss gene-environment interactions, and examine the potential role of neuroimaging towards understanding genetic, environmental, and gene-environmental contributions to psychiatric illness.
Collapse
Affiliation(s)
- Sue Y. Yi
- Neuroscience Training Program, University of Wisconsin–Madison, Wisconsin Institutes for Medical Research, Madison, USA
| | - Brian R. Barnett
- Neuroscience Training Program, University of Wisconsin–Madison, Wisconsin Institutes for Medical Research, Madison, USA
| | | |
Collapse
|
32
|
Ueoka I, Pham HTN, Matsumoto K, Yamaguchi M. Autism Spectrum Disorder-Related Syndromes: Modeling with Drosophila and Rodents. Int J Mol Sci 2019; 20:E4071. [PMID: 31438473 PMCID: PMC6747505 DOI: 10.3390/ijms20174071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022] Open
Abstract
Whole exome analyses have identified a number of genes associated with autism spectrum disorder (ASD) and ASD-related syndromes. These genes encode key regulators of synaptogenesis, synaptic plasticity, cytoskeleton dynamics, protein synthesis and degradation, chromatin remodeling, transcription, and lipid homeostasis. Furthermore, in silico studies suggest complex regulatory networks among these genes. Drosophila is a useful genetic model system for studies of ASD and ASD-related syndromes to clarify the in vivo roles of ASD-associated genes and the complex gene regulatory networks operating in the pathogenesis of ASD and ASD-related syndromes. In this review, we discuss what we have learned from studies with vertebrate models, mostly mouse models. We then highlight studies with Drosophila models. We also discuss future developments in the related field.
Collapse
Affiliation(s)
- Ibuki Ueoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan
| | - Hang Thi Nguyet Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi 110100, Vietnam
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan.
| |
Collapse
|
33
|
Angelakos CC, Tudor JC, Ferri SL, Jongens TA, Abel T. Home-cage hypoactivity in mouse genetic models of autism spectrum disorder. Neurobiol Learn Mem 2019; 165:107000. [PMID: 30797034 DOI: 10.1016/j.nlm.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 11/28/2018] [Accepted: 02/19/2019] [Indexed: 11/16/2022]
Abstract
Genome-wide association and whole exome sequencing studies from Autism Spectrum Disorder (ASD) patient populations have implicated numerous risk factor genes whose mutation or deletion results in significantly increased incidence of ASD. Behavioral studies of monogenic mutant mouse models of ASD-associated genes have been useful for identifying aberrant neural circuitry. However, behavioral results often differ from lab to lab, and studies incorporating both males and females are often not performed despite the significant sex-bias of ASD. In this study, we sought to investigate the simple, passive behavior of home-cage activity monitoring across multiple 24-h days in four different monogenic mouse models of ASD: Shank3b-/-, Cntnap2-/-, Pcdh10+/-, and Fmr1 knockout mice. Relative to sex-matched wildtype (WT) littermates, we discovered significant home-cage hypoactivity, particularly in the dark (active) phase of the light/dark cycle, in male mice of all four ASD-associated transgenic models. For Cntnap2-/- and Pcdh10+/- mice, these activity alterations were sex-specific, as female mice did not exhibit home-cage activity differences relative to sex-matched WT controls. These home-cage hypoactivity alterations differ from activity findings previously reported using short-term activity measurements in a novel open field. Despite circadian problems reported in human ASD patients, none of the mouse models studied had alterations in free-running circadian period. Together, these findings highlight a shared phenotype across several monogenic mouse models of ASD, outline the importance of methodology on behavioral interpretation, and in some genetic lines parallel the male-enhanced phenotypic presentation observed in human ASDs.
