1
|
Ye Z, Liu R, Wang H, Zuo A, Jin C, Wang N, Sun H, Feng L, Yang H. Neuroprotective potential for mitigating ischemia-reperfusion-induced damage. Neural Regen Res 2025; 20:2199-2217. [PMID: 39104164 PMCID: PMC11759025 DOI: 10.4103/nrr.nrr-d-23-01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition; this phenomenon is known as cerebral ischemia-reperfusion injury. Current studies have elucidated the neuroprotective role of the sirtuin protein family (Sirtuins) in modulating cerebral ischemia-reperfusion injury. However, the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration. In this review, the origin and research progress of Sirtuins are summarized, suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury, including inflammation, oxidative stress, blood-brain barrier damage, apoptosis, pyroptosis, and autophagy. The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways, such as nuclear factor-kappa B signaling, oxidative stress mediated by adenosine monophosphate-activated protein kinase, and the forkhead box O. This review also summarizes the potential of endogenous substances, such as RNA and hormones, drugs, dietary supplements, and emerging therapies that regulate Sirtuins expression. This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors. While Sirtuins show promise as a potential target for the treatment of cerebral ischemia-reperfusion injury, most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans, potentially influencing the efficacy of Sirtuins-targeting drug therapies. Overall, this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zi Ye
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Runqing Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aizhen Zuo
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cen Jin
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Nan Wang
- Division of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiqi Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Luqian Feng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Fu XX, Wei B, Huang ZH, Duan R, Deng Y, E Y, Wang SY, Chen SY, Zhang YD, Jiang T. Modulation of mitochondrial functions contributes to the protection of lamotrigine against Alzheimer's disease. J Alzheimers Dis 2025:13872877251314847. [PMID: 39834280 DOI: 10.1177/13872877251314847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND Our previous studies have established that the broad-spectrum anti-epileptic drug lamotrigine (LTG) confers protection against cognitive impairments, synapse and nerve cell damage, as well as characteristic neuropathologies in APP/PS1 mice, a mouse model of Alzheimer's disease (AD). However, the precise molecular mechanisms responsible for this protective effect induced by LTG remain largely elusive. OBJECTIVE In this study, we aimed to investigate the mechanisms underlying the beneficial effects of LTG against AD. METHODS Five-month-old APP/PS1 mice were treated with 30 mg/kg of LTG daily for three consecutive months. Subsequently, high-throughput ribosome profiling sequencing was conducted to identify differentially translated genes (DTGs) rescued by LTG in the brains of these mice. To gain further insights into the potential functions and pathways of these LTG-rescued DTGs, gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed. RNA expression, protein levels, and translational efficiency were assessed to explore how LTG regulated gene expression processes in AD-related DTGs. Additionally, Aβ42 peptide-stimulated primary neurons were used to uncover the potential mechanisms and signaling pathway by which LTG mitigated oxidative stress under AD context. RESULTS For the first time, we reveal that LTG inactivates mitochondrial complexes in the brains of APP/PS1 mice by suppressing the translational efficiency of mitochondrial complexes-related genes. More importantly, we demonstrate that LTG mitigates mitochondrial-mediated oxidative stress in neurons within the context of AD by activation of SIRT6/PGC-1α pathway. CONCLUSIONS These findings provide further insights into the mechanisms underlying the protective effects of LTG against AD.
Collapse
Affiliation(s)
- Xin-Xin Fu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
- Department of Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Bin Wei
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhi-Hang Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, PR China
| | - Yang Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, PR China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Shi-Yao Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Shuai-Yu Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
3
|
Ling L, Zhou G, Zhang X, Mao B, Wan S, Bao Y. A novel histone deacetylase inhibitor protects the blood-brain barrier by regulating NF-κB and Nrf2 signaling pathways in OGD/R injury. Arch Gerontol Geriatr 2024; 131:105739. [PMID: 39756186 DOI: 10.1016/j.archger.2024.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Ischemic stroke, a severe cerebrovascular disease, is particularly prevalent among the elderly. Rsearch has indicated that histone deacetylases (HDACs) are pivotal in the pathogenesis of ischemic stroke. We introduce a novel HDACs inhibitor, HDI-1, as a potential therapeutic strategy for this condition. Our study reveals that HDI-1 expedites the restoration of tight junction proteins, Occludin and Claudin-5, in the oxygen-glucose deprivation/reoxygenation (OGD/R) model using human cerebral microvascular endothelial cells (hCMEC/D3). Moreover, HDI-1 mitigates the impairment of cellular monolayer membrane permeability following injury. This effect may stem from HDI-1's ability to selectively suppress the enzymatic activity of HDAC2. By inhibiting the activation of the NF-κB pathway triggered by OGD/R injury, HDI-1 reduces the secretion of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, thereby diminishing the inflammatory response in hCMEC/D3 cells. Meanwhile, HDI-1 exhibits antioxidant properties by enhancing the Nrf2/HO-1 signaling pathway. Collectively, our findings propose HDI-1 as a promising candidate for ischemic stroke treatment.
Collapse
Affiliation(s)
- Lichao Ling
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, PR China
| | - Guoyang Zhou
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, PR China
| | - Xun Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Baojie Mao
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, PR China
| | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, PR China; Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, Zhejiang Province Engineering Research Center for Precision Medicine in Cerebrovascular Diseases, PR China.
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, PR China.
| |
Collapse
|
4
|
Cheng R, Bai N, Liu S, Zhao X, Jiang B, Guo W, Cao S, Liu J, Li N, Li X, Wu X, Yi F, Wang Z, Guo Q, Wei J, Bai M, Jiang X, Song X, Wang Z, Miao Q, Wang D, Di Y, Liu H, Cao L. The deacetylase SIRT6 reduces amyloid pathology and supports cognition in mice by reducing the stability of APP in neurons. Sci Signal 2024; 17:eado1035. [PMID: 39656860 DOI: 10.1126/scisignal.ado1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/10/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder that results in progressively impaired memory and is often associated with amyloid plaques. Previous studies implicate the deacetylases SIRT1 and SIRT2 in regulating the processing of amyloid precursor protein (APP). Here, we investigated whether APP is regulated by the related deacetylase SIRT6, which shows aging-associated decreases in activity. We found that the abundance of SIRT6 was reduced in the cortex and hippocampus of aged and AD model mice and negatively correlated with that of APP. In mouse hippocampal neurons and transfected human cells, SIRT6 interacted with and deacetylated APP at three consecutive Lys residues (Lys649, Lys650, and Lys651). This deacetylation, in turn, increased the ubiquitylation of APP, leading to its proteasomal degradation. SIRT6 abundance in neurons was reduced by oxidative stress and DNA damage, both of which are implicated in neurodegenerative pathology. Systemic pharmacological activation of SIRT6 ameliorated both amyloid pathology and cognitive deficits in APP/PS1 mice, a mouse model of AD. The findings demonstrate that the activity of SIRT6 destabilizes APP and suggest that activating SIRT6 has therapeutic potential to reduce amyloid-associated pathology in patients with AD.
Collapse
Affiliation(s)
- Rong Cheng
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Ning Bai
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuhui Liu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiong Zhao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Jiang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Wendong Guo
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Sunrun Cao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Jingwei Liu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Na Li
- Department of Gerontology and Geriatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoman Li
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xuan Wu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Yi
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhuo Wang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiqiang Guo
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Jiayi Wei
- Department of Developmental Cell Biology, School of Life Sciences; Key Laboratory of Cell Biology, Ministry of Public Health; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Ming Bai
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyou Jiang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyu Song
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhuo Wang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Qi Miao
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Hua Liu
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Liu Cao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|
5
|
Guo B, Ma B, Li M, Li Y, Liang P, Han D, Yan X, Hu S. The nitration of SIRT6 aggravates neuronal damage during cerebral ischemia-reperfusion in rat. Nitric Oxide 2024; 153:26-40. [PMID: 39374645 DOI: 10.1016/j.niox.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Ischemic stroke is a major cause of death and disability. The activation of neuronal nitric oxide synthase (nNOS) and the resulting production of nitric oxide (NO) via NMDA receptor-mediated calcium influx play an exacerbating role in cerebral ischemia reperfusion injury. The NO rapidly reacts with superoxide (O2-) to form peroxynitrite (ONOO-), a toxic molecule may modify proteins through tyrosine residue nitration, ultimately worsening neuronal damage. SIRT6 has been proven to be crucial in regulating cell proliferation, death, and aging in various pathological settings. We have previous reported that human SIRT6 tyrosine nitration decreased its intrinsic catalytic activity in vitro. However, the exact role of SIRT6 function in the process of cerebral ischemia reperfusion injury is not yet fully elucidated. Herein, we demonstrated that an increase in the nitration of SIRT6 led to reduce its enzymatic activity and aggravated hippocampal neuronal damage in a rat model of four-artery cerebral ischemia reperfusion. In addition, reducing SIRT6 nitration resulted in increase the activity of SIRT6, alleviating hippocampal neuronal damage. Moreover, SIRT6 nitration affected its downstream molecule activity such as PARP1 and GCN5, promoting the process of neuronal ischemic injury in rat hippocampus. Additionally, treatment with NMDA receptor antagonist MK801, or nNOS inhibitor 7-NI, and resveratrol (an antioxidant) diminished SIRT6 nitration and the catalytic activity of downstream molecules like PARP1 and GCN5, thereby reducing neuronal damage. Finally, in the biochemical regulation of SIRT6 activity, tyrosine 257 was essential for its activity and susceptibility to nitration. Replacing tyrosine 257 with phenylalanine in rat SIRT6 attenuated the death of SH-SY5Y neurocytes under oxygen-glucose deprivation (OGD) conditions. These results may offer further understanding of SIRT6 function in the pathogenesis of cerebral ischemic diseases.
