1
|
Dolatshahi M, Commean PK, Rahmani F, Xu Y, Liu J, Hosseinzadeh Kassani S, Naghashzadeh M, Lloyd L, Nguyen C, McBee Kemper A, Hantler N, Ly M, Yu G, Flores S, Ippolito JE, Song SK, Sirlin CB, Dai W, Mittendorfer B, Morris JC, Benzinger TLS, Raji CA. Relationships between abdominal adipose tissue and neuroinflammation with diffusion basis spectrum imaging in midlife obesity. Obesity (Silver Spring) 2024. [PMID: 39517107 DOI: 10.1002/oby.24188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This study investigated how obesity, BMI ≥ 30 kg/m2, abdominal adiposity, and systemic inflammation relate to neuroinflammation using diffusion basis spectrum imaging. METHODS We analyzed data from 98 cognitively normal midlife participants (mean age: 49.4 [SD 6.2] years; 34 males [34.7%]; 56 with obesity [57.1%]). Participants underwent brain and abdominal magnetic resonance imaging (MRI), blood tests, and amyloid positron emission tomography (PET) imaging. Abdominal visceral and subcutaneous adipose tissue (VAT and SAT, respectively) was segmented, and Centiloids were calculated. Diffusion basis spectrum imaging parameter maps were created using an in-house script, and tract-based spatial statistics assessed white matter differences in high versus low BMI values, VAT, SAT, insulin resistance, systemic inflammation, and Centiloids, with age and sex as covariates. RESULTS Obesity, high VAT, and high SAT were linked to lower axial diffusivity, reduced fiber fraction, and increased restricted fraction in white matter. Obesity was additionally associated with higher hindered fraction and lower fractional anisotropy. Also, individuals with high C-reactive protein showed lower axial diffusivity. Higher restricted fraction correlated with continuous BMI and SAT particularly in male individuals, whereas VAT effects were similar in male and female individuals. CONCLUSIONS The findings suggest that, at midlife, obesity and abdominal fat are associated with reduced brain axonal density and increased inflammation, with visceral fat playing a significant role in both sexes.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Paul K Commean
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yifei Xu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Mahshid Naghashzadeh
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - LaKisha Lloyd
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Caitlyn Nguyen
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abby McBee Kemper
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Nancy Hantler
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maria Ly
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gary Yu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shaney Flores
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph E Ippolito
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California, Los Angeles, California, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, New York, USA
| | - Bettina Mittendorfer
- Departments of Medicine and Nutrition & Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
2
|
Gabitto MI, Travaglini KJ, Rachleff VM, Kaplan ES, Long B, Ariza J, Ding Y, Mahoney JT, Dee N, Goldy J, Melief EJ, Agrawal A, Kana O, Zhen X, Barlow ST, Brouner K, Campos J, Campos J, Carr AJ, Casper T, Chakrabarty R, Clark M, Cool J, Dalley R, Darvas M, Ding SL, Dolbeare T, Egdorf T, Esposito L, Ferrer R, Fleckenstein LE, Gala R, Gary A, Gelfand E, Gloe J, Guilford N, Guzman J, Hirschstein D, Ho W, Hupp M, Jarsky T, Johansen N, Kalmbach BE, Keene LM, Khawand S, Kilgore MD, Kirkland A, Kunst M, Lee BR, Leytze M, Mac Donald CL, Malone J, Maltzer Z, Martin N, McCue R, McMillen D, Mena G, Meyerdierks E, Meyers KP, Mollenkopf T, Montine M, Nolan AL, Nyhus JK, Olsen PA, Pacleb M, Pagan CM, Peña N, Pham T, Pom CA, Postupna N, Rimorin C, Ruiz A, Saldi GA, Schantz AM, Shapovalova NV, Sorensen SA, Staats B, Sullivan M, Sunkin SM, Thompson C, Tieu M, Ting JT, Torkelson A, Tran T, Valera Cuevas NJ, Walling-Bell S, Wang MQ, Waters J, Wilson AM, Xiao M, Haynor D, Gatto NM, Jayadev S, Mufti S, Ng L, Mukherjee S, Crane PK, Latimer CS, Levi BP, Smith KA, Close JL, Miller JA, Hodge RD, Larson EB, Grabowski TJ, Hawrylycz M, Keene CD, Lein ES. Integrated multimodal cell atlas of Alzheimer's disease. Nat Neurosci 2024:10.1038/s41593-024-01774-5. [PMID: 39402379 DOI: 10.1038/s41593-024-01774-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies. This cohort includes 33 male donors and 51 female donors, with an average age at time of death of 88 years. We used quantitative neuropathology to place donors along a disease pseudoprogression score. Pseudoprogression analysis revealed two disease phases: an early phase with a slow increase in pathology, presence of inflammatory microglia, reactive astrocytes, loss of somatostatin+ inhibitory neurons, and a remyelination response by oligodendrocyte precursor cells; and a later phase with exponential increase in pathology, loss of excitatory neurons and Pvalb+ and Vip+ inhibitory neuron subtypes. These findings were replicated in other major AD studies.
