1
|
von Bernhardi R, Eugenín J. Ageing-related changes in the regulation of microglia and their interaction with neurons. Neuropharmacology 2025; 265:110241. [PMID: 39617175 DOI: 10.1016/j.neuropharm.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Ageing is one of the most important risk factors for chronic health conditions, including neurodegenerative diseases. Inflammation is a feature of ageing, as well as a key pathophysiological mechanism for degenerative diseases. Microglia play multiple roles in the central nervous system; their states entail a complex assemblage of responses reflecting the multiplicity of functions they fulfil both under homeostatic basal conditions and in response to stimuli. Whereas glial cells can promote neuronal homeostasis and limit neurodegeneration, age-related inflammation (i.e. inflammaging) leads to the functional impairment of microglia and astrocytes, exacerbating their response to stimuli. Thus, microglia are key mediators for age-dependent changes of the nervous system, participating in the generation of a less supportive or even hostile environment for neurons. Whereas multiple changes of ageing microglia have been described, here we will focus on the neuron-microglia regulatory crosstalk through fractalkine (CX3CL1) and CD200, and the regulatory cytokine Transforming Growth Factor β1 (TGFβ1), which is involved in immunomodulation and neuroprotection. Ageing results in a dysregulated activation of microglia, affecting neuronal survival, and function. The apparent unresponsiveness of aged microglia to regulatory signals could reflect a restriction in the mechanisms underlying their homeostatic and reactive states. The spectrum of functions, required to respond to life-long needs for brain maintenance and in response to disease, would progressively narrow, preventing microglia from maintaining their protective functions. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Universidad San Sebastian, Faculty for Odontology and Rehabilitation Sciences. Lota 2465, Providencia, Santiago, PO. 7510602, Chile.
| | - Jaime Eugenín
- Universidad de Santiago de Chile, Faculty of Chemistry and Biology, Av. Libertador Bernardo O'Higgins 3363, Santiago, PO. 7510602, Chile.
| |
Collapse
|
2
|
Kodali M, Madhu LN, Somayaji Y, Attaluri S, Huard C, Panda PK, Shankar G, Rao S, Shuai B, Gonzalez JJ, Oake C, Hering C, Babu RS, Kotian S, Shetty AK. Residual microglia following short-term PLX5622 treatment in 5xFAD mice exhibit diminished NLRP3 inflammasome and mTOR signaling, and enhanced autophagy. Aging Cell 2024:e14398. [PMID: 39571180 DOI: 10.1111/acel.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024] Open
Abstract
While moderately activated microglia in Alzheimer's disease (AD) are pivotal in clearing amyloid beta (Aβ), hyperactivated microglia perpetuate neuroinflammation. Prior investigations reported that the elimination of ~80% of microglia through inhibition of the colony-stimulating factor 1 receptor (CSF1R) during the advanced stage of neuroinflammation in 5xFamilial AD (5xFAD) mice mitigates synapse loss and neurodegeneration. Furthermore, prolonged CSF1R inhibition diminished the development of parenchymal plaques. Nonetheless, the effects of short-term CSF1R inhibition during the early stages of neuroinflammation on residual microglia are unknown. Therefore, we investigated the effects of 10-day CSF1R inhibition using PLX5622 in three-month-old female 5xFAD mice, a stage characterized by the onset of neuroinflammation and minimal Aβ plaques. We observed ~65% microglia depletion in the hippocampus and cerebral cortex. The leftover microglia displayed a noninflammatory phenotype with reduced NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complexes. Moreover, plaque-associated microglia were reduced with diminished Clec7a expression. Additionally, phosphorylated S6 ribosomal protein and the protein sequestosome 1 analysis suggested reduced mechanistic targets of rapamycin (mTOR) signaling and autophagy in microglia and neurons within the hippocampus and cerebral cortex. Biochemical assays validated the inhibition of NLRP3 inflammasome activation, decreased mTOR signaling in the hippocampus and cerebral cortex, and enhanced autophagy in the hippocampus. However, short-term CSF1R inhibition did not influence Aβ plaques, soluble Aβ-42 levels, astrocyte hypertrophy, or hippocampal neurogenesis. Thus, short-term CSF1R inhibition during the early stages of neuroinflammation in 5xFAD mice promotes the retention of homeostatic microglia with diminished inflammasome activation and mTOR signaling, alongside increased autophagy.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Charles Huard
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Prashanta Kumar Panda
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Goutham Shankar
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Jenny J Gonzalez
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Chris Oake
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Catherine Hering
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Roshni Sara Babu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Sanya Kotian
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, Texas, USA
| |
Collapse
|
3
|
Benitez MJ, Retana D, Ordoñez-Gutiérrez L, Colmena I, Goméz MJ, Álvarez R, Ciorraga M, Dopazo A, Wandosell F, Garrido JJ. Transcriptomic alterations in APP/PS1 mice astrocytes lead to early postnatal axon initial segment structural changes. Cell Mol Life Sci 2024; 81:444. [PMID: 39485512 PMCID: PMC11530419 DOI: 10.1007/s00018-024-05485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Alzheimer´s disease (AD) is characterized by neuronal function loss and degeneration. The integrity of the axon initial segment (AIS) is essential to maintain neuronal function and output. AIS alterations are detected in human post-mortem AD brains and mice models, as well as, neurodevelopmental and mental disorders. However, the mechanisms leading to AIS deregulation in AD and the extrinsic glial origin are elusive. We studied early postnatal differences in AIS cellular/molecular mechanisms in wild-type or APP/PS1 mice and combined neuron-astrocyte co-cultures. We observed AIS integrity alterations, reduced ankyrinG expression and shortening, in APP/PS1 mice from P21 and loss of AIS integrity at 21 DIV in wild-type and APP/PS1 neurons in the presence of APP/PS1 astrocytes. AnkyrinG decrease is due to mRNAs and protein reduction of retinoic acid synthesis enzymes Rdh1 and Aldh1b1, as well as ADNP (Activity-dependent neuroprotective protein) in APP/PS1 astrocytes. This effect was mimicked by wild-type astrocytes expressing ADNP shRNA. In the presence of APP/PS1 astrocytes, wild-type neurons AIS is recovered by inhibition of retinoic acid degradation, and Adnp-derived NAP peptide (NAPVSIPQ) addition or P2X7 receptor inhibition, both regulated by retinoic acid levels. Moreover, P2X7 inhibitor treatment for 2 months impaired AIS disruption in APP/PS1 mice. Our findings extend current knowledge on AIS regulation, providing data to support the role of astrocytes in early postnatal AIS modulation. In conclusion, AD onset may be related to very early glial cell alterations that induce AIS and neuronal function changes, opening new therapeutic approaches to detect and avoid neuronal function loss.
Collapse
Affiliation(s)
- María José Benitez
- Instituto Cajal, CSIC, Madrid, Spain
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Lara Ordoñez-Gutiérrez
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Colmena
- Instituto Cajal, CSIC, Madrid, Spain
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
| | | | - Rebeca Álvarez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Wandosell
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan José Garrido
- Instituto Cajal, CSIC, Madrid, Spain.
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain.
| |
Collapse
|
4
|
Hernando-Redondo J, Malcampo M, Pérez-Vega KA, Paz-Graniel I, Martínez-González MÁ, Corella D, Estruch R, Salas-Salvadó J, Pintó X, Arós F, Bautista-Castaño I, Romaguera D, Lapetra J, Ros E, Cueto-Galán R, Fitó M, Castañer O. Mediterranean Diet Modulation of Neuroinflammation-Related Genes in Elderly Adults at High Cardiovascular Risk. Nutrients 2024; 16:3147. [PMID: 39339745 PMCID: PMC11434799 DOI: 10.3390/nu16183147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Individuals with dementia and neurodegenerative diseases (NDDs) often suffer from cardiovascular diseases (CVDs). Neuroinflammation driven by conditions involved in CVDs is linked to disruptions in the central nervous system triggering immune reactions, perpetuating an "inflammatory-like" environment. The Mediterranean diet (MedDiet), known for its anti-inflammatory and antioxidant properties, has been proposed as a key factor to attenuate these risks. Blood nuclear cell samples were collected from 134 participants of the PREDIMED trial, which randomized participants to three diets: one supplemented with extra-virgin olive oil (MedDiet-EVOO), another with nuts (MedDiet-Nuts), and a low-fat control diet. These samples were analyzed at baseline and 12-month follow-up to assess the impact of these dietary interventions on gene expression markers. We first selected target genes by analyzing intersections between NDD and CVD associations. Significant gene expression changes from baseline to 12 months were observed in the participants allocated to the MedDiet-EVOO, particularly in CDKN2A, IFNG, NLRP3, PIK3CB, and TGFB2. Additionally, TGFB2 expression changed over time in the MedDiet-Nuts group. Comparative analyses showed significant differences in TGFB2 between MedDiet-EVOO and control, and in NAMPT between MedDiet-Nuts and control. Longitudinal models adjusted for different covariates also revealed significant effects for TGFB2 and NAMPT. In conclusion, our results suggest that one year of traditional MedDiet, especially MedDiet-EVOO, modulates gene expression associated with CVD risk and NDDs in older adults at high CV risk.