Collapse
Affiliation(s)
- Bingnan Guo
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Bin Ma
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Department of Nuclear Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471000, China
| | - Ming Li
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Department of Emergency Medicine, The General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, 221006, China
| | - Yuxin Li
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Pengchong Liang
- Department of Emergency Medicine, Central Hospital of Baoji City, Baoji, Shanxi, 721008, China
| | - Dong Han
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Xianliang Yan
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Department of Emergency Medicine, Suining People's Hospital, Xuzhou, Jiangsu, 221000, China.
| | - Shuqun Hu
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
6
|
Guo S, Zhao J, Zhang Y, Qin Y, Yuan J, Yu Z, Xing Y, Zhang Y, Hui Y, Wang A, Han M, Zhao Y, Ning X, Sun S. Histone deacetylases: potential therapeutic targets in cisplatin-induced acute kidney injury. Ann Med 2024; 56:2418958. [PMID: 39450927 PMCID: PMC11514411 DOI: 10.1080/07853890.2024.2418958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 10/26/2024] Open
Abstract
Aim: Chemotherapy has been well shown to enhance life expectancy in patients with malignancy. However, conventional chemotherapy drugs, particularly cisplatin, are highly associated with nephrotoxicity, which limits therapeutic efficacy and impairs quality of life. Histone deacetylases (HDACs) are proteases that play significant roles in diseases by influencing protein post-translational modification and gene expression. Agents that inhibit HDAC enzymes have been developed and approved by the FDA as anticancer drugs. It is worth noting that in certain preclinical studies with tumour cell lines, the integration of HDAC modulators and cisplatin not only exerts synergistic or additive tumour-killing effects but also alleviates cisplatin nephrotoxicity. The aim of this review is to discuss the role of HDACs in cisplatin nephrotoxicity. Methods: After searching in PubMed and Web of Science databases using 'Histone deacetylase', 'nephrotoxicity', 'cisplatin', and 'onconpehrology' as keywords, studies related was compiled and examined. Results: HDAC inhibitors exert renal protective effects by inhibiting inflammation, apoptosis, oxidative stress, and promoting autophagy; whereas sirtuins play a renal protective role by regulating lipid metabolism, inhibiting inflammation and apoptosis, and protecting mitochondrial biosynthesis and mitochondrial dynamics. These potential interactions provide clues concerning targets for molecular treatment. Conclusion: This review encapsulates the function and molecular mechanisms of HDACs in cisplatin nephrotoxicity, providing the current view by which HDACs induce different biological signaling in the regulation of chemotherapy-associated renal injury. More importantly, this review exhaustively elucidates that HDACs could be targeted to develop a new therapeutic strategy in treating cisplatin nephrotoxicity, which will extend the knowledge of the biological impact and clinical implications of HDACs.
Collapse
Affiliation(s)
- Shuxian Guo
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuzhan Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yueqing Hui
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
7
|
Patel RB, Chauhan AK. Cerebroprotective action of butylphthalide in acute ischemic stroke: Potential role of Nrf2/HO-1 signaling pathway. Neurotherapeutics 2024; 21:e00461. [PMID: 39358173 PMCID: PMC11585883 DOI: 10.1016/j.neurot.2024.e00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Rakesh B Patel
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA.
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Fang C, Liu X, Zhang F, Song T. Baicalein Inhibits Cerebral Ischemia-Reperfusion Injury through SIRT6-Mediated FOXA2 Deacetylation to Promote SLC7A11 Expression. eNeuro 2024; 11:ENEURO.0174-24.2024. [PMID: 39299807 PMCID: PMC11470267 DOI: 10.1523/eneuro.0174-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Ischemic stroke (IS) poses a serious threat to patient survival. The inhibition of ferroptosis can effectively alleviate ischemia-reperfusion (I/R) injury, suggesting potential targets in the ferroptosis pathway for the treatment of IS. In this study, MCAO/R mice and OGD/R-induced HT22 cell were constructed. It was found that baicalein decreased ROS, MDA, and Fe2+ levels, upregulated GSH levels, and enhanced the expression of ferroptosis-related proteins (GPX4 and SLC7A11), downregulated the expression of proapoptotic proteins (Bax, cytochrome c, and cleaved caspase-3), and upregulated the expression of an antiapoptotic protein (Bcl-2), ameliorating cerebral I/R injury. In animal and cell models, Sirtuin6 (SIRT6) is downregulated, and Forkhead boxA2 (FOXA2) expression and acetylation levels are abnormally upregulated. SIRT6 inhibited FOXA2 expression and acetylation. Baicalein promoted FOXA2 deacetylation by upregulating SIRT6 expression. FOXA2 transcriptionally inhibits SLC7A11 expression. In conclusion, baicalein inhibited apoptosis and partially suppressed the role of ferroptosis to alleviate cerebral I/R injury via SIRT6-mediated FOXA2 deacetylation to promote SLC7A11 expression.
Collapse
Affiliation(s)
- Cuini Fang
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410000, People's Republic of China
| | - Xirong Liu
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410000, People's Republic of China
| | - Fuxiu Zhang
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410000, People's Republic of China
| | - Tao Song
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410000, People's Republic of China
| |
Collapse
|
9
|
Song M, Yi F, Zeng F, Zheng L, Huang L, Sun X, Huang Q, Deng J, Wang H, Gu W. USP18 Stabilized FTO Protein to Activate Mitophagy in Ischemic Stroke Through Repressing m6A Modification of SIRT6. Mol Neurobiol 2024; 61:6658-6674. [PMID: 38340205 DOI: 10.1007/s12035-024-04001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Ischemic stroke (IS) is a dangerous cerebrovascular disorder with a significant incidence and death rate. Ubiquitin-specific peptidase 18 (USP18) has been proven to mitigate ischemic brain damage; however, its potential regulatory mechanisms remain unclear. In vivo and in vitro models of IS were established by middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R). Neurocyte injury was detected by MTT, LDH, ROS level, mitochondrial membrane potential (Δψm), and flow cytometry. Molecular expression was evaluated by qPCR, Western blotting, and immunofluorescence staining. Molecular mechanisms were determined by Co-IP, RIP, and MeRIP. IS injury was determined by neurological behavior score and TTC staining. Mitophagy was observed by TEM. USP18 and fat mass and obesity-associated protein (FTO) expression declined after OGD/R. Dysfunctional mitochondrial and apoptosis in OGD/R-stimulated neurocytes were eliminated by USP18/FTO overexpression via mitophagy activation. USP18-mediated de-ubiquitination was responsible for increasing FTO protein stability. Up-regulation of FTO protein restrained m6A modification of sirtuin6 (SIRT6) in a YTHDF2-dependent manner to enhance SIRT6 expression and subsequent activation of AMPK/PGC-1α/AKT signaling. FTO induced mitophagy to ameliorate nerve cell damage through SIRT6/AMPK/PGC-1α/AKT pathway. Finally, USP18/FTO overexpression relieved IS in rats via triggering SIRT6/AMPK/PGC-1α/AKT axis-mediated mitophagy. USP18 increased FTO protein stability to trigger SIRT6-induced mitophagy, thus mitigating IS. Our data unravel the novel neuroprotective mechanism of USP18 and suggest its potential as a promising treatment target for IS.
Collapse
Affiliation(s)
- Mingyu Song
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Hunan Province, No.87, Xiangya Road, Changsha, 410008, People's Republic of China
| | - Fang Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Lan Zheng
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Lei Huang
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, Changsha, 410000, People's Republic of China
| | - Xinyu Sun
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Qianyi Huang
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Jun Deng
- Department of Neurology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Hunan Province, Changsha, 410000, People's Republic of China
| | - Hong Wang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China
| | - Wenping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Hunan Province, No.87, Xiangya Road, Changsha, 410008, People's Republic of China.
| |
Collapse
|
10
|
Dasdelen MF, Caglayan AB, Er S, Beker MC, Ates N, Gronewold J, Doeppner TR, Hermann DM, Kilic E. Social isolation initiated post-weaning augments ischemic brain injury by promoting pro-inflammatory responses. Exp Neurol 2024; 375:114729. [PMID: 38365135 DOI: 10.1016/j.expneurol.2024.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Social isolation is associated with poor stroke outcome, but the underlying molecular mechanisms were largely unknown. In male Balb/C mice exposed to transient middle cerebral artery occlusion (MCAo), we examined the effects of social isolation initiated post-weaning on ischemic injury, cytokine/chemokine responses and cell signaling using a broad panel of techniques that involved immunocytochemistry, cytokine/chemokine array and Western blots. Social isolation initiated post-weaning elevated infarct size, brain edema and neuronal injury in the ischemic brain tissue 3 days after MCAo, and increased microglia/ macrophage and leukocyte accumulation. In line with the increased immune cell recruitment, levels of several proinflammatory cytokines (e.g., IL-1α, IL-1β, IL-13, IL-17, TNF-α, IFN-γ), chemokines (e.g., CCL3, CCL4, CCL12, CXCL2, CXCL9, CXCL12) and adhesion molecules (i.e., ICAM-1) were increased in the ischemic brain tissue of socially isolated compared with paired housing mice, whereas levels of selected cytokines (IL-5, IL-6, IL-16) and colony-stimulating factors (G-CSF, GM-CSF) were reduced. The activity of the transcription factor nuclear factor-ĸB (NF-ĸB), which promotes cell injury via pro-inflammatory responses, was increased by social isolation, whereas that of nuclear factor erythroid related factor-2 (Nrf-2), which mediates anti-oxidative responses under oxidative stress conditions, was reduced. Our study shows that social isolation profoundly alters post-ischemic cell signaling in a way promoting pro-inflammatory responses. Our results highlight the importance of social support in preventing deleterious health effects of social isolation.
