1
|
Campbell AJ, Anijärv TE, Pace T, Treacy C, Lagopoulos J, Hermens DF, Levenstein JM, Andrews SC. Resting-state EEG correlates of sustained attention in healthy ageing: Cross-sectional findings from the LEISURE study. Neurobiol Aging 2024; 144:68-77. [PMID: 39288668 DOI: 10.1016/j.neurobiolaging.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
While structural and biochemical brain changes are well-documented in ageing, functional neuronal network differences, as indicated by electrophysiological markers, are less clear. Moreover, age-related changes in sustained attention and their associated electrophysiological correlates are still poorly understood. To address this, we analysed cross-sectional baseline electroencephalography (EEG) and cognitive data from the Lifestyle Intervention Study for Dementia Risk Reduction (LEISURE). Participants were 96 healthy older adults, aged 50-84. We examined resting-state EEG periodic (individual alpha frequency [IAF], aperiodic-adjusted individual alpha power [aIAP]) and aperiodic (exponent and offset) activity, and their associations with age and sustained attention. Results showed associations between older age and slower IAF, but not aIAP or global aperiodic exponent and offset. Additionally, hierarchical linear regression revealed that after controlling for demographic variables, faster IAF was associated with better Sustained Attention to Response Task performance, and mediation analysis confirmed IAF as a mediator between age and sustained attention performance. These findings indicate that IAF may be an important marker of ageing, and a slower IAF may signal diminished cognitive processing capacity for sustained attention in older adults.
Collapse
Affiliation(s)
- Alicia J Campbell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia.
| | - Toomas Erik Anijärv
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Thomas Pace
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Ciara Treacy
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare Ltd, Birtinya, QLD, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Jacob M Levenstein
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Sophie C Andrews
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| |
Collapse
|
2
|
Norris JE, Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Outterson AH, Michalak C, Furman J, Gurney ME, Ethridge LE. Auditory N1 event-related potential amplitude is predictive of serum concentration of BPN14770 in fragile X syndrome. Mol Autism 2024; 15:47. [PMID: 39488698 PMCID: PMC11531107 DOI: 10.1186/s13229-024-00626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
Fragile X syndrome (FXS) is a rare neurodevelopmental disorder caused by a CGG repeat expansion ≥ 200 repeats in 5' untranslated region of the FMR1 gene, leading to intellectual disability and cognitive difficulties, including in the domain of communication. A recent phase 2a clinical trial testing BPN14770, a phosphodiesterase 4D inhibitor, showed improved cognition in 30 adult males with FXS on drug relative to placebo. The initial study found significant improvements in clinical measures assessing cognition, language, and daily functioning in addition to marginal improvements in electroencephalography (EEG) results for the amplitude of the N1 event-related potential (ERP) component. These EEG results suggest BPN14770 improved neural hyperexcitability in FXS. The current study investigated the relationship between BPN14770 pharmacokinetics and the amplitude of the N1 ERP component from the initial data. Consistent with the original group-level finding post-period 1 of the study, participants who received BPN14770 in period 1 showed a significant correlation between N1 amplitude and serum concentration of BPN14770 measured at the end of period 1. These findings strengthen the validity of the original result, indicating that BPN14770 improves cognitive performance by modulating neural hyperexcitability. This study represents the first report of a significant correlation between a reliably abnormal EEG marker and serum concentration of a novel pharmaceutical in FXS.
Collapse
Affiliation(s)
- Jordan E Norris
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Elizabeth M Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | | | | | - Melody A Reese
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Abigail H Outterson
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Claire Michalak
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Jeremiah Furman
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | | | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA.
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Pokorny VJ. Peak Alpha Frequency, Visual Perception, and Cognition in Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1077-1078. [PMID: 39505485 DOI: 10.1016/j.bpsc.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 11/08/2024]
Affiliation(s)
- Victor J Pokorny
- Department of Psychology, Northwestern University, Evanston, Illinois.
| |
Collapse
|
4
|
McLain N, Cavaleri R, Kutch J. Peak alpha frequency differs between chronic back pain and chronic widespread pain. Eur J Pain 2024. [PMID: 39373167 DOI: 10.1002/ejp.4737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Low peak alpha frequency (PAF) is an electroencephalography (EEG) outcome associated reliably with high acute pain sensitivity. However, existing research suggests that the relationship between PAF and chronic pain is more variable. This variability could be attributable to chronic pain groups typically being examined as homogenous populations, without consideration being given to potential diagnosis-specific differences. Indeed, while emerging work has compared individuals with chronic pain to healthy controls, no previous studies have examined differences in PAF between diagnoses or across chronic pain subtypes. METHODS To address this gap, we reanalysed a dataset of resting state EEG previously used to demonstrate a lack of difference in PAF between individuals with chronic pain and healthy controls. In this new analysis, we separated patients by diagnosis before comparing PAF across three subgroups: chronic widespread pain (n = 30), chronic back pain (n = 38), and healthy controls (n = 87). RESULTS We replicate the original finding of no significant difference between chronic pain groups and controls, but also find that individuals with widespread pain had significantly higher global average PAF values than those of people with chronic back pain [p = 0.028, β = 0.25 Hz] after controlling for age, sex, and depression. CONCLUSIONS These novel findings reveal PAF values in individuals with chronic pain may be diagnosis-specific and not uniformly shifted from the values of healthy controls. Future studies should account for diagnosis and be cautious with exploring homogenous 'chronic pain' classifications during investigations of PAF. SIGNIFICANCE Our work suggests that, contrary to previous hypotheses, inter-individual differences in PAF reflect diagnosis-specific mechanisms rather than the general presence of chronic pain, and therefore may have important implications for future work regarding individually-tailored pain management strategies.
Collapse
Affiliation(s)
- Natalie McLain
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| | - Rocco Cavaleri
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Jason Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Brooks CJ, Fielding J, White OB, Badcock DR, McKendrick AM. Exploring the Phenotype and Possible Mechanisms of Palinopsia in Visual Snow Syndrome. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39412817 PMCID: PMC11488523 DOI: 10.1167/iovs.65.12.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Purpose Palinopsia (persistent afterimages and/or trailing) is a common but poorly understood symptom of the neurological condition visual snow syndrome. This study aimed to collect a phenotypical description of palinopsia in visual snow syndrome and probe for abnormalities in temporal visual processing, hypothesizing that palinopsia could arise from increased visibility of normal afterimage signals or prolonged visible persistence. Methods Thirty controls and 31 participants with visual snow syndrome (18 with migraine) took part. Participants completed a palinopsia symptom questionnaire. Contrast detection thresholds were measured before and after brief exposure to a spatial grating because deficient contrast adaptation could increase afterimage visibility. Temporal integration and segregation were assessed using missing-element and odd-element tasks, respectively, because prolonged persistence would promote integration at wide temporal offsets. To distinguish the effects of visual snow syndrome from comorbid migraine, 25 people with migraine alone participated in an additional experiment. Results Palinopsia was common in visual snow syndrome, typically presenting as unformed images that were frequently noticed. Contrary to our hypotheses, we found neither reduced contrast adaptation (F(3.22, 190.21) = 0.71, P = 0.56) nor significantly prolonged temporal integration thresholds (F(1, 59) = 2.35, P = 0.13) in visual snow syndrome. Instead, participants with visual snow syndrome could segregate stimuli in closer succession than controls (F(1, 59) = 4.62, P = 0.04, ηp2 = 0.073) regardless of co-occurring migraine (F(2, 53) = 1.22, P = 0.30). In contrast, individuals with migraine alone exhibited impaired integration (F(2, 53) = 4.44, P = 0.017, ηp2 = 0.14). Conclusions Although neither deficient contrast adaptation nor prolonged visible persistence explains palinopsia, temporal resolution of spatial cues is enhanced and potentially more flexible in visual snow syndrome.
Collapse
Affiliation(s)
- Cassandra J. Brooks
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Joanne Fielding
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Owen B. White
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - David R. Badcock
- School of Psychological Science, The University of Western Australia, Crawley, Australia
| | - Allison M. McKendrick
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
- Lions Eye Institute, Nedlands, Australia
- School of Allied Health, The University of Western Australia, Crawley, Australia
| |
Collapse
|
6
|
Sahu PK, Jain K. Schizophrenia diagnosis using the GRU-layer's alpha-EEG rhythm's dependability. Psychiatry Res Neuroimaging 2024; 344:111886. [PMID: 39217668 DOI: 10.1016/j.pscychresns.2024.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Verifying schizophrenia (SZ) can be assisted by deep learning techniques and patterns in brain activity observed in alpha-EEG recordings. The suggested research provides evidence of the reliability of alpha-EEG rhythm in a Gated-Recurrent-Unit-based deep-learning model for investigating SZ. This study suggests Rudiment Densely-Coupled Convolutional Gated Recurrent Unit (RDCGRU) for the various EEG-rhythm-based (gamma, beta, alpha, theta, and delta) diagnoses of SZ. The model includes multiple 1-D-Convolution (Con-1-D) folds with steps greater than 1, which enables the model to programmatically and effectively learn how to reduce the incoming signal. The Con-1-D layers and numerous Gated Recurrent Unit (GRU) layers comprise the Exponential-Linear-Unit activation function. This powerful activation function facilitates in-deep-network training and improves classification performance. The Densely-Coupled Convolutional Gated Recurrent Unit (DCGRU) layers enable RDCGRU to address the training accuracy loss brought on by vanishing or exploding gradients, and this might make it possible to develop intense, deep versions of RDCGRU for more complex problems. The sigmoid activation function is implemented in the digital (binary) classifier's output nodes. The RDCGRU deep learning model attained the most excellent accuracy, 88.88 %, with alpha-EEG rhythm. The research achievements: The RDCGRU deep learning model's GRU cells responded superiorly to the alpha-EEG rhythm in EEG-based verification of SZ.
Collapse
Affiliation(s)
- Pankaj Kumar Sahu
- Department of Instrumentation and Control Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India.
| | - Karan Jain
- Department of Instrumentation and Control Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India
| |
Collapse
|
7
|
Rabiller G, Ip Z, Zarrabian S, Zhang H, Sato Y, Yazdan-Shahmorad A, Liu J. Type-2 Diabetes Alters Hippocampal Neural Oscillations and Disrupts Synchrony between the Hippocampus and Cortex. Aging Dis 2024; 15:2255-2270. [PMID: 38029397 PMCID: PMC11346393 DOI: 10.14336/ad.2023.1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of neurological diseases, yet how brain oscillations change as age and T2DM interact is not well characterized. To delineate the age and diabetic effect on neurophysiology, we recorded local field potentials with multichannel electrodes spanning the somatosensory cortex and hippocampus (HPC) under urethane anesthesia in diabetic and normoglycemic control mice, at 200 and 400 days of age. We analyzed the signal power of brain oscillations, brain state, sharp wave associate ripples (SPW-Rs), and functional connectivity between the cortex and HPC. We found that while both age and T2DM were correlated with a breakdown in long-range functional connectivity and reduced neurogenesis in the dentate gyrus and subventricular zone, T2DM further slowed brain oscillations and reduced theta-gamma coupling. Age and T2DM also prolonged the duration of SPW-Rs and increased gamma power during SPW-R phase. Our results have identified potential electrophysiological substrates of hippocampal changes associated with T2DM and age. The perturbed brain oscillation features and diminished neurogenesis may underlie T2DM-accelerated cognitive impairment.