Collapse
Affiliation(s)
- Mariano I Gabitto
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | - Victoria M Rachleff
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeanelle Ariza
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Erica J Melief
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Anamika Agrawal
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Omar Kana
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - John Campos
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Jonah Cool
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | | | - Martin Darvas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Rohan Gala
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madison Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Brian E Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Lisa M Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarah Khawand
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Mitchell D Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda Kirkland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gonzalo Mena
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Kelly P Meyers
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Mark Montine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Paul A Olsen
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Maiya Pacleb
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | - Aimee M Schantz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Tracy Tran
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Angela M Wilson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ming Xiao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David Haynor
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Nicole M Gatto
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas J Grabowski
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
3
|
Daniels AJ, McDade E, Llibre-Guerra JJ, Xiong C, Perrin RJ, Ibanez L, Supnet-Bell C, Cruchaga C, Goate A, Renton AE, Benzinger TL, Gordon BA, Hassenstab J, Karch C, Popp B, Levey A, Morris J, Buckles V, Allegri RF, Chrem P, Berman SB, Chhatwal JP, Farlow MR, Fox NC, Day GS, Ikeuchi T, Jucker M, Lee JH, Levin J, Lopera F, Takada L, Sosa AL, Martins R, Mori H, Noble JM, Salloway S, Huey E, Rosa-Neto P, Sánchez-Valle R, Schofield PR, Roh JH, Bateman RJ. 15 Years of Longitudinal Genetic, Clinical, Cognitive, Imaging, and Biochemical Measures in DIAN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311689. [PMID: 39148846 PMCID: PMC11326320 DOI: 10.1101/2024.08.08.24311689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset. Data and specimens collected are derived from full clinical assessments, including neurologic and physical examinations, extensive cognitive batteries, structural and functional neuro-imaging, amyloid and tau pathological measures using positron emission tomography (PET), flurordeoxyglucose (FDG) PET, cerebrospinal fluid and blood collection (plasma, serum, and whole blood), extensive genetic and multi-omic analyses, and brain donation upon death. This comprehensive evaluation of the human nervous system is performed longitudinally in both mutation carriers and family non-carriers, providing one of the deepest and broadest evaluations of the human brain across decades and through AD progression. These extensive data sets and samples are available for researchers to address scientific questions on the human brain, aging, and AD.
Collapse
Affiliation(s)
- Alisha J. Daniels
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Eric McDade
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Chengjie Xiong
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Richard J. Perrin
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Carlos Cruchaga
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Brian A. Gordon
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Jason Hassenstab
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Celeste Karch
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Brent Popp
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Allan Levey
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - John Morris
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Virginia Buckles
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Patricio Chrem
- Institute of Neurological Research FLENI, Buenos Aires, Argentina
| | | | - Jasmeer P. Chhatwal
- Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston MA, USA
| | | | - Nick C. Fox
- UK Dementia Research Institute at University College London, London, United Kingdom
- University College London, London, United Kingdom
| | | | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Johannes Levin
- DZNE, German Center for Neurodegenerative Diseases, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Ana Luisa Sosa
- Instituto Nacional de Neurologia y Neurocirugla Innn, Mexico City, Mexico
| | - Ralph Martins
- Edith Cowan University, Western Australia, Australia
| | | | - James M. Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, and GH Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Edward Huey
- Brown University, Butler Hospital, Providence, RI, USA
| | - Pedro Rosa-Neto
- Centre de Recherche de L’hopital Douglas and McGill University, Montreal, Quebec
| | - Raquel Sánchez-Valle
- Hospital Clínic de Barcelona. IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jee Hoon Roh
- Korea University, Korea University Anam Hospital, Seoul, South Korea