Collapse
Affiliation(s)
- Muhammed Furkan Dasdelen
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet Burak Caglayan
- Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sezgin Er
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa Caglar Beker
- Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey; Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nilay Ates
- Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey; Department of Molecular Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Janine Gronewold
- Department of Neurology, University Hospital of Essen, University of Duisburg-, Essen, Germany
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital of Essen, University of Duisburg-, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
11
|
Wang R, Wang J, Zhang Z, Ma B, Sun S, Gao L, Gao G. FGF21 alleviates endothelial mitochondrial damage and prevents BBB from disruption after intracranial hemorrhage through a mechanism involving SIRT6. Mol Med 2023; 29:165. [PMID: 38049769 PMCID: PMC10696847 DOI: 10.1186/s10020-023-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Disruption of the BBB is a harmful event after intracranial hemorrhage (ICH), and this disruption contributes to a series of secondary injuries. We hypothesized that FGF21 may have protective effects after intracranial hemorrhage (ICH) and investigated possible underlying molecular mechanisms. METHODS Blood samples of ICH patients were collected to determine the relationship between the serum level of FGF21 and the [Formula: see text]GCS%. Wild-type mice, SIRT6flox/flox mice, endothelial-specific SIRT6-homozygous-knockout mice (eSIRT6-/- mice) and cultured human brain microvascular endothelial cells (HCMECs) were used to determine the protective effects of FGF21 on the BBB. RESULTS We obtained original clinical evidence from patient data identifying a positive correlation between the serum level of FGF21 and [Formula: see text]GCS%. In mice, we found that FGF21 treatment is capable of alleviating BBB damage, mitigating brain edema, reducing lesion volume and improving neurofunction after ICH. In vitro, after oxyhemoglobin injury, we further explored the protective effects of FGF21 on endothelial cells (ECs), which are a significant component of the BBB. Mitochondria play crucial roles during various types of stress reactions. FGF21 significantly improved mitochondrial biology and function in ECs, as evidenced by alleviated mitochondrial morphology damage, reduced ROS accumulation, and restored ATP production. Moreover, we found that the crucial regulatory mitochondrial factor deacylase sirtuin 6 (SIRT6) played an irreplaceable role in the effects of FGF21. Using endothelial-specific SIRT6-knockout mice, we found that SIRT6 deficiency largely diminished these neuroprotective effects of FGF21. Then, we revealed that FGF21 might promote the expression of SIRT6 via the AMPK-Foxo3a pathway. CONCLUSIONS We provide the first evidence that FGF21 is capable of protecting the BBB after ICH by improving SIRT6-mediated mitochondrial homeostasis.
Collapse
Affiliation(s)
- Runfeng Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhiguo Zhang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bo Ma
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Shukai Sun
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
12
|
Meng Q, Wang Y, Yuan T, Su Y, Li Z, Sun S. Osteoclast: The novel whistleblower in osteonecrosis of the femoral head. GENE REPORTS 2023; 33:101833. [DOI: 10.1016/j.genrep.2023.101833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Ibrahim AA, Abdel Mageed SS, Safar MM, El-Yamany MF, Oraby MA. MitoQ alleviates hippocampal damage after cerebral ischemia: The potential role of SIRT6 in regulating mitochondrial dysfunction and neuroinflammation. Life Sci 2023; 328:121895. [PMID: 37385372 DOI: 10.1016/j.lfs.2023.121895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
AIMS Mitochondrial perturbations are the major culprit of the inflammatory response during the initial phase of cerebral ischemia. The present study explored the neuroprotective effect of the mitochondrial-targeted antioxidant, Mitoquinol (MitoQ), against hippocampal neuronal loss in an experimental model of brain ischemia/reperfusion (I/R) injury. MAIN METHODS Rats were subjected to common carotid artery occlusion for 45 min, followed by reperfusion for 24 h. MitoQ (2 mg/kg; i.p daily) was administered for 7 successive days prior to the induction of brain ischemia. KEY FINDINGS I/R rats exhibited hippocampal damage evidenced by aggravated mitochondrial oxidative stress, thereby enhancing mtROS and oxidized mtDNA, together with inhibiting mtGSH. Mitochondrial biogenesis and function were also affected, as reflected by the reduction of PGC-1α, TFAM, and NRF-1 levels, as well as loss of mitochondrial membrane potential (△Ψm (. These changes were associated with neuroinflammation, apoptosis, impairment of cognitive function as well as hippocampal neurodegenerative changes in histopathological examination. Notably, SIRT6 was suppressed. Pretreatment with MitoQ markedly potentiated SIRT6, modulated mitochondrial oxidative status and restored mitochondrial biogenesis and function. In addition, MitoQ alleviated the inflammatory mediators, TNF-α, IL-18, and IL-1β and dampened GFAB immunoexpression along with downregulation of cleaved caspase-3 expression. Reversal of hippocampal function by MitoQ was accompanied by improved cognitive function and hippocampal morphological aberrations. SIGNIFICANCE This study suggests that MitoQ preserved rats' hippocampi from I/R insults via maintenance of mitochondrial redox status, biogenesis, and activity along with mitigation of neuroinflammation and apoptosis, thereby regulating SIRT6.
Collapse
Affiliation(s)
- Ayman A Ibrahim
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Marwa M Safar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mamdouh A Oraby
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, 11829 Cairo, Egypt.
| |
Collapse
|
14
|
Wu T, Qu Y, Xu S, Wang Y, Liu X, Ma D. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. FASEB J 2023; 37:e23099. [PMID: 37462453 DOI: 10.1096/fj.202301012r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The abnormal lipid metabolism in diabetic cardiomyopathy can cause myocardial mitochondrial dysfunction, lipotoxicity, abnormal death of myocardial cells, and myocardial remodeling. Mitochondrial homeostasis and normal lipid metabolism can effectively slow down the development of diabetic cardiomyopathy. Recent studies have shown that SIRT6 may play an important role in the pathological changes of diabetic cardiomyopathy such as myocardial cell death, myocardial hypertrophy, and myocardial fibrosis by regulating mitochondrial oxidative stress and glucose and lipid metabolism. Therefore, understanding the function of SIRT6 and its role in the pathogenesis of diabetic cardiomyopathy is of great significance for exploring and developing new targets and drugs for the treatment of diabetic cardiomyopathy. This article reviews the latest findings of SIRT6 in the pathogenesis of diabetic cardiomyopathy, focusing on the regulation of mitochondria and lipid metabolism by SIRT6 to explore potential clinical treatments.
Collapse
Affiliation(s)
- Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwei Qu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengjie Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Xue Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
15
|
Liu Y, Wang L, Yang G, Chi X, Liang X, Zhang Y. Sirtuins: Promising Therapeutic Targets to Treat Ischemic Stroke. Biomolecules 2023; 13:1210. [PMID: 37627275 PMCID: PMC10452362 DOI: 10.3390/biom13081210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke is a major cause of mortality and disability globally, with ischemic stroke (IS) accounting for over 80% of all stroke cases. The pathological process of IS involves numerous signal molecules, among which are the highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes known as sirtuins (SIRTs). SIRTs modulate various biological processes, including cell differentiation, energy metabolism, DNA repair, inflammation, and oxidative stress. Importantly, several studies have reported a correlation between SIRTs and IS. This review introduces the general aspects of SIRTs, including their distribution, subcellular location, enzyme activity, and substrate. We also discuss their regulatory roles and potential mechanisms in IS. Finally, we describe the current therapeutic methods based on SIRTs, such as pharmacotherapy, non-pharmacological therapeutic/rehabilitative interventions, epigenetic regulators, potential molecules, and stem cell-derived exosome therapy. The data collected in this study will potentially contribute to both clinical and fundamental research on SIRTs, geared towards developing effective therapeutic candidates for future treatment of IS.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Liuding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Guang Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China;
| | - Xiansu Chi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| |
Collapse
|
16
|
Wu K, Wang Y, Liu R, Wang H, Rui T. The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus. Front Physiol 2023; 14:1207133. [PMID: 37497437 PMCID: PMC10366693 DOI: 10.3389/fphys.2023.1207133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Cardiovascular diseases are severe diseases posing threat to human health because of their high morbidity and mortality worldwide. The incidence of diabetes mellitus is also increasing rapidly. Various signaling molecules are involved in the pathogenesis of cardiovascular diseases and diabetes. Sirtuin 6 (Sirt6), which is a class III histone deacetylase, has attracted numerous attentions since its discovery. Sirt6 enjoys a unique structure, important biological functions, and is involved in multiple cellular processes such as stress response, mitochondrial biogenesis, transcription, insulin resistance, inflammatory response, chromatin silencing, and apoptosis. Sirt6 also plays significant roles in regulating several cardiovascular diseases including atherosclerosis, coronary heart disease, as well as cardiac remodeling, bringing Sirt6 into the focus of clinical interests. In this review, we examine the recent advances in understanding the mechanistic working through which Sirt6 alters the course of lethal cardiovascular diseases and diabetes mellitus.