Collapse
Affiliation(s)
- Gratianne Rabiller
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| | - Zachary Ip
- Departments of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shahram Zarrabian
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| | - Hongxia Zhang
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| | - Yoshimichi Sato
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Azadeh Yazdan-Shahmorad
- Departments of Bioengineering, University of Washington, Seattle, WA, USA
- Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| |
Collapse
|
8
|
Landry M, da Silva Castanheira J, Rousseaux F, Rainville P, Ogez D, Jerbi K. Ongoing Dynamics of Peak Alpha Frequency Characterize Hypnotic Induction in Highly Hypnotic-Susceptible Individuals. Brain Sci 2024; 14:883. [PMID: 39335379 PMCID: PMC11430530 DOI: 10.3390/brainsci14090883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Hypnotic phenomena exhibit significant inter-individual variability, with some individuals consistently demonstrating efficient responses to hypnotic suggestions, while others show limited susceptibility. Recent neurophysiological studies have added to a growing body of research that shows variability in hypnotic susceptibility is linked to distinct neural characteristics. Building on this foundation, our previous work identified that individuals with high and low hypnotic susceptibility can be differentiated based on the arrhythmic activity observed in resting-state electrophysiology (rs-EEG) outside of hypnosis. However, because previous work has largely focused on mean spectral characteristics, our understanding of the variability over time of these features, and how they relate to hypnotic susceptibility, is still limited. Here we address this gap using a time-resolved assessment of rhythmic alpha peaks and arrhythmic components of the EEG spectrum both prior to and following hypnotic induction. Using multivariate pattern classification, we investigated whether these neural features differ between individuals with high and low susceptibility to hypnosis. Specifically, we used multivariate pattern classification to investigate whether these non-stationary neural features could distinguish between individuals with high and low susceptibility to hypnosis before and after a hypnotic induction. Our analytical approach focused on time-resolved spectral decomposition to capture the intricate dynamics of neural oscillations and their non-oscillatory counterpart, as well as Lempel-Ziv complexity. Our results show that variations in the alpha center frequency are indicative of hypnotic susceptibility, but this discrimination is only evident during hypnosis. Highly hypnotic-susceptible individuals exhibit higher variability in alpha peak center frequency. These findings underscore how dynamic changes in neural states related to alpha peak frequency represent a central neurophysiological feature of hypnosis and hypnotic susceptibility.
Collapse
Affiliation(s)
- Mathieu Landry
- Département de Psychologie, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | | | - Floriane Rousseaux
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, QC H1T 2M4, Canada; (F.R.); (D.O.)
| | - Pierre Rainville
- Départment de Stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, Montréal, QC H3W 1W6, Canada
| | - David Ogez
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, QC H1T 2M4, Canada; (F.R.); (D.O.)
- Département d’Anesthésiologie et de Médecine de la Douleur, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Karim Jerbi
- Département de Psychologie, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- MILA-Quebec Artificial Intelligence Institute, Montreal, QC H2S 3H1, Canada
- UNIQUE Center (Quebec Neuro-AI Research Center), Montreal, QC H3T 1P1, Canada
| |
Collapse
|
9
|
Smith MK, Grabowecky M, Suzuki S. Dynamic Formation of a Posterior-to-Anterior Peak-Alpha-Frequency Gradient Driven by Two Distinct Processes. eNeuro 2024; 11:ENEURO.0273-24.2024. [PMID: 39142821 PMCID: PMC11373881 DOI: 10.1523/eneuro.0273-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Peak-alpha frequency varies across individuals and mental states, but it also forms a negative gradient from posterior to anterior regions in association with increases in cortical thickness and connectivity, reflecting a cortical hierarchy in temporal integration. Tracking the spatial standard deviation of peak-alpha frequency in scalp EEG, we observed that a posterior-to-anterior gradient dynamically formed and dissolved. Periods of high spatial standard deviation yielded robustly negative posterior-to-anterior gradients-the "gradient state"-while periods of low spatial standard deviation yielded globally converged peak-alpha frequency-the "uniform state." The state variations were characterized by a combination of slow (0.3-0.5 Hz) oscillations and random-walk-like fluctuations. They were relatively independently correlated with peak-alpha frequency variations in anterior regions and peak-alpha power variations in central regions driven by posterior regions (together accounting for ∼50% of the state variations), suggesting that two distinct mechanisms modulate the state variations: an anterior mechanism that directly adjusts peak-alpha frequencies and a posterior-central mechanism that indirectly adjusts them by influencing synchronization. The state variations likely reflect general operations as their spatiotemporal characteristics remained unchanged while participants engaged in a variety of tasks (breath focus, vigilance, working memory, mental arithmetic, and generative thinking) with their eyes closed or watched a silent nature video. The ongoing state variations may dynamically balance two global processing modes, one that facilitates greater temporal integration (and potentially also information influx) toward anterior regions in the gradient state and the other that facilitates flexible global communication (via phase locking) in the uniform state.
Collapse
Affiliation(s)
- Max Kailler Smith
- Department of Psychology, Northwestern University, Evanston, Illinois 60208
| | - Marcia Grabowecky
- Department of Psychology and Interdepartmental Neuroscience, Northwestern University, Evanston, Illinois 60208
| | - Satoru Suzuki
- Department of Psychology and Interdepartmental Neuroscience, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
10
|
Norris JE, Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Outterson AH, Michalak C, Furman J, Gurney ME, Ethridge LE. Auditory N1 event-related potential amplitude is predictive of serum concentration of BPN14770 in fragile x syndrome. RESEARCH SQUARE 2024:rs.3.rs-4474353. [PMID: 38946987 PMCID: PMC11213200 DOI: 10.21203/rs.3.rs-4474353/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Fragile X syndrome (FXS) is a rare neurodevelopmental disorder caused by a CGG repeat expansion ≥ 200 repeats in 5' untranslated region of the FMR1 gene, leading to intellectual disability and cognitive difficulties, including in the domain of communication. A recent phase 2a clinical trial testing BPN14770, a phosphodiesterase 4D inhibitor, showed improved cognition in 30 adult males with FXS on drug relative to placebo. The initial study found significant improvements in clinical measures assessing cognition, language, and daily functioning in addition to marginal improvements in electroencephalography (EEG) results for the amplitude of the N1 event-related potential (ERP) component. EEG results suggest BPN14770 improved neural hyperexcitability in FXS. The current study investigated the relationship between BPN14770 pharmacokinetics (PK) and the amplitude of the N1 ERP component from the initial data. Consistent with the original group-level finding in period 1 of the study, participants who received BPN14770 in the period 1 showed a significant correlation between N1 amplitude and serum concentration of BPN14770. These findings strengthen the validity of the original result, indicating that BPN14770 improves cognitive performance by modulating neural hyperexcitability. This study represents the first report of significant correlation between a reliably abnormal EEG marker and serum concentration of a novel pharmaceutical in FXS.
Collapse
|
11
|
Rodriguez-Larios J, Foong Wong K, Lim J. Assessing the effects of an 8-week mindfulness training program on neural oscillations and self-reports during meditation practice. PLoS One 2024; 19:e0299275. [PMID: 38843236 PMCID: PMC11156404 DOI: 10.1371/journal.pone.0299275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Previous literature suggests that mindfulness meditation can have positive effects on mental health, however, its mechanisms of action are still unclear. In this pre-registered study, we investigate the effects of mindfulness training on lapses of attention (and their associated neural correlates) during meditation practice. For this purpose, we recorded Electroencephalogram (EEG) during meditation practice before and after 8 weeks of mindfulness training (or waitlist) in 41 participants (21 treatment and 20 controls). In order to detect lapses of attention and characterize their EEG correlates, we interrupted participants during meditation to report their level of focus and drowsiness. First, we show that self-reported lapses of attention during meditation practice were associated to an increased occurrence of theta oscillations (3-6 Hz), which were slower in frequency and more spatially widespread than theta oscillations occurring during focused attention states. Then, we show that mindfulness training did not reduce the occurrence of lapses of attention nor their associated EEG correlate (i.e. theta oscillations) during meditation. Instead, we find that mindfulness training was associated with a significant slowing of alpha oscillations in frontal electrodes during meditation. Crucially, frontal alpha slowing during meditation practice has been reported in experienced meditators and is thought to reflect relative decreases in arousal levels. Together, our findings provide insights into the EEG correlates of mindfulness meditation, which could have important implications for the identification of its mechanisms of action and/or the development of neuromodulation protocols aimed at facilitating meditation practice.
Collapse
Affiliation(s)
| | - Kian Foong Wong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julian Lim
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Hight D, Ehrhardt A, Lersch F, Luedi MM, Stüber F, Kaiser HA. Lower alpha frequency of intraoperative frontal EEG is associated with postoperative delirium: A secondary propensity-matched analysis. J Clin Anesth 2024; 93:111343. [PMID: 37995609 DOI: 10.1016/j.jclinane.2023.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Postoperative delirium (POD) is a serious complication of surgery, especially in the elderly patient population. It has been proposed that decreasing the amount of anesthetics by titrating to an EEG index will lower POD rate, but clear evidence is missing. A strong age-dependent negative correlation has been reported between the peak oscillatory frequency of alpha waves and end-tidal anesthetic concentration, with older patients generating slower alpha frequencies. We hypothesized, that slower alpha oscillations are associated with a higher rate of POD. METHOD Retrospective analysis of patients` data from a prospective observational study in cardiac surgical patients approved by the Bernese Ethics committee. Frontal EEG was recorded during Isoflurane effect-site concentrations of 0.7 to 0.8 and peak alpha frequency was measured at highest power between 6 and 17 Hz. Delirium was assessed by chart review. Demographic and clinical characteristics were compared between POD and non-POD groups. Selection bias was addressed using nearest neighbor propensity score matching (PSM) for best balance. This incorporated 18 variables, whereas patients with missing variable information or without an alpha oscillation were excluded. RESULT Of the 1072 patients in the original study, 828 were included, 73 with POD, 755 without. PSM allowed 328 patients into the final analysis, 67 with, 261 without POD. Before PSM, 8 variables were significantly different between POD and non-POD groups, none thereafter. Mean peak alpha frequency was significantly lower in the POD in contrast to non-POD group before and after matching (7.9 vs 8.9 Hz, 7.9 vs 8.8 Hz respectively, SD 1.3, p < 0.001). CONCLUSION Intraoperative slower frontal peak alpha frequency is independently associated with POD after cardiac surgery and may be a simple intraoperative neurophysiological marker of a vulnerable brain for POD. Further studies are needed to investigate if there is a causal link between alpha frequency and POD.
Collapse
Affiliation(s)
- Darren Hight
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland
| | - Alexander Ehrhardt
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland; Hirslanden Clinic Aarau, Center for Anaesthesiology and Intensive Care Medicine, Aarau, Switzerland
| | - Friedrich Lersch
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland
| | - Markus M Luedi
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland; Department for Anesthesiology, Intensive, Rescue and Pain medicine, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Frank Stüber
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland
| | - Heiko A Kaiser
- Inselspital, Bern University Hospital, University of Bern, Department of Anaesthesiology & Pain Medicine, Bern, Switzerland; Hirslanden Clinic Aarau, Center for Anaesthesiology and Intensive Care Medicine, Aarau, Switzerland.
| |
Collapse
|
13
|
Tarasi L, Romei V. Individual Alpha Frequency Contributes to the Precision of Human Visual Processing. J Cogn Neurosci 2024; 36:602-613. [PMID: 37382485 DOI: 10.1162/jocn_a_02026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Brain oscillatory activity within the alpha band has been associated with a wide range of processes encompassing perception, memory, decision-making, and overall cognitive functioning. Individual alpha frequency (IAF) is a specific parameter accounting for the mean velocity of the alpha cycling activity, conventionally ranging between ∼7 and ∼13 Hz. One influential hypothesis has proposed a fundamental role of this cycling activity in the segmentation of sensory input and in the regulation of the speed of sensory processing, with faster alpha oscillations resulting in greater temporal resolution and more refined perceptual experience. However, although several recent theoretical and empirical studies would support this account, contradictory evidence suggests caution and more systematic approaches in the assessment and interpretation of this hypothesis. For example, it remains to be explored to what degree IAF shapes perceptual outcomes. In the present study, we investigated whether inter-individual differences in bias-free visual contrast detection threshold in a large sample of individuals in the general population (n = 122) could be explained by inter-individual differences in alpha pace. Our results show that the contrast needed to correctly identify target stimuli (individual perceptual threshold) is associated with alpha peak frequency (not amplitude). Specifically, individuals who require reduced contrast show higher IAF than individuals requiring higher contrasts. This suggests that inter-individual differences in alpha frequency contribute to performance variability in low-level perceptual tasks, supporting the hypothesis that IAF underlies a fundamental temporal sampling mechanism that shapes visual objective performance, with higher frequencies promoting enhanced sensory evidence per time unit.