| | | | | |
Collapse
|
4
|
Wang MB, Rahmani F, Benzinger TLS, Raji CA. Edge Density Imaging Identifies White Matter Biomarkers of Late-Life Obesity and Cognition. Aging Dis 2024; 15:1899-1912. [PMID: 37196133 PMCID: PMC11272213 DOI: 10.14336/ad.2022.1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/10/2022] [Indexed: 05/19/2023] Open
Abstract
Alzheimer disease (AD) and obesity are related to disruptions in the white matter (WM) connectome. We examined the link between the WM connectome and obesity and AD through edge-density imaging/index (EDI), a tractography-based method that characterizes the anatomical embedding of tractography connections. A total of 60 participants, 30 known to convert from normal cognition or mild-cognitive impairment to AD within a minimum of 24 months of follow up, were selected from the Alzheimer disease Neuroimaging Initiative (ADNI). Diffusion-weighted MR images from the baseline scans were used to extract fractional anisotropy (FA) and EDI maps that were subsequently averaged using deterministic WM tractography based on the Desikan-Killiany atlas. Multiple linear and logistic regression analysis were used to identify the weighted sum of tract-specific FA or EDI indices that maximized correlation to body-mass-index (BMI) or conversion to AD. Participants from the Open Access Series of Imaging Studies (OASIS) were used as an independent validation for the BMI findings. The edge-density rich, periventricular, commissural and projection fibers were among the most important WM tracts linking BMI to FA as well as to EDI. WM fibers that contributed significantly to the regression model related to BMI overlapped with those that predicted conversion; specifically in the frontopontine, corticostriatal, and optic radiation pathways. These results were replicated by testing the tract-specific coefficients found using ADNI in the OASIS-4 dataset. WM mapping with EDI enables identification of an abnormal connectome implicated in both obesity and conversion to AD.
Collapse
Affiliation(s)
- Maxwell Bond Wang
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
- Medical Scientist Training Program, University of Pittsburgh/Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, Missouri, USA.
| | - Tammie L. S Benzinger
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, Missouri, USA.
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, Missouri, USA.
- Department of Neurology, Washington University in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Kéri S, Kancsev A, Kelemen O. Algorithm-Based Modular Psychotherapy Alleviates Brain Inflammation in Generalized Anxiety Disorder. Life (Basel) 2024; 14:887. [PMID: 39063640 PMCID: PMC11278507 DOI: 10.3390/life14070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Generalized anxiety disorder (GAD) is marked by prolonged and excessive worry, physical signs of anxiety, and associated neuroinflammation. Traditional treatments, like pharmacotherapy and cognitive-behavioral therapy (CBT), often leave residual symptoms and have high relapse rates. This study aimed to explore the efficacy of algorithm-based modular psychotherapy (MoBa), a combination of CBT and mindfulness meditation as validated by the research domain criteria (RDoC), in reducing anxiety and neuroinflammation in GAD. A longitudinal design was used, with 50 patients with GAD undergoing a 12-week MoBa treatment. The patients were investigated pre- and post-treatment using MRI to measure neuroinflammatory markers (DBSI-RF, diffusion-basis spectral imaging-based restricted fraction) in the hippocampus, amygdala, and neocortex. Clinical symptoms were assessed using the Hamilton Anxiety Rating Scale (HAM-A) and the Generalized Anxiety Disorder 7-item scale (GAD-7). Results indicated significant reductions in both anxiety symptoms and MRI RF values in the amygdala, suggesting decreased neuroinflammation. A reduction in anxiety was associated with the amelioration of neuroinflammation in the amygdala. These results suggest that MoBa is effective in alleviating both the psychological and neuroinflammatory aspects of GAD, offering a promising personalized treatment approach. Future research should focus on long-term effects and the mechanisms through which MoBa impacts neuroinflammation and anxiety.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Sztárai Institute, University of Tokaj, 3944 Sárospatak, Hungary
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Alexander Kancsev
- Department of Psychiatry and Psychotherapy, András Jósa Hospital, 4400 Nyíregyháza, Hungary;
| | - Oguz Kelemen
- Department of Behavioral Sciences, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
- Department of Psychiatry and Psychotherapy, Bács-Kiskun County Hospital, 6000 Kecskemét, Hungary
| |
Collapse
|
6
|