Collapse
Affiliation(s)
- Javier Hernando-Redondo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
- Ph.D. Program in Food Science and Nutrition, University of Barcelona, 08028 Barcelona, Spain
| | - Mireia Malcampo
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Karla Alejandra Pérez-Vega
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Indira Paz-Graniel
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, 31009 Pamplona, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 46010 Barcelona, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Xavier Pintó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Lipids and Vascular Risk Unit, Internal Medicine, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitario de Bellvitge, University of Barcelona, 08028 Barcelona, Spain
| | - Fernando Arós
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Cardiology Department, Organización Sanitaria Integrada Araba (OSI ARABA), University Hospital of Araba, 01009 Gasteiz, Spain
- University of País Vasco/Euskal Herria Unibersitatea (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Inmaculada Bautista-Castaño
- Institute for Biomedical Research, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Dora Romaguera
- Research Group in Nutritional Epidemiology and Cardiovascular Pathophysiology, Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - José Lapetra
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Department of Family Medicine, Research Unity, Distrito Sanitario Atención Primaria Sevilla, 41013 Seville, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 46010 Barcelona, Spain
| | - Raquel Cueto-Galán
- Preventive Medicine and Public Health Department, School of Medicine, University of Malaga, Spain, Biomedical Research Institute of Malaga (IBIMA), 29071 Malaga, Spain;
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Olga Castañer
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Kolahchi Z, Henkel N, Eladawi MA, Villarreal EC, Kandimalla P, Lundh A, McCullumsmith RE, Cuevas E. Sex and Gender Differences in Alzheimer's Disease: Genetic, Hormonal, and Inflammation Impacts. Int J Mol Sci 2024; 25:8485. [PMID: 39126053 PMCID: PMC11313277 DOI: 10.3390/ijms25158485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Two-thirds of Americans with Alzheimer's disease are women, indicating a profound variance between the sexes. Variances exist between the sexes in the age and intensity of the presentation, cognitive deficits, neuroinflammatory factors, structural and functional brain changes, as well as psychosocial and cultural circumstances. Herein, we summarize the existing evidence for sexual dimorphism and present the available evidence for these distinctions. Understanding these complexities is critical to developing personalized interventions for the prevention, care, and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Kolahchi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Nicholas Henkel
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Mahmoud A. Eladawi
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Emma C. Villarreal
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Prathik Kandimalla
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Anna Lundh
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Robert E. McCullumsmith
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
- ProMedica Neurosciences Center, Toledo, OH 43606, USA
| | - Elvis Cuevas
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| |
Collapse
|
6
|
Kodali M, Madhu LN, Somayaji Y, Attaluri S, Huard C, Panda PK, Shankar G, Rao S, Shuai B, Gonzalez JJ, Oake C, Hering C, Babu RS, Kotian S, Shetty AK. Residual Microglia Following Short-term PLX5622 Treatment in 5xFAD Mice Exhibit Diminished NLRP3 Inflammasome and mTOR Signaling, and Enhanced Autophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603157. [PMID: 39071343 PMCID: PMC11275929 DOI: 10.1101/2024.07.11.603157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Chronic neuroinflammation represents a prominent hallmark of Alzheimer's disease (AD). While moderately activated microglia are pivotal in clearing amyloid beta (Aβ), hyperactivated microglia perpetuate neuroinflammation. Prior investigations have indicated that the elimination of ∼80% of microglia through a month-long inhibition of the colony-stimulating factor 1 receptor (CSF1R) during the advanced stage of neuroinflammation in 5xFamilial AD (5xFAD) mice mitigates synapse loss and neurodegeneration without impacting Aβ levels. Furthermore, prolonged CSF1R inhibition diminished the development of parenchymal plaques. Nonetheless, the immediate effects of short-term CSF1R inhibition during the early stages of neuroinflammation on residual microglial phenotype or metabolic fitness are unknown. Therefore, we investigated the effects of 10-day CSF1R inhibition in three-month-old female 5xFAD mice, a stage characterized by the onset of neuroinflammation and minimal Aβ plaques. We observed ∼65% microglia depletion in the hippocampus and cerebral cortex. The leftover microglia demonstrated a noninflammatory phenotype, with highly branched and ramified processes and reduced NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complexes. Moreover, plaque-associated microglia were reduced in number with diminished Clec7a (dectin-1) expression. Additionally, both microglia and neurons displayed reduced mechanistic target of rapamycin (mTOR) signaling and autophagy. Biochemical assays validated the inhibition of NLRP3 inflammasome activation, decreased mTOR signaling, and enhanced autophagy. However, short-term CSF1R inhibition did not influence Aβ plaques, soluble Aβ-42 levels, or hippocampal neurogenesis. Thus, short-term CSF1R inhibition during the early stages of neuroinflammation in 5xFAD mice promotes the retention of homeostatic microglia with diminished inflammasome activation and mTOR signaling, alongside increased autophagy.
Collapse
|
7
|
Duan ZD, Zheng LY, Jia QY, Chen HL, Xu DY, Yang YJ, Qi Z, Yang L, Wu CY. Effect of scutellarin on BV-2 microglial-mediated apoptosis in PC12 cells via JAK2/STAT3 signalling pathway. Sci Rep 2024; 14:13430. [PMID: 38862696 PMCID: PMC11166921 DOI: 10.1038/s41598-024-64226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Previous studies have shown that scutellarin inhibits the excessive activation of microglia, reduces neuronal apoptosis, and exerts neuroprotective effects. However, whether scutellarin regulates activated microglia-mediated neuronal apoptosis and its mechanisms remains unclear. This study aimed to investigate whether scutellarin can attenuate PC12 cell apoptosis induced by activated microglia via the JAK2/STAT3 signalling pathway. Microglia were cultured in oxygen-glucose deprivation (OGD) medium, which acted as a conditioning medium (CM) to activate PC12 cells, to investigate the expression of apoptosis and JAK2/STAT3 signalling-related proteins. We observed that PC12 cells apoptosis in CM was significantly increased, the expression and fluorescence intensity of the pro-apoptotic protein Bax and apoptosis-related protein cleaved caspase-3 were increased, and expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) was decreased. Phosphorylation levels and fluorescence intensity of the JAK2/STAT3 signalling pathway-related proteins JAK2 and STAT3 decreased. After treatment with scutellarin, PC12 cells apoptosis as well as cleaved caspase-3 and Bax protein expression and fluorescence intensity decreased. The expression and fluorescence intensity of Bcl-2, phosphorylated JAK2, and STAT3 increased. AG490, a specific inhibitor of the JAK2/STAT3 signalling pathway, was used. Our findings suggest that AG490 attenuates the effects of scutellarin. Our study revealed that scutellarin inhibited OGD-activated microglia-mediated PC12 cells apoptosis which was regulated via the JAK2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Zhao-Da Duan
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Li-Yang Zheng
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Qiu-Ye Jia
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Hao-Lun Chen
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Dong-Yao Xu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Yu-Jia Yang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Zhi Qi
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Li Yang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| |
Collapse
|
8
|
Ayyubova G, Fazal N. Beneficial versus Detrimental Effects of Complement-Microglial Interactions in Alzheimer's Disease. Brain Sci 2024; 14:434. [PMID: 38790413 PMCID: PMC11119363 DOI: 10.3390/brainsci14050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Research indicates that brain-region-specific synapse loss and dysfunction are early hallmarks and stronger neurobiological correlates of cognitive decline in Alzheimer's disease (AD) than amyloid plaque and neurofibrillary tangle counts or neuronal loss. Even though the precise mechanisms underlying increased synaptic pruning in AD are still unknown, it has been confirmed that dysregulation of the balance between complement activation and inhibition is a crucial driver of its pathology. The complement includes three distinct activation mechanisms, with the activation products C3a and C5a, potent inflammatory effectors, and a membrane attack complex (MAC) leading to cell lysis. Besides pro-inflammatory cytokines, the dysregulated complement proteins released by activated microglia bind to amyloid β at the synaptic regions and cause the microglia to engulf the synapses. Additionally, research indicating that microglia-removed synapses are not always degenerating and that suppression of synaptic engulfment can repair cognitive deficits points to an essential opportunity for intervention that can prevent the loss of intact synapses. In this study, we focus on the latest research on the role and mechanisms of complement-mediated microglial synaptic pruning at different stages of AD to find the right targets that could interfere with complement dysregulation and be relevant for therapeutic intervention at the early stages of the disease.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku 370022, Azerbaijan;
| | - Nadeem Fazal
- College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL 60628, USA
| |
Collapse
|
9
|
Zhang M, Qian XH, Hu J, Zhang Y, Lin X, Hai W, Shi K, Jiang X, Li Y, Tang HD, Li B. Integrating TSPO PET imaging and transcriptomics to unveil the role of neuroinflammation and amyloid-β deposition in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:455-467. [PMID: 37801139 PMCID: PMC10774172 DOI: 10.1007/s00259-023-06446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Despite the revealed role of immunological dysfunctions in the development and progression of Alzheimer's disease (AD) through animal and postmortem investigations, direct evidence regarding the impact of genetic factors on microglia response and amyloid-β (Aβ) deposition in AD individuals is lacking. This study aims to elucidate this mechanism by integrating transcriptomics and TSPO, Aβ PET imaging in clinical AD cohort. METHODS We analyzed 85 patients with PET/MR imaging for microglial activation (TSPO, [18F]DPA-714) and Aβ ([18F]AV-45) within the prospective Alzheimer's Disease Immunization and Microbiota Initiative Study Cohort (ADIMIC). Immune-related differentially expressed genes (IREDGs), identified based on AlzData, were screened and verified using blood samples from ADIMIC. Correlation and mediation analyses were applied to investigate the relationships between immune-related genes expression, TSPO and Aβ PET imaging. RESULTS TSPO uptake increased significantly both in aMCI (P < 0.05) and AD participants (P < 0.01) and showed a positive correlation with Aβ deposition (r = 0.42, P < 0.001). Decreased expression of TGFBR3, FABP3, CXCR4 and CD200 was observed in AD group. CD200 expression was significantly negatively associated with TSPO PET uptake (r =-0.33, P = 0.013). Mediation analysis indicated that CD200 acted as a significant mediator between TSPO uptake and Aβ deposition (total effect B = 1.92, P = 0.004) and MMSE score (total effect B =-54.01, P = 0.003). CONCLUSION By integrating transcriptomics and TSPO PET imaging in the same clinical AD cohort, this study revealed CD200 played an important role in regulating neuroinflammation, Aβ deposition and cognitive dysfunction.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaoyu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Informatics, Technische Universität München, Munich, Germany
| | - Xufeng Jiang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Hui-Dong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
von Bernhardi R, Eugenín J. Aging Microglia and Their Impact in the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 37:379-395. [PMID: 39207703 DOI: 10.1007/978-3-031-55529-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor β1 (TGFβ1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFβ1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastian, Santiago, Chile.
| | - Jaime Eugenín
- Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
11
|
Zhu M, Long S, Tao Y, Zhang Z, Zhou Z, Wang X, Chen W. The P38MAPK/ATF2 signaling pathway is involved in PND in mice. Exp Brain Res 2024; 242:109-121. [PMID: 37973625 PMCID: PMC10786957 DOI: 10.1007/s00221-023-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Accumulating evidence indicates that microglia-mediated neuroinflammation in the hippocampus contributes to the development of perioperative neurocognitive disorder (PND). P38MAPK, a point of convergence for different signaling processes involved in inflammation, can be activated by various stresses. This study aims to investigate the role of the P38MAPK/ATF2 signaling pathway in the development of PND in mice. Aged C57BL/6 mice were subjected to tibial fracture surgery under isoflurane anesthesia to establish a PND animal model. The open field test was used to evaluate the locomotor activity of the mice. Neurocognitive function was assessed with the Morris water maze (MWM) and fear conditioning test (FCT) on postoperative days 1, 3 and 7. The mice exhibited cognitive impairment accompanied by increased expression of proinflammatory factors (IL-1β, TNF-α), proapoptotic molecules (caspase-3, bax) and microglial activation in the hippocampus 1, 3 and 7 days after surgery. Treatment with SB239063 (a P38MAPK inhibitor) decreased the expression of proinflammatory factors, proapoptotic molecules and Iba-1 in the CA1 region of the hippocampus. The number of surviving neurons was significantly increased. Inhibition of the P38MAPK/ATF2 signaling pathway attenuates hippocampal neuroinflammation and neuronal apoptosis in aged mice with PND, thus improving the perioperative cognitive function of the mice.