Collapse
|
17
|
Tao Z, Jin Z, Wu J, Cai G, Yu X. Sirtuin family in autoimmune diseases. Front Immunol 2023; 14:1186231. [PMID: 37483618 PMCID: PMC10357840 DOI: 10.3389/fimmu.2023.1186231] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, epigenetic modifications have been widely researched. As humans age, environmental and genetic factors may drive inflammation and immune responses by influencing the epigenome, which can lead to abnormal autoimmune responses in the body. Currently, an increasing number of studies have emphasized the important role of epigenetic modification in the progression of autoimmune diseases. Sirtuins (SIRTs) are class III nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases and SIRT-mediated deacetylation is an important epigenetic alteration. The SIRT family comprises seven protein members (namely, SIRT1-7). While the catalytic core domain contains amino acid residues that have remained stable throughout the entire evolutionary process, the N- and C-terminal regions are structurally divergent and contribute to differences in subcellular localization, enzymatic activity and substrate specificity. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are predominantly found in the nucleus. SIRTs are key regulators of various physiological processes such as cellular differentiation, apoptosis, metabolism, ageing, immune response, oxidative stress, and mitochondrial function. We discuss the association between SIRTs and common autoimmune diseases to facilitate the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhengjie Tao
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Zihan Jin
- Clinical Lab, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiabiao Wu
- Department of Immunology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Gaojun Cai
- Cardiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
18
|
Zbesko JC, Stokes J, Becktel DA, Doyle KP. Targeting foam cell formation to improve recovery from ischemic stroke. Neurobiol Dis 2023; 181:106130. [PMID: 37068641 PMCID: PMC10993857 DOI: 10.1016/j.nbd.2023.106130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Inflammation is a crucial part of the healing process after an ischemic stroke and is required to restore tissue homeostasis. However, the inflammatory response to stroke also worsens neurodegeneration and creates a tissue environment that is unfavorable to regeneration for several months, thereby postponing recovery. In animal models, inflammation can also contribute to the development of delayed cognitive deficits. Myeloid cells that take on a foamy appearance are one of the most prominent immune cell types within chronic stroke infarcts. Emerging evidence indicates that they form as a result of mechanisms of myelin lipid clearance becoming overwhelmed, and that they are a key driver of the chronic inflammatory response to stroke. Therefore, targeting lipid accumulation in foam cells may be a promising strategy for improving recovery. The aim of this review is to provide an overview of current knowledge regarding inflammation and foam cell formation in the brain in the weeks and months following ischemic stroke and identify targets that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Jacob C Zbesko
- Department of Immunobiology, University of Arizona, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, United States
| | | | - Kristian P Doyle
- Department of Immunobiology, University of Arizona, United States; Departments of Neurology, Neurosurgery, Psychology, Arizona Center on Aging, and the BIO5 Institute, University of Arizona, United States.
| |
Collapse
|
19
|
Fu W, Xiao Z, Chen Y, Pei J, Sun Y, Zhang Z, Wu H, Pei Y, Wei S, Wang Y, Wang D. Molecular integrative study on interaction domains of nuclear factor erythroid 2-related factor 2 with sirtuin 6. Biochimie 2023; 211:68-77. [PMID: 36924820 DOI: 10.1016/j.biochi.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Oxidative stress is one of the elements causing aging and related diseases. Inhibiting Nrf2 activity or increasing oxidative pressure can replicate the deficits of premature aging. SIRT6 is one of the few proteins that can regulate both life span and aging. Deletion of SIRT6 in human cells impairs the antioxidant capacity of cells, which results in the accumulation of intracellular reactive oxygen species and DNA oxidation products. Characterization of the binding of Nrf2 with SIRT6 is critical for understanding the modulation of Nrf2-correlated cell activities by SIRT6. The yeast two-hybrid experiments showed that the binding of Nrf2 with SIRT6 is mediated by Neh1 and Neh3 domains. The elimination of the Neh1 and Neh3 domains decreased the binding stability and free energy, according to the molecular dynamic analysis. The roles of theses domains in mediating the binding were confirmed by co-immunoprecipitation. In cells transfected with the small interfering RNA (siRNA) targeting the Nrf2 Neh1 domain and plasmids overexpressing domain-mutant Nrf2, it was discovered that Nrf2 lost its activity to stimulate the transcription of antioxidant genes in the absence of Neh1 and Neh3 domains.
Collapse
Affiliation(s)
- Wanmeng Fu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Zhengpan Xiao
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yan Sun
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Zhuandan Zhang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Hao Wu
- Central Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315046, China
| | - Yechun Pei
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Shuangshuang Wei
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yuerong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou, Hainan, 570228, China; One Health Collaborative Innovation Center, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
20
|
Gao X, Chen F, Xu X, Liu J, Dong F, Liu Y. Ro25-6981 alleviates neuronal damage and improves cognitive deficits by attenuating oxidative stress via the Nrf2/ARE pathway in ischemia/reperfusion rats. J Stroke Cerebrovasc Dis 2023; 32:106971. [PMID: 36586245 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Oxidative stress plays a crucial role in the initiation and progression of cerebral ischemia‒reperfusion injury (CIRI). Therefore, ameliorating oxidative damage is considered to be a beneficial strategy for the treatment of CIRI. NMDAR NR2B subunit antagonists have been reported to be beneficial for synaptic plasticity, neuropathic pain, epilepsy, and cerebral ischemia. However, it remains unclear whether the NR2B subunit antagonist Ro25-6981 has any effect on CIRI. METHODS In this study, the Morris water maze test and passive avoidance test were used to detect spatial learning and memory. Neuronal loss was measured by Nissl staining. The expression of NSE was assayed by immunohistochemistry. The activities of MDA, 8-OHdG, SOD, GSH-Px, GST and CAT were detected by assay kits. Real-time PCR was used to detect the mRNA levels of hippocampal SOD, GSH-Px and HO-1. Western blotting was used to measure the activation of the Nrf2/ARE pathway by Ro25-6981. RESULTS Ro25-6981 ameliorated cognitive deficits and neuronal damage induced by ischemia‒reperfusion (I/R). Neuronal injury was decreased and the expression of NSE was increased in the CA1 regions of the hippocampus of I/R rats after Ro25-6981 treatment. Moreover, Ro25-6981 alleviated the levels of MDA and 8-OHdG by elevating the activities of SOD, GSH-Px, GST and CAT. Meanwhile, the mRNA levels of SOD, GSH-Px and HO-1 were increased in I/R rats after Ro25-6981 treatment. Furthermore, Ro25-6981 promoted the translocation of Nrf2 to the nucleus, promoting the expression of the Nrf2 downstream genes HO-1 and NQO1. CONCLUSION The present study indicated that the improvement in the antioxidant properties of Ro25-6981 is mediated by the Nrf2/ARE pathway. This is the first study to demonstrate a favorable effect of Ro25-6981 on cognitive impairment in a CIRI rat model, rendering this NR2B subunit antagonist a promising agent for the treatment or prevention of CIRI.
Collapse
Affiliation(s)
- Xiuxian Gao
- Department of Neurology, The First People's Hospital of Jiujiang, 48 Taling South Road, Jiujiang, Jiangxi Province 332000, China
| | - Fei Chen
- The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Xinqi Xu
- The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Jinfeng Liu
- School of Life Science, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
21
|
Cheng J, Fan YQ, Zhang WF, Zhang G, Zeng K, Ye Z, Zhao D, Wu LQ, Chen ZB. Overexpressing SIRT6 can Attenuate the Injury of Intracerebral Hemorrhage by Down-Regulating NF-kB. Neuromolecular Med 2023; 25:53-63. [PMID: 35767210 DOI: 10.1007/s12017-022-08715-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
Sirtuin-6 (SIRT6), a member of the sirtuins family of NAD ( +) dependent deacetylases, has been shown to have beneficial effects in ischemic stroke. However, the role of SIRT6 in intracerebral haemorrhage (ICH) has not reported. We observed that SIRT6 expression was down-regulated in human ICH patients and down-regulated in ICH-induced rat cortical neurons. We subsequently found that SIRT6 overexpression reduced brain tissue damage and increased neuronal survival in the ICH model of rats and hemin-induced cortical neurons. Our further study found that overexpression of SIRT6 can reduce inflammatory response by down-regulating the expression of NF-kB and thus promote the recovery of neurological function in ICH animals. In conclusion, SIRT6 can inhibit the expression of NF-kB and plays a neuroprotective role in ICH by inhibiting the NF-kB-mediated inflammatory response.SIRT6 could be a novel therapeutic target for ICH.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Yan-Qin Fan
- Department of Nephrology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Wen-Fei Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Guo Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Kuo Zeng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Dan Zhao
- The Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Li-Quan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Zhi-Biao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China.
| |
Collapse
|
22
|
The Effect and Mechanism of Syringa pinnatifolia Hemsl. Ligans on Cerebral Ischemia-Reperfusion Injury and Oxidative Stress in Mice. Neurochem Res 2023; 48:1822-1834. [PMID: 36723726 DOI: 10.1007/s11064-022-03855-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 02/02/2023]
Abstract
Lignans are the main components of Syringa pinnatifolia Hemsl. (SP). Previous studies have shown that SP lignans (SPL) can considerably improve CCl4-induced acute liver injury in mice by the anti-oxidative stress (OS) mechanism. In this study, we investigated the antioxidant effects of SPL on cerebral ischemia/reperfusion injury (CIRI) and its underlying molecular mechanism. We developed a middle cerebral artery occlusion/reperfusion (MCAO/R) model in mice to achieve CIRI and orally administered SPL daily for 1-3 days. We evaluated neurological function deficits and performed hematoxylin and eosin staining. We further calculated the infarct volume. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the brain were detected using corresponding kits. The transcription and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) in brain tissues were analyzed by real-time reverse transcription polymerase chain reaction and western blotting, respectively. The results showed that SPL could remarkably ameliorate neurological functions and pathological damage in brain tissues, reducing the cerebral infarct volume. It also increased the SOD and GPx activities decreased the MDA levels as well as inhibited the expression of (NOX)2 and NOX4. We also found that the mRNA and protein levels of Nrf2, HO-1, and NQO1 in the CIRI mice increased transiently and peaked at 24 h of reperfusion, and then began to decline. SPL could reverse decreasing Nrf2 and HO-1 levels after 24 h. In conclusion, SPL can alleviate CIRI and OS by activating the Nrf2/HO-1 pathway.