Collapse
Affiliation(s)
- Christopher C Angelakos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jennifer C Tudor
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, United States
| | - Sarah L Ferri
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Thomas A Jongens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
34
|
Zhang XC, Shu LQ, Zhao XS, Li XK. Autism spectrum disorders: autistic phenotypes and complicated mechanisms. World J Pediatr 2019; 15:17-25. [PMID: 30607884 DOI: 10.1007/s12519-018-0210-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD), a pervasive developmental neurological disorder, is characterized by impairments in social interaction and communication, and stereotyped, repetitive patterns of interests or behaviors. The mechanism of ASDs is complex, and genetic components and epigenetic modifications play important roles. In this review, we summarized the recent progresses of ASDs focusing on the genetic and epigenetic mechanisms. We also briefly discussed current animal models of ASD and the application of high-throughput sequencing technologies in studying ASD. DATA SOURCES Original research articles and literature reviews published in PubMed-indexed journals. RESULTS Individuals with ASDs exhibit a set of phenotypes including neurological alteration. Genetic components including gene mutation, copy-number variations, and epigenetic modifications play important and diverse roles in ASDs. The establishment of animal models and development of new-generation sequencing technologies have contributed to reveal the complicated mechanisms underlying autistic phenotypes. CONCLUSIONS Dramatic progress has been made for understanding the roles of genetic and epigenetic components in ASD. Future basic and translational studies should be carried out towards those candidate therapeutic targets.
Collapse
Affiliation(s)
- Xi-Cheng Zhang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Li-Qi Shu
- School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Xing-Sen Zhao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xue-Kun Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
35
|
Hulbert SW, Bey AL, Jiang YH. Environmental enrichment has minimal effects on behavior in the Shank3 complete knockout model of autism spectrum disorder. Brain Behav 2018; 8:e01107. [PMID: 30317697 PMCID: PMC6236244 DOI: 10.1002/brb3.1107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Several studies have supported the use of enriched environments to prevent the manifestation of ASD-like phenotypes in laboratory rodents. While the translational value of such experiments is unknown, the findings have been relatively consistent across many different models. METHODS In the current study, we tested the effects of early environmental enrichment on a mouse model of ASD with high construct validity, the Shank3 ∆e4-22 mice our laboratory previously generated and characterized. RESULTS Contrary to previous reports, we found no benefits of enriched rearing, including no change in repetitive self-grooming or hole-board exploration. Instead, we found that early environmental enrichment increased anxiety-like behavior in all mice regardless of genotype and decreased motor performance specifically in wild-type mice. CONCLUSIONS Although using a different enrichment protocol may have rescued the phenotypes in our mouse model, these results suggest that a "one-size fits all" approach may not be the best when it comes to behavioral intervention for ASD and underscores the need for effective pharmaceutical development in certain genetic syndromes with severe symptom presentation.
Collapse
Affiliation(s)
- Samuel W Hulbert
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Alexandra L Bey
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Yong-Hui Jiang
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina.,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina.,Duke Institute of Brain Science, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
36
|
Tabouy L, Getselter D, Ziv O, Karpuj M, Tabouy T, Lukic I, Maayouf R, Werbner N, Ben-Amram H, Nuriel-Ohayon M, Koren O, Elliott E. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav Immun 2018; 73:310-319. [PMID: 29787855 DOI: 10.1016/j.bbi.2018.05.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies have determined that the microbiome has direct effects on behavior, and may be dysregulated in neurodevelopmental conditions. Considering that neurodevelopmental conditions, such as autism, have a strong genetic etiology, it is necessary to understand if genes associated with neurodevelopmental disorders, such as Shank3, can influence the gut microbiome, and if probiotics can be a therapeutic tool. In this study, we have identified dysregulation of several genera and species of bacteria in the gut and colon of both male and female Shank3 KO mice. L. reuteri, a species with decreased relative abundance in the Shank3 KO mice, positively correlated with the expression of gamma-Aminobutyric acid (GABA) receptor subunits in the brain. Treatment of Shank3 KO mice with L. reuteri induced an attenuation of unsocial behavior specifically in male Shank3 mice, and a decrease in repetitive behaviors in both male and female Shank3 KO mice. In addition, L. reuteri treatment affected GABA receptor gene expression and protein levels in multiple brain regions. This study identifies bacterial species that are sensitive to an autism-related mutation, and further suggests a therapeutic potential for probiotic treatment.