Collapse
Affiliation(s)
- Mengjiao Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Nanjing Road, Wuhan, 430030, Hubei Province, China
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Si Long
- Department of Anesthesiology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, Guangdong Province, China
| | - Yizhi Tao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Zhifa Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Xueren Wang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China.
| | - Wei Chen
- Department of Integrated Traditional Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
12
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
13
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
14
|
Rodrigues S, Anglada-Huguet M, Hochgräfe K, Kaniyappan S, Wegmann S, Mandelkow EM. Spreading of Tau Protein Does Not Depend on Aggregation Propensity. J Mol Neurosci 2023; 73:693-712. [PMID: 37606769 PMCID: PMC10694122 DOI: 10.1007/s12031-023-02143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/23/2023]
Abstract
The stereotypical progression of Tau pathology during Alzheimer disease has been attributed to trans-neuronal spreading of misfolded Tau proteins, followed by prion-like templated aggregation of Tau. The nature of Tau and the cellular mechanisms of Tau spreading are still under debate. We hypothesized that Tau's propensity for aggregation would correlate with its ability to spread across synapses and propagate pathology. To study the progressive propagation of Tau proteins in brain regions relevant for Alzheimer disease, we used mice expressing near-physiological levels of full-length human Tau protein carrying pro-aggregant (TauΔK280, TauΔK) or anti-aggregant (TauΔK280-PP, TauΔK-PP) mutations in the entorhinal cortex (EC). To enhance Tau expression in the EC, we performed EC injections of adeno-associated virus (AAV) particles encoding TauΔK or TauΔK-PP. The brains of injected and non-injected EC/TauΔK and EC/TauΔK-PP mice were studied by immunohistological and biochemical techniques to detect Tau propagation to dentate gyrus (DG) neurons and Tau-induced pathological changes. Pro- and anti-aggregant mice had comparable low transgene expression (~0.2 times endogenous mouse Tau). They accumulated human Tau at similar rates and only in expressing EC neurons, including their axonal projections of the perforant path and presynaptic terminals in the molecular layer of the DG. Pro-aggregant EC/TauΔK mice showed misfolded Tau and synaptic protein alterations in EC neurons, not observed in anti-aggregant EC/TauΔK-PP mice. Additional AAV-mediated expression of TauΔK or TauΔK-PP in EC/TauΔK or EC/TauΔK-PP mice, respectively, increased the human Tau expression to ~0.65 times endogenous mouse Tau, with comparable spreading of TauΔK and TauΔK-PP throughout the EC. There was a low level of transcellular propagation of Tau protein, without pathological phosphorylation or misfolding, as judged by diagnostic antibodies. Additionally, TauΔK but not TauΔK-PP expression induced hippocampal astrogliosis. Low levels of pro- or anti-aggregant full-length Tau show equivalent distributions in EC neurons, independent of their aggregation propensity. Increasing the expression via AAV induce local Tau misfolding in the EC neurons, synaptotoxicity, and astrogliosis and lead to a low level of detectable trans-neuronal spreading of Tau. This depends on its concentration in the EC, but, contrary to expectations, does not depend on Tau's aggregation propensity/misfolding and does not lead to templated misfolding in recipient neurons.
Collapse
Affiliation(s)
- Sara Rodrigues
- DZNE, German Ctr. for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Marta Anglada-Huguet
- DZNE, German Ctr. for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Katja Hochgräfe
- DZNE, German Ctr. for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Senthilvelrajan Kaniyappan
- DZNE, German Ctr. for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical School, Bonn, Germany
| | - Susanne Wegmann
- DZNE, German Center for Neurodegenerative Diseases, Chariteplatz 1, 10117, Berlin, Germany
| | - Eva-Maria Mandelkow
- DZNE, German Ctr. for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany.
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
15
|
Tamburini B, Badami GD, La Manna MP, Shekarkar Azgomi M, Caccamo N, Dieli F. Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease. Int J Mol Sci 2023; 24:11922. [PMID: 37569296 PMCID: PMC10418700 DOI: 10.3390/ijms241511922] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The inflammatory response that marks Alzheimer's disease (neuroinflammation) is considered a double-edged sword. Microglia have been shown to play a protective role at the beginning of the disease. Still, persistent harmful stimuli further activate microglia, inducing an exacerbating inflammatory process which impairs β-amyloid peptide clearance capability and leads to neurotoxicity and neurodegeneration. Moreover, microglia also appear to be closely involved in the spread of tau pathology. Soluble TREM2 also represents a crucial player in the neuroinflammatory processes. Elevated levels of TREM2 in cerebrospinal fluid have been associated with increased amyloid plaque burden, neurodegeneration, and cognitive decline in individuals with Alzheimer's disease. Understanding the intricate relationship between innate immunity and Alzheimer's disease will be a promising strategy for future advancements in diagnosis and new therapeutic interventions targeting innate immunity, by modulating its activity. Still, additional and more robust studies are needed to translate these findings into effective treatments. In this review, we focus on the role of cells (microglia, astrocytes, and oligodendrocytes) and molecules (TREM2, tau, and β-amyloid) of the innate immune system in the pathogenesis of Alzheimer's disease and their possible exploitation as disease biomarkers and targets of therapeutical approaches.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Giusto Davide Badami
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Marco Pio La Manna
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Nadia Caccamo
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| |
Collapse
|
16
|
Kong AHY, Wu AJ, Ho OKY, Leung MMK, Huang AS, Yu Y, Zhang G, Lyu A, Li M, Cheung KH. Exploring the Potential of Aptamers in Targeting Neuroinflammation and Neurodegenerative Disorders: Opportunities and Challenges. Int J Mol Sci 2023; 24:11780. [PMID: 37511539 PMCID: PMC10380291 DOI: 10.3390/ijms241411780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation is the precursor for several neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Targeting neuroinflammation has emerged as a promising strategy to address a wide range of CNS pathologies. These NDDs still present significant challenges in terms of limited and ineffective diagnosis and treatment options, driving the need to explore innovative and novel therapeutic alternatives. Aptamers are single-stranded nucleic acids that offer the potential for addressing these challenges through diagnostic and therapeutic applications. In this review, we summarize diagnostic and therapeutic aptamers for inflammatory biomolecules, as well as the inflammatory cells in NDDs. We also discussed the potential of short nucleotides for Aptamer-Based Targeted Brain Delivery through their unique features and modifications, as well as their ability to penetrate the blood-brain barrier. Moreover, the unprecedented opportunities and substantial challenges of using aptamers as therapeutic agents, such as drug efficacy, safety considerations, and pharmacokinetics, are also discussed. Taken together, this review assesses the potential of aptamers as a pioneering approach for target delivery to the CNS and the treatment of neuroinflammation and NDDs.
Collapse
Affiliation(s)
- Anna Hau-Yee Kong
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aston Jiaxi Wu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Olivia Ka-Yi Ho
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Maggie Ming-Ki Leung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Alexis Shiying Huang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Min Li
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - King-Ho Cheung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
17
|
Ng PY, McNeely TL, Baker DJ. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J 2023; 290:1326-1339. [PMID: 34873840 PMCID: PMC9167891 DOI: 10.1111/febs.16315] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Microglial homeostasis has emerged as a critical mediator of health and disease in the central nervous system. In their neuroprotective role as the predominant immune cells of the brain, microglia surveil the microenvironment for debris and pathogens, while also promoting neurogenesis and performing maintenance on synapses. Chronological ageing, disease onset, or traumatic injury promotes irreparable damage or deregulated signaling to reinforce neurotoxic phenotypes in microglia. These insults may include cellular senescence, a stable growth arrest often accompanied by the production of a distinctive pro-inflammatory secretory phenotype, which may contribute to age- or disease-driven decline in neuronal health and cognition and is a potential novel therapeutic target. Despite this increased scrutiny, unanswered questions remain about what distinguishes senescent microglia and non-senescent microglia reacting to insults occurring in ageing, disease, and injury, and how central the development of senescence is in their pivot from guardian to assailant. To intelligently design future studies to untangle senescent microglia from other primed and reactionary states, specific criteria must be developed that define this population and allow for comparisons between different model systems. Comparing microglial activity seen in homeostasis, ageing, disease, and injury allows for a more coherent understanding of when and how senescent and other harmful microglial subpopulations should be targeted.
Collapse
Affiliation(s)
- Pei Y Ng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Taylor L McNeely
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
The Inflammatory Gene PYCARD of the Entorhinal Cortex as an Early Diagnostic Target for Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11010194. [PMID: 36672701 PMCID: PMC9856101 DOI: 10.3390/biomedicines11010194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The incidence of Alzheimer's disease (AD) is increasing year by year, which brings great challenges to human health. However, the pathogenesis of AD is still unclear, and it lacks early diagnostic targets. The entorhinal cortex (EC) is a key brain region for the occurrence of AD neurodegeneration, and neuroinflammation plays a significant role in EC degeneration in AD. This study aimed to reveal the close relationship between inflammation-related genes in the EC and AD by detecting key differentially expressed genes (DEGs) via gene function enrichment pathway analysis. GSE4757 and GSE21779 gene expression profiles of AD were downloaded from the Gene Expression Omnibus (GEO) database. R language was used for the standardization and differential analysis of DEGs. Then, significantly enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to predict the potential biological functions of the DEGs. Finally, the significant expressions of identified DEGs were verified, and the therapeutic values were detected by a receiver operating characteristic (ROC) curve. The results showed that eight up-regulated genes (SLC22A2, ITGB2-AS1, NIT1, FGF14-AS2, SEMA3E, PYCARD, PRORY, ADIRF) and two down-regulated genes (AKAIN1, TRMT2B) may have a potential diagnostic value for AD, and participate in inflammatory pathways. The area under curve (AUC) results of the ten genes showed that they had potential diagnostic value for AD. The AUC of PYCARD was 0.95, which had the most significant diagnostic value, and it is involved in inflammatory processes such as the inflammasome complex adaptor protein. The DEGs screened, and subsequent pathway analysis revealed a close relationship between inflammation-related PYCARD and AD, thus providing a new basis for an early diagnostic target for AD.