Collapse
|
23
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Chen X, Malaeb SN, Pan J, Wang L, Scafidi J. Editorial: Perinatal hypoxic-ischemic brain injury: Mechanisms, pathogenesis, and potential therapeutic strategies. Front Cell Neurosci 2022; 16:1086692. [PMID: 36582212 PMCID: PMC9793000 DOI: 10.3389/fncel.2022.1086692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xiaodi Chen
- Women and Infants Hospital of RI, Alpert Medical School of Brown University, Providence, RI, United States
| | | | - Jonathan Pan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Laishuan Wang
- Children's Hospital, Fudan University, Shanghai, China
| | - Joseph Scafidi
- Department of Neurology and Pediatrics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
25
|
Guo Z, Li P, Ge J, Li H. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging Dis 2022; 13:1787-1822. [PMID: 36465178 PMCID: PMC9662279 DOI: 10.14336/ad.2022.0413] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/13/2022] [Indexed: 07/28/2023] Open
Abstract
As an important NAD+-dependent enzyme, SIRT6 has received significant attention since its discovery. In view of observations that SIRT6-deficient animals exhibit genomic instability and metabolic disorders and undergo early death, SIRT6 has long been considered a protein of longevity. Recently, growing evidence has demonstrated that SIRT6 functions as a deacetylase, mono-ADP-ribosyltransferase and long fatty deacylase and participates in a variety of cellular signaling pathways from DNA damage repair in the early stage to disease progression. In this review, we elaborate on the specific substrates and molecular mechanisms of SIRT6 in various physiological and pathological processes in detail, emphasizing its links to aging (genomic damage, telomere integrity, DNA repair), metabolism (glycolysis, gluconeogenesis, insulin secretion and lipid synthesis, lipolysis, thermogenesis), inflammation and cardiovascular diseases (atherosclerosis, cardiac hypertrophy, heart failure, ischemia-reperfusion injury). In addition, the most recent advances regarding SIRT6 modulators (agonists and inhibitors) as potential therapeutic agents for SIRT6-mediated diseases are reviewed.
Collapse
Affiliation(s)
- Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Apparoo Y, Phan CW, Kuppusamy UR, Sabaratnam V. Ergothioneine and its prospects as an anti-ageing compound. Exp Gerontol 2022; 170:111982. [PMID: 36244584 DOI: 10.1016/j.exger.2022.111982] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Healthy ageing is a crucial process that needs to be highlighted as it affects the quality of lifespan. An increase in oxidative stress along with ageing is the major factor related to the age-associated diseases, especially neurodegenerative disorders. An antioxidant-rich diet has been proven to play a significant role in the ageing process. Targeting ageing mechanisms could be a worthwhile approach to improving health standards. Ergothioneine (EGT), a hydrophilic compound with specific transporter known as OCTN1, has been shown to exert anti-ageing properties. In addition to its antioxidant effect, EGT has been reported to have anti-senescence, anti-inflammatory and anti-neurodegenerative properties. This review aims to define the pivotal role of EGT in major signalling pathways in ageing such as insulin/insulin-like growth factor (IGF) signalling (IIS), sirtuin 6 (SIRT6) and mammalian target of rapamycin complex (mTOR) pathways. The review further discusses evidence of EGT on neurodegeneration in its therapeutic context in various model organisms, providing new insights into improving health. In conclusion, an ergothioneine-rich diet may be beneficial in preventing age-related diseases, resulting in a healthy ageing population.
Collapse
Affiliation(s)
- Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Investigation Centre (CIC), 5th Floor, East Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikneswary Sabaratnam
- Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|
28
|
Liberale L, Ministrini S, Arnold M, Puspitasari YM, Pokorny T, Beer G, Scherrer N, Schweizer J, Christ-Crain M, Montecucco F, Camici GG, Katan Kahles M. Serum circulating sirtuin 6 as a novel predictor of mortality after acute ischemic stroke. Sci Rep 2022; 12:20513. [PMID: 36443316 PMCID: PMC9705558 DOI: 10.1038/s41598-022-23211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
In a murine model of acute ischemic stroke, SIRT6 knockdown resulted in larger cerebral infarct size, worse neurological outcome, and higher mortality, indicating a possible neuro-protective role of SIRT6. In this study, we aimed at evaluating the prognostic value of serum SIRT6 levels in patients with acute ischemic stroke (AIS). Serum levels of SIRT6, collected within 72 h from symptom-onset, were measured in 317 consecutively enrolled AIS patients from the COSMOS cohort. The primary endpoint of this analysis was 90-day mortality. The independent prognostic value of SIRT6 was assessed with multivariate logistic and Cox proportional regression models. 35 patients (11%) deceased within 90-day follow-up. After adjustment for established risk factors (age, NIHSS, heart failure, atrial fibrillation, and C reactive protein), SIRT6 levels were negatively associated with mortality. The optimal cut-off for survival was 634 pg/mL. Patients with SIRT6 levels below this threshold had a higher risk of death in multivariable Cox regression. In this pilot study, SIRT6 levels were significantly associated with 90-day mortality after AIS; these results build on previous molecular and causal observations made in animal models. Should this association be confirmed, SIRT6 could be a potential prognostic predictor and therapeutic target in AIS.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Markus Arnold
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Thomas Pokorny
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Georgia Beer
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Natalie Scherrer
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Juliane Schweizer
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, University Hospital of Basel, Basel, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Mira Katan Kahles
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
- Department of Neurology University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
29
|
Pan Z, Guo J, Tang K, Chen Y, Gong X, Chen Y, Zhong Y, Xiao X, Duan S, Cui T, Wu X, Zhong Y, Yang X, Shen C, Gao Y. Ginsenoside Rc Modulates SIRT6-NRF2 Interaction to Alleviate Alcoholic Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14220-14234. [PMID: 36300841 DOI: 10.1021/acs.jafc.2c06146] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alcoholic liver disease (ALD) is a serious worldwide health problem. Ginsenoside Rc is a major active ingredient isolated from Panax ginseng, whose pharmacological effects counteract oxidative stress, inflammation, and lipid accumulation. However, it is still unclear whether ginsenoside Rc might exert beneficial effects on alcohol-induced liver injury. To this aim, mice primary hepatocytes (MPHs) were challenged with alcohol to test ginsenoside Rc's effects on their intracellular alcohol metabolism. C57BL/6J mice or SIRT6alb-/- mice were chronically fed a diet with added alcohol or given a single gavage of alcohol with or without ginsenoside Rc. Analyses of alcohol metabolism, oxidative stress, inflammation, lipid metabolism, and RNaseq expression were conducted to explore potential targets exploited by ginsenoside Rc to protect against ALD. Our results showed that ginsenoside Rc attenuated alcohol-induced liver injury by regulating oxidative stress, inflammation, and lipid accumulation both in vivo and in vitro. Ginsenoside Rc did increase the deacetylase activity of SIRT6, thereby lowering acetylated NRF2 levels, which elevated NRF2's stability, and subsequently exerting an antioxidant effect. In keeping with this, the hepatic knockout of SIRT6 almost abolished the hepatoprotective effects of ginsenoside Rc against ALD. Therefore, our results suggest that ginsenoside Rc attenuated hepatocytes' damage and oxidative stress in ALD by up-regulating the SIRT6/NRF2 pathway. Hence, ginsenoside Rc may be a promising drug to treat or relieve ALD.