Collapse
Affiliation(s)
- Luca Tarasi
- Università di Bologna and Centro Studi e Ricerche in Neuroscienze Cognitive, Università di Bologna, Cesena, Italy
| | - Vincenzo Romei
- Università di Bologna and Centro Studi e Ricerche in Neuroscienze Cognitive, Università di Bologna, Cesena, Italy
- Universidad Antonio de Nebrija, Madrid, Spain
| |
Collapse
|
14
|
Schoffelen JM, Pesci UG, Noppeney U. Alpha Oscillations and Temporal Binding Windows in Perception-A Critical Review and Best Practice Guidelines. J Cogn Neurosci 2024; 36:655-690. [PMID: 38330177 DOI: 10.1162/jocn_a_02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An intriguing question in cognitive neuroscience is whether alpha oscillations shape how the brain transforms the continuous sensory inputs into distinct percepts. According to the alpha temporal resolution hypothesis, sensory signals arriving within a single alpha cycle are integrated, whereas those in separate cycles are segregated. Consequently, shorter alpha cycles should be associated with smaller temporal binding windows and higher temporal resolution. However, the evidence supporting this hypothesis is contentious, and the neural mechanisms remain unclear. In this review, we first elucidate the alpha temporal resolution hypothesis and the neural circuitries that generate alpha oscillations. We then critically evaluate study designs, experimental paradigms, psychophysics, and neurophysiological analyses that have been employed to investigate the role of alpha frequency in temporal binding. Through the lens of this methodological framework, we then review evidence from between-subject, within-subject, and causal perturbation studies. Our review highlights the inherent interpretational ambiguities posed by previous study designs and experimental paradigms and the extensive variability in analysis choices across studies. We also suggest best practice recommendations that may help to guide future research. To establish a mechanistic role of alpha frequency in temporal parsing, future research is needed that demonstrates its causal effects on the temporal binding window with consistent, experimenter-independent methods.
Collapse
Affiliation(s)
| | | | - Uta Noppeney
- Donders Institute for Brain, Cognition & Behaviour, Radboud University
| |
Collapse
|
15
|
Farokhniaee A, Palmisano C, Del Vecchio Del Vecchio J, Pezzoli G, Volkmann J, Isaias IU. Gait-related beta-gamma phase amplitude coupling in the subthalamic nucleus of parkinsonian patients. Sci Rep 2024; 14:6674. [PMID: 38509158 PMCID: PMC10954750 DOI: 10.1038/s41598-024-57252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Analysis of coupling between the phases and amplitudes of neural oscillations has gained increasing attention as an important mechanism for large-scale brain network dynamics. In Parkinson's disease (PD), preliminary evidence indicates abnormal beta-phase coupling to gamma-amplitude in different brain areas, including the subthalamic nucleus (STN). We analyzed bilateral STN local field potentials (LFPs) in eight subjects with PD chronically implanted with deep brain stimulation electrodes during upright quiet standing and unperturbed walking. Phase-amplitude coupling (PAC) was computed using the Kullback-Liebler method, based on the modulation index. Neurophysiological recordings were correlated with clinical and kinematic measurements and individual molecular brain imaging studies ([123I]FP-CIT and single-photon emission computed tomography). We showed a dopamine-related increase in subthalamic beta-gamma PAC from standing to walking. Patients with poor PAC modulation and low PAC during walking spent significantly more time in the stance and double support phase of the gait cycle. Our results provide new insights into the subthalamic contribution to human gait and suggest cross-frequency coupling as a gateway mechanism to convey patient-specific information of motor control for human locomotion.
Collapse
Affiliation(s)
- AmirAli Farokhniaee
- Fondazione Grigioni Per Il Morbo Di Parkinson, Via Gianfranco Zuretti 35, 20125, Milano, Italy.
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy.
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Jasmin Del Vecchio Del Vecchio
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Gianni Pezzoli
- Fondazione Grigioni Per Il Morbo Di Parkinson, Via Gianfranco Zuretti 35, 20125, Milano, Italy
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Ioannis U Isaias
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| |
Collapse
|
16
|
Sadoc M, Clairembault T, Coron E, Berthomier C, Le Dily S, Vavasseur F, Pavageau A, St Louis EK, Péréon Y, Neunlist M, Derkinderen P, Leclair-Visonneau L. Wake and non-rapid eye movement sleep dysfunction is associated with colonic neuropathology in Parkinson's disease. Sleep 2024; 47:zsad310. [PMID: 38156524 DOI: 10.1093/sleep/zsad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/04/2023] [Indexed: 12/30/2023] Open
Abstract
STUDY OBJECTIVES The body-first Parkinson's disease (PD) hypothesis suggests initial gut Lewy body pathology initially propagates to the pons before reaching the substantia nigra, and subsequently progresses to the diencephalic and cortical levels, a disease course presumed to likely occur in PD with rapid eye movement sleep behavior disorder (RBD). We aimed to explore the potential association between colonic phosphorylated alpha-synuclein histopathology (PASH) and diencephalic or cortical dysfunction evidenced by non-rapid eye movement (NREM) sleep and wakefulness polysomnographic markers. METHODS In a study involving 43 patients with PD who underwent clinical examination, rectosigmoidoscopy, and polysomnography, we detected PASH on colonic biopsies using whole-mount immunostaining. We performed a visual semi-quantitative analysis of NREM sleep and wake electroencephalography (EEG), confirmed it with automated quantification of spindle and slow wave features of NREM sleep, and the wake dominant frequency, and then determined probable Arizona PD stage classifications based on sleep and wake EEG features. RESULTS The visual analysis aligned with the automated quantified spindle characteristics and the wake dominant frequency. Altered NREM sleep and wake parameters correlated with markers of PD severity, colonic PASH, and RBD diagnosis. Colonic PASH frequency also increased in parallel to probable Arizona PD stage classifications. CONCLUSIONS Colonic PASH is strongly associated with widespread brain sleep and wake dysfunction, suggesting an extensive diffusion of the pathologic process in PD. Visual and automated analyses of polysomnography signals provide useful markers to gauge covert brain dysfunction in PD. CLINICAL TRIAL Name: SYNAPark, URL: https://clinicaltrials.gov/study/NCT01748409, registration: NCT01748409.
Collapse
Affiliation(s)
- Mathilde Sadoc
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
- Department of Neurology, CHU Nantes, Nantes, France
| | - Thomas Clairembault
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Emmanuel Coron
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Inserm, CIC-04, Nantes, France
| | | | | | - Fabienne Vavasseur
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Inserm, CIC-04, Nantes, France
| | - Albane Pavageau
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
| | - Erik K St Louis
- Mayo Sleep Behavior and Neurophysiology Research Laboratory, Department of Neurology, Rochester, MN, USA
- Mayo Center for Sleep Medicine, Department of Neurology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Yann Péréon
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
- Nantes Université, Nantes, France
| | - Michel Neunlist
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- CHU Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Pascal Derkinderen
- Department of Neurology, CHU Nantes, Nantes, France
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- Inserm, CIC-04, Nantes, France
| | - Laurène Leclair-Visonneau
- Laboratoire d'Explorations Fonctionnelles, CHU Nantes, Nantes, France
- INSERM, TENS The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
- Nantes Université, Nantes, France
- Inserm, CIC-04, Nantes, France
| |
Collapse
|
17
|
Trajkovic J, Sack AT, Romei V. EEG-based biomarkers predict individual differences in TMS-induced entrainment of intrinsic brain rhythms. Brain Stimul 2024; 17:224-232. [PMID: 38428585 DOI: 10.1016/j.brs.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Entrainment (increase) and modulation (shift) of intrinsic brain oscillations via rhythmic-TMS (rh-TMS) enables to either increase the amplitude of the individual peak oscillatory frequency, or experimentally slowing/accelerating this intrinsic peak oscillatory frequency by slightly shifting it. Both entrainment, and modulation of brain oscillations can lead to different measurable perceptual and cognitive changes. However, there are noticeable between-participant differences in such experimental entrainment outcomes. OBJECTIVE/HYPOTHESIS The current study aimed at explaining these inter-individual differences in entrainment/frequency shift success. Here we hypothesize that the width and the height of the Arnold tongue, i.e., the frequency offsets that can still lead to oscillatory change, can be individually modelled via resting-state neural markers, and may explain and predict efficacy and limitation of successful rhythmic-TMS (rh-TMS) manipulation. METHODS Spectral decomposition of resting-state data was used to extract the spectral curve of alpha activity, serving as a proxy of an individual Arnold tongue. These parameters were then used as predictors of the rh-TMS outcome, when increasing alpha-amplitude (i.e., applying pulse train tuned to the individual alpha frequency, IAF), or modulating the alpha-frequency (i.e., making alpha faster or slower by stimulating at IAF±1Hz frequencies). RESULTS Our results showed that the height of the at-rest alpha curve predicted how well the entrainment increased the intrinsic oscillatory peak frequency, with a higher at-rest spectral curve negatively predicting amplitude-enhancement during entrainment selectively during IAF-stimulation. In contrast, the wider the resting-state alpha curve, the higher the modulation effects aiming to shift the intrinsic frequency towards faster or slower rhythms. CONCLUSION These results not only offer a theoretical and experimental model for explaining the variance across different rh-TMS studies reporting heterogenous rh-TMS outcomes, but also introduce a potential biomarker and corresponding evaluative tool to develop most optimal and personalized rh-TMS protocols, both in research and clinical applications.
Collapse
Affiliation(s)
- Jelena Trajkovic
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, the Netherlands; Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena, 47521, Italy.
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, the Netherlands
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena, 47521, Italy; Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid, 28015, Spain.
| |
Collapse
|
18
|
Looser VN, Gerber M, Ludyga S. Physical activity and verbal memory performance: Mediating effects of resting-state brain activity. PROGRESS IN BRAIN RESEARCH 2024; 286:33-66. [PMID: 38876578 DOI: 10.1016/bs.pbr.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Verbal short-term and long-term memory are crucial neuropsychological functions involved in core cognitive abilities. They constitute vital components of subjective well-being and academic achievement. To date, there is limited research on the association between regular physical activity and memory abilities during young adulthood. The Individual Alpha Peak Frequency (IAPF) contributes to various cognitive abilities and also appears to be sensitive to physical activity. Consequently, the IAPF has the potential to underlie the association between physical activity and verbal memory. We examined the direct relation of physical activity and verbal memory, and the potential indirect relation via IAPF in young adults. Regular physical activity was assessed via accelerometry on seven consecutive days in 115 participants (N=115, 48% female) aged 18-35 years (M=24.1, SD=3.8). In addition, verbal memory performance was assessed using an immediate and delayed free-recall task. Brain activity during rest was recorded with EEG, and IAPF was extracted for mediation analyses. Path analysis revealed pronounced sex differences in the association between physical activity, IAPF, and verbal memory performance. Exclusively in female participants, higher vigorous physical activity levels were associated with better recall performance. In contrast, no association of physical activity and memory was found in male participants. However, being more physically active was related to a higher IAPF exclusively in male participants. Physical activity shows differential associations between IAPF and verbal memory in male and female participants. However, the lack of a mediating role of IAPF suggests that this neurophysiological marker cannot explain these specific associations in young adults.
Collapse
Affiliation(s)
- Vera Nina Looser
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland.
| | - Markus Gerber
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Sebastian Ludyga
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Dikker S, Brito NH, Dumas G. It takes a village: A multi-brain approach to studying multigenerational family communication. Dev Cogn Neurosci 2024; 65:101330. [PMID: 38091864 PMCID: PMC10716709 DOI: 10.1016/j.dcn.2023.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/27/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Grandparents play a critical role in child rearing across the globe. Yet, there is a shortage of neurobiological research examining the relationship between grandparents and their grandchildren. We employ multi-brain neurocomputational models to simulate how changes in neurophysiological processes in both development and healthy aging affect multigenerational inter-brain coupling - a neural marker that has been linked to a range of socio-emotional and cognitive outcomes. The simulations suggest that grandparent-child interactions may be paired with higher inter-brain coupling than parent-child interactions, raising the possibility that the former may be more advantageous under certain conditions. Critically, this enhancement of inter-brain coupling for grandparent-child interactions is more pronounced in tri-generational interactions that also include a parent, which may speak to findings that grandparent involvement in childrearing is most beneficial if the parent is also an active household member. Together, these findings underscore that a better understanding of the neurobiological basis of cross-generational interactions is vital, and that such knowledge can be helpful in guiding interventions that consider the whole family. We advocate for a community neuroscience approach in developmental social neuroscience to capture the diversity of child-caregiver relationships in real-world settings.