Collapse
Affiliation(s)
- Laure Tabouy
- Molecular and Behavioral Neurosciences Lab, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Dimitry Getselter
- Molecular and Behavioral Neurosciences Lab, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Oren Ziv
- Microbiome Research Lab, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Marcela Karpuj
- Genomic Center Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel; Biotechnology Engineering Department, Orte Braude, 21616 Karmiel, Israel
| | - Timothée Tabouy
- UMR 518 Applied Mathematics and Informatics (MIA)-Paris, French National Institute for Agricultural Research INRA/AgroParisTech, Paris-Saclay University, 75005 Paris, France
| | - Iva Lukic
- Molecular and Behavioral Neurosciences Lab, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Rasha Maayouf
- Molecular and Behavioral Neurosciences Lab, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Nir Werbner
- Microbiome Research Lab, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Hila Ben-Amram
- Microbiome Research Lab, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Meital Nuriel-Ohayon
- Microbiome Research Lab, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Omry Koren
- Microbiome Research Lab, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Evan Elliott
- Molecular and Behavioral Neurosciences Lab, Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel.
| |
Collapse
|
37
|
Nguyen RL, Medvedeva YV, Ayyagari TE, Schmunk G, Gargus JJ. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1718-1732. [PMID: 30992134 DOI: 10.1016/j.bbamcr.2018.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a group of complex, neurological disorders that affect early cognitive, social, and verbal development. Our understanding of ASD has vastly improved with advances in genomic sequencing technology and genetic models that have identified >800 loci with variants that increase susceptibility to ASD. Although these findings have confirmed its high heritability, the underlying mechanisms by which these genes produce the ASD phenotypes have not been defined. Current efforts have begun to "functionalize" many of these variants and envisage how these susceptibility factors converge at key biochemical and biophysical pathways. In this review, we discuss recent work on intracellular calcium signaling in ASD, including our own work, which begins to suggest it as a compelling candidate mechanism in the pathophysiology of autism and a potential therapeutic target. We consider how known variants in the calcium signaling genomic architecture of ASD may exert their deleterious effects along pathways particularly involving organelle dysfunction including the endoplasmic reticulum (ER), a major calcium store, and the mitochondria, a major calcium ion buffer, and theorize how many of these pathways intersect.
Collapse
Affiliation(s)
- Rachel L Nguyen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yuliya V Medvedeva
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Tejasvi E Ayyagari
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Galina Schmunk
- UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - John Jay Gargus
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Pediatrics, Section of Human Genetics and Genomics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
38
|
Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Exp Mol Med 2018; 50:1-7. [PMID: 30089840 PMCID: PMC6082867 DOI: 10.1038/s12276-018-0129-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 01/25/2023] Open
Abstract
Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental disorders (e.g., autism spectrum disorder, intellectual disability) remains a great challenge. Recent advancements in genomics, such as whole-exome or whole-genome sequencing, have enabled scientists to identify numerous mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that have been discovered, the etiological variability and the heterogeneous clinical presentation, the need for genotype—along with phenotype-based diagnosis of individual patients has become a requisite. In this review we look at recent advancements in genomic analysis and their translation into clinical practice. The identification of genetic mutations associated with neurodevelopmental disorders (NDDs) along with routine diagnosis based on patients’ characteristics is aiding the delivery of personalized therapies. Dora Tarlungeanu and Gaia Novarino at the Institute of Science and Technology in Klosterneuburg, Austria, review recent advances in genetic technologies, such as whole exome sequencing, that can lead to early intervention, guide choice of treatment and prompt genetic counseling. Introducing the mutations associated with NDDs into model organisms or stem cells is revealing some of the mechanisms underlying NDDs and enabling the evaluation of novel therapeutic strategies that target core symptoms of the disorders. To accelerate the implementation of individualized treatments for NDD the authors highlight the need to adopt interdisciplinary research approaches and to keep clinical staff updated on the latest findings in NDD genetics.