Mamah D, Patel A, Chen S, Wang Y, Wang Q. Diffusion Basis Spectrum Imaging of White Matter in Schizophrenia and Bipolar Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602402. [PMID: 39005300 PMCID: PMC11245098 DOI: 10.1101/2024.07.07.602402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Multiple studies point to the role of neuroinflammation in the pathophysiology of schizophrenia (SCZ), however, there have been few in vivo tools for imaging brain inflammation. Diffusion basis spectrum imaging (DBSI) is an advanced diffusion-based MRI method developed to quantitatively assess microstructural alternations relating to neuroinflammation, axonal fiber, and other white matter (WM) pathologies. Methods We acquired one-hour-long high-directional diffusion MRI data from young control (CON, n = 27), schizophrenia (SCZ, n = 21), and bipolar disorder (BPD, n = 21) participants aged 18-30. We applied Tract-based Spatial Statistics (TBSS) to allow whole-brain WM analyses and compare DBSI-derived isotropic and anisotropic diffusion measures between groups. Clinical relationships of DBSI metrics with clinical symptoms were assessed across SCZ and control participants. Results In SCZ participants, we found a generalized increase in DBSI-derived cellularity (a putative marker of neuroinflammation), a decrease in restricted fiber fraction (a putative marker of apparent axonal density), and an increase in extra-axonal water (a putative marker of vasogenic edema) across several WM tracts. There were only minimal WM abnormalities noted in BPD, mainly in regions of the corpus callosum (increase in DTI-derived RD and extra-axonal water). DBSI metrics showed significant partial correlations with psychosis and mood symptoms across groups. Conclusion Our findings suggest that SCZ involves generalized white matter neuroinflammation, decreased fiber density, and demyelination, which is not seen in bipolar disorder. Larger studies are needed to identify medication-related effects. DBSI metrics could help identify high-risk groups requiring early interventions to prevent the onset of psychosis and improve outcomes.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Aakash Patel
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - ShingShiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yong Wang
- Departments of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
- Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
- Mechanical Engineering and Materials Science, Washington University School of Medicine, St. Louis, Missouri
| | - Qing Wang
- Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
- Mechanical Engineering and Materials Science, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
7
|
By S, Kahl A, Cogswell PM. Alzheimer's Disease Clinical Trials: What Have We Learned From Magnetic Resonance Imaging. J Magn Reson Imaging 2024. [PMID: 39031716 DOI: 10.1002/jmri.29462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive impairment and dementia worldwide with rising prevalence, incidence and mortality. Despite many decades of research, there remains an unmet need for disease-modifying treatment that can significantly alter the progression of disease. Recently, with United States Food and Drug Administration (FDA) drug approvals, there have been tremendous advances in this area, with agents demonstrating effects on cognition and biomarkers. Magnetic resonance imaging (MRI) plays an instrumental role in these trials. This review article aims to outline how MRI is used for screening eligibility, monitoring safety and measuring efficacy in clinical trials, leaning on the landscape of past and recent AD clinical trials that have used MRI as examples; further, insight on promising MRI biomarkers for future trials is provided. LEVEL OF EVIDENCE: 1. TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Samantha By
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Anja Kahl
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | | |
Collapse
|
8
|
Mao X, Han D, Guo W, Zhang W, Wang H, Zhang G, Zhang N, Jin L, Nie B, Li H, Song Y, Wu Y, Chang L. Lateralized brunt of sleep deprivation on white matter injury in a rat model of Alzheimer's disease. GeroScience 2024; 46:2295-2315. [PMID: 37940789 PMCID: PMC10828179 DOI: 10.1007/s11357-023-01000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
Sleep disturbance is a recognized risk factor for Alzheimer's disease (AD), but the underlying micro-pathological evidence remains limited. To bridge this gap, we established an amyloid-β oligomers (AβO)-induced rat model of AD and subjected it to intermittent sleep deprivation (SD). Diffusion tensor imaging (DTI) and transmission electron microscopy were employed to assess white matter (WM) integrity and ultrastructural changes in myelin sheaths. Our findings demonstrated that SD exacerbated AβO-induced cognitive decline. Furthermore, we found SD aggravated AβO-induced asymmetrical impairments in WM, presenting with reductions in tract integrity observed in commissural fibers and association fasciculi, particularly the right anterior commissure, right corpus callosum, and left cingulum. Ultrastructural changes in myelin sheaths within the hippocampus and corpus callosum further confirmed a lateralized effect. Moreover, SD worsened AβO-induced lateralized disruption of the brain structural network, with impairments in critical nodes of the left hemisphere strongly correlated with cognitive dysfunction. This work represents the first identification of a lateralized impact of SD on the mesoscopic network and cognitive deficits in an AD rat model. These findings could deepen our understanding of the complex interplay between sleep disturbance and AD pathology, providing valuable insights into the early progression of the disease, as well as the development of neuroimaging biomarkers for screening early AD patients with self-reported sleep disturbances. Enhanced understanding of these mechanisms may pave the way for targeted interventions to alleviate cognitive decline and improve the quality of life for individuals at risk of or affected by AD.