Collapse
Affiliation(s)
- Zhisen Pan
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Jingyi Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Kaijia Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yanling Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Xun Gong
- Guangdong Country Garden School, Guangzhou, Guangdong 510000, China
| | - Yingjian Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yadi Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Xiaoxia Xiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Siwei Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Tianqi Cui
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Xiumei Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yanhua Zhong
- Department of Acupuncture-Rehabilitation, Guangzhou-Liwan Hospital of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Chuangpeng Shen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| |
Collapse
|
30
|
Xiao R, Wang Q, Peng J, Yu Z, Zhang J, Xia Y. BMSC-Derived Exosomal Egr2 Ameliorates Ischemic Stroke by Directly Upregulating SIRT6 to Suppress Notch Signaling. Mol Neurobiol 2022; 60:1-17. [PMID: 36208355 DOI: 10.1007/s12035-022-03037-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Exosomes generated by BMSCs contribute to functional recovery in ischemic stroke. However, the regulatory mechanism is largely unknown. Exosomes were isolated from BMSCs. Tube formation, MTT, TUNEL, and flow cytometry assays were applied to examine cell angiogenesis, viability, and apoptosis. Protein and DNA interaction was evaluated by ChIP and luciferase assays. LDH release into the culture medium was examined. Infarction area was evaluated by TTC staining. Immunofluorescence staining was applied to examine CD31 expression. A mouse model of MCAO/R was established. BMSC-derived exosomes attenuated neuronal cell damage and facilitated angiogenesis of brain endothelial cells in response to OGD/R, but these effects were abolished by the knockdown of Egr2. Egr2 directly bound to the promoter of SIRT6 to promote its expression. The incompetency of Egr2-silencing exosomes was reversed by overexpression of SIRT6. Furthermore, SIRT6 inhibited Notch signaling via suppressing Notch1. Overexpression of SIRT6 and inhibition of Notch signaling improved cell injury and angiogenesis in OGD/R-treated cells. BMSC-derived exosomal Egr2 ameliorated MCAO/R-induced brain damage via upregulating SIRT6 to suppress Notch signaling in mice. BMSC-derived exosomes ameliorate OGD/R-induced injury and MCAO/R-caused cerebral damage in mice by delivering Egr2 to promote SIRT6 expression and subsequently suppress Notch signaling. Our study provides a potential exosome-based therapy for ischemic stroke.
Collapse
Affiliation(s)
- Rongjun Xiao
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Qingsong Wang
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Jun Peng
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Zhengtao Yu
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Jikun Zhang
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China.
| |
Collapse
|
31
|
Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2022:10.1007/s10571-022-01287-4. [PMID: 36180651 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
|
32
|
Sifat AE, Archie SR, Nozohouri S, Villalba H, Zhang Y, Sharma S, Ghanwatkar Y, Vaidya B, Mara D, Cucullo L, Abbruscato TJ. Short-term exposure to JUUL electronic cigarettes can worsen ischemic stroke outcome. Fluids Barriers CNS 2022; 19:74. [PMID: 36085043 PMCID: PMC9463848 DOI: 10.1186/s12987-022-00371-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The short and long-term health effects of JUUL electronic cigarette (e-Cig) are largely unknown and warrant extensive research. We hypothesized that JUUL exposure could cause cerebrovascular toxicities impacting the progression and outcome of ischemic stroke comparable to tobacco smoke (TS) exposure. METHODS We exposed male C57 mice to TS/JUUL vapor for 14 days. LCMS/MS was used to measure brain and plasma nicotine and cotinine level. Transient middle cerebral artery occlusion (tMCAO) followed by reperfusion was used to mimic ischemic stroke. Plasma levels of IL-6 and thrombomodulin were assessed by enzyme-linked immunosorbent assay. At the same time, western blotting was used to study blood-brain barrier (BBB) tight junction (TJ) proteins expression and key inflammatory and oxidative stress markers. RESULTS tMCAO upregulated IL-6 and decreased plasma thrombomodulin levels. Post-ischemic brain injury following tMCAO was significantly worsened by JUUL/TS pre-exposure. TJ proteins expression was also downregulated by JUUL/TS pre-exposure after tMCAO. Like TS, exposure to JUUL downregulated the expression of the antioxidant Nrf2. ICAM-1 was upregulated in mice subjected to tMCAO following pre-exposure to TS or JUUL, with a greater effect of TS than JUUL. CONCLUSIONS These results suggest that JUUL exposure could negatively impact the cerebrovascular system, although to a lesser extent than TS exposure.
Collapse
Affiliation(s)
- Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - David Mara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Oakland University William Beaumont School of Medicine, O' Dowd Hall, 586 Pioneer Dr, Room 415, Rochester, MI, 48309, USA.
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA.
| |
Collapse
|
33
|
Nrf2 Pathway and Autophagy Crosstalk: New Insights into Therapeutic Strategies for Ischemic Cerebral Vascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091747. [PMID: 36139821 PMCID: PMC9495910 DOI: 10.3390/antiox11091747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebrovascular disease is highly prevalent and has a complex etiology and variable pathophysiological activities. It thus poses a serious threat to human life and health. Currently, pathophysiological research on cerebrovascular diseases is gradually improving, and oxidative stress and autophagy have been identified as important pathophysiological activities that are gradually attracting increasing attention. Many studies have found some effects of oxidative stress and autophagy on cerebrovascular diseases, and studies on the crosstalk between the two in cerebrovascular diseases have made modest progress. However, further, more detailed studies are needed to determine the specific mechanisms. This review discusses nuclear factor erythroid 2-related factor 2 (Nrf2) molecules, which are closely associated with oxidative stress and autophagy, and the crosstalk between them, with the aim of providing clues for studying the two important pathophysiological changes and their crosstalk in cerebrovascular diseases as well as exploring new target treatments.
Collapse
|
34
|
Modulation of autophagy by melatonin via sirtuins in stroke: From mechanisms to therapies. Life Sci 2022; 307:120870. [PMID: 35948118 DOI: 10.1016/j.lfs.2022.120870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
Sirtuins perform an important effect on the neural cell fate following stroke. Several mechanisms that have been correlated with stroke are oxidative stress, apoptosis, necrosis and autophagy. Autophagy is usually regarded as unitary of the neural cell survival mechanisms. Recently, the importance of the sirtuins effect on autophagy by antioxidant agents for stroke treatment mentioned in various studies. One of these agents is melatonin. Melatonin can modulate autophagy by changing on sirtuin pathways. Melatonin and its metabolites adjust various sirtuins pathways related to apoptosis, proliferation, metastases, autophagy and inflammation in case of stroke. In this review, we will discuss about the modulation of autophagy by melatonin via sirtuins in stroke.
Collapse
|
35
|
Ashkar F, Bhullar KS, Wu J. The Effect of Polyphenols on Kidney Disease: Targeting Mitochondria. Nutrients 2022; 14:nu14153115. [PMID: 35956292 PMCID: PMC9370485 DOI: 10.3390/nu14153115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial function, including oxidative phosphorylation (OXPHOS), mitochondrial biogenesis, and mitochondria dynamics, are essential for the maintenance of renal health. Through modulation of mitochondrial function, the kidneys are able to sustain or recover acute kidney injury (AKI), chronic kidney disease (CKD), nephrotoxicity, nephropathy, and ischemia perfusion. Therapeutic improvement in mitochondrial function in the kidneys is related to the regulation of adenosine triphosphate (ATP) production, free radicals scavenging, decline in apoptosis, and inflammation. Dietary antioxidants, notably polyphenols present in fruits, vegetables, and plants, have attracted attention as effective dietary and pharmacological interventions. Considerable evidence shows that polyphenols protect against mitochondrial damage in different experimental models of kidney disease. Mechanistically, polyphenols regulate the mitochondrial redox status, apoptosis, and multiple intercellular signaling pathways. Therefore, this review attempts to focus on the role of polyphenols in the prevention or treatment of kidney disease and explore the molecular mechanisms associated with their pharmacological activity.
Collapse
Affiliation(s)
| | | | - Jianping Wu
- Correspondence: ; Tel.: +1-780-492-6885; Fax: +1-780-492-8524
| |
Collapse
|
36
|
Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ, Perez-Pinzon MA. Sirtuins and cognition: implications for learning and memory in neurological disorders. Front Physiol 2022; 13:908689. [PMID: 35936890 PMCID: PMC9355297 DOI: 10.3389/fphys.2022.908689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins are an evolutionarily conserved family of regulatory proteins that function in an NAD+ -dependent manner. The mammalian family of sirtuins is composed of seven histone deacetylase and ADP-ribosyltransferase proteins (SIRT1-SIRT7) that are found throughout the different cellular compartments of the cell. Sirtuins in the brain have received considerable attention in cognition due to their role in a plethora of metabolic and age-related diseases and their ability to induce neuroprotection. More recently, sirtuins have been shown to play a role in normal physiological cognitive function, and aberrant sirtuin function is seen in pathological cellular states. Sirtuins are believed to play a role in cognition through enhancing synaptic plasticity, influencing epigenetic regulation, and playing key roles in molecular pathways involved with oxidative stress affecting mitochondrial function. This review aims to discuss recent advances in the understanding of the role of mammalian sirtuins in cognitive function and the therapeutic potential of targeting sirtuins to ameliorate cognitive deficits in neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Perez-Pinzon
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
37
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:215. [PMID: 35794095 PMCID: PMC9259607 DOI: 10.1038/s41392-022-01064-1] [Citation(s) in RCA: 290] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
38
|
Yuan Z, Zeng Y, Tian Y, Wang S, Hong B, Yang M. SIRT6 serves as a polyhedron in glycolytic metabolism and ageing-related diseases. Exp Gerontol 2022; 162:111765. [DOI: 10.1016/j.exger.2022.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022]
|
39
|
Energy restriction induced SIRT6 inhibits microglia activation and promotes angiogenesis in cerebral ischemia via transcriptional inhibition of TXNIP. Cell Death Dis 2022; 13:449. [PMID: 35562171 PMCID: PMC9095711 DOI: 10.1038/s41419-022-04866-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Energy restriction (ER) protects against cerebral ischemic injury, but the underlying mechanism remains largely unclear. Here, rats were fed ad libitum (AL) or on an alternate-day food deprivation intermittent fasting (IF) diet for 3 months, followed by middle cerebral artery occlusion (MCAO) surgery. The body weight, infarct volume, and neurological deficit score were accessed at the designated time points. ELISA, qRT-PCR, and Western blotting were used to determine cytokine secretion and the expression of SIRT6, TXNIP, and signaling molecules, respectively. Immunofluorescence evaluated microglial activation and angiogenesis in vivo. For in vitro study, oxygen-glucose deprivation/reoxygenation (OGD/R)-treated cell model was generated. MTT and tube formation assays were employed to determine cell viability and tube formation capability. ChIP assay detected chromatin occupancy of SIRT6 and SIRT6-mediated H3 deacetylation. We found that IF or ER mimetics ameliorated cerebral ischemic brain damage and microglial activation, and potentiated angiogenesis in vivo. ER mimetics or SIRT6 overexpression alleviated cerebral ischemia and reperfusion (I/R)-induced injury in vitro. SIRT6 suppressed TXNIP via deacetylation of H3K9ac and H3K56ac in HAPI cells and BMVECs. Downregulation of SIRT6 reversed ER mimetics-mediated protection during cerebral I/R in vitro. Our study demonstrated that ER-mediated upregulation of SIRT6 inhibited microglia activation and potentiated angiogenesis in cerebral ischemia via suppressing TXNIP.