Collapse
|
19
|
Wu Y, Eisel UL. Microglia-Astrocyte Communication in Alzheimer's Disease. J Alzheimers Dis 2023; 95:785-803. [PMID: 37638434 PMCID: PMC10578295 DOI: 10.3233/jad-230199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Microglia and astrocytes are regarded as active participants in the central nervous system under various neuropathological conditions, including Alzheimer's disease (AD). Both microglia and astrocyte activation have been reported to occur with a spatially and temporarily distinct pattern. Acting as a double-edged sword, glia-mediated neuroinflammation may be both detrimental and beneficial to the brain. In a variety of neuropathologies, microglia are activated before astrocytes, which facilitates astrocyte activation. Yet reactive astrocytes can also prevent the activation of adjacent microglia in addition to helping them become activated. Studies describe changes in the genetic profile as well as cellular and molecular responses of these two types of glial cells that contribute to dysfunctional immune crosstalk in AD. In this paper, we construct current knowledge of microglia-astrocyte communication, highlighting the multifaceted functions of microglia and astrocytes and their role in AD. A thorough comprehension of microglia-astrocyte communication could hasten the creation of novel AD treatment approaches.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Phadke L, Lau DHW, Aghaizu ND, Ibarra S, Navarron CM, Granat L, Magno L, Whiting P, Jolly S. A primary rodent triculture model to investigate the role of glia-neuron crosstalk in regulation of neuronal activity. Front Aging Neurosci 2022; 14:1056067. [DOI: 10.3389/fnagi.2022.1056067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation and hyperexcitability have been implicated in the pathogenesis of neurodegenerative disease, and new models are required to investigate the cellular crosstalk involved in these processes. We developed an approach to generate a quantitative and reproducible triculture system that is suitable for pharmacological studies. While primary rat cells were previously grown in a coculture medium formulated to support only neurons and astrocytes, we now optimised a protocol to generate tricultures containing neurons, astrocytes and microglia by culturing in a medium designed to support all three cell types and adding exogenous microglia to cocultures. Immunocytochemistry was used to confirm the intended cell types were present. The percentage of ramified microglia in the tricultures decreases as the number of microglia present increases. Multi-electrode array recordings indicate that microglia in the triculture model suppress neuronal activity in a dose-dependent manner. Neurons in both cocultures and tricultures are responsive to the potassium channel blocker 4-aminopyridine, suggesting that neurons remained viable and functional in the triculture model. Furthermore, suppressed neuronal activity in tricultures correlates with decreased densities of dendritic spines and of the postsynaptic protein Homer1 along dendrites, indicative of a direct or indirect effect of microglia on synapse function. We thus present a functional triculture model, which, due to its more complete cellular composition, is a more relevant model than standard cocultures. The model can be used to probe glia-neuron interactions and subsequently aid the development of assays for drug discovery, using neuronal excitability as a functional endpoint.
Collapse
|
21
|
Ramón-Landreau M, Sánchez-Puelles C, López-Sánchez N, Lozano-Ureña A, Llabrés-Mas AM, Frade JM. E2F4DN Transgenic Mice: A Tool for the Evaluation of E2F4 as a Therapeutic Target in Neuropathology and Brain Aging. Int J Mol Sci 2022; 23:ijms232012093. [PMID: 36292945 PMCID: PMC9603043 DOI: 10.3390/ijms232012093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
E2F4 was initially described as a transcription factor with a key function in the regulation of cell quiescence. Nevertheless, a number of recent studies have established that E2F4 can also play a relevant role in cell and tissue homeostasis, as well as tissue regeneration. For these non-canonical functions, E2F4 can also act in the cytoplasm, where it is able to interact with many homeostatic and synaptic regulators. Since E2F4 is expressed in the nervous system, it may fulfill a crucial role in brain function and homeostasis, being a promising multifactorial target for neurodegenerative diseases and brain aging. The regulation of E2F4 is complex, as it can be chemically modified through acetylation, from which we present evidence in the brain, as well as methylation, and phosphorylation. The phosphorylation of E2F4 within a conserved threonine motif induces cell cycle re-entry in neurons, while a dominant negative form of E2F4 (E2F4DN), in which the conserved threonines have been substituted by alanines, has been shown to act as a multifactorial therapeutic agent for Alzheimer’s disease (AD). We generated transgenic mice neuronally expressing E2F4DN. We have recently shown using this mouse strain that expression of E2F4DN in 5xFAD mice, a known murine model of AD, improved cognitive function, reduced neuronal tetraploidization, and induced a transcriptional program consistent with modulation of amyloid-β (Aβ) peptide proteostasis and brain homeostasis recovery. 5xFAD/E2F4DN mice also showed reduced microgliosis and astrogliosis in both the cerebral cortex and hippocampus at 3-6 months of age. Here, we analyzed the immune response in 1 year-old 5xFAD/E2F4DN mice, concluding that reduced microgliosis and astrogliosis is maintained at this late stage. In addition, the expression of E2F4DN also reduced age-associated microgliosis in wild-type mice, thus stressing its role as a brain homeostatic agent. We conclude that E2F4DN transgenic mice represent a promising tool for the evaluation of E2F4 as a therapeutic target in neuropathology and brain aging.
Collapse
Affiliation(s)
- Morgan Ramón-Landreau
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Cristina Sánchez-Puelles
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Noelia López-Sánchez
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Anna Lozano-Ureña
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Aina M. Llabrés-Mas
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - José M. Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
- Cajal International Neuroscience Center, Consejo Superior de Investigaciones Científicas, UAH Science and Technology Campus, Avenida León 1, 28805 Alcalá de Henares, Spain
- Correspondence: ; Tel.: +34-91-585-4740
| |
Collapse
|
22
|
Wu YG, Song LJ, Yin LJ, Yin JJ, Wang Q, Yu JZ, Xiao BG, Ma CG. The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer's disease. Neural Regen Res 2022; 18:947-954. [PMID: 36254973 PMCID: PMC9827789 DOI: 10.4103/1673-5374.355747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system. During the pathogenesis of Alzheimer's disease, stimulatory factors continuously act on the microglia causing abnormal activation and unbalanced phenotypic changes; these events have become a significant and promising area of research. In this review, we summarize the effects of microglial polarization and crosstalk with other cells in the central nervous system in the treatment of Alzheimer's disease. Our literature search found that phenotypic changes occur continuously in Alzheimer's disease and that microglia exhibit extensive crosstalk with astrocytes, oligodendrocytes, neurons, and penetrated peripheral innate immune cells via specific signaling pathways and cytokines. Collectively, unlike previous efforts to modulate microglial phenotypes at a single level, targeting the phenotypes of microglia and the crosstalk with other cells in the central nervous system may be more effective in reducing inflammation in the central nervous system in Alzheimer's disease. This would establish a theoretical basis for reducing neuronal death from central nervous system inflammation and provide an appropriate environment to promote neuronal regeneration in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yi-Ge Wu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Li-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jie-Zhong Yu
- Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China,Correspondence to: Cun-Gen Ma, .
| |
Collapse
|
23
|
Iyer H, Shen K, Meireles AM, Talbot WS. A lysosomal regulatory circuit essential for the development and function of microglia. SCIENCE ADVANCES 2022; 8:eabp8321. [PMID: 36044568 PMCID: PMC9432849 DOI: 10.1126/sciadv.abp8321] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/18/2022] [Indexed: 05/17/2023]
Abstract
As the primary phagocytic cells of the central nervous system, microglia exquisitely regulate their lysosomal activity to facilitate brain development and homeostasis. However, mechanisms that coordinate lysosomal activity with microglia development, chemotaxis, and function remain unclear. Here, we show that embryonic macrophages require the lysosomal guanosine triphosphatase (GTPase) RagA and the GTPase-activating protein Folliculin to colonize the brain in zebrafish. We demonstrate that embryonic macrophages in rraga mutants show increased expression of lysosomal genes but display significant down-regulation of immune- and chemotaxis-related genes. Furthermore, we find that RagA and Folliculin repress the key lysosomal transcription factor Tfeb and its homologs Tfe3a and Tfe3b in the macrophage lineage. Using RNA sequencing, we establish that Tfeb and Tfe3 are required for activation of lysosomal target genes under conditions of stress but not for basal expression of lysosomal pathways. Collectively, our data define a lysosomal regulatory circuit essential for macrophage development and function in vivo.
Collapse
|
24
|
Role of Microglia and Astrocytes in Alzheimer’s Disease: From Neuroinflammation to Ca2+ Homeostasis Dysregulation. Cells 2022; 11:cells11172728. [PMID: 36078138 PMCID: PMC9454513 DOI: 10.3390/cells11172728] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia worldwide, with a complex, poorly understood pathogenesis. Cerebral atrophy, amyloid-β (Aβ) plaques, and neurofibrillary tangles represent the main pathological hallmarks of the AD brain. Recently, neuroinflammation has been recognized as a prominent feature of the AD brain and substantial evidence suggests that the inflammatory response modulates disease progression. Additionally, dysregulation of calcium (Ca2+) homeostasis represents another early factor involved in the AD pathogenesis, as intracellular Ca2+ concentration is essential to ensure proper cellular and neuronal functions. Although growing evidence supports the involvement of Ca2+ in the mechanisms of neurodegeneration-related inflammatory processes, scant data are available on its contribution in microglia and astrocytes functioning, both in health and throughout the AD continuum. Nevertheless, AD-related aberrant Ca2+ signalling in astrocytes and microglia is crucially involved in the mechanisms underpinning neuroinflammatory processes that, in turn, impact neuronal Ca2+ homeostasis and brain function. In this light, we attempted to provide an overview of the current understanding of the interactions between the glia cells-mediated inflammatory responses and the molecular mechanisms involved in Ca2+ homeostasis dysregulation in AD.
Collapse
|
25
|
Modulation of Amyloid β-Induced Microglia Activation and Neuronal Cell Death by Curcumin and Analogues. Int J Mol Sci 2022; 23:ijms23084381. [PMID: 35457197 PMCID: PMC9027876 DOI: 10.3390/ijms23084381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is not restricted to the neuronal compartment but includes important interactions with immune cells, including microglia. Protein aggregates, common pathological hallmarks of AD, bind to pattern recognition receptors on microglia and trigger an inflammatory response, which contributes to disease progression and severity. In this context, curcumin is emerging as a potential drug candidate able to affect multiple key pathways implicated in AD, including neuroinflammation. Therefore, we studied the effect of curcumin and its structurally related analogues cur6 and cur16 on amyloid-β (Aβ)-induced microglia activation and neuronal cell death, as well as their effect on the modulation of Aβ aggregation. Primary cortical microglia and neurons were exposed to two different populations of Aβ42 oligomers (Aβ42Os) where the oligomeric state had been assigned by capillary electrophoresis and ultrafiltration. When stimulated with high molecular weight Aβ42Os, microglia released proinflammatory cytokines that led to early neuronal cell death. The studied compounds exerted an anti-inflammatory effect on high molecular weight Aβ42O-stimulated microglia and possibly inhibited microglia-mediated neuronal cell toxicity. Furthermore, the tested compounds demonstrated antioligomeric activity during the process of in vitro Aβ42 aggregation. These findings could be investigated further and used for the optimization of multipotent candidate molecules for AD treatment.