Collapse
|
20
|
Di Dona G, Ronconi L. Beta oscillations in vision: a (preconscious) neural mechanism for the dorsal visual stream? Front Psychol 2023; 14:1296483. [PMID: 38155693 PMCID: PMC10753839 DOI: 10.3389/fpsyg.2023.1296483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Neural oscillations in alpha (8-12 Hz) and beta (13-30 Hz) frequency bands are thought to reflect feedback/reentrant loops and large-scale cortical interactions. In the last decades a main effort has been made in linking perception with alpha-band oscillations, with converging evidence showing that alpha oscillations have a key role in the temporal and featural binding of visual input, configuring the alpha rhythm a key determinant of conscious visual experience. Less attention has been historically dedicated to link beta oscillations and visual processing. Nonetheless, increasing studies report that task conditions that require to segregate/integrate stimuli in space, to disentangle local/global shapes, to spatially reorganize visual inputs, and to achieve motion perception or form-motion integration, rely on the activity of beta oscillations, with a main hub in parietal areas. In the present review, we summarize the evidence linking oscillations within the beta band and visual perception. We propose that beta oscillations represent a neural code that supports the functionality of the magnocellular-dorsal (M-D) visual pathway, serving as a fast primary neural code to exert top-down influences on the slower parvocellular-ventral visual pathway activity. Such M-D-related beta activity is proposed to act mainly pre-consciously, providing the spatial coordinates of vision and guiding the conscious extraction of objects identity that are achieved with slower alpha rhythms in ventral areas. Finally, within this new theoretical framework, we discuss the potential role of M-D-related beta oscillations in visuo-spatial attention, oculo-motor behavior and reading (dis)abilities.
Collapse
Affiliation(s)
- Giuseppe Di Dona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Ronconi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
21
|
Löffler BS, Stecher HI, Meiser A, Fudickar S, Hein A, Herrmann CS. Attempting to counteract vigilance decrement in older adults with brain stimulation. FRONTIERS IN NEUROERGONOMICS 2023; 4:1201702. [PMID: 38234473 PMCID: PMC10790873 DOI: 10.3389/fnrgo.2023.1201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Introduction Against the background of demographic change and the need for enhancement techniques for an aging society, we set out to repeat a study that utilized 40-Hz transcranial alternating current stimulation (tACS) to counteract the slowdown of reaction times in a vigilance experiment but with participants aged 65 years and older. On an oscillatory level, vigilance decrement is linked to rising occipital alpha power, which has been shown to be downregulated using gamma-tACS. Method We applied tACS on the visual cortex and compared reaction times, error rates, and alpha power of a group stimulated with 40 Hz to a sham and a 5-Hz-stimulated control group. All groups executed two 30-min-long blocks of a visual task and were stimulated according to group in the second block. We hypothesized that the expected increase in reaction times and alpha power would be reduced in the 40-Hz group compared to the control groups in the second block (INTERVENTION). Results Statistical analysis with linear mixed models showed that reaction times increased significantly over time in the first block (BASELINE) with approximately 3 ms/min for the SHAM and 2 ms/min for the 5-Hz and 40-Hz groups, with no difference between the groups. The increase was less pronounced in the INTERVENTION block (1 ms/min for SHAM and 5-Hz groups, 3 ms/min for the 40-Hz group). Differences among groups in the INTERVENTION block were not significant if the 5-Hz or the 40-Hz group was used as the base group for the linear mixed model. Statistical analysis with a generalized linear mixed model showed that alpha power was significantly higher after the experiment (1.37 μV2) compared to before (1 μV2). No influence of stimulation (40 Hz, 5 Hz, or sham) could be detected. Discussion Although the literature has shown that tACS offers potential for older adults, our results indicate that findings from general studies cannot simply be transferred to an old-aged group. We suggest adjusting stimulation parameters to the neurophysiological features expected in this group. Next to heterogeneity and cognitive fitness, the influence of motivation and medication should be considered.
Collapse
Affiliation(s)
- Birte S. Löffler
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Heiko I. Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Arnd Meiser
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Sebastian Fudickar
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Hein
- Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
22
|
Singh MF, Braver TS, Cole MW, Ching S. Precision data-driven modeling of cortical dynamics reveals idiosyncratic mechanisms underlying canonical oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567088. [PMID: 38077097 PMCID: PMC10705281 DOI: 10.1101/2023.11.14.567088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Task-free brain activity affords unique insight into the functional structure of brain network dynamics and is a strong marker of individual differences. In this work, we present an algorithmic optimization framework that makes it possible to directly invert and parameterize brain-wide dynamical-systems models involving hundreds of interacting brain areas, from single-subject time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions. We extensively validate the models' performance in forecasting future brain activity and predicting individual variability in key M/EEG markers. Lastly, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitation-inhibition balance, highlighting the explanatory power of our framework in generating mechanistic insights.
Collapse
Affiliation(s)
- Matthew F Singh
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, 07102, NJ, USA
- Psychological and Brain Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Todd S Braver
- Psychological and Brain Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, 07102, NJ, USA
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
| |
Collapse
|
23
|
De Koninck BP, Brazeau D, Guay S, Herrero Babiloni A, De Beaumont L. Transcranial Alternating Current Stimulation to Modulate Alpha Activity: A Systematic Review. Neuromodulation 2023; 26:1549-1584. [PMID: 36725385 DOI: 10.1016/j.neurom.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) has been one of numerous investigation methods used for their potential to modulate brain oscillations; however, such investigations have given contradictory results and a lack of standardization. OBJECTIVES In this systematic review, we aimed to assess the potential of tACS to modulate alpha spectral power. The secondary outcome was the identification of tACS methodologic key parameters, adverse effects, and sensations. MATERIALS AND METHODS Studies in healthy adults who were receiving active and sham tACS intervention or any differential condition were included. The main outcome assessed was the increase/decrease of alpha spectral power through either electroencephalography or magnetoencephalography. Secondary outcomes were methodologic parameters, sensation reporting, and adverse effects. Risks of bias and the study quality were assessed with the Cochrane assessment tool. RESULTS We obtained 1429 references, and 20 met the selection criteria. A statistically significant alpha-power increase was observed in nine studies using continuous tACS stimulation and two using intermittent tACS stimulation set at a frequency within the alpha range. A statistically significant alpha-power increase was observed in three more studies using a stimulation frequency outside the alpha range. Heterogeneity among stimulation parameters was recognized. Reported adverse effects were mild. The implementation of double blind was identified as challenging using tACS, in part owing to electrical artifacts generated by stimulation on the recorded signal. CONCLUSIONS Most assessed studies reported that tACS has the potential to modulate brain alpha power. The optimization of this noninvasive brain stimulation method is of interest mostly for its potential clinical applications with neurological conditions associated with perturbations in alpha brain activity. However, more research efforts are needed to standardize optimal parameters to achieve lasting modulation effects, develop methodologic alternatives to reduce experimental bias, and improve the quality of studies using tACS to modulate brain activity.
Collapse
Affiliation(s)
- Beatrice P De Koninck
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada.
| | - Daphnée Brazeau
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Samuel Guay
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Alberto Herrero Babiloni
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| |
Collapse
|
24
|
Lefebvre J, Hutt A. Induced synchronization by endogenous noise modulation in finite-size random neural networks: A stochastic mean-field study. CHAOS (WOODBURY, N.Y.) 2023; 33:123110. [PMID: 38055720 DOI: 10.1063/5.0167771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Event-related synchronization and desynchronization (ERS/ERD) are well-known features found experimentally in brain signals during cognitive tasks. Their understanding promises to have much better insights into neural information processes in cognition. Under the hypothesis that neural information affects the endogenous neural noise level in populations, we propose to employ a stochastic mean-field model to explain ERS/ERD in the γ-frequency range. The work extends previous mean-field studies by deriving novel effects from finite network size. Moreover, numerical simulations of ERS/ERD and their analytical explanation by the mean-field model suggest several endogenous noise modulation schemes, which may modulate the system's synchronization.
Collapse
Affiliation(s)
- J Lefebvre
- Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - A Hutt
- ICube, MLMS, University of Strasbourg, MIMESIS Team, Inria Nancy-Grand Est, 67000 Strasbourg, France
| |
Collapse
|
25
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
26
|
Sadoc M, Clairembault T, Coron E, Berthomier C, Le Dily S, Vavasseur F, Pavageau A, St Louis EK, Péréon Y, Neunlist M, Derkinderen P, Leclair-Visonneau L. Wake and non-rapid eye movement sleep dysfunction is associated with colonic neuropathology in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.03.23296499. [PMID: 37873268 PMCID: PMC10593030 DOI: 10.1101/2023.10.03.23296499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Study Objectives The body-first Parkinson's disease (PD) hypothesis suggests initial gut Lewy body pathology that propagates to the pons before reaching the substantia nigra, and subsequently progresses to the diencephalic and cortical levels. This disease course may also be the most likely in PD with rapid eye movement sleep behavior disorder (RBD). Objectives We aimed to explore the potential association between colonic phosphorylated alpha-synuclein histopathology (PASH) and diencephalic or cortical dysfunction evidenced by non-rapid eye movement (NREM) sleep and wakefulness polysomnographic markers. Methods In a study involving 43 patients with PD who underwent clinical examination, rectosigmoidoscopy, and polysomnography, we detected PASH on colonic biopsies using whole-mount immunostaining. We performed a visual semi-quantitative and automated quantification of spindle and slow wave features of NREM sleep, and the wake dominant frequency, and then determined Braak and Arizona stage classifications for PD severity based on sleep and wake electroencephalographic features. Results The visual analysis aligned with the automated quantified spindle characteristics and the wake dominant frequency. Altered NREM sleep and wake parameters correlated with markers of PD severity, colonic PASH, and RBD diagnosis. Colonic PASH frequency also increased in parallel to presumed PD Braak and Arizona stage classifications. Conclusions Colonic PASH in PD is strongly associated with widespread brain sleep and wake dysfunction, pointing toward likely extensive diffusion of the pathological process in the presumptive body-first PD phenotype. Visual and automated analyses of polysomnography signals provide useful markers to gauge covert brain dysfunction in PD. Statement of Significance The presence of gut synucleinopathy in Parkinson's disease can be linked to the body-first hypothesis in its pathophysiology. This study, performed in a cohort of 43 patients with Parkinson's disease that underwent clinical assessment, rectosigmoidoscopy and polysomnography, provides evidence that colonic neuropathology in Parkinson's disease is associated with widespread brain dysfunction, as evaluated by wake and non-rapid eye movement sleep polysomnographic markers. Our results support the assumption of an extensive diffusion of the pathological process to diencephalic and neocortical structures in the presumptive body-first phenotype. They also suggest the use of routine polysomnography in phenotyping patients with Parkinson's disease. Future studies should investigate the brain diffusion pattern and its sleep markers in the hypothesized brain-first phenotype of Parkinson's disease.