Collapse
Affiliation(s)
- Xin Mao
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ding Han
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wensheng Guo
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wanning Zhang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, 100069, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Zhang W, Gorelik AJ, Wang Q, Norton SA, Hershey T, Agrawal A, Bijsterbosch JD, Bogdan R. Associations between COVID-19 and putative markers of neuroinflammation: A diffusion basis spectrum imaging study. Brain Behav Immun Health 2024; 36:100722. [PMID: 38298902 PMCID: PMC10825665 DOI: 10.1016/j.bbih.2023.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
COVID-19 remains a significant international public health concern. Yet, the mechanisms through which symptomatology emerges remain poorly understood. While SARS-CoV-2 infection may induce prolonged inflammation within the central nervous system, the evidence primarily stems from limited small-scale case investigations. To address this gap, our study capitalized on longitudinal UK Biobank neuroimaging data acquired prior to and following COVID-19 testing (N = 416 including n = 224 COVID-19 cases; Mage = 58.6). Putative neuroinflammation was assessed in gray matter structures and white matter tracts using non-invasive Diffusion Basis Spectrum Imaging (DBSI), which estimates inflammation-related cellularity (DBSI-restricted fraction; DBSI-RF) and vasogenic edema (DBSI-hindered fraction; DBSI-HF). We hypothesized that COVID-19 case status would be associated with increases in DBSI markers after accounting for potential confound (age, sex, race, body mass index, smoking frequency, and data acquisition interval) and multiple testing. COVID-19 case status was not significantly associated with DBSI-RF (|β|'s < 0.28, pFDR >0.05), but with greater DBSI-HF in left pre- and post-central gyri and right middle frontal gyrus (β's > 0.3, all pFDR = 0.03). Intriguingly, the brain areas exhibiting increased putative vasogenic edema had previously been linked to COVID-19-related functional and structural alterations, whereas brain regions displaying subtle differences in cellularity between COVID-19 cases and controls included regions within or functionally connected to the olfactory network, which has been implicated in COVID-19 psychopathology. Nevertheless, our study might not have captured acute and transitory neuroinflammatory effects linked to SARS-CoV-2 infection, possibly due to symptom resolution before the imaging scan. Future research is warranted to explore the potential time- and symptom-dependent neuroinflammatory relationship with COVID-19.
Collapse
Affiliation(s)
- Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Aaron J. Gorelik
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sara A. Norton
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Janine D. Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| |
Collapse
|
10
|
Shinotoh H. White Matter Neuroinflammation Matters in Early Alzheimer Disease. Neurology 2024; 102:e208090. [PMID: 38324743 PMCID: PMC10890835 DOI: 10.1212/wnl.0000000000208090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 02/09/2024] Open
|
11
|
Wang Q, Schindler SE, Chen G, Mckay NS, McCullough A, Flores S, Liu J, Sun Z, Wang S, Wang W, Hassenstab J, Cruchaga C, Perrin RJ, Fagan AM, Morris JC, Wang Y, Benzinger TLS. Investigating White Matter Neuroinflammation in Alzheimer Disease Using Diffusion-Based Neuroinflammation Imaging. Neurology 2024; 102:e208013. [PMID: 38315956 PMCID: PMC10890836 DOI: 10.1212/wnl.0000000000208013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/13/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is primarily associated with accumulations of amyloid plaques and tau tangles in gray matter, however, it is now acknowledged that neuroinflammation, particularly in white matter (WM), significantly contributes to the development and progression of AD. This study aims to investigate WM neuroinflammation in the continuum of AD and its association with AD pathologies and cognition using diffusion-based neuroinflammation imaging (NII). METHODS This is a cross-sectional, single-center, retrospective evaluation conducted on an observational study of 310 older research participants who were enrolled in the Knight Alzheimer's Disease Research Center cohort. Hindered water ratio (HR), an index of WM neuroinflammation, was quantified by a noninvasive diffusion MRI method, NII. The alterations of NII-HR were investigated at different AD stages, classified based on CSF concentrations of β-amyloid (Aβ) 42/Aβ40 for amyloid and phosphorylated tau181 (p-tau181) for tau. On the voxel and regional levels, the relationship between NII-HR and CSF markers of amyloid, tau, and neuroinflammation were examined, as well as cognition. RESULTS This cross-sectional study included 310 participants (mean age 67.1 [±9.1] years), with 52 percent being female. Subgroups included 120 individuals (38.7%) with CSF measures of soluble triggering receptor expressed on myeloid cells 2, 80 participants (25.8%) with CSF measures of chitinase-3-like protein 1, and 110 individuals (35.5%) with longitudinal cognitive measures. The study found that cognitively normal individuals with positive CSF Aβ42/Aβ40 and p-tau181 had higher HR than healthy controls and those with positive CSF Aβ42/Aβ40 but negative p-tau181. WM tracts with elevated NII-HR in individuals with positive CSF Aβ42/Aβ40 and p-tau181 were primarily located in the posterior brain regions while those with elevated NII-HR in individuals with positive CSF Aβ42/Aβ40 and p-tau181 connected the posterior and anterior brain regions. A significant negative correlation between NII-HR and CSF Aβ42/Aβ40 was found in individuals with positive CSF Aβ42/Aβ40. Baseline NII-HR correlated with baseline cognitive composite score and predicted longitudinal cognitive decline. DISCUSSION Those findings suggest that WM neuroinflammation undergoes alterations before the onset of AD clinical symptoms and that it interacts with amyloidosis. This highlights the potential value of noninvasive monitoring of WM neuroinflammation in AD progression and treatment.