Collapse
|
26
|
A Mutant Variant of E2F4 Triggers Multifactorial Therapeutic Effects in 5xFAD Mice. Mol Neurobiol 2022; 59:3016-3039. [PMID: 35254651 PMCID: PMC9016056 DOI: 10.1007/s12035-022-02764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer’s disease (AD) has a complex etiology, which requires a multifactorial approach for an efficient treatment. We have focused on E2 factor 4 (E2F4), a transcription factor that regulates cell quiescence and tissue homeostasis, controls gene networks affected in AD, and is upregulated in the brains of Alzheimer’s patients and of APPswe/PS1dE9 and 5xFAD transgenic mice. E2F4 contains an evolutionarily conserved Thr-motif that, when phosphorylated, modulates its activity, thus constituting a potential target for intervention. In this study, we generated a knock-in mouse strain with neuronal expression of a mouse E2F4 variant lacking this Thr-motif (E2F4DN), which was mated with 5xFAD mice. Here, we show that neuronal expression of E2F4DN in 5xFAD mice potentiates a transcriptional program consistent with the attenuation of the immune response and brain homeostasis. This correlates with reduced microgliosis and astrogliosis, modulation of amyloid-β peptide proteostasis, and blocking of neuronal tetraploidization. Moreover, E2F4DN prevents cognitive impairment and body weight loss, a known somatic alteration associated with AD. We also show that our finding is significant for AD, since E2F4 is expressed in cortical neurons from Alzheimer patients in association with Thr-specific phosphorylation, as evidenced by an anti-E2F4/anti-phosphoThr proximity ligation assay. We propose E2F4DN-based gene therapy as a promising multifactorial approach against AD.
Collapse
|
27
|
Kellar D, Register T, Lockhart SN, Aisen P, Raman R, Rissman RA, Brewer J, Craft S. Intranasal insulin modulates cerebrospinal fluid markers of neuroinflammation in mild cognitive impairment and Alzheimer's disease: a randomized trial. Sci Rep 2022; 12:1346. [PMID: 35079029 PMCID: PMC8789895 DOI: 10.1038/s41598-022-05165-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Intranasal insulin (INI) has shown promise as a treatment for Alzheimer's disease (AD) in pilot clinical trials. In a recent phase 2 trial, participants with mild cognitive impairment (MCI) or AD who were treated with INI with one of two delivery devices showed improved cerebral spinal fluid (CSF) biomarker profiles and slower symptom progression compared with placebo. In the cohort which showed benefit, we measured changes in CSF markers of inflammation, immune function and vascular integrity and assessed their relationship with changes in cognition, brain volume, and CSF amyloid and tau concentrations. The insulin-treated group had increased CSF interferon-γ (p = 0.032) and eotaxin (p = 0.049), and reduced interleukin-6 (p = 0.048) over the 12 month trial compared to placebo. Trends were observed for increased CSF macrophage-derived chemokine for the placebo group (p = 0.083), and increased interleukin-2 in the insulin-treated group (p = 0.093). Insulin-treated and placebo groups showed strikingly different patterns of associations between changes in CSF immune/inflammatory/vascular markers and changes in cognition, brain volume, and amyloid and tau concentrations. In summary, INI treatment altered the typical progression of markers of inflammation and immune function seen in AD, suggesting that INI may promote a compensatory immune response associated with therapeutic benefit.
Collapse
Affiliation(s)
- Derek Kellar
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas Register
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel N Lockhart
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
| | - Rema Raman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
| | - Robert A Rissman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, USA
| | - James Brewer
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, USA
| | - Suzanne Craft
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
28
|
Ghosh P, Singh R, Ganeshpurkar A, Pokle AV, Singh RB, Singh SK, Kumar A. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochem Int 2021; 151:105212. [PMID: 34656693 DOI: 10.1016/j.neuint.2021.105212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), an extremely common neurodegenerative disorder of the older generation, is one of the leading causes of death globally. Besides the conventional hallmarks i.e. Amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), neuroinflammation also serves as a major contributing factor in the pathogenesis of AD. There are mounting evidences to support the fundamental role of cellular (microglia, astrocytes, mast cells, and T-cells) and molecular (cytokines, chemokines, caspases, and complement proteins) influencers of neuroinflammation in producing/promoting neurodegeneration and dementia in AD. Genome-wide association studies (GWAS) have revealed the involvement of various single nucleotide polymorphisms (SNPs) of genes related to neuroinflammation with the risk of developing AD. Modulating the release of the neuroinflammatory molecules and targeting their relevant mechanisms may have beneficial effects on the onset, progress and severity of the disease. Here, we review the distinct role of various mediators and modulators of neuroinflammation that impact the pathogenesis and progression of AD as well as incite further research efforts for the treatment of AD through a neuroinflammatory approach.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Vyankatrao Pokle
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Bhushan Singh
- Institute of Pharmacy Harischandra PG College, Bawanbigha, Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
29
|
López-Sánchez N, Garrido-García A, Ramón-Landreau M, Cano-Daganzo V, Frade JM. E2F4-Based Gene Therapy Mitigates the Phenotype of the Alzheimer's Disease Mouse Model 5xFAD. Neurotherapeutics 2021; 18:2484-2503. [PMID: 34766258 PMCID: PMC8804140 DOI: 10.1007/s13311-021-01151-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
After decades of unfruitful work, no effective therapies are available for Alzheimer's disease (AD), likely due to its complex etiology that requires a multifactorial therapeutic approach. We have recently shown using transgenic mice that E2 factor 4 (E2F4), a transcription factor that regulates cell quiescence and tissue homeostasis, and controls gene networks affected in AD, represents a good candidate for a multifactorial targeting of AD. Here we show that the expression of a dominant negative form of human E2F4 (hE2F4DN), unable to become phosphorylated in a Thr-conserved motif known to modulate E2F4 activity, is an effective and safe AD multifactorial therapeutic agent. Neuronal expression of hE2F4DN in homozygous 5xFAD (h5xFAD) mice after systemic administration of an AAV.PHP.B-hSyn1.hE2F4DN vector reduced the production and accumulation of Aβ in the hippocampus, attenuated reactive astrocytosis and microgliosis, abolished neuronal tetraploidization, and prevented cognitive impairment evaluated by Y-maze and Morris water maze, without triggering side effects. This treatment also reversed other alterations observed in h5xFAD mice such as paw-clasping behavior and body weight loss. Our results indicate that E2F4DN-based gene therapy is a promising therapeutic approach against AD.
Collapse
Affiliation(s)
- Noelia López-Sánchez
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, 28002, Madrid, Spain
| | - Alberto Garrido-García
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, 28002, Madrid, Spain
| | - Morgan Ramón-Landreau
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, 28002, Madrid, Spain
| | - Vanesa Cano-Daganzo
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, 28002, Madrid, Spain
| | - José M Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, 28002, Madrid, Spain.
| |
Collapse
|
30
|
Proskocil BJ, Wai K, Lebold KM, Norgard MA, Michaelis KA, De La Torre U, Cook M, Marks DL, Fryer AD, Jacoby DB, Drake MG. TLR7 is expressed by support cells, but not sensory neurons, in ganglia. J Neuroinflammation 2021; 18:209. [PMID: 34530852 PMCID: PMC8447680 DOI: 10.1186/s12974-021-02269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Toll-like receptor 7 (TLR7) is an innate immune receptor that detects viral single-stranded RNA and triggers the production of proinflammatory cytokines and type 1 interferons in immune cells. TLR7 agonists also modulate sensory nerve function by increasing neuronal excitability, although studies are conflicting whether sensory neurons specifically express TLR7. This uncertainty has confounded the development of a mechanistic understanding of TLR7 function in nervous tissues. Methods TLR7 expression was tested using in situ hybridization with species-specific RNA probes in vagal and dorsal root sensory ganglia in wild-type and TLR7 knockout (KO) mice and in guinea pigs. Since TLR7 KO mice were generated by inserting an Escherichia coli lacZ gene in exon 3 of the mouse TLR7 gene, wild-type and TLR7 (KO) mouse vagal ganglia were also labeled for lacZ. In situ labeling was compared to immunohistochemistry using TLR7 antibody probes. The effects of influenza A infection on TLR7 expression in sensory ganglia and in the spleen were also assessed. Results In situ probes detected TLR7 in the spleen and in small support cells adjacent to sensory neurons in the dorsal root and vagal ganglia in wild-type mice and guinea pigs, but not in TLR7 KO mice. TLR7 was co-expressed with the macrophage marker Iba1 and the satellite glial cell marker GFAP, but not with the neuronal marker PGP9.5, indicating that TLR7 is not expressed by sensory nerves in either vagal or dorsal root ganglia in mice or guinea pigs. In contrast, TLR7 antibodies labeled small- and medium-sized neurons in wild-type and TLR7 KO mice in a TLR7-independent manner. Influenza A infection caused significant weight loss and upregulation of TLR7 in the spleens, but not in vagal ganglia, in mice. Conclusion TLR7 is expressed by macrophages and satellite glial cells, but not neurons in sensory ganglia suggesting TLR7’s neuromodulatory effects are mediated indirectly via activation of neuronally-associated support cells, not through activation of neurons directly. Our data also suggest TLR7’s primary role in neuronal tissues is not related to antiviral immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02269-x.
Collapse
Affiliation(s)
- Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Karol Wai
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ubaldo De La Torre
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
31
|
Hu Y, Fryatt GL, Ghorbani M, Obst J, Menassa DA, Martin-Estebane M, Muntslag TAO, Olmos-Alonso A, Guerrero-Carrasco M, Thomas D, Cragg MS, Gomez-Nicola D. Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology. Cell Rep 2021; 35:109228. [PMID: 34107254 PMCID: PMC8206957 DOI: 10.1016/j.celrep.2021.109228] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
The sustained proliferation of microglia is a key hallmark of Alzheimer's disease (AD), accelerating its progression. Here, we aim to understand the long-term impact of the early and prolonged microglial proliferation observed in AD, hypothesizing that extensive and repeated cycling would engender a distinct transcriptional and phenotypic trajectory. We show that the early and sustained microglial proliferation seen in an AD-like model promotes replicative senescence, characterized by increased βgal activity, a senescence-associated transcriptional signature, and telomere shortening, correlating with the appearance of disease-associated microglia (DAM) and senescent microglial profiles in human post-mortem AD cases. The prevention of early microglial proliferation hinders the development of senescence and DAM, impairing the accumulation of Aβ, as well as associated neuritic and synaptic damage. Overall, our results indicate that excessive microglial proliferation leads to the generation of senescent DAM, which contributes to early Aβ pathology in AD.