Collapse
|
39
|
Benger M, Kinali M, Mazarakis ND. Autism spectrum disorder: prospects for treatment using gene therapy. Mol Autism 2018; 9:39. [PMID: 29951185 PMCID: PMC6011246 DOI: 10.1186/s13229-018-0222-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/07/2018] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterised by the concomitant occurrence of impaired social interaction; restricted, perseverative and stereotypical behaviour; and abnormal communication skills. Recent epidemiological studies have reported a dramatic increase in the prevalence of ASD with as many as 1 in every 59 children being diagnosed with ASD. The fact that ASD appears to be principally genetically driven, and may be reversible postnatally, has raised the exciting possibility of using gene therapy as a disease-modifying treatment. Such therapies have already started to seriously impact on human disease and particularly monogenic disorders (e.g. metachromatic leukodystrophy, SMA type 1). In regard to ASD, technical advances in both our capacity to model the disorder in animals and also our ability to deliver genes to the central nervous system (CNS) have led to the first preclinical studies in monogenic ASD, involving both gene replacement and silencing. Furthermore, our increasing awareness and understanding of common dysregulated pathways in ASD have broadened gene therapy's potential scope to include various polygenic ASDs. As this review highlights, despite a number of outstanding challenges, gene therapy has excellent potential to address cognitive dysfunction in ASD.
Collapse
Affiliation(s)
- Matthew Benger
- Gene Therapy, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, W12 0NN, London, UK
| | - Maria Kinali
- Present address: The Portland Hospital, 205-209 Great Portland Street, London, W1W 5AH UK
| | - Nicholas D. Mazarakis
- Gene Therapy, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, W12 0NN, London, UK
| |
Collapse
|
40
|
Eissa N, Al-Houqani M, Sadeq A, Ojha SK, Sasse A, Sadek B. Current Enlightenment About Etiology and Pharmacological Treatment of Autism Spectrum Disorder. Front Neurosci 2018; 12:304. [PMID: 29867317 PMCID: PMC5964170 DOI: 10.3389/fnins.2018.00304] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
Autistic Spectrum Disorder (ASD) is a complex neurodevelopmental brain disorder characterized by two core behavioral symptoms, namely impairments in social communication and restricted/repetitive behavior. The molecular mechanisms underlying ASD are not well understood. Recent genetic as well as non-genetic animal models contributed significantly in understanding the pathophysiology of ASD, as they establish autism-like behavior in mice and rats. Among the genetic causes, several chromosomal mutations including duplications or deletions could be possible causative factors of ASD. In addition, the biochemical basis suggests that several brain neurotransmitters, e.g., dopamine (DA), serotonin (5-HT), gamma-amino butyric acid (GABA), acetylcholine (ACh), glutamate (Glu) and histamine (HA) participate in the onset and progression of ASD. Despite of convincible understanding, risperidone and aripiprazole are the only two drugs available clinically for improving behavioral symptoms of ASD following approval by Food and Drug Administration (FDA). Till date, up to our knowledge there is no other drug approved for clinical usage specifically for ASD symptoms. However, many novel drug candidates and classes of compounds are underway for ASD at different phases of preclinical and clinical drug development. In this review, the diversity of numerous aetiological factors and the alterations in variety of neurotransmitter generation, release and function linked to ASD are discussed with focus on drugs currently used to manage neuropsychiatric symptoms related to ASD. The review also highlights the clinical development of drugs with emphasis on their pharmacological targets aiming at improving core symptoms in ASD.