Collapse
|
40
|
Anoush M, Pourmansouri Z, Javadi R, GhorbanPour B, Sharafi A, Mohamadpour H, jafari anarkooli I, Andalib S. Clavulanic Acid: A Novel Potential Agent in Prevention and Treatment of Scopolamine-Induced Alzheimer's Disease. ACS OMEGA 2022; 7:13861-13869. [PMID: 35559146 PMCID: PMC9088895 DOI: 10.1021/acsomega.2c00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 05/13/2023]
Abstract
Background and Aim: Alzheimer's disease (AD) is the most common form of dementia in the elderly. It is characterized as a multifaced disorder with a greater genetic contribution. The contribution of many genes such as BDNF, Sirtuin 6, and Seladin 1 has been reported in the pathogenesis of AD. Current therapies include acetylcholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists, which are only temporarily beneficial. Therefore, it seems that more studies should be conducted to determine the exact mechanisms of drugs to deal with the diseases' multifactorial features that we face. Methods: In this study, 42 adult rats were randomly divided into 7 groups and received drugs intraperitoneally and orally according to the protocol as follows: scopolamine group, clavulanic acid group, memantine group, scopolamine + memantine group, clavulanic acid pre- and post-treatment, and normal saline group. The Morris water maze method was performed to evaluate the spatial memory of animals, and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay and real-time polymerase chain reaction were performed to study neuronal cell apoptosis and gene expression, respectively. Results: Significant differences were observed in the spatial memory of rats that received clavulanic acid prophylactically compared to the Alzheimer's model on the day of the test. Moreover, the results obtained during the training showed that both memantine and clavulanic acid improved spatial memory by increasing the time of rats present in the platform position and by reducing the swimming time in the scopolamine-induced Alzheimer's group. Besides, rats that received clavulanic acid and memantine had a greater percentage of healthy cells in comparison with the scopolamine-induced Alzheimer's group; however, the results were more significant for clavulanic acid. Furthermore, the expressions of BDNF, Seladin 1, and Sirtuin 6 as neuroprotective target genes were modified after clavulanic acid and memantine administrations; similarly, the results obtained from clavulanic acid were more significant. Conclusion: The results show that the administration of clavulanic acid before and after the use of scopolamine can reduce the percentage of apoptotic cells in the hippocampus and also improve the parameters related to learning and spatial memory; however, its effect in the prophylactic state was stronger. The results obtained from memantine revealed that it has neuroprotective potency against AD; however, clavulanic acid had a greater effect. Also, with increased expression of the neuroprotective genes, clavulanic acid could be considered as an option in the upcoming preclinical and clinical research about Alzheimer's disease.
Collapse
Affiliation(s)
- Mahdieh Anoush
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Zeinab Pourmansouri
- Department
of Pharmacology, School of Medicine, Zanjan
University of Medical Sciences, Zanjan 4515613191, Iran
| | - Rafi Javadi
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Benyamin GhorbanPour
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Ali Sharafi
- Zanjan
Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Hamed Mohamadpour
- Department
of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Iraj jafari anarkooli
- Department
of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Sina Andalib
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
- Phone: +98(241)-427-3637.
Fax: +98(241)-427-3639. E-mail: ,
| |
Collapse
|
41
|
Jiao F, Zhang Z, Hu H, Zhang Y, Xiong Y. SIRT6 Activator UBCS039 Inhibits Thioacetamide-Induced Hepatic Injury In Vitro and In Vivo. Front Pharmacol 2022; 13:837544. [PMID: 35517808 PMCID: PMC9065480 DOI: 10.3389/fphar.2022.837544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
SIRT6 has been reported to have multiple functions in inflammation and metabolism. In the present study, we explored the regulatory effects and mechanisms of SIRT6 in thioacetamide (TAA)-induced mice acute liver failure (ALF) models. The SIRT6 activator UBCS039 was used in this animal and cell experiments. We observed that UBCS039 ameliorated liver damage, including inflammatory responses and oxidative stress. Further study of mechanisms showed that the upregulation of SIRT6 inhibited the inflammation reaction by suppressing the nuclear factor-κB (NF-κB) pathway in the TAA-induced ALF mice model and lipopolysaccharide-stimulated macrophages. In addition, the upregulation of SIRT6 alleviated oxidative stress damage in hepatocytes by regulating the Nrf2/HO-1 pathway. These findings demonstrate that pharmacologic activator of SIRT6 could be a promising target for ALF.
Collapse
Affiliation(s)
- Fangzhou Jiao
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongwei Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongtu Hu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongxi Zhang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Xiong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Jurcau A, Ardelean AI. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Biomedicines 2022; 10:biomedicines10030574. [PMID: 35327376 PMCID: PMC8945353 DOI: 10.3390/biomedicines10030574] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recanalization therapy is increasingly used in the treatment of acute ischemic stroke. However, in about one third of these patients, recanalization is followed by ischemia/reperfusion injuries, and clinically to worsening of the neurological status. Much research has focused on unraveling the involved mechanisms in order to prevent or efficiently treat these injuries. What we know so far is that oxidative stress and mitochondrial dysfunction are significantly involved in the pathogenesis of ischemia/reperfusion injury. However, despite promising results obtained in experimental research, clinical studies trying to interfere with the oxidative pathways have mostly failed. The current article discusses the main mechanisms leading to ischemia/reperfusion injuries, such as mitochondrial dysfunction, excitotoxicity, and oxidative stress, and reviews the clinical trials with antioxidant molecules highlighting recent developments and future strategies.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Neurology, Clinical Municipal Hospital Oradea, Louis Pasteur Street nr 26, 410054 Oradea, Romania
- Correspondence: ; Tel.: +40-744-600-833
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Universitatii Street nr 1, 410087 Oradea, Romania;
- Department of Cardiology, Clinical Emergency County Hospital Oradea, Gh. Doja Street nr 65, 410169 Oradea, Romania
| |
Collapse
|
43
|
Zhao H, Li Y, Zhang Y, He WY, Jin WN. Role of Immune and Inflammatory Mechanisms in Stroke: A Review of Current Advances. Neuroimmunomodulation 2022; 29:255-268. [PMID: 35640538 DOI: 10.1159/000524951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
Stroke accounts for a large proportion of morbidity and mortality burden in China. Moreover, there is a high prevalence of the leading risk factors for stroke, including hypertension and smoking. Understanding the underlying mechanisms and developing effective therapeutic interventions for patients with stroke is a key imperative. The pathophysiology of stroke involves a complex interplay between the immune and inflammatory mechanisms. Focal brain inflammation triggered by neuronal cell death and the release of factors such as damage-associated molecular patterns can further exacerbate neuronal injury; in addition, impairment of the blood-brain barrier, oxidative stress, microvascular dysfunction, and brain edema cause secondary brain injury. Immune cells, including microglia and other infiltrating inflammatory cells, play a key role in triggering focal and global brain inflammation. Anti-inflammatory therapies targeting the aforementioned mechanisms can alleviate primary and secondary brain injury in the aftermath of a stroke. Further experimental and clinical studies are required to explore the beneficial effects of anti-inflammatory drugs in stroke.