Collapse
Affiliation(s)
- Yanling Hu
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Gemma L Fryatt
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mohammadmersad Ghorbani
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Juliane Obst
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - David A Menassa
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Maria Martin-Estebane
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Tim A O Muntslag
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Adrian Olmos-Alonso
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Monica Guerrero-Carrasco
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Daniel Thomas
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
32
|
Kramarz B, Huntley RP, Rodríguez-López M, Roncaglia P, Saverimuttu SCC, Parkinson H, Bandopadhyay R, Martin MJ, Orchard S, Hooper NM, Brough D, Lovering RC. Gene Ontology Curation of Neuroinflammation Biology Improves the Interpretation of Alzheimer's Disease Gene Expression Data. J Alzheimers Dis 2021; 75:1417-1435. [PMID: 32417785 PMCID: PMC7369085 DOI: 10.3233/jad-200207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gene Ontology (GO) is a major bioinformatic resource used for analysis of large biomedical datasets, for example from genome-wide association studies, applied universally across biological fields, including Alzheimer's disease (AD) research. OBJECTIVE We aim to demonstrate the applicability of GO for interpretation of AD datasets to improve the understanding of the underlying molecular disease mechanisms, including the involvement of inflammatory pathways and dysregulated microRNAs (miRs). METHODS We have undertaken a systematic full article GO annotation approach focused on microglial proteins implicated in AD and the miRs regulating their expression. PANTHER was used for enrichment analysis of previously published AD data. Cytoscape was used for visualizing and analyzing miR-target interactions captured from published experimental evidence. RESULTS We contributed 3,084 new annotations for 494 entities, i.e., on average six new annotations per entity. This included a total of 1,352 annotations for 40 prioritized microglial proteins implicated in AD and 66 miRs regulating their expression, yielding an average of twelve annotations per prioritized entity. The updated GO resource was then used to re-analyze previously published data. The re-analysis showed novel processes associated with AD-related genes, not identified in the original study, such as 'gliogenesis', 'regulation of neuron projection development', or 'response to cytokine', demonstrating enhanced applicability of GO for neuroscience research. CONCLUSIONS This study highlights ongoing development of the neurobiological aspects of GO and demonstrates the value of biocuration activities in the area, thus helping to delineate the molecular bases of AD to aid the development of diagnostic tools and treatments.
Collapse
Affiliation(s)
- Barbara Kramarz
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Rachael P Huntley
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Milagros Rodríguez-López
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Paola Roncaglia
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Shirin C C Saverimuttu
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Helen Parkinson
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rina Bandopadhyay
- UCL Institute of Neurology and Reta Lila Weston Institute of Neurological Studies, University College London, London, UK
| | - Maria-Jesus Martin
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nigel M Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
33
|
Gmitterova K, Varges D, Schmitz M, Zafar S, Maass F, Lingor P, Zerr I. Chromogranin A Analysis in the Differential Diagnosis Across Lewy Body Disorders. J Alzheimers Dis 2021; 73:1355-1361. [PMID: 31929170 DOI: 10.3233/jad-191153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chromogranin A (CgA) is a general marker of gut endocrine cells, which are part of the "gut-brain axis" in Parkinson's disease (PD). OBJECTIVE We analyzed CgA as a marker of synaptic dysfunction to assess its role in the differential diagnosis across different Lewy body disorders. METHODS We analyzed the CgA levels in the cerebrospinal fluid (CSF) and serum from 54 patients covering the spectrum of Lewy body disorders [13 Parkinson's disease (PD), 17 Parkinson's disease dementia (PDD), 24 dementia with Lewy bodies (DLB)] and 14 controls using an ELISA. RESULTS A positive correlation was noted between CSF and serum CgA levels (ρ= 0.47, 95% CI: 0.24 to 0.65, p < 0.0001). The highest values of CgA in CSF and in serum were measured in DLB and there was a significant difference between DLB and PDD (p = 0.03 and p = 0.004). The serum levels of CgA in controls achieved lower values compared to DLB (p = 0.006). There was a gradual increase in serum levels from PD to PDD and DLB. An inverse correlation was seen between the CSF level of CgA and Aβ42 (ρ = -0.296, 95% CI: -0.51 to -0.04, p = 0.02). CONCLUSION The incorporation of CgA analysis as an additional biomarker may be useful in the diagnostic work-up of Lewy body dementia. CgA analysis may be relevant in distinguishing DLB from PDD patients and presumably early stages of PD. Our data on altered serum levels in DLB pave the way to the development of blood-based parameters for the differential diagnosis, which however needs to be confirmed in a prospective study.
Collapse
Affiliation(s)
- Karin Gmitterova
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany.,Second Department of Neurology, Comenius University, Bratislava, Slovakia.,Department of Neurology, Slovak Medical University in Bratislava, Slovakia
| | - Daniela Varges
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| |
Collapse
|
34
|
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021; 17:157-172. [PMID: 33318676 DOI: 10.1038/s41582-020-00435-y] [Citation(s) in RCA: 1445] [Impact Index Per Article: 361.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer disease (AD) is the most common form of neurodegenerative disease, estimated to contribute 60-70% of all cases of dementia worldwide. According to the prevailing amyloid cascade hypothesis, amyloid-β (Aβ) deposition in the brain is the initiating event in AD, although evidence is accumulating that this hypothesis is insufficient to explain many aspects of AD pathogenesis. The discovery of increased levels of inflammatory markers in patients with AD and the identification of AD risk genes associated with innate immune functions suggest that neuroinflammation has a prominent role in the pathogenesis of AD. In this Review, we discuss the interrelationships between neuroinflammation and amyloid and tau pathologies as well as the effect of neuroinflammation on the disease trajectory in AD. We specifically focus on microglia as major players in neuroinflammation and discuss the spatial and temporal variations in microglial phenotypes that are observed under different conditions. We also consider how these cells could be modulated as a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Fangda Leng
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
35
|
Akter R, Rahman MH, Behl T, Chowdhury MAR, Manirujjaman M, Bulbul IJ, Elshenaw SE, Tit DM, Bungau S. Prospective Role of Polyphenolic Compounds in the Treatment of Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:430-450. [DOI: 10.2174/1871527320666210218084444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023]
Abstract
:
Aging is an important stage of the human life cycle and the primary risk factor for neurodegenerative diseases (ND). The aging process contributes to modifications in cells, which may lead to a lack of nutrient signaling, disrupted cellular activity, increased oxidative pressure, cell homeostasis depletion, genomic instability, misfolded protein aggregation, impaired cellular protection, and telomere reduction. The neuropathologies found in Alzheimer's disease (AD) and Parkinson's disease (PD) are internally and extrinsically compound environmental stressors which may be partially alleviated by using different phytochemicals. The new therapies for ND are restricted as they are primarily targeted at final disease progression, including behavioral shifts, neurological disorders, proteinopathies, and neuronal failure. This review presents the role of phytochemicals-related polyphenolic compounds as an accompanying therapy model to avoid neuropathologies linked to AD, PD and to simultaneously enhance two stochastic stressors, namely inflammation and oxidative stress, promoting their disease pathologies. Therefore, this approach represents a prophylactic way to target risk factors that rely on their action against ND that does not occur through current pharmacological agents over the life of a person.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | - Manirujjaman Manirujjaman
- Institute of Health and Biomedical Innovation (IHBI), School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Kelvin Grove, Australia
| | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Shimaa E. Elshenaw
- Center of stem cell and regenerative medicine, Zewail City for Science, Egypt
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| |
Collapse
|
36
|
Olajide OJ, Suvanto ME, Chapman CA. Molecular mechanisms of neurodegeneration in the entorhinal cortex that underlie its selective vulnerability during the pathogenesis of Alzheimer's disease. Biol Open 2021; 10:bio056796. [PMID: 33495355 PMCID: PMC7860115 DOI: 10.1242/bio.056796] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The entorhinal cortex (EC) is a vital component of the medial temporal lobe, and its contributions to cognitive processes and memory formation are supported through its extensive interconnections with the hippocampal formation. During the pathogenesis of Alzheimer's disease (AD), many of the earliest degenerative changes are seen within the EC. Neurodegeneration in the EC and hippocampus during AD has been clearly linked to impairments in memory and cognitive function, and a growing body of evidence indicates that molecular and functional neurodegeneration within the EC may play a primary role in cognitive decline in the early phases of AD. Defining the mechanisms underlying molecular neurodegeneration in the EC is crucial to determining its contributions to the pathogenesis of AD. Surprisingly few studies have focused on understanding the mechanisms of molecular neurodegeneration and selective vulnerability within the EC. However, there have been advancements indicating that early dysregulation of cellular and molecular signaling pathways in the EC involve neurodegenerative cascades including oxidative stress, neuroinflammation, glia activation, stress kinases activation, and neuronal loss. Dysfunction within the EC can impact the function of the hippocampus, which relies on entorhinal inputs, and further degeneration within the hippocampus can compound this effect, leading to severe cognitive disruption. This review assesses the molecular and cellular mechanisms underlying early degeneration in the EC during AD. These mechanisms may underlie the selective vulnerability of neuronal subpopulations in this brain region to the disease development and contribute both directly and indirectly to cognitive loss.This paper has an associated Future Leader to Watch interview with the first author of the article.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Division of Neurobiology, Department of Anatomy, University of Ilorin, Ilorin, Nigeria, PMB 1515
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Marcus E Suvanto
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Clifton Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
37
|
Berens SC, Bird CM, Harrison NA. Minocycline differentially modulates human spatial memory systems. Neuropsychopharmacology 2020; 45:2162-2169. [PMID: 32839527 PMCID: PMC7784680 DOI: 10.1038/s41386-020-00811-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Microglia play a critical role in many processes fundamental to learning and memory in health and are implicated in Alzheimer's pathogenesis. Minocycline, a centrally-penetrant tetracycline antibiotic, inhibits microglial activation and enhances long-term potentiation, synaptic plasticity, neurogenesis and hippocampal-dependent spatial memory in rodents, leading to clinical trials in human neurodegenerative diseases. However, the effects of minocycline on human memory have not previously been investigated. Utilising a double-blind, randomised crossover study design, we recruited 20 healthy male participants (mean 24.6 ± 5.0 years) who were each tested in two experimental sessions: once after 3 days of Minocycline 150 mg (twice daily), and once 3 days of placebo (identical administration). During each session, all completed an fMRI task designed to tap boundary- and landmark-based navigation (thought to rely on hippocampal and striatal learning mechanisms respectively). Given the rodent literature, we hypothesised that minocycline would selectively modulate hippocampal learning. In line with this, minocycline biased use of boundary- compared to landmark-based information (t980 = 3.140, p = 0.002). However, though this marginally improved performance for boundary-based objects (t980 = 1.972, p = 0.049), it was outweighed by impaired landmark-based navigation (t980 = 6.374, p < 0.001) resulting in an overall performance decrease (t980 = 3.295, p = 0.001). Furthermore, against expectations, minocycline significantly reduced activity during memory encoding in the right caudate (t977 = 2.992, p = 0.003) and five other cortical regions, with no significant effect in the hippocampus. In summary, minocycline impaired human spatial memory performance, likely through disruption of striatal processing resulting in greater biasing towards reliance on boundary-based navigation.
Collapse
Affiliation(s)
- Sam C Berens
- School of Psychology, University of Sussex, Falmer, BN1 9QH, UK
| | - Chris M Bird
- School of Psychology, University of Sussex, Falmer, BN1 9QH, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, CF24 4HQ, UK.
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9RR, UK.
| |
Collapse
|
38
|
Abstract
As awareness on the short-term and long-term consequences of sports-related concussions and repetitive head impacts continues to grow, so too does the necessity to establish biomechanical measures of risk that inform public policy and risk mitigation strategies. A more precise exposure metric is central to establishing relationships among the traumatic experience, risk, and ultimately clinical outcomes. Accurate exposure metrics provide a means to support evidence-informed decisions accelerating public policy mandating brain trauma management through sport modification and safer play.