Collapse
Affiliation(s)
- Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Al-Houqani
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Adel Sadeq
- Department of Clinical Pharmacy, College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
41
|
Zhao H, Jiang YH, Zhang YQ. Modeling autism in non-human primates: Opportunities and challenges. Autism Res 2018; 11:686-694. [PMID: 29573234 PMCID: PMC6188783 DOI: 10.1002/aur.1945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and restricted, repetitive patterns of behavior. For more than a decade, genetically-modified, risk factor-induced, as well as naturally occurring rodent models for ASD have been used as the most predominant tools to dissect the molecular and circuitry mechanisms underlying ASD. However, the apparent evolutionary differences in terms of social behavior and brain anatomy between rodents and humans have become an issue of debate regarding the translational value of rodent models for studying ASD. More recently, genome manipulation of non human primates using lentivirus-based gene expression, TALEN and CRISPR/Cas9 mediated gene editing techniques, has been reported. Genetically modified non-human primate models for ASD have been produced and characterized. While the feasibility, value, and exciting opportunities provided by the non-human primate models have been clearly demonstrated, many challenges still remain. Here, we review current progress, discuss the remaining challenges, and highlight the key issues in the development of non-human primate models for ASD research and drug development. Autism Res 2018, 11: 686-694. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Over the last two decades, genetically modified rat and mouse models have been used as the most predominant tools to study mechanisms underlying autism spectrum disorder (ASD). However, the apparent evolutionary differences between rodents and humans limit the translational value of rodent models for studying ASD. Recently, several non-human primate models for ASD have been established and characterized. Here, we review current progress, discuss the challenges, and highlight the key issues in the development of non-human primate models for ASD research and drug development.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hui Jiang
- Department of Pediatrics and Department of Neurobiology, Duke University, Durham, North Carolina, 27710
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Cell-Type-Specific Shank2 Deletion in Mice Leads to Differential Synaptic and Behavioral Phenotypes. J Neurosci 2018; 38:4076-4092. [PMID: 29572432 DOI: 10.1523/jneurosci.2684-17.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 12/14/2022] Open
Abstract
Shank2 is an excitatory postsynaptic scaffolding protein implicated in synaptic regulation and psychiatric disorders including autism spectrum disorders. Conventional Shank2-mutant (Shank2-/-) mice display several autistic-like behaviors, including social deficits, repetitive behaviors, hyperactivity, and anxiety-like behaviors. However, cell-type-specific contributions to these behaviors have remained largely unclear. Here, we deleted Shank2 in specific cell types and found that male mice lacking Shank2 in excitatory neurons (CaMKII-Cre;Shank2fl/fl) show social interaction deficits and mild social communication deficits, hyperactivity, and anxiety-like behaviors. In particular, male mice lacking Shank2 in GABAergic inhibitory neurons (Viaat-Cre;Shank2fl/fl) display social communication deficits, repetitive self-grooming, and mild hyperactivity. These behavioral changes were associated with distinct changes in hippocampal and striatal synaptic transmission in the two mouse lines. These results indicate that cell-type-specific deletions of Shank2 in mice lead to differential synaptic and behavioral abnormalities.SIGNIFICANCE STATEMENT Shank2 is an abundant excitatory postsynaptic scaffolding protein implicated in the regulation of excitatory synapses and diverse psychiatric disorders including autism spectrum disorders. Previous studies have reported in vivo functions of Shank2 mainly using global Shank2-null mice, but it remains largely unclear how individual cell types contribute to Shank2-dependent regulation of neuronal synapses and behaviors. Here, we have characterized conditional Shank2-mutant mice carrying the Shank2 deletion in excitatory and inhibitory neurons. These mouse lines display distinct alterations of synaptic transmission in the hippocampus and striatum that are associated with differential behavioral abnormalities in social, repetitive, locomotor, and anxiety-like domains.
Collapse
|
43
|
Zhu M, Idikuda VK, Wang J, Wei F, Kumar V, Shah N, Waite CB, Liu Q, Zhou L. Shank3-deficient thalamocortical neurons show HCN channelopathy and alterations in intrinsic electrical properties. J Physiol 2018; 596:1259-1276. [PMID: 29327340 DOI: 10.1113/jp275147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/04/2018] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Shank3 increases the HCN channel surface expression in heterologous expression systems. Shank3Δ13-16 deficiency causes significant reduction in HCN2 expression and Ih current amplitude in thalamocortical (TC) neurons. Shank3Δ13-16 - but not Shank3Δ4-9 -deficient TC neurons share changes in basic electrical properties which are comparable to those of HCN2-/- TC neurons. HCN channelopathy may critically mediate events downstream from Shank3 deficiency. ABSTRACT SHANK3 is a scaffolding protein that is highly enriched in excitatory synapses. Mutations in the SHANK3 gene have been linked to neuropsychiatric disorders especially the autism spectrum disorders. SHANK3 deficiency is known to cause impairments in synaptic transmission, but its effects on basic neuronal electrical properties that are more localized to the soma and proximal dendrites remain unclear. Here we confirmed that in heterologous expression systems two different mouse Shank3 isoforms, Shank3A and Shank3C, significantly increase the surface expression of the mouse hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channel. In Shank3Δ13-16 knockout mice, which lack exons 13-16 in the Shank3 gene (both Shank3A and Shank3C are removed) and display a severe behavioural phenotype, the expression of HCN2 is reduced to an undetectable level. The thalamocortical (TC) neurons from the ventrobasal (VB) complex of Shank3Δ13-16 mice demonstrate reduced Ih current amplitude and correspondingly increased input resistance, negatively shifted resting membrane potential, and abnormal spike firing in both tonic and burst modes. Impressively, these changes closely resemble those of HCN2-/- TC neurons but not of the TC neurons from Shank3Δ4-9 mice, which lack exons 4-9 in the Shank3 gene (Shank3C still exists) and demonstrate moderate behavioural phenotypes. Additionally, Shank3 deficiency increases the ratio of excitatory/inhibitory balance in VB neurons but has a limited impact on the electrical properties of connected thalamic reticular (RTN) neurons. These results provide new understanding about the role of HCN channelopathy in mediating detrimental effects downstream from Shank3 deficiency.