Collapse
|
27
|
De Cock A, Van Ranst A, Costers L, Keytsman E, D'Hooghe MB, D'Haeseleer M, Nagels G, Van Schependom J. Reduced alpha2 power is associated with slowed information processing speed in multiple sclerosis. Eur J Neurol 2023; 30:2793-2800. [PMID: 37326133 DOI: 10.1111/ene.15927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Cognitive impairment is common in multiple sclerosis (MS), significantly impacts daily functioning, is time-consuming to assess, and is prone to practice effects. We examined whether the alpha band power measured with magnetoencephalography (MEG) is associated with the different cognitive domains affected by MS. METHODS Sixty-eight MS patients and 47 healthy controls underwent MEG, T1- and FLAIR-weighted magnetic resonance imaging (MRI), and neuropsychological testing. Alpha power in the occipital cortex was quantified in the alpha1 (8-10 Hz) and alpha2 (10-12 Hz) bands. Next, we performed best subset regression to assess the added value of neurophysiological measures to commonly available MRI measures. RESULTS Alpha2 power significantly correlated with information processing speed (p < 0.001) and was always retained in all multilinear models, whereas thalamic volume was retained in 80% of all models. Alpha1 power was correlated with visual memory (p < 0.001) but only retained in 38% of all models. CONCLUSIONS Alpha2 (10-12 Hz) power in rest is associated with IPS, independent of standard MRI parameters. This study stresses that a multimodal assessment, including structural and functional biomarkers, is likely required to characterize cognitive impairment in MS. Resting-state neurophysiology is thus a promising tool to understand and follow up changes in IPS.
Collapse
Affiliation(s)
- Alexander De Cock
- Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alexander Van Ranst
- Neurology Department, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lars Costers
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Keytsman
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marie B D'Hooghe
- Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
- Neurology Department, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Miguel D'Haeseleer
- Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
- Neurology Department, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Nagels
- Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Neurology Department, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- St Edmund Hall, University of Oxford, Oxford, UK
| | - Jeroen Van Schependom
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
28
|
Kim B, Erickson BA, Fernandez-Nunez G, Rich R, Mentzelopoulos G, Vitale F, Medaglia JD. EEG Phase Can Be Predicted with Similar Accuracy across Cognitive States after Accounting for Power and Signal-to-Noise Ratio. eNeuro 2023; 10:ENEURO.0050-23.2023. [PMID: 37558464 PMCID: PMC10481640 DOI: 10.1523/eneuro.0050-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 08/11/2023] Open
Abstract
EEG phase is increasingly used in cognitive neuroscience, brain-computer interfaces, and closed-loop stimulation devices. However, it is unknown how accurate EEG phase prediction is across cognitive states. We determined the EEG phase prediction accuracy of parieto-occipital alpha waves across rest and task states in 484 participants over 11 public datasets. We were able to track EEG phase accurately across various cognitive conditions and datasets, especially during periods of high instantaneous alpha power and signal-to-noise ratio (SNR). Although resting states generally have higher accuracies than task states, absolute accuracy differences were small, with most of these differences attributable to EEG power and SNR. These results suggest that experiments and technologies using EEG phase should focus more on minimizing external noise and waiting for periods of high power rather than inducing a particular cognitive state.
Collapse
Affiliation(s)
- Brian Kim
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | - Brian A Erickson
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | | | - Ryan Rich
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | - Georgios Mentzelopoulos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104
- Departments of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
- Departments of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Neurology, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
29
|
Makale MT, Abbasi S, Nybo C, Keifer J, Christman L, Fairchild JK, Yesavage J, Blum K, Gold MS, Baron D, Cadet JL, Elman I, Dennen CA, Murphy KT. Personalized repetitive transcranial magnetic stimulation (prtms®) for post-traumatic stress disorder (ptsd) in military combat veterans. Heliyon 2023; 9:e18943. [PMID: 37609394 PMCID: PMC10440537 DOI: 10.1016/j.heliyon.2023.e18943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Emerging data suggest that post-traumatic stress disorder (PTSD) arises from disrupted brain default mode network (DMN) activity manifested by dysregulated encephalogram (EEG) alpha oscillations. Hence, we pursued the treatment of combat veterans with PTSD (n = 185) using an expanded form of repetitive transcranial magnetic stimulation (rTMS) termed personalized-rTMS (PrTMS). In this treatment methodology spectral EEG based guidance is used to iteratively optimize symptom resolution via (1) stimulation of multiple motor sensory and frontal cortical sites at reduced power, and (2) adjustments of cortical treatment loci and stimulus frequency during treatment progression based on a proprietary frequency algorithm (PeakLogic, Inc. San Diego) identifying stimulation frequency in the DMN elements of the alpha oscillatory band. Following 4 - 6 weeks of PrTMS® therapy in addition to routine PTSD therapy, veterans exhibited significant clinical improvement accompanied by increased cortical alpha center frequency and alpha oscillatory synchronization. Full resolution of PTSD symptoms was attained in over 50% of patients. These data support DMN involvement in PTSD pathophysiology and suggest a role in therapeutic outcomes. Prospective, sham controlled PrTMS® trials may be warranted to validate our clinical findings and to examine the contribution of DMN targeting for novel preventive, diagnostic, and therapeutic strategies tailored to the unique needs of individual patients with both combat and non-combat PTSD.
Collapse
Affiliation(s)
- Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shaghayegh Abbasi
- Department of Electrical Engineering, University of Portland, Portland, OR, 97203, USA
| | - Chad Nybo
- CrossTx Inc., Bozeman, MT, 59715, USA
| | | | | | - J. Kaci Fairchild
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Sierra Pacific Mental Illness Research, Education, and Clinical Center, VA Medical Center, Palo Alto, CA, 94304, USA
| | - Jerome Yesavage
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, USA
- Department of Clinical Psychology and Addiction, Institute of Psychology, Faculty of Education and Psychology, Eötvös Loránd University, Hungary
- Department of Psychiatry, Wright University, Boonshoft School of Medicine, Dayton, OH, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Igor Elman
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | | |
Collapse
|
30
|
Vidaurre C, Gurunandan K, Idaji MJ, Nolte G, Gómez M, Villringer A, Müller KR, Nikulin VV. Novel multivariate methods to track frequency shifts of neural oscillations in EEG/MEG recordings. Neuroimage 2023; 276:120178. [PMID: 37236554 DOI: 10.1016/j.neuroimage.2023.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Instantaneous and peak frequency changes in neural oscillations have been linked to many perceptual, motor, and cognitive processes. Yet, the majority of such studies have been performed in sensor space and only occasionally in source space. Furthermore, both terms have been used interchangeably in the literature, although they do not reflect the same aspect of neural oscillations. In this paper, we discuss the relation between instantaneous frequency, peak frequency, and local frequency, the latter also known as spectral centroid. Furthermore, we propose and validate three different methods to extract source signals from multichannel data whose (instantaneous, local, or peak) frequency estimate is maximally correlated to an experimental variable of interest. Results show that the local frequency might be a better estimate of frequency variability than instantaneous frequency under conditions with low signal-to-noise ratio. Additionally, the source separation methods based on local and peak frequency estimates, called LFD and PFD respectively, provide more stable estimates than the decomposition based on instantaneous frequency. In particular, LFD and PFD are able to recover the sources of interest in simulations performed with a realistic head model, providing higher correlations with an experimental variable than multiple linear regression. Finally, we also tested all decomposition methods on real EEG data from a steady-state visual evoked potential paradigm and show that the recovered sources are located in areas similar to those previously reported in other studies, thus providing further validation of the proposed methods.
Collapse
Affiliation(s)
- C Vidaurre
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Tecnalia Research and Innovation, Neuroengineering Group, Health Unit, Donostia, Spain; Dept. of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain.
| | - K Gurunandan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; BCBL. Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
| | - M Jamshidi Idaji
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany; BIFOLD-Berlin Institute for the Foundations of Learning and Data, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - G Nolte
- Dept. of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Gómez
- Dept. of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - K-R Müller
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany; BIFOLD-Berlin Institute for the Foundations of Learning and Data, Germany; Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, South Korea; Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany
| | - V V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
31
|
Gao J, Sun R, Leung HK, Roberts A, Wu BWY, Tsang EW, Tang ACW, Sik HH. Increased neurocardiological interplay after mindfulness meditation: a brain oscillation-based approach. Front Hum Neurosci 2023; 17:1008490. [PMID: 37405324 PMCID: PMC10315629 DOI: 10.3389/fnhum.2023.1008490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Background Brain oscillations facilitate interaction within the brain network and between the brain and heart activities, and the alpha wave, as a prominent brain oscillation, plays a major role in these coherent activities. We hypothesize that mindfully breathing can make the brain and heart activities more coherent in terms of increased connectivity between the electroencephalogram (EEG) and electrocardiogram (ECG) signals. Methods Eleven participants (28-52 years) attended 8 weeks of Mindfulness Based Stress Reduction (MBSR) training. EEG and ECG data of two states of mindful breathing and rest, both eye-closed, were recorded before and after the training. EEGLAB was used to analyze the alpha band (8-12 Hz) power, alpha peak frequency (APF), peak power and coherence. FMRIB toolbox was used to extract the ECG data. Heart coherence (HC) and heartbeat evoked potential (HEP) were calculated for further correlation analysis. Results After 8 weeks of MBSR training, the correlation between APF and HC increased significantly in the middle frontal region and bilateral temporal regions. The correlation between alpha coherence and heart coherence had similar changes, while alpha peak power did not reflect such changes. In contrast, spectrum analysis alone did not show difference before and after MBSR training. Conclusion The brain works in rhythmic oscillation, and this rhythmic connection becomes more coherent with cardiac activity after 8 weeks of MBSR training. Individual APF is relatively stable and its interplay with cardiac activity may be a more sensitive index than power spectrum by monitoring the brain-heart connection. This preliminary study has important implications for the neuroscientific measurement of meditative practice.
Collapse
Affiliation(s)
- Junling Gao
- Buddhist Practices and Counselling Science Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Rui Sun
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Hang Kin Leung
- Buddhist Practices and Counselling Science Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adam Roberts
- Singapore-ETH Centre, Future Resilient Systems Programme, Singapore, Singapore
| | - Bonnie Wai Yan Wu
- Buddhist Practices and Counselling Science Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Eric W. Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Andrew C. W. Tang
- Department of Psychology, HKU School of Professional and Continuing Education, Hong Kong, Hong Kong SAR, China
| | - Hin Hung Sik
- Buddhist Practices and Counselling Science Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
32
|
Rassi E, Lin WM, Zhang Y, Emmerzaal J, Haegens S. β Band Rhythms Influence Reaction Times. eNeuro 2023; 10:ENEURO.0473-22.2023. [PMID: 37364994 PMCID: PMC10312120 DOI: 10.1523/eneuro.0473-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023] Open
Abstract
Despite their involvement in many cognitive functions, β oscillations are among the least understood brain rhythms. Reports on whether the functional role of β is primarily inhibitory or excitatory have been contradictory. Our framework attempts to reconcile these findings and proposes that several β rhythms co-exist at different frequencies. β Frequency shifts and their potential influence on behavior have thus far received little attention. In this human magnetoencephalography (MEG) experiment, we asked whether changes in β power or frequency in auditory cortex and motor cortex influence behavior (reaction times) during an auditory sweep discrimination task. We found that in motor cortex, increased β power slowed down responses, while in auditory cortex, increased β frequency slowed down responses. We further characterized β as transient burst events with distinct spectro-temporal profiles influencing reaction times. Finally, we found that increased motor-to-auditory β connectivity also slowed down responses. In sum, β power, frequency, bursting properties, cortical focus, and connectivity profile all influenced behavioral outcomes. Our results imply that the study of β oscillations requires caution as β dynamics are multifaceted phenomena, and that several dynamics must be taken into account to reconcile mixed findings in the literature.