Collapse
Affiliation(s)
- Clara Karton
- Neurotrauma Impact Science Laboratory, University of Ottawa, A106-200 Lees Avenue, Ottawa, ON K1N 6N5, Canada.
| | - Thomas Blaine Hoshizaki
- Neurotrauma Impact Science Laboratory, University of Ottawa, A106-200 Lees Avenue, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
39
|
Lin G, Li X, Cheng X, Zhao N, Zheng W. Manganese Exposure Aggravates β-Amyloid Pathology by Microglial Activation. Front Aging Neurosci 2020; 12:556008. [PMID: 33244298 PMCID: PMC7685005 DOI: 10.3389/fnagi.2020.556008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Human epidemiological evidence and animal experimental data suggest that chronic manganese (Mn) exposure increases the risk of Alzheimer’s disease (AD) and amyloid plaques, a hallmark of AD brain pathology, but the underlying mechanisms were not fully understood. Using the transgenic APP/PS1/Tau triple transgenic AD (3×Tg-AD) mouse model and mouse-derived microglia and neuroblastoma cell lines, we found that chronic 5-month Mn treatment increased beta amyloid peptide (Aβ) expression and Aβ plaques in the cerebral cortex and hippocampus in these 3×Tg-AD mice. Furthermore, we found that the β- and γ-secretase cleavage activities were markedly increased, while α-secretase cleavage activity was reduced in the brain of Mn-treated AD mice; these effects increase Aβ production and thus are amyloidogenic. Equally important, Mn treatment alone did not alter β-secretase 1 (BACE1) gene expression or Aβ production in amyloidogenic mutant amyloid precursor protein (APP) gene hAPPsw-transfected N2a cells (APPsw-N2a), but in APPsw-N2a cells either co-cultured with microglia or cultured with microglia-conditioned media, Mn exposure increased BACE1 expression and amyloidogenesis. We further determined that Mn exposure promoted the activation of microglia both in 3×Tg-AD mouse brains and in cultured microglia cells, and increased the secretion of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Taken together, these results suggest that Mn may increase the release of IL-1β and TNF-α from microglia that in turn stimulates the expression of BACE1 gene and protein and consequently Aβ production; this novel molecular mechanism not only advances our understanding about the amyloidogenic effect of chronic Mn exposure reported for special human populations but also indicates Mn dyshomeostasis as a potential contributor to AD pathogenesis.
Collapse
Affiliation(s)
- Geng Lin
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - Xinlu Li
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - Xiaofeng Cheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - Ning Zhao
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| |
Collapse
|
40
|
Zhang I, Lépine P, Han C, Lacalle-Aurioles M, Chen CXQ, Haag R, Durcan TM, Maysinger D. Nanotherapeutic Modulation of Human Neural Cells and Glioblastoma in Organoids and Monocultures. Cells 2020; 9:cells9112434. [PMID: 33171886 PMCID: PMC7695149 DOI: 10.3390/cells9112434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory processes in the brain are orchestrated by microglia and astrocytes in response to activators such as pathogen-associated molecular patterns, danger-associated molecular patterns and some nanostructures. Microglia are the primary immune responders in the brain and initiate responses amplified by astrocytes through intercellular signaling. Intercellular communication between neural cells can be studied in cerebral organoids, co-cultures or in vivo. We used human cerebral organoids and glioblastoma co-cultures to study glia modulation by dendritic polyglycerol sulfate (dPGS). dPGS is an extensively studied nanostructure with inherent anti-inflammatory properties. Under inflammatory conditions, lipocalin-2 levels in astrocytes are markedly increased and indirectly enhanced by soluble factors released from hyperactive microglia. dPGS is an effective anti-inflammatory modulator of these markers. Our results show that dPGS can enter neural cells in cerebral organoids and glial cells in monocultures in a time-dependent manner. dPGS markedly reduces lipocalin-2 abundance in the neural cells. Glioblastoma tumoroids of astrocytic origin respond to activated microglia with enhanced invasiveness, whereas conditioned media from dPGS-treated microglia reduce tumoroid invasiveness. Considering that many nanostructures have only been tested in cancer cells and rodent models, experiments in human 3D cerebral organoids and co-cultures are complementary in vitro models to evaluate nanotherapeutics in the pre-clinical setting. Thoroughly characterized organoids and standardized procedures for their preparation are prerequisites to gain information of translational value in nanomedicine. This study provides data for a well-characterized dendrimer (dPGS) that modulates the activation state of human microglia implicated in brain tumor invasiveness.
Collapse
Affiliation(s)
- Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada;
| | - Paula Lépine
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Chanshuai Han
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - María Lacalle-Aurioles
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Carol X.-Q. Chen
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany;
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada;
- Correspondence: ; Tel.: +1-514-398-1264
| |
Collapse
|
41
|
Microglia in Prion Diseases: Angels or Demons? Int J Mol Sci 2020; 21:ijms21207765. [PMID: 33092220 PMCID: PMC7589037 DOI: 10.3390/ijms21207765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Prion diseases are rare transmissible neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the cellular prion protein (PrPC) in the central nervous system (CNS). Neuropathological hallmarks of prion diseases are neuronal loss, astrogliosis, and enhanced microglial proliferation and activation. As immune cells of the CNS, microglia participate both in the maintenance of the normal brain physiology and in driving the neuroinflammatory response to acute or chronic (e.g., neurodegenerative disorders) insults. Microglia involvement in prion diseases, however, is far from being clearly understood. During this review, we summarize and discuss controversial findings, both in patient and animal models, suggesting a neuroprotective role of microglia in prion disease pathogenesis and progression, or—conversely—a microglia-mediated exacerbation of neurotoxicity in later stages of disease. We also will consider the active participation of PrPC in microglial functions, by discussing previous reports, but also by presenting unpublished results that support a role for PrPC in cytokine secretion by activated primary microglia.
Collapse
|
42
|
Gavrilova SI, Alvarez A. Cerebrolysin in the therapy of mild cognitive impairment and dementia due to Alzheimer's disease: 30 years of clinical use. Med Res Rev 2020; 41:2775-2803. [PMID: 32808294 DOI: 10.1002/med.21722] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most common neurocognitive disorder and a global health problem. The prevalence of AD is growing dramatically, especially in low- and middle-income countries, and will reach 131.5 million cases worldwide by 2050. Therefore, developing a disease-modifying therapy capable of delaying or even preventing the onset and progression of AD has become a world priority, and is an unmet need. The pathogenesis of AD, considered as the result of an imbalance between resilience and risk factors, begins many years before the typical clinical picture develops and involves multiple pathophysiological mechanisms. Since the pathophysiology of AD is multifactorial, it is not surprising that all attempts done to modify the disease course with drugs directed towards a single therapeutic target have been unsuccessful. Thus, combined modality therapy, using multiple drugs with a single mechanism of action or multi-target drugs, appears as the most promising strategy for both effective AD therapy and prevention. Cerebrolysin, acting as a multitarget peptidergic drug with a neurotrophic mode of action, exerts long-lasting therapeutic effects on AD that could reflect its potential utility for disease modification. Clinical trials demonstrated that Cerebrolysin is safe and efficacious in the treatment of AD, and may enhance and prolong the efficacy of cholinergic drugs, particularly in moderate to advanced AD patients. In this review, we summarize advances of therapeutic relevance in the pathogenesis and the biomarkers of AD, paying special attention to neurotrophic factors, and present results of preclinical and clinical investigations with Cerebrolysin in AD.
Collapse
Affiliation(s)
- Svetlana I Gavrilova
- Department of Geriatric Psychiatry, Cognitive Disorders and Alzheimer's Disease Unit, Mental Health Research Center, Moscow, Russia
| | - Anton Alvarez
- Department of Neuropsychiatry, Medinova Institute of Neurosciences, Clinica RehaSalud, A Coruña, Spain.,Clinical Research Department, QPS Holdings, A Coruña, Spain
| |
Collapse
|
43
|
Martin-Estebane M, Gomez-Nicola D. Targeting Microglial Population Dynamics in Alzheimer's Disease: Are We Ready for a Potential Impact on Immune Function? Front Cell Neurosci 2020; 14:149. [PMID: 32581720 PMCID: PMC7289918 DOI: 10.3389/fncel.2020.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting two-thirds of people with dementia in the world. To date, no disease-modifying treatments are available to stop or delay the progression of AD. This chronic neurodegenerative disease is dominated by a strong innate immune response, whereby microglia plays a central role as the main resident macrophage of the brain. Recent genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) located in microglial genes and associated with a delayed onset of AD, highlighting the important role of these cells on the onset and/or progression of the disease. These findings have increased the interest in targeting microglia-associated neuroinflammation as a potentially disease-modifying therapeutic approach for AD. In this review we provide an overview on the contribution of microglia to the pathophysiology of AD, focusing on the main regulatory pathways controlling microglial population dynamics during the neuroinflammatory response, such as the colony-stimulating factor 1 receptor (CSF1R), its ligands (the colony-stimulating factor 1 and interleukin 34) and the transcription factor PU.1. We also discuss the current therapeutic strategies targeting proliferation to modulate microglia-associated neuroinflammation and their potential impact on peripheral immune cell populations in the short and long-term. Understanding the effects of immunomodulatory approaches on microglia and other immune cell types might be critical for developing specific, effective, and safe therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Martin-Estebane
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
44
|
Yang Z, Song Q, Cao Z, Yu G, Liu Z, Tan Z, Deng Y. Design, synthesis and evaluation of flurbiprofen-clioquinol hybrids as multitarget-directed ligands against Alzheimer’s disease. Bioorg Med Chem 2020; 28:115374. [DOI: 10.1016/j.bmc.2020.115374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
|
45
|
Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, Baldacci F, Toschi N, Garaci F, Chiesa PA, Verdooner SR, Akman-Anderson L, Hernández F, Ávila J, Emanuele E, Valenzuela PL, Lucía A, Watling M, Imbimbo BP, Vergallo A, Lista S. A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease. Front Immunol 2020; 11:456. [PMID: 32296418 PMCID: PMC7137904 DOI: 10.3389/fimmu.2020.00456] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation commences decades before Alzheimer's disease (AD) clinical onset and represents one of the earliest pathomechanistic alterations throughout the AD continuum. Large-scale genome-wide association studies point out several genetic variants—TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, and HLA-DRB5-HLA-DRB1—potentially linked to neuroinflammation. Most of these genes are involved in proinflammatory intracellular signaling, cytokines/interleukins/cell turnover, synaptic activity, lipid metabolism, and vesicle trafficking. Proteomic studies indicate that a plethora of interconnected aberrant molecular pathways, set off and perpetuated by TNF-α, TGF-β, IL-1β, and the receptor protein TREM2, are involved in neuroinflammation. Microglia and astrocytes are key cellular drivers and regulators of neuroinflammation. Under physiological conditions, they are important for neurotransmission and synaptic homeostasis. In AD, there is a turning point throughout its pathophysiological evolution where glial cells sustain an overexpressed inflammatory response that synergizes with amyloid-β and tau accumulation, and drives synaptotoxicity and neurodegeneration in a self-reinforcing manner. Despite a strong therapeutic rationale, previous clinical trials investigating compounds with anti-inflammatory properties, including non-steroidal anti-inflammatory drugs (NSAIDs), did not achieve primary efficacy endpoints. It is conceivable that study design issues, including the lack of diagnostic accuracy and biomarkers for target population identification and proof of mechanism, may partially explain the negative outcomes. However, a recent meta-analysis indicates a potential biological effect of NSAIDs. In this regard, candidate fluid biomarkers of neuroinflammation are under analytical/clinical validation, i.e., TREM2, IL-1β, MCP-1, IL-6, TNF-α receptor complexes, TGF-β, and YKL-40. PET radio-ligands are investigated to accomplish in vivo and longitudinal regional exploration of neuroinflammation. Biomarkers tracking different molecular pathways (body fluid matrixes) along with brain neuroinflammatory endophenotypes (neuroimaging markers), can untangle temporal–spatial dynamics between neuroinflammation and other AD pathophysiological mechanisms. Robust biomarker–drug codevelopment pipelines are expected to enrich large-scale clinical trials testing new-generation compounds active, directly or indirectly, on neuroinflammatory targets and displaying putative disease-modifying effects: novel NSAIDs, AL002 (anti-TREM2 antibody), anti-Aβ protofibrils (BAN2401), and AL003 (anti-CD33 antibody). As a next step, taking advantage of breakthrough and multimodal techniques coupled with a systems biology approach is the path to pursue for developing individualized therapeutic strategies targeting neuroinflammation under the framework of precision medicine.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - Robert Nisticò