Collapse
Affiliation(s)
- Mengye Zhu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pain Clinic, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Vinay Kumar Idikuda
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jianbing Wang
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Anesthesiology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Fusheng Wei
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Virang Kumar
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nikhil Shah
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher B Waite
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
44
|
Chahrour M, Kleiman RJ, Manzini MC. Translating genetic and preclinical findings into autism therapies. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 29398929 PMCID: PMC5789211 DOI: 10.31887/dcns.2017.19.4/cmanzini] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by social deficits and repetitive/restrictive interests. ASD is associated with multiple comorbidities, including intellectual disability, anxiety, and epilepsy. Evidence that ASD is highly heritable has spurred major efforts to unravel its genetics, revealing possible contributions from hundreds of genes through rare and common variation and through copy-number changes. In this perspective, we provide an overview of the current state of ASD genetics and of how genetic research has spurred the development of in vivo and in vitro models using animals and patient cells to evaluate the impact of genetic mutations on cellular function leading to disease. Efforts to translate these findings into successful therapies have yet to bear fruit. We discuss how the valuable insight into the disorder provided by these new models can be used to better understand ASD and develop future clinical trials.
Collapse
Affiliation(s)
- Maria Chahrour
- Eugene McDermott Center for Human Growth and Development, Departments of Neuroscience and Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - M Chiara Manzini
- Institute for Neuroscience, Autism and Neurodevelopmental Disorders Institute, and Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
45
|
Pappas AL, Bey AL, Wang X, Rossi M, Kim YH, Yan H, Porkka F, Duffney LJ, Phillips SM, Cao X, Ding JD, Rodriguiz RM, Yin HH, Weinberg RJ, Ji RR, Wetsel WC, Jiang YH. Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers. JCI Insight 2017; 2:92052. [PMID: 29046483 PMCID: PMC5846902 DOI: 10.1172/jci.insight.92052] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022] Open
Abstract
Genetic defects in the synaptic scaffolding protein gene, SHANK2, are linked to a variety of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and bipolar disorder, but the molecular mechanisms underlying the pleotropic effects of SHANK2 mutations are poorly understood. We generated and characterized a line of Shank2 mutant mice by deleting exon 24 (Δe24). Shank2Δe24-/- mice engage in significantly increased locomotor activity, display abnormal reward-seeking behavior, are anhedonic, have perturbations in circadian rhythms, and show deficits in social and cognitive behaviors. While these phenotypes recapitulate the pleotropic behaviors associated with human SHANK2-related disorders, major behavioral features in these mice are reminiscent of bipolar disorder. For instance, their hyperactivity was augmented with amphetamine but was normalized with the mood stabilizers lithium and valproate. Shank2 deficiency limited to the forebrain recapitulated the bipolar mania phenotype. The composition and functions of NMDA and AMPA receptors were altered at Shank2-deficient synapses, hinting toward the mechanism underlying these behavioral abnormalities. Human genetic findings support construct validity, and the behavioral features in Shank2 Δe24 mice support face and predictive validities of this model for bipolar mania. Further genetic studies to understand the contribution of SHANK2 deficiencies in bipolar disorder are warranted.