Collapse
Affiliation(s)
- Elie Rassi
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Department of Psychology, Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria
| | - Wy Ming Lin
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Hector Research Institute for Education Sciences and Psychology, University of Tübingen, 72074 Tübingen, Germany
| | - Yi Zhang
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Jill Emmerzaal
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
- REVAL Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, 3500 Diepenbeek, Belgium
| | - Saskia Haegens
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032
| |
Collapse
|
33
|
Rodriguez-Larios J, Haegens S. Genuine beta bursts in human working memory: controlling for the influence of lower-frequency rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542448. [PMID: 37292960 PMCID: PMC10245977 DOI: 10.1101/2023.05.26.542448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human working memory is associated with significant modulations in oscillatory brain activity. However, the functional role of brain rhythms at different frequencies is still debated. Modulations in the beta frequency range (15-40 Hz) are especially difficult to interpret because they could be artifactually produced by (more prominent) oscillations in lower frequencies that show non-sinusoidal properties. In this study, we investigate beta oscillations during working memory while controlling for the possible influence of lower frequency rhythms. We collected electroencephalography (EEG) data in 31 participants who performed a spatial working-memory task with two levels of cognitive load. In order to rule out the possibility that observed beta activity was affected by non-sinusoidalities of lower frequency rhythms, we developed an algorithm that detects transient beta oscillations that do not coincide with more prominent lower frequency rhythms in time and space. Using this algorithm, we show that the amplitude and duration of beta bursts decrease with memory load and during memory manipulation, while their peak frequency and rate increase. In addition, interindividual differences in performance were significantly associated with beta burst rates. Together, our results show that beta rhythms are functionally modulated during working memory and that these changes cannot be attributed to lower frequency rhythms with non-sinusoidal properties.
Collapse
Affiliation(s)
- Julio Rodriguez-Larios
- Dept. of Psychiatry, Columbia University, New York, USA, NY 10032
- Div. of Systems Neuroscience, New York State Psychiatric Institute, New York, USA, NY 10032
| | - Saskia Haegens
- Dept. of Psychiatry, Columbia University, New York, USA, NY 10032
- Div. of Systems Neuroscience, New York State Psychiatric Institute, New York, USA, NY 10032
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| |
Collapse
|
34
|
Rabiller G, Ip Z, Zarrabian S, Zhang H, Sato Y, Yazdan-Shahmorad A, Liu J. Type-2 diabetes alters hippocampal neural oscillations and disrupts synchrony between hippocampus and cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542288. [PMID: 37292743 PMCID: PMC10245872 DOI: 10.1101/2023.05.25.542288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of neurological diseases, yet how brain oscillations change as age and T2DM interact is not well characterized. To delineate the age and diabetic effect on neurophysiology, we recorded local field potentials with multichannel electrodes spanning the somatosensory cortex and hippocampus (HPC) under urethane anesthesia in diabetic and normoglycemic control mice, at 200 and 400 days of age. We analyzed the signal power of brain oscillations, brain state, sharp wave associate ripples (SPW-Rs), and functional connectivity between the cortex and HPC. We found that while both age and T2DM were correlated with a breakdown in long-range functional connectivity and reduced neurogenesis in the dentate gyrus and subventricular zone, T2DM further slowed brain oscillations and reduced theta-gamma coupling. Age and T2DM also prolonged the duration of SPW-Rs and increased gamma power during SPW-R phase. Our results have identified potential electrophysiological substrates of hippocampal changes associated with T2DM and age. The perturbed brain oscillation features and diminished neurogenesis may underlie T2DM-accelerated cognitive impairment.
Collapse
|
35
|
Chernyshev BV, Pultsina KI, Tretyakova VD, Miasnikova AS, Prokofyev AO, Kozunova GL, Stroganova TA. Losses resulting from deliberate exploration trigger beta oscillations in frontal cortex. Front Neurosci 2023; 17:1152926. [PMID: 37250414 PMCID: PMC10211346 DOI: 10.3389/fnins.2023.1152926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
We examined the neural signature of directed exploration by contrasting MEG beta (16-30 Hz) power changes between disadvantageous and advantageous choices in the two-choice probabilistic reward task. We analyzed the choices made after the participants have learned the probabilistic contingency between choices and their outcomes, i.e., acquired the inner model of choice values. Therefore, rare disadvantageous choices might serve explorative, environment-probing purposes. The study brought two main findings. Firstly, decision making leading to disadvantageous choices took more time and evidenced greater large-scale suppression of beta oscillations than its advantageous alternative. Additional neural resources recruited during disadvantageous decisions strongly suggest their deliberately explorative nature. Secondly, an outcome of disadvantageous and advantageous choices had qualitatively different impact on feedback-related beta oscillations. After the disadvantageous choices, only losses-but not gains-were followed by late beta synchronization in frontal cortex. Our results are consistent with the role of frontal beta oscillations in the stabilization of neural representations for selected behavioral rule when explorative strategy conflicts with value-based behavior. Punishment for explorative choice being congruent with its low value in the reward history is more likely to strengthen, through punishment-related beta oscillations, the representation of exploitative choices consistent with the inner utility model.
Collapse
Affiliation(s)
- Boris V. Chernyshev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
- Department of Higher Nervous Activity, Lomonosov Moscow State University, Moscow, Russia
- Department of Psychology, Higher School of Economics, Moscow, Russia
| | - Kristina I. Pultsina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Vera D. Tretyakova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Aleksandra S. Miasnikova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Andrey O. Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Galina L. Kozunova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Tatiana A. Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| |
Collapse
|
36
|
Trajkovic J, Di Gregorio F, Avenanti A, Thut G, Romei V. Two Oscillatory Correlates of Attention Control in the Alpha-Band with Distinct Consequences on Perceptual Gain and Metacognition. J Neurosci 2023; 43:3548-3556. [PMID: 37019621 PMCID: PMC10184728 DOI: 10.1523/jneurosci.1827-22.2023] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Behavioral consequences and neural underpinnings of visuospatial attention have long been investigated. Classical studies using the Posner paradigm have found that visual perception systematically benefits from the use of a spatially informative cue pointing to the to-be-attended spatial location, compared with a noninformative cue. Lateralized α amplitude modulation during visuospatial attention shifts has been suggested to account for such perceptual gain. However, recent studies on spontaneous fluctuations of prestimulus α amplitude have challenged this notion. These studies showed that spontaneous fluctuations of prestimulus α amplitude were associated with the subjective appreciation of stimulus occurrence, while objective accuracy was instead best predicted by the frequency of α oscillations, with faster prestimulus α frequency accounting for better perceptual performance. Here, in male and female humans, by using an informative cue in anticipation of lateralized stimulus presentation, we found that the predictive cue not only modulates preparatory α amplitude but also α frequency in a retinotopic manner. Behaviorally, the cue significantly impacted subjective performance measures (metacognitive abilities [meta-d']) and objective performance gain (d'). Importantly, α amplitude directly accounted for confidence levels, with ipsilateral synchronization and contralateral desynchronization coding for high-confidence responses. Crucially, the contralateral α amplitude selectively predicted interindividual differences in metacognitive abilities (meta-d'), thus anticipating decision strategy and not perceptual sensitivity, probably via excitability modulations. Instead, higher perceptual accuracy both within and across participants (d') was associated with faster contralateral α frequency, likely by implementing higher sampling at the attended location. These findings provide critical new insights into the neural mechanisms of attention control and its perceptual consequences.SIGNIFICANCE STATEMENT Prior knowledge serves the anticipation of sensory input to reduce sensory ambiguity. The growing interest in the neural mechanisms governing the integration of sensory input into our internal representations has highlighted a pivotal role of brain oscillations. Here we show that distinct but interacting oscillatory mechanisms are engaged during attentional deployment: one relying on α amplitude modulations and reflecting internal decision processes, associated with subjective perceptual experience and metacognitive abilities; the other relying on α frequency modulations and enabling mechanistic sampling of the sensory input at the attended location to influence objective performance. These insights are crucial for understanding how we reduce sensory ambiguity to maximize the efficiency of our conscious experience, but also in interpreting the mechanisms of atypical perceptual experiences.
Collapse
Affiliation(s)
- Jelena Trajkovic
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Cesena, 47521, Italy
| | - Francesco Di Gregorio
- Azienda Unità Sanitaria Locale, UOC Medicina riabilitativa e neuroriabilitazione, Bologna, 40124, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Cesena, 47521, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, 346000, Chile
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, MVLS, University of Glasgow, Glasgow, G12 8QB, United Kingdom
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Cesena, 47521, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Roma, 00179, Italy
| |
Collapse
|
37
|
Michael E, Covarrubias LS, Leong V, Kourtzi Z. Learning at your brain's rhythm: individualized entrainment boosts learning for perceptual decisions. Cereb Cortex 2023; 33:5382-5394. [PMID: 36352510 PMCID: PMC10152088 DOI: 10.1093/cercor/bhac426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Training is known to improve our ability to make decisions when interacting in complex environments. However, individuals vary in their ability to learn new tasks and acquire new skills in different settings. Here, we test whether this variability in learning ability relates to individual brain oscillatory states. We use a visual flicker paradigm to entrain individuals at their own brain rhythm (i.e. peak alpha frequency) as measured by resting-state electroencephalography (EEG). We demonstrate that this individual frequency-matched brain entrainment results in faster learning in a visual identification task (i.e. detecting targets embedded in background clutter) compared to entrainment that does not match an individual's alpha frequency. Further, we show that learning is specific to the phase relationship between the entraining flicker and the visual target stimulus. EEG during entrainment showed that individualized alpha entrainment boosts alpha power, induces phase alignment in the pre-stimulus period, and results in shorter latency of early visual evoked potentials, suggesting that brain entrainment facilitates early visual processing to support improved perceptual decisions. These findings suggest that individualized brain entrainment may boost perceptual learning by altering gain control mechanisms in the visual cortex, indicating a key role for individual neural oscillatory states in learning and brain plasticity.
Collapse
Affiliation(s)
- Elizabeth Michael
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| | | | - Victoria Leong
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
- Psychology, School of Social Sciences, Nanyang Technological University (NTU), Singapore 6398818, Singapore
- Lee Kong Chian School of Medicine, NTU, Singapore 308232, Singapore
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
38
|
Silas J, Jones A, Yarrow K, Anderson W. Spatial attention is not affected by alpha or beta transcranial alternating current stimulation: A registered report. Cortex 2023; 164:33-50. [PMID: 37148826 DOI: 10.1016/j.cortex.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
Using Electroencephalography (EEG) an event-related change in alpha activity has been observed over primary sensory cortices during the allocation of spatial attention. This is most prominent during top-down, or endogenous, attention, and nearly absent in bottom-up, or exogenous orienting. These changes are highly lateralised, such that an increase in alpha power is seen ipsilateral to the attended region of space and a decrease is seen contralaterally. Whether these changes in alpha oscillatory activity are causally related to attentional resources, or to perceptual processes, or are simply epiphenomenal, is unknown. If alpha oscillations are indicative of a causal mechanism whereby attention is allocated to a region of space, it remains an open question as to whether this is driven by ipsilateral increases or contralateral decreases in alpha power. This preregistered report set out to test these questions. To do so, we used transcranial Alternating Current Stimulation (tACS) to modulate alpha activity in the somatosensory cortex whilst measuring performance on established tactile attention paradigms. All participants completed an endogenous and exogenous tactile attention task in three stimulation conditions; alpha, sham and beta. Sham and beta stimulation operated as controls so that any observed effects could be attributed to alpha stimulation specifically. We replicated previous behavioural findings in all stimulation conditions showing a facilitation of cued trials in the endogenous task, and inhibition of return in the exogenous task. However, these were not affected by stimulation manipulations. Using Bayes-factor analysis we show strong support for the null hypotheses - that the manipulation of Alpha by tACS does not cause changes in tactile spatial attention. This well-powered study, conducted over three separate days, is an important contribution to the current debate regarding the efficiency of brain stimulation.