Collapse
Affiliation(s)
- Qing Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Suzanne E Schindler
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Gengsheng Chen
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Nicole S Mckay
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Austin McCullough
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Shaney Flores
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Jingxia Liu
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Zhexian Sun
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Sicheng Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Wenshang Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Jason Hassenstab
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Carlos Cruchaga
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Richard J Perrin
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Anne M Fagan
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - John C Morris
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Yong Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Tammie L S Benzinger
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
12
|
Zhang W, Gorelik AJ, Wang Q, Norton SA, Hershey T, Agrawal A, Bijsterbosch JD, Bogdan R. Associations between COVID-19 and putative markers of neuroinflammation: A diffusion basis spectrum imaging study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549891. [PMID: 37502886 PMCID: PMC10370178 DOI: 10.1101/2023.07.20.549891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
COVID-19 remains a significant international public health concern. Yet, the mechanisms through which symptomatology emerges remain poorly understood. While SARS-CoV-2 infection may induce prolonged inflammation within the central nervous system, the evidence primarily stems from limited small-scale case investigations. To address this gap, our study capitalized on longitudinal UK Biobank neuroimaging data acquired prior to and following COVID-19 testing (N=416 including n=224 COVID-19 cases; Mage=58.6). Putative neuroinflammation was assessed in gray matter structures and white matter tracts using non-invasive Diffusion Basis Spectrum Imaging (DBSI), which estimates inflammation-related cellularity (DBSI-restricted fraction; DBSI-RF) and vasogenic edema (DBSI-hindered fraction; DBSI-HF).We hypothesized that COVID-19 case status would be associated with increases in DBSI markers after accounting for potential confound (age, sex, race, body mass index, smoking frequency, and data acquisition interval) and multiple testing. COVID-19 case status was not significantly associated with DBSI-RF (|β|'s<0.28, pFDR >0.05), but with greater DBSI-HF in left pre- and post-central gyri and right middle frontal gyrus (β's>0.3, all pFDR=0.03). Intriguingly, the brain areas exhibiting increased putative vasogenic edema had previously been linked to COVID-19-related functional and structural alterations, whereas brain regions displaying subtle differences in cellularity between COVID-19 cases and controls included regions within or functionally connected to the olfactory network, which has been implicated in COVID-19 psychopathology. Nevertheless, our study might not have captured acute and transitory neuroinflammatory effects linked to SARS-CoV-2 infection, possibly due to symptom resolution before the imaging scan. Future research is warranted to explore the potential time- and symptom-dependent neuroinflammatory relationship with COVID-19.