Collapse
Affiliation(s)
- Hui Zhao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen-Yan He
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Na Jin
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Bardallo RG, Panisello‐Roselló A, Sanchez‐Nuno S, Alva N, Roselló‐Catafau J, Carbonell T. Nrf2 and Oxidative Stress in liver Ischemia/Reperfusion Injury. FEBS J 2021; 289:5463-5479. [PMID: 34967991 DOI: 10.1111/febs.16336] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Arnau Panisello‐Roselló
- Experimental Pathology Department Institute of Biomedical Research of Barcelona (IIBB) CSIC‐IDIBAPS Barcelona Spain
| | - Sergio Sanchez‐Nuno
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| | - Joan Roselló‐Catafau
- Experimental Pathology Department Institute of Biomedical Research of Barcelona (IIBB) CSIC‐IDIBAPS Barcelona Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology Universitat de Barcelona Spain
| |
Collapse
|
45
|
Yang X, Feng J, Liang W, Zhu Z, Chen Z, Hu J, Yang D, Ding G. Roles of SIRT6 in kidney disease: a novel therapeutic target. Cell Mol Life Sci 2021; 79:53. [PMID: 34950960 PMCID: PMC11072764 DOI: 10.1007/s00018-021-04061-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
SIRT6 is an NAD+ dependent deacetylase that belongs to the mammalian sirtuin family. SIRT6 is mainly located in the nucleus and regulates chromatin remodeling, genome stability, and gene transcription. SIRT6 extensively participates in various physiological activities such as DNA repair, energy metabolism, oxidative stress, inflammation, and fibrosis. In recent years, the role of epigenetics such as acetylation modification in renal disease has gradually received widespread attention. SIRT6 reduces oxidative stress, inflammation, and renal fibrosis, which is of great importance in maintaining cellular homeostasis and delaying the chronic progression of kidney disease. Here, we review the structure and biological function of SIRT6 and summarize the regulatory mechanisms of SIRT6 in kidney disease. Moreover, the role of SIRT6 as a potential therapeutic target for the progression of kidney disease will be discussed. SIRT6 plays an important role in kidney disease. SIRT6 regulates mitochondrial dynamics and mitochondrial biogenesis, induces G2/M cycle arrest, and plays an antioxidant role in nephrotoxicity, IR, obstructive nephropathy, and sepsis-induced AKI. SIRT6 prevents and delays progressive CKD induced by hyperglycemia, kidney senescence, hypertension, and lipid accumulation by regulating mitochondrial biogenesis, and has antioxidant, anti-inflammatory, and antifibrosis effects. Additionally, hypoxia, inflammation, and fibrosis are the main mechanisms of the AKI-to-CKD transition. SIRT6 plays a critical role in the AKI-to-CKD transition and kidney repair through anti-inflammatory, antifibrotic, and mitochondrial quality control mechanisms. AKI Acute kidney injury, CKD Chronic kidney disease.
Collapse
Affiliation(s)
- Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Dingping Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
46
|
Zou Y, Zhang J, Xu J, Fu L, Xu Y, Wang X, Li Z, Zhu L, Sun H, Zheng H, Guo J. SIRT6 inhibition delays peripheral nerve recovery by suppressing migration, phagocytosis and M2-polarization of macrophages. Cell Biosci 2021; 11:210. [PMID: 34906231 PMCID: PMC8672560 DOI: 10.1186/s13578-021-00725-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Silent information regulator 6 (SIRT6) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Prior evidences suggested that the anti-inflammatory function of SIRT6 after spinal cord and brain injury, and it plays a crucial role in macrophages polarization of adipose tissue and skin. However, the role of SIRT6 in macrophages involved peripheral nerve injury is still unknown. Given the prominent role of macrophages in peripheral nerve recovery, we aim to investigate the role of SIRT6 in the regulation of phenotypes shift and functions in macrophages after peripheral nerve injury. Results In the present study, we first identified a significant increase of SIRT6 expression during nerve degeneration and macrophages phagocytosis. Next, we found nerve recovery was delayed after SIRT6 silencing by injected shRNA lentivirus into the crushed sciatic nerve, which exhibited a reduced expression of myelin-related proteins (e.g., MAG and MBP), severer myoatrophy of target muscles, and inferior nerve conduction compared to the shRNA control injected mice. In vitro, we found that SIRT6 inhibition by being treated with a selective inhibitor OSS_128167 or lentivirus transfection impairs migration and phagocytosis capacity of bone marrow-derived macrophages (BMDM). In addition, SIRT6 expression was discovered to be reduced after M1 polarization, but SIRT6 was enhanced after M2 polarization in the monocyte-macrophage cell line RAW264.7 and BMDM. Moreover, SIRT6 inhibition increased M1 macrophage polarization with a concomitant decrease in M2 polarization both in RAW264.7 and BMDM via activating NF-κB and TNF-α expression, and SIRT6 activation by UBCS039 treatment could shift the macrophages from M1 to M2 phenotype. Conclusion Our findings indicate that SIRT6 inhibition impairs peripheral nerve repair through suppressing the migration, phagocytosis, and M2 polarization of macrophages. Therefore, SIRT6 may become a favorable therapeutic target for peripheral nerve injury.
Collapse
Affiliation(s)
- Ying Zou
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Jiawei Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Lanya Fu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Yizhou Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.,Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xianghai Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China
| | - Zhenlin Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Lixin Zhu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Hao Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Hui Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China. .,Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China.
| |
Collapse
|
47
|
Singh-Mallah G, Kawamura T, Ardalan M, Chumak T, Svedin P, Arthur PG, James C, Hagberg H, Sandberg M, Mallard C. N-Acetyl Cysteine Restores Sirtuin-6 and Decreases HMGB1 Release Following Lipopolysaccharide-Sensitized Hypoxic-Ischemic Brain Injury in Neonatal Mice. Front Cell Neurosci 2021; 15:743093. [PMID: 34867200 PMCID: PMC8634142 DOI: 10.3389/fncel.2021.743093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation and neonatal hypoxia-ischemia (HI) are important etiological factors of perinatal brain injury. However, underlying mechanisms remain unclear. Sirtuins are a family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases. Sirtuin-6 is thought to regulate inflammatory and oxidative pathways, such as the extracellular release of the alarmin high mobility group box-1 (HMGB1). The expression and role of sirtuin-6 in neonatal brain injury are unknown. In a well-established model of neonatal brain injury, which encompasses inflammation (lipopolysaccharide, LPS) and hypoxia-ischemia (LPS+HI), we investigated the protein expression of sirtuin-6 and HMGB1, as well as thiol oxidation. Furthermore, we assessed the effect of the antioxidant N-acetyl cysteine (NAC) on sirtuin-6 expression, nuclear to cytoplasmic translocation, and release of HMGB1 in the brain and blood thiol oxidation after LPS+HI. We demonstrate reduced expression of sirtuin-6 and increased release of HMGB1 in injured hippocampus after LPS+HI. NAC treatment restored sirtuin-6 protein levels, which was associated with reduced extracellular HMGB1 release and reduced thiol oxidation in the blood. The study suggests that early reduction in sirtuin-6 is associated with HMGB1 release, which may contribute to neonatal brain injury, and that antioxidant treatment is beneficial for the alleviation of these injurious mechanisms.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Takuya Kawamura
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Maryam Ardalan
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Tetyana Chumak
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Peter G Arthur
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Christopher James
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
48
|
Zhang H, Liu Y, Cao X, Wang W, Cui X, Yang X, Wang Y, Shi J. Nrf2 Promotes Inflammation in Early Myocardial Ischemia-Reperfusion via Recruitment and Activation of Macrophages. Front Immunol 2021; 12:763760. [PMID: 34917083 PMCID: PMC8669137 DOI: 10.3389/fimmu.2021.763760] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocyte apoptosis in response to inflammation is a primary cause of myocardial ischemia-reperfusion injury (IRI). Nuclear factor erythroid 2 like 2 (Nrf2) reportedly plays an important role in myocardial IRI, but the underlying mechanism remains obscure. Expression data from the normal heart tissues of mice or heart tissues treated with reperfusion for 6 h after ischemia (IR6h) were acquired from the GEO database; changes in biological function and infiltrating immune cells were analyzed. The binding between the molecules was verified by chromatin immunoprecipitation sequencing. Based on confirmation that early myocardial ischemia-reperfusion (myocardial ischemia/reperfusion for 6 hours, IR6h) promoted myocardial apoptosis and inflammatory response, we found that Nrf2, cooperating with Programmed Cell Death 4, promoted transcription initiation of C-C Motif Chemokine Ligand 3 (Ccl3) in myocardial tissues of mice treated with IR6h. Moreover, Ccl3 contributed to the high signature score of C-C motif chemokine receptor 1 (Ccr1)-positive macrophages. The high signature score of Ccr1-positive macrophages leads to the release of pro-inflammatory factors interleukin 1 beta and interleukin 6. This study is the first to elucidate the damaging effect of Nrf2 via remodeling of the immune microenvironment in early myocardial ischemia-reperfusion, which provides us with new perspectives and treatment strategies for myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haijian Zhang, ; Jiahai Shi,
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoqing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing, China
| | - Wenmiao Wang
- Graduate School, Dalian Medical University, Dalian, China
| | - Xiaohong Cui
- Department of General Surgery, Shanghai Electric Power Hospital, Shanghai, China
| | - Xuechao Yang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Wang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haijian Zhang, ; Jiahai Shi,
| |
Collapse
|
49
|
Demyanenko S, Dzreyan V, Sharifulina S. Histone Deacetylases and Their Isoform-Specific Inhibitors in Ischemic Stroke. Biomedicines 2021; 9:biomedicines9101445. [PMID: 34680562 PMCID: PMC8533589 DOI: 10.3390/biomedicines9101445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia is the second leading cause of death in the world and multimodal stroke therapy is needed. The ischemic stroke generally reduces the gene expression due to suppression of acetylation of histones H3 and H4. Histone deacetylases inhibitors have been shown to be effective in protecting the brain from ischemic damage. Histone deacetylases inhibitors induce neurogenesis and angiogenesis in damaged brain areas promoting functional recovery after cerebral ischemia. However, the role of different histone deacetylases isoforms in the survival and death of brain cells after stroke is still controversial. This review aims to analyze the data on the neuroprotective activity of nonspecific and selective histone deacetylase inhibitors in ischemic stroke.
Collapse
|
50
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|