Collapse
|
39
|
Jaeger C, Nuttall R, Zimmermann J, Dowsett J, Preibisch C, Sorg C, Wohlschlaeger A. Targeted rhythmic visual stimulation at individual participants' intrinsic alpha frequency causes selective increase of occipitoparietal BOLD-fMRI and EEG functional connectivity. Neuroimage 2023; 270:119981. [PMID: 36848971 DOI: 10.1016/j.neuroimage.2023.119981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023] Open
Abstract
Neural oscillations in distinct frequency bands are ubiquitous in the brain and play a role in many cognitive processes. The "communication by coherence" hypothesis, poses that the synchronization through phase coupling of frequency-specific neural oscillations regulate information flow across distribute brain regions. Specifically, the posterior alpha frequency band (7-12 Hz) is thought to gate bottom-up visual information flow by inhibition during visual processing. Evidence shows that increased alpha phase coherency positively correlates with functional connectivity in resting state connectivity networks, supporting alpha mediates neural communication through coherency. However, these findings have mainly been derived from spontaneous changes in the ongoing alpha rhythm. In this study, we experimentally modulate the alpha rhythm by targeting individuals' intrinsic alpha frequency with sustained rhythmic light to investigate alpha-mediated synchronous cortical activity in both EEG and fMRI. We hypothesize increased alpha coherency and fMRI connectivity should arise from modulation of the intrinsic alpha frequency (IAF) as opposed to control frequencies in the alpha range. Sustained rhythmic and arrhythmic stimulation at the IAF and at neighboring frequencies within the alpha band range (7-12 Hz) was implemented and assessed in a separate EEG and fMRI study. We observed increased cortical alpha phase coherency in the visual cortex during rhythmic stimulation at the IAF as in comparison to rhythmic stimulation of control frequencies. In the fMRI, we found increased functional connectivity for stimulation at the IAF in visual and parietal areas as compared to other rhythmic control frequencies by correlating time courses from a set of regions of interest for the different stimulation conditions and applying network-based statistics. This suggests that rhythmic stimulation at the IAF frequency induces a higher degree of synchronicity of neural activity across the occipital and parietal cortex, which supports the role of the alpha oscillation in gating information flow during visual processing.
Collapse
Affiliation(s)
- Cilia Jaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neuroscience, Ludwig Maximilian University, Planneg-Martinsried, Germany
| | - Rachel Nuttall
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - James Dowsett
- Department of Psychology, Ludwig Maximilian University, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Clinic for Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Psychiatry, Technical University of Munich, Munich, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
40
|
Wang Y, Li Y, Sun F, Xu Y, Xu F, Wang S, Wang X. Altered neuromagnetic activity in default mode network in childhood absence epilepsy. Front Neurosci 2023; 17:1133064. [PMID: 37008207 PMCID: PMC10060817 DOI: 10.3389/fnins.2023.1133064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
PurposeThe electrophysiological characterization of resting state oscillatory functional connectivity within the default mode network (DMN) during interictal periods in childhood absence epilepsy (CAE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in CAE.MethodsUsing a cross-sectional design, we analyzed MEG data from 33 children newly diagnosed with CAE and 26 controls matched for age and sex. The spectral power and functional connectivity of the DMN were estimated using minimum norm estimation combined with the Welch technique and corrected amplitude envelope correlation.ResultsDefault mode network showed stronger activation in the delta band during the ictal period, however, the relative spectral power in other bands was significantly lower than that in the interictal period (pcorrected < 0.05 for DMN regions, except bilateral medial frontal cortex, left medial temporal lobe, left posterior cingulate cortex in the theta band, and the bilateral precuneus in the alpha band). It should be noted that the significant power peak in the alpha band was lost compared with the interictal data. Compared with controls, the interictal relative spectral power of DMN regions (except bilateral precuneus) in CAE patients was significantly increased in the delta band (pcorrected < 0.01), whereas the values of all DMN regions in the beta-gamma 2 band were significantly decreased (pcorrected < 0.01). In the higher frequency band (alpha-gamma1), especially in the beta and gamma1 band, the ictal node strength of DMN regions except the left precuneus was significantly higher than that in the interictal periods (pcorrected < 0.01), and the node strength of the right inferior parietal lobe increased most significantly in the beta band (Ictal: 3.8712 vs. Interictal: 0.7503, pcorrected < 0.01). Compared with the controls, the interictal node strength of DMN increased in all frequency bands, especially the right medial frontal cortex in the beta band (Controls: 0.1510 vs. Interictal: 3.527, pcorrected < 0.01). Comparing relative node strength between groups, the right precuneus in CAE children decreased significantly (β: Controls: 0.1009 vs. Interictal: 0.0475; γ 1: Controls:0.1149 vs. Interictal:0.0587, pcorrected < 0.01) such that it was no longer the central hub.ConclusionThese findings indicated DMN abnormalities in CAE patients, even in interictal periods without interictal epileptic discharges. Abnormal functional connectivity in CAE may reflect abnormal anatomo-functional architectural integration in DMN, as a result of cognitive mental impairment and unconsciousness during absence seizure. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction, and prognosis in CAE patients.
Collapse
|
41
|
Pavlova A, Tyulenev N, Tretyakova V, Skavronskaya V, Nikolaeva A, Prokofyev A, Stroganova T, Chernyshev B. Learning of new associations invokes a major change in modulations of cortical beta oscillations in human adults. Psychophysiology 2023:e14284. [PMID: 36906906 DOI: 10.1111/psyp.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/21/2023] [Accepted: 02/18/2023] [Indexed: 03/13/2023]
Abstract
Large-scale cortical beta (β) oscillations were implicated in the learning processes, but their exact role is debated. We used MEG to explore the dynamics of movement-related β-oscillations while 22 adults learned, through trial and error, novel associations between four auditory pseudowords and movements of four limbs. As learning proceeded, spatial-temporal characteristics of β-oscillations accompanying cue-triggered movements underwent a major transition. Early in learning, widespread suppression of β-power occurred long before movement initiation and sustained throughout the whole behavioral trial. When learning advanced and performance reached asymptote, β-suppression after the initiation of correct motor response was replaced by a rise in β-power mainly in the prefrontal and medial temporal regions of the left hemisphere. This post-decision β-power predicted trial-by-trial response times (RT) at both stages of learning (before and after the rules become familiar), but with different signs of interaction. When a subject just started to acquire associative rules and gradually improved task performance, a decrease in RT correlated with the increase in the post-decision β-band power. When the participants implemented the already acquired rules, faster (more confident) responses were associated with the weaker post-decision β-band synchronization. Our findings suggest that maximal beta activity is pertinent to a distinct stage of learning and may serve to strengthen the newly learned association in a distributed memory network.
Collapse
Affiliation(s)
- Anna Pavlova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.,Department of Psychology, HSE University, Moscow, Russian Federation
| | - Nikita Tyulenev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Vera Tretyakova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Valeriya Skavronskaya
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Anastasia Nikolaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Andrey Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Boris Chernyshev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.,Department of Psychology, HSE University, Moscow, Russian Federation.,Department of Higher Nervous Activity, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
42
|
Quiquempoix M, Drogou C, Erblang M, Van Beers P, Guillard M, Tardo-Dino PE, Rabat A, Léger D, Chennaoui M, Gomez-Merino D, Sauvet F. Relationship between Habitual Caffeine Consumption, Attentional Performance, and Individual Alpha Frequency during Total Sleep Deprivation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4971. [PMID: 36981883 PMCID: PMC10049386 DOI: 10.3390/ijerph20064971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
(1) Background: Caffeine is a psychostimulant that is well known to mitigate the deleterious effects of sleep debt. Our aim was to assess the effects of acute caffeine intake on cognitive vulnerability and brain activity during total sleep deprivation (TSD), taking into account habitual caffeine consumption. (2) Methods: Thirty-seven subjects were evaluated in a double-blind, crossover, total sleep deprivation protocol with caffeine or placebo treatment. Vigilant attention was evaluated every six hours during TSD using the psychomotor vigilance test (PVT) with EEG recordings. The influence of habitual caffeine consumption was analyzed by categorizing subjects into low, moderate, and high consumers. (3) Results: The PVT reaction time (RT) increased during TSD and was lower in the caffeine condition vs. the placebo condition. The RT was shorter in the low-caffeine consumers compared to moderate and high consumers, regardless of conditions and treatments. The TSD-related increase in EEG power was attenuated by acute caffeine intake independently of habitual caffeine consumption, and the individual alpha frequency (IAF) was lower in the high-consumption group. The IAF was negatively correlated with daytime sleepiness. Moreover, a correlation analysis showed that the higher the daily caffeine consumption, the higher the RT and the lower the IAF. (4) Conclusions: A high level of habitual caffeine consumption decreases attentional performance and alpha frequencies, decreasing tolerance to sleep deprivation.
Collapse
Affiliation(s)
- Michael Quiquempoix
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France (F.S.)
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
| | - Catherine Drogou
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France (F.S.)
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
| | - Mégane Erblang
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France (F.S.)
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (UMR LBEPS), Université d’Evry, 91025 Evry-Courcouronnes, France
| | - Pascal Van Beers
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France (F.S.)
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
| | - Mathias Guillard
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France (F.S.)
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
| | - Pierre-Emmanuel Tardo-Dino
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France (F.S.)
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (UMR LBEPS), Université d’Evry, 91025 Evry-Courcouronnes, France
| | - Arnaud Rabat
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France (F.S.)
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
| | - Damien Léger
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
- APHP, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, 75004 Paris, France
| | - Mounir Chennaoui
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France (F.S.)
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
| | - Danielle Gomez-Merino
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France (F.S.)
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
| | - Fabien Sauvet
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny sur Orge, France (F.S.)
- URP 7330 VIFASOM, Université Paris Cité, Hôtel-Dieu, 75004 Paris, France
| |
Collapse
|
43
|
Chowdhury NS, Skippen P, Si E, Chiang AKI, Millard SK, Furman AJ, Chen S, Schabrun SM, Seminowicz DA. The reliability of two prospective cortical biomarkers for pain: EEG peak alpha frequency and TMS corticomotor excitability. J Neurosci Methods 2023; 385:109766. [PMID: 36495945 PMCID: PMC9848447 DOI: 10.1016/j.jneumeth.2022.109766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/10/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many pain biomarkers fail to move from discovery to clinical application, attributed to poor reliability and an inability to accurately classify at-risk individuals. Preliminary evidence has shown that high pain sensitivity is associated with slow peak alpha frequency (PAF), and depression of corticomotor excitability (CME), potentially due to impairments in ascending sensory and descending motor pathway signalling respectively NEW METHOD: The present study evaluated the reliability of PAF and CME responses during sustained pain. Specifically, we determined whether, over several days of pain, a) PAF remains stable and b) individuals show two stable and distinct CME responses: facilitation and depression. Participants were given an injection of nerve growth factor (NGF) into the right masseter muscle on Day 0 and Day 2, inducing sustained pain. Electroencephalography (EEG) to assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on Day 0, Day 2 and Day 5. RESULTS Using a weighted peak estimate, PAF reliability (n = 75) was in the excellent range even without standard pre-processing and ∼2 min recording length. Using a single peak estimate, PAF reliability was in the moderate-good range. For CME (n = 74), 80% of participants showed facilitation or depression of CME beyond an optimal cut-off point, with the stability of these changes in the good range. COMPARISON WITH EXISTING METHODS No study has assessed the reliability of PAF or feasibility of classifying individuals as facilitators/depressors, in response to sustained pain. PAF was reliable even in the presence of pain. The use of a weighted peak estimate for PAF is recommended, as excellent test-retest reliability can be obtained even when using minimal pre-processing and ∼2 min recording. We also showed that 80% of individuals exhibit either facilitation or depression of CME, with these changes being stable across sessions. CONCLUSIONS Our study provides support for the reliability of PAF and CME as prospective cortical biomarkers. As such, our paper adds important methodological advances to the rapidly growing field of pain biomarkers.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia.
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Emily Si
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Alan K I Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Furman
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Shuo Chen
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Physical Therapy, University of Western Ontario, London, Canada
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA; Department of Medical Biophysics, University of Western Ontario, London, Canada
| |
Collapse
|
44
|
Buccellato A, Zang D, Zilio F, Gomez-Pilar J, Wang Z, Qi Z, Zheng R, Xu Z, Wu X, Bisiacchi P, Felice AD, Mao Y, Northoff G. Disrupted relationship between intrinsic neural timescales and alpha peak frequency during unconscious states - A high-density EEG study. Neuroimage 2023; 265:119802. [PMID: 36503159 DOI: 10.1016/j.neuroimage.2022.119802] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Our brain processes the different timescales of our environment's temporal input stochastics. Is such a temporal input processing mechanism key for consciousness? To address this research question, we calculated measures of input processing on shorter (alpha peak frequency, APF) and longer (autocorrelation window, ACW) timescales on resting-state high-density EEG (256 channels) recordings and compared them across different consciousness levels (awake/conscious, ketamine and sevoflurane anaesthesia, unresponsive wakefulness, minimally conscious state). We replicate and extend previous findings of: (i) significantly longer ACW values, consistently over all states of unconsciousness, as measured with ACW-0 (an unprecedented longer version of the well-know ACW-50); (ii) significantly slower APF values, as measured with frequency sliding, in all four unconscious states. Most importantly, we report a highly significant correlation of ACW-0 and APF in the conscious state, while their relationship is disrupted in the unconscious states. In sum, we demonstrate the relevance of the brain's capacity for input processing on shorter (APF) and longer (ACW) timescales - including their relationship - for consciousness. Albeit indirectly, e.g., through the analysis of electrophysiological activity at rest, this supports the mechanism of temporo-spatial alignment to the environment's temporal input stochastics, through relating different neural timescales, as one key predisposing factor of consciousness.