Collapse
Affiliation(s)
- Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Aaron J Gorelik
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sara A Norton
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Janine D Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| |
Collapse
|
13
|
Oi Y, Hirose M, Togo H, Yoshinaga K, Akasaka T, Okada T, Aso T, Takahashi R, Glasser MF, Hayashi T, Hanakawa T. Identifying and reverting the adverse effects of white matter hyperintensities on cortical surface analyses. Neuroimage 2023; 281:120377. [PMID: 37714391 DOI: 10.1016/j.neuroimage.2023.120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
The Human Connectome Project (HCP)-style surface-based brain MRI analysis is a powerful technique that allows precise mapping of the cerebral cortex. However, the strength of its surface-based analysis has not yet been tested in the older population that often presents with white matter hyperintensities (WMHs) on T2-weighted (T2w) MRI (hypointensities on T1w MRI). We investigated T1-weighted (T1w) and T2w structural MRI in 43 healthy middle-aged to old participants. Juxtacortical WMHs were often misclassified by the default HCP pipeline as parts of the gray matter in T1w MRI, leading to incorrect estimation of the cortical surfaces and cortical metrics. To revert the adverse effects of juxtacortical WMHs, we incorporated the Brain Intensity AbNormality Classification Algorithm into the HCP pipeline (proposed pipeline). Blinded radiologists performed stereological quality control (QC) and found a decrease in the estimation errors in the proposed pipeline. The superior performance of the proposed pipeline was confirmed using an originally-developed automated surface QC based on a large database. Here we showed the detrimental effects of juxtacortical WMHs for estimating cortical surfaces and related metrics and proposed a possible solution for this problem. The present knowledge and methodology should help researchers identify adequate cortical surface biomarkers for aging and age-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yuki Oi
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Laboratory for Brain Connectomics Imaging, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Masakazu Hirose
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroki Togo
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan; Laboratory for Brain Connectomics Imaging, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan; Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kenji Yoshinaga
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Thai Akasaka
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohisa Okada
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshihiko Aso
- Laboratory for Brain Connectomics Imaging, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan; Department of Brain Connectomics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Hanakawa
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan; Laboratory for Brain Connectomics Imaging, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan; Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan; Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
14
|
Chen H, Fan L, Guo Q, Wong MY, Yu F, Foxe N, Wang W, Nessim A, Carling G, Liu B, Lopez-Lee C, Huang Y, Amin S, Patel T, Mok SA, Song WM, Zhang B, Ma Q, Fu H, Gan L, Luo W. DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563970. [PMID: 37961594 PMCID: PMC10634844 DOI: 10.1101/2023.10.26.563970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
Collapse
Affiliation(s)
- Hao Chen
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa Foxe
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Aviram Nessim
- The State University of New York at Stony Brook, Long Island, New York, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tark Patel
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Sue-Ann Mok
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Millburn High School, New Jersey, NJ, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Chen H, Fan L, Guo Q, Wong MY, Yu F, Foxe N, Wang W, Nessim A, Carling G, Liu B, Lopez-Lee C, Huang Y, Amin S, Mok SA, Song WM, Zhang B, Ma Q, Fu H, Gan L, Luo W. DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity. RESEARCH SQUARE 2023:rs.3.rs-3454358. [PMID: 37961627 PMCID: PMC10635319 DOI: 10.21203/rs.3.rs-3454358/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
Collapse
Affiliation(s)
- Hao Chen
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa Foxe
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Aviram Nessim
- The State University of New York at Stony Brook, Long Island, New York, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sue-Ann Mok
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Millburn High School, New Jersey, NJ, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Cerneckis J, Shi Y. Myelin organoids for the study of Alzheimer's disease. Front Neurosci 2023; 17:1283742. [PMID: 37942133 PMCID: PMC10628225 DOI: 10.3389/fnins.2023.1283742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
17
|
Ly M, Yu GZ, Mian A, Cramer A, Meysami S, Merrill DA, Samara A, Eisenstein SA, Hershey T, Babulal GM, Lenze EJ, Morris JC, Benzinger TLS, Raji CA. Neuroinflammation: A Modifiable Pathway Linking Obesity, Alzheimer's disease, and Depression. Am J Geriatr Psychiatry 2023; 31:853-866. [PMID: 37365110 PMCID: PMC10528955 DOI: 10.1016/j.jagp.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Obesity, depression and Alzheimer's disease (AD) are three major interrelated modern health conditions with complex relationships. Early-life depression may serve as a risk factor for AD, while late-life depression may be a prodrome of AD. Depression affects approximately 23% of obese individuals, and depression itself raises the risk of obesity by 37%. Mid-life obesity independently increases AD risk, while late-life obesity, particularly metabolically healthy obesity, may offer protection against AD pathology. Chronic inflammation serves as a key mechanism linking obesity, AD, and depression, encompassing systemic inflammation from metabolic disturbances, immune dysregulation through the gut microbiome, and direct interactions with amyloid pathology and neuroinflammation. In this review, we explore the biological mechanisms of neuroinflammation in relation to obesity, AD, and depression. We assess the efficacy of therapeutic interventions targeting neuroinflammation and discuss current and future radiological imaging initiatives for studying neuroinflammation. By comprehending the intricate interplay among depression, obesity, and AD, especially the role of neuroinflammation, we can advance our understanding and develop innovative strategies for prevention and treatment.