Collapse
Affiliation(s)
- Andrea L. Pappas
- Department of Neurobiology
- Cellular and Molecular Biology Program
| | | | | | | | | | | | - Fiona Porkka
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | | | | | | | - Jin-dong Ding
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Henry H. Yin
- Department of Neurobiology
- Department of Psychology and Neuroscience
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ru-Rong Ji
- Department of Neurobiology
- Cellular and Molecular Biology Program
- Department of Anesthesiology, and
| | - William C. Wetsel
- Department of Neurobiology
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Department of Cell Biology
- Duke Institute of Brain Science, and
| | - Yong-hui Jiang
- Department of Neurobiology
- Cellular and Molecular Biology Program
- Department of Pediatrics
- Duke Institute of Brain Science, and
- Genomics and Genetics Graduate Program, Duke University, Durham, North Carolina, USA
| |
Collapse
|
46
|
Stem Cell Technology for (Epi)genetic Brain Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:443-475. [PMID: 28523560 DOI: 10.1007/978-3-319-53889-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).
Collapse
|
47
|
Bridging Autism Spectrum Disorders and Schizophrenia through inflammation and biomarkers - pre-clinical and clinical investigations. J Neuroinflammation 2017; 14:179. [PMID: 28870209 PMCID: PMC5584030 DOI: 10.1186/s12974-017-0938-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
In recent years, evidence supporting a link between inflammation and neuropsychiatric disorders has been mounting. Autism spectrum disorders (ASD) and schizophrenia share some clinical similarities which we hypothesize might reflect the same biological basis, namely, in terms of inflammation. However, the diagnosis of ASD and schizophrenia relies solely on clinical symptoms, and to date, there is no clinically useful biomarker to diagnose or monitor the course of such illnesses. The focus of this review is the central role that inflammation plays in ASD and schizophrenia. It spans from pre-clinical animal models to clinical research and excludes in vitro studies. Four major areas are covered: (1) microglia, the inflammatory brain resident myeloid cells, (2) biomarkers, including circulating cytokines, oxidative stress markers, and microRNA players, known to influence cellular processes at brain and immune levels, (3) effect of anti-psychotics on biomarkers and other predictors of response, and (4) impact of gender on response to immune activation, biomarkers, and response to anti-psychotic treatments.
Collapse
|
48
|
Fisch GS. Whither the genotype-phenotype relationship? An historical and methodological appraisal. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:343-353. [DOI: 10.1002/ajmg.c.31571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Gene S. Fisch
- CUNY/Baruch College; Paul Chook Department of Information Systems & Statistics; New York New York
| |
Collapse
|
49
|
Bauman MD, Schumann CM. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp Neurol 2017; 299:252-265. [PMID: 28774750 DOI: 10.1016/j.expneurol.2017.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022]
Abstract
Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent need to develop innovative preventative strategies and treatments to reduce the alarming number of cases and improve core symptoms for afflicted individuals. Translational efforts between clinical and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches and (iv) ultimately translate basic research into safe and effective clinical practices. However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated animal models that capitalize on unique advantages of diverse species including drosophila, zebra fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of brain and behavior outcome measures that parallel features of human ASD.
Collapse
Affiliation(s)
- M D Bauman
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; California National Primate Research Center, University of California, Davis, USA.
| | - C M Schumann
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
50
|
Sztainberg Y, Zoghbi HY. Lessons learned from studying syndromic autism spectrum disorders. Nat Neurosci 2017; 19:1408-1417. [PMID: 27786181 DOI: 10.1038/nn.4420] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Syndromic autism spectrum disorders represent a group of childhood neurological conditions, typically associated with chromosomal abnormalities or mutations in a single gene. The discovery of their genetic causes has increased our understanding of the molecular pathways critical for normal cognitive and social development. Human studies have revealed that the brain is particularly sensitive to changes in dosage of various proteins from transcriptional and translational regulators to synaptic proteins. Investigations of these disorders in animals have shed light on previously unknown pathogenic mechanisms leading to the identification of potential targets for therapeutic intervention. The demonstration of reversibility of several phenotypes in adult mice is encouraging, and brings hope that with novel therapies, skills and functionality might improve in affected children and young adults. As new research reveals points of convergence between syndromic and nonsyndromic autism spectrum disorders, we believe there will be opportunities for shared therapeutics for this class of conditions.
Collapse
Affiliation(s)
- Yehezkel Sztainberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|