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,School of Pharmacy, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Filippo Baldacci
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Department of Radiology, "Athinoula A. Martinos" Center for Biomedical Imaging, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Patrizia A Chiesa
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | | | - Alejandro Lucía
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Research Institute of the Hospital 12 de Octubre ("imas"), Madrid, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Parma, Italy
| | - Andrea Vergallo
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
46
|
García S, Martín Giménez VM, Mocayar Marón FJ, Reiter RJ, Manucha W. Melatonin and cannabinoids: mitochondrial-targeted molecules that may reduce inflammaging in neurodegenerative diseases. Histol Histopathol 2020; 35:789-800. [PMID: 32154907 DOI: 10.14670/hh-18-212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Generally, the development and progression of neurodegenerative diseases are associated with advancing age, so they are usually diagnosed in late adulthood. A primary mechanism underlying the onset of neurodegenerative diseases is neuroinflammation. Based on this background, the concept of "neuroinflammaging" has emerged. In this deregulated neuroinflammatory process, a variety of immune cells participate, especially glial cells, proinflammatory cytokines, receptors, and subcellular organelles including mitochondria, which are mainly responsible for maintaining redox balance at the cellular level. Senescence and autophagic processes also play a crucial role in the neuroinflammatory disease associated with aging. Of particular interest, melatonin, cannabinoids, and the receptors of both molecules which are closely related, exert beneficial effects on the neuroinflammatory processes that precede the onset of neurodegenerative pathologies such as Parkinson's and Alzheimer's diseases. Some of these neuroprotective effects are fundamentally related to its anti-inflammatory and antioxidative actions at the mitochondrial level due to the strategic functions of this organelle. The aim of this review is to summarize the most recent advances in the study of neuroinflammation and neurodegeneration associated with age and to consider the use of new mitochondrial therapeutic targets related to the endocannabinoid system and the pineal gland.
Collapse
Affiliation(s)
- Sebastián García
- Institute of Pharmacology, Department of Pathology, School of Medical Sciences, Cuyo National University, Mendoza, Argentina.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Council of Scientific and Technological Research (CONICET), Mendoza, Argentina
| | - Virna Margarita Martín Giménez
- Institute of Research in Chemical Sciences, School of Chemical and Technological Sciences, Cuyo Catholic University, San Juan, Argentina
| | - Feres José Mocayar Marón
- Institute of Pharmacology, Department of Pathology, School of Medical Sciences, Cuyo National University, Mendoza, Argentina.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Council of Scientific and Technological Research (CONICET), Mendoza, Argentina
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Walter Manucha
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Council of Scientific and Technological Research (CONICET), Mendoza, Argentina.,Institute of Pharmacology, Department of Pathology, School of Medical Sciences, Cuyo National University, Mendoza, Argentina.
| |
Collapse
|
47
|
Afridi R, Kim JH, Rahman MH, Suk K. Metabolic Regulation of Glial Phenotypes: Implications in Neuron-Glia Interactions and Neurological Disorders. Front Cell Neurosci 2020; 14:20. [PMID: 32116564 PMCID: PMC7026370 DOI: 10.3389/fncel.2020.00020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are multifunctional, non-neuronal components of the central nervous system with diverse phenotypes that have gained much attention for their close involvement in neuroinflammation and neurodegenerative diseases. Glial phenotypes are primarily characterized by their structural and functional changes in response to various stimuli, which can be either neuroprotective or neurotoxic. The reliance of neurons on glial cells is essential to fulfill the energy demands of the brain for its proper functioning. Moreover, the glial cells perform distinct functions to regulate their own metabolic activities, as well as work in close conjunction with neurons through various secreted signaling or guidance molecules, thereby constituting a complex network of neuron-glial interactions in health and disease. The emerging evidence suggests that, in disease conditions, the metabolic alterations in the glial cells can induce structural and functional changes together with neuronal dysfunction indicating the importance of neuron-glia interactions in the pathophysiology of neurological disorders. This review covers the recent developments that implicate the regulation of glial phenotypic changes and its consequences on neuron-glia interactions in neurological disorders. Finally, we discuss the possibilities and challenges of targeting glial metabolism as a strategy to treat neurological disorders.
Collapse
Affiliation(s)
- Ruqayya Afridi
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jong-Heon Kim
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Md Habibur Rahman
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
48
|
Li SY, Zhou YL, He DH, Liu W, Fan XZ, Wang Q, Pan HF, Cheng YX, Liu YQ. Centipeda minima extract exerts antineuroinflammatory effects via the inhibition of NF-κB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153164. [PMID: 31954258 DOI: 10.1016/j.phymed.2019.153164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Centipeda minima (L.) A.Br. (C. minima) has been used in traditional Chinese herbal medicine to treat nasal allergy, diarrhea, asthma and malaria for centuries. Recent pharmacological studies have demonstrated that the ethanol extract of C. minima (ECM) and several active components possess anti-bacterial, anti-arthritis and anti-inflammatory properties. However, the effects of ECM on neuroinflammation and the underlying mechanisms have never been reported. PURPOSE The study aimed to examine the potential inhibitory effects of ECM on neuroinflammation and illustrate the underlying mechanisms. METHODS High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was performed to qualify the major components of ECM; BV2 and primary microglial cells were used to examine the anti-inflammatory activity of ECM in vitro. To evaluate the anti-inflammatory effects of ECM in vivo, the mice were orally administrated with ECM (100, 200 mg•kg-1•d-1) for 2 days before cotreatment with LPS (2 mg•kg-1•d-1, ip) for an additional 3 days. The mice were sacrificed the day after the last treatment and the hippocampus was dissected for further experiments. The expression of inflammatory proteins and the activation of microglia were respectively detected by real-time PCR, ELISA, Western blotting and immunofluorescence. RESULTS HPLC-MS/MS analysis confirmed and quantified seven chemicals in ECM. In BV2 and primary microglial cells, ECM inhibited the LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), thus protecting HT22 neuronal cells from inflammatory damage. Furthermore, ECM inhibited the LPS-induced activation of NF-κB signaling pathway and subsequently attenuated the induction of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), NADPH oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4), leading to the decreased production of nitrite oxide, prostaglandin E2 (PGE2) and reactive oxygen species (ROS). In an LPS-induced neuroinflammatory mouse model, ECM was found to exert anti-inflammatory activity by decreasing the production of proinflammatory mediators, inhibiting the phosphorylation of NF-κB, and reducing the expression of COX2, iNOS, NOX2 and NOX4 in the hippocampal tissue. Moreover, LPS-induced microglial activation was markedly attenuated in the hippocampus, while ECM at a high dose possesses a stronger anti-inflammatory activity than the positive drug dexamethansone (DEX). CONCLUSION These findings demonstrate that ECM exerts antineuroinflammatory effects via attenuating the activation of NF-κB signaling pathway and inhibiting the production of proinflammatory mediators both in vitro and in vivo. C. minima might become a novel phytomedicine to treat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Si-Yi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi-Le Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan-Hua He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang-Zhen Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hua-Feng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yong-Qiang Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
49
|
Xu M, Zhang X, Ren F, Yan T, Wu B, Bi K, Bi W, Jia Y. Essential oil of Schisandra chinensis ameliorates cognitive decline in mice by alleviating inflammation. Food Funct 2019; 10:5827-5842. [PMID: 31463498 DOI: 10.1039/c9fo00058e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we aim to assess possible impacts of essential oil (SEO) from Schisandra chinensis (Turcz.) Baill. (S. chinensis) on mice with cognition impairment. Our data showed that SEO improved the cognitive ability of mice with Aβ1-42 or lipopolysaccharides (LPS)-induced Alzheimer's disease (AD) and suppressed the production of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the hippocampus. Furthermore, SEO inhibited p38 activation, but had little effect on other signaling proteins in the MAPK family, such as extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2 (JNK). The SEO and BV-2 microglia co-culture was performed to further confirm the anti-inflammatory activity of SEO. The data showed that SEO decreased nitric oxide (NO) levels in LPS-stimulated BV-2 microglia and significantly blocked LPS-induced MAPKs activation. Taken together, these findings suggested that SEO produces anti-AD effects on AD mice partly by modulating neuroinflammation through the NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Mengjie Xu
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xiaoying Zhang
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Fangyi Ren
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Bo Wu
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Kaishun Bi
- The Engineering Laboratory of National and Local Union of Quality Control for Traditional Chinese Medicine, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Ying Jia
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
50
|
Sierra A, Denes A. Editorial for the Special Issue: Microglia-Neuron interactions in health and disease - novel perspectives for translational research. Neuroscience 2019; 405:1-2. [PMID: 30731154 DOI: 10.1016/j.neuroscience.2019.01.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amanda Sierra
- Achucarro Basque Center for Neuroscience, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain; University of the Basque Country UPV/EHU, Barrio Sarriena s/n, Leioa, 48940, Spain; Ikerbasque Foundation, Maria Diaz de Haro 3, Bilbao, 48013, Bizkaia, Spain.
| | - Adam Denes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony U. 43, Budapest 1083, Hungary.
| |
Collapse
|