Collapse
Affiliation(s)
- Andrea Buccellato
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy.
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, Valladolid 47011, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Valladolid, Spain
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Ruizhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Zeyu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Patrizia Bisiacchi
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy
| | - Alessandra Del Felice
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Ontario K1Z7K4, Canada; Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang Province, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310013, Zhejiang Province, China.
| |
Collapse
|
45
|
Müller H, Baumeister J, Bardal EM, Vereijken B, Skjæret-Maroni N. Exergaming in older adults: the effects of game characteristics on brain activity and physical activity. Front Aging Neurosci 2023; 15:1143859. [PMID: 37213536 PMCID: PMC10196070 DOI: 10.3389/fnagi.2023.1143859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Exergames are increasingly used in rehabilitation settings for older adults to train physical and cognitive abilities. To meet the potential that exergames hold, they need to be adapted to the individual abilities of the player and their training objectives. Therefore, it is important to know whether and how game characteristics affect their playing. The aim of this study is to investigate the effect of two different kinds of exergame (step game and balance game) played at two difficulty levels on brain activity and physical activity. Methods Twenty-eight older independently living adults played two different exergames at two difficulty levels each. In addition, the same movements as during gaming (leaning sideways with feet in place and stepping sideways) were performed as reference movements. Brain activity was recorded using a 64-channel EEG system to assess brain activity, while physical activity was recorded using an accelerometer at the lower back and a heart rate sensor. Source-space analysis was applied to analyze the power spectral density in theta (4 Hz-7 Hz) and alpha-2 (10 Hz-12 Hz) frequency bands. Vector magnitude was applied to the acceleration data. Results Friedman ANOVA revealed significantly higher theta power for the exergaming conditions compared to the reference movement for both games. Alpha-2 power showed a more diverse pattern which might be attributed to task-specific conditions. Acceleration decreased significantly from the reference movement to the easy condition to the hard condition for both games. Discussion The results indicate that exergaming increases frontal theta activity irrespective of type of game or difficulty level, while physical activity decreases with increasing difficulty level. Heart rate was found to be an inappropriate measure in this population older adults. These findings contribute to understanding of how game characteristics affect physical and cognitive activity and consequently need to be taken into account when choosing appropriate games and game settings for exergame interventions.
Collapse
Affiliation(s)
- Helen Müller
- Exercise Science and Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- *Correspondence: Helen Müller,
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Ellen Marie Bardal
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Beatrix Vereijken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nina Skjæret-Maroni
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
46
|
Frequency modulation of cortical rhythmicity governs behavioral variability, excitability and synchrony of neurons in the visual cortex. Sci Rep 2022; 12:20914. [PMID: 36463385 PMCID: PMC9719482 DOI: 10.1038/s41598-022-25264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Research in cognitive neuroscience has renewed the idea that brain oscillations are a core organization implicated in fundamental brain functions. Growing evidence reveals that the characteristic features of these oscillations, including power, phase and frequency, are highly non-stationary, fluctuating alongside alternations in sensation, cognition and behavior. However, there is little consensus on the functional implications of the instantaneous frequency variation in cortical excitability and concomitant behavior. Here, we capitalized on intracortical electrophysiology in the macaque monkey's visual area MT performing a visuospatial discrimination task with visual cues. We observed that the instantaneous frequency of the theta-alpha oscillations (4-13 Hz) is modulated among specific neurons whose RFs overlap with the cued stimulus location. Interestingly, we found that such frequency modulation is causally correlated with MT excitability at both scales of individual and ensemble of neurons. Moreover, studying the functional relevance of frequency variations indicated that the average theta-alpha frequencies foreshadow the monkey's reaction time. Our results also revealed that the neural synchronization strength alters with the average frequency shift in theta-alpha oscillations, suggesting frequency modulation is critical for mutually adjusting MTs' rhythms. Overall, our findings propose that theta-alpha frequency variations modulate MT's excitability, regulate mutual neurons' rhythmicity and indicate variability in behavior.
Collapse
|
47
|
Zhai Y, Li Y, Zhou S, Zhang C, Luo E, Tang C, Xie K. Mental fatigue decreases complexity: Evidence from multiscale entropy analysis of instantaneous frequency variation in alpha rhythm. Front Hum Neurosci 2022; 16:906735. [PMID: 36393985 PMCID: PMC9643441 DOI: 10.3389/fnhum.2022.906735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/13/2022] [Indexed: 08/17/2023] Open
Abstract
Mental fatigue (MF) jeopardizes performance and safety through a variety of cognitive impairments and according to the complexity loss theory, should represent "complexity loss" in electroencephalogram (EEG). However, the studies are few and inconsistent concerning the relationship between MF and loss of complexity, probably because of the susceptibility of brain waves to noise. In this study, MF was induced in thirteen male college students by a simulated flight task. Before and at the end of the task, spontaneous EEG and auditory steady-state response (ASSR) were recorded and instantaneous frequency variation (IFV) in alpha rhythm was extracted and analyzed by multiscale entropy (MSE) analysis. The results show that there were significant differences in IFV in alpha rhythm either from spontaneous EEG or from ASSR for all subjects. Therefore, the proposed method can be effective in revealing the complexity loss caused by MF in spontaneous EEG and ASSR, which may serve as a promising analyzing method to mark mild mental impairments.
Collapse
Affiliation(s)
- Yawen Zhai
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Yan Li
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| | - Shengyi Zhou
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
- Air Force Hospital of Western Theater Command, Chengdu, China
| | - Chenxu Zhang
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| | - Erping Luo
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| | - Chi Tang
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| | - Kangning Xie
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| |
Collapse
|
48
|
Rodriguez-Larios J, ElShafei A, Wiehe M, Haegens S. Visual working memory recruits two functionally distinct alpha rhythms in posterior cortex. eNeuro 2022; 9:ENEURO.0159-22.2022. [PMID: 36171059 PMCID: PMC9536853 DOI: 10.1523/eneuro.0159-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Oscillatory activity in the human brain is dominated by posterior alpha oscillations (8-14 Hz), which have been shown to be functionally relevant in a wide variety of cognitive tasks. Although posterior alpha oscillations are commonly considered a single oscillator anchored at an individual alpha frequency (IAF; ∼10 Hz), previous work suggests that IAF reflects a spatial mixture of different brain rhythms. In this study, we assess whether Independent Component Analysis (ICA) can disentangle functionally distinct posterior alpha rhythms in the context of visual short-term memory retention. Magnetoencephalography (MEG) was recorded in 33 subjects while performing a visual working memory task. Group analysis at sensor level suggested the existence of a single posterior alpha oscillator that increases in power and decreases in frequency during memory retention. Conversely, single-subject analysis of independent components revealed the existence of two dissociable alpha rhythms: one that increases in power during memory retention (Alpha1) and another one that decreases in power (Alpha2). Alpha1 and Alpha2 rhythms were differentially modulated by the presence of visual distractors (Alpha1 increased in power while Alpha2 decreased) and had an opposite relationship with accuracy (positive for Alpha1 and negative for Alpha2). In addition, Alpha1 rhythms showed a lower peak frequency, a narrower peak width, a greater relative peak amplitude and a more central source than Alpha2 rhythms. Together, our results demonstrate that modulations in posterior alpha oscillations during short-term memory retention reflect the dynamics of at least two distinct brain rhythms with different functions and spatiospectral characteristics.Significance statementAlpha oscillations are the most prominent feature of the human brain's electrical activity, and consist of rhythmic neuronal activity in posterior parts of the cortex. Alpha is usually considered a single brain rhythm that changes in power and frequency to support cognitive operations. We here show that posterior alpha entails at least two dissociable rhythms with distinct functions and characteristics. These findings could solve previous inconsistencies in the literature regarding the direction of task-related alpha power/frequency modulations and their relation to cognitive performance. In addition, the existence of two distinct posterior alpha rhythms could have important consequences for the design of neurostimulation protocols aimed at modulating alpha oscillations and subsequently cognition.
Collapse
Affiliation(s)
- Julio Rodriguez-Larios
- Dept. of Psychiatry, Columbia University, New York, USA, NY 10032
- Div. of Systems Neuroscience, New York State Psychiatric Institute, New York, USA, NY 10032
| | - Alma ElShafei
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| | - Melanie Wiehe
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| | - Saskia Haegens
- Dept. of Psychiatry, Columbia University, New York, USA, NY 10032
- Div. of Systems Neuroscience, New York State Psychiatric Institute, New York, USA, NY 10032
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| |
Collapse
|
49
|
Strang CC, Harris A, Moody EJ, Reed CL. Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits. Front Neurosci 2022; 16:950539. [PMID: 35992926 PMCID: PMC9389406 DOI: 10.3389/fnins.2022.950539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations.
Collapse
Affiliation(s)
| | - Alison Harris
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States
- *Correspondence: Alison Harris,
| | - Eric J. Moody
- Wyoming Institute for Disabilities (WIND), University of Wyoming, Laramie, WY, United States
| | - Catherine L. Reed
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States
| |
Collapse
|
50
|
Ponomareva NV, Andreeva TV, Protasova M, Konovalov RN, Krotenkova MV, Kolesnikova EP, Malina DD, Kanavets EV, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Genetic association of apolipoprotein E genotype with EEG alpha rhythm slowing and functional brain network alterations during normal aging. Front Neurosci 2022; 16:931173. [PMID: 35979332 PMCID: PMC9376365 DOI: 10.3389/fnins.2022.931173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The ε4 allele of the apolipoprotein E (APOE4+) genotype is a major genetic risk factor for Alzheimer’s disease (AD), but the mechanisms underlying its influence remain incompletely understood. The study aimed to investigate the possible effect of the APOE genotype on spontaneous electroencephalogram (EEG) alpha characteristics, resting-state functional MRI (fMRI) connectivity (rsFC) in large brain networks and the interrelation of alpha rhythm and rsFC characteristics in non-demented adults during aging. We examined the EEG alpha subband’s relative power, individual alpha peak frequency (IAPF), and fMRI rsFC in non-demented volunteers (age range 26–79 years) stratified by the APOE genotype. The presence of the APOE4+ genotype was associated with lower IAPF and lower relative power of the 11–13 Hz alpha subbands. The age related decrease in EEG IAPF was more pronounced in the APOE4+ carriers than in the APOE4+ non-carriers (APOE4-). The APOE4+ carriers had a stronger fMRI positive rsFC of the interhemispheric regions of the frontoparietal, lateral visual and salience networks than the APOE4– individuals. In contrast, the negative rsFC in the network between the left hippocampus and the right posterior parietal cortex was reduced in the APOE4+ carriers compared to the non-carriers. Alpha rhythm slowing was associated with the dysfunction of hippocampal networks. Our results show that in adults without dementia APOE4+ genotype is associated with alpha rhythm slowing and that this slowing is age-dependent. Our data suggest predominant alterations of inhibitory processes in large-scale brain network of non-demented APOE4+ carriers. Moreover, dysfunction of large-scale hippocampal network can influence APOE-related alpha rhythm vulnerability.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- *Correspondence: Natalya V. Ponomareva,
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria Protasova
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | | | | | | | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
- Brudnick Neuropsychiatric Research Institute (BNRI), University of Massachusetts Medical School, Worcester, MA, United States
- Evgeny I. Rogaev,
| |
Collapse
|