Collapse
Affiliation(s)
- Maria Ly
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Gary Z Yu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Ali Mian
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | | | - Somayeh Meysami
- Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA; Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA
| | - David A Merrill
- Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA; Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA
| | - Amjad Samara
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Sarah A Eisenstein
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO; Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO
| | - Ganesh M Babulal
- Department of Neurology, Washington University in St. Louis, St. Louis, MO; Institute of Public Health, Washington University in St. Louis, St. Louis, MO; Department of Psychology, Faculty of Humanities, University of Johannesburg, Johannesburg, South Africa; Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Eric J Lenze
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO; Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO; Department of Neurology, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
18
|
Zhang W, Rutlin J, Eisenstein SA, Wang Y, Barch DM, Hershey T, Bogdan R, Bijsterbosch JD. Neuroinflammation in the Amygdala Is Associated With Recent Depressive Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:967-975. [PMID: 37164312 DOI: 10.1016/j.bpsc.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Converging evidence suggests that elevated inflammation may contribute to depression. Yet, the link between peripheral inflammation and neuroinflammation in depression is unclear. Here, using data from the UK Biobank, we estimated associations among depression, C-reactive protein (CRP) as a measure of peripheral inflammation, and neuroinflammation as indexed by diffusion basis spectral imaging-based restricted fraction (DBSI-RF). METHODS DBSI-RF was derived from diffusion-weighted imaging data (N = 11,512) for whole-brain gray matter (global-RF), and regions of interest in the bilateral amygdala (amygdala-RF) and hippocampus (hippocampus-RF), and CRP was estimated from blood (serum) samples. Self-reported recent depression symptoms were measured using a 4-item assessment. Linear regressions were used to estimate associations between CRP and DBSI-RFs with depression while adjusting for the following covariates: age, sex, body mass index, smoking, drinking, and medical conditions. RESULTS Elevated CRP was associated with higher depression symptoms (β = 0.04, false discovery rate-corrected p < .005) and reduced global-RF (β = -0.03, false discovery rate-corrected p < .001). Higher amygdala-RF was associated with elevated depression-an effect resilient to added covariates and CRP (β = 0.02, false discovery rate-corrected p < .05). Interestingly, this association was stronger in individuals with a lifetime history of depression (β = 0.07, p < .005) than in those without (β = 0.03, p < .05). Associations between global-RF or hippocampus-RF with depression were not significant, and no DBSI-RF indices indirectly linked CRP with depression (i.e., mediation effect). CONCLUSIONS Peripheral inflammation and DBSI-RF neuroinflammation in the amygdala are independently associated with depression, consistent with animal studies suggesting distinct pathways of peripheral inflammation and neuroinflammation in the pathophysiology of depression and with investigations highlighting the role of the amygdala in stress-induced inflammation and depression.
Collapse
Affiliation(s)
- Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Sarah A Eisenstein
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri; Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri.
| | - Janine D Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
McKay NS, Gordon BA, Hornbeck RC, Dincer A, Flores S, Keefe SJ, Joseph-Mathurin N, Jack CR, Koeppe R, Millar PR, Ances BM, Chen CD, Daniels A, Hobbs DA, Jackson K, Koudelis D, Massoumzadeh P, McCullough A, Nickels ML, Rahmani F, Swisher L, Wang Q, Allegri RF, Berman SB, Brickman AM, Brooks WS, Cash DM, Chhatwal JP, Day GS, Farlow MR, la Fougère C, Fox NC, Fulham M, Ghetti B, Graff-Radford N, Ikeuchi T, Klunk W, Lee JH, Levin J, Martins R, Masters CL, McConathy J, Mori H, Noble JM, Reischl G, Rowe C, Salloway S, Sanchez-Valle R, Schofield PR, Shimada H, Shoji M, Su Y, Suzuki K, Vöglein J, Yakushev I, Cruchaga C, Hassenstab J, Karch C, McDade E, Perrin RJ, Xiong C, Morris JC, Bateman RJ, Benzinger TLS. Positron emission tomography and magnetic resonance imaging methods and datasets within the Dominantly Inherited Alzheimer Network (DIAN). Nat Neurosci 2023; 26:1449-1460. [PMID: 37429916 PMCID: PMC10400428 DOI: 10.1038/s41593-023-01359-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers.
Collapse
Affiliation(s)
| | | | | | - Aylin Dincer
- Washington University in St. Louis, St. Louis, MO, USA
| | - Shaney Flores
- Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah J Keefe
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | - Beau M Ances
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Diana A Hobbs
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | | | | | - Laura Swisher
- Washington University in St. Louis, St. Louis, MO, USA
| | - Qing Wang
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Adam M Brickman
- Columbia University Irving Medical Center, New York, NY, USA
| | - William S Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - David M Cash
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Jasmeer P Chhatwal
- Massachusetts General and Brigham & Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | | | | | - Christian la Fougère
- Department of Radiology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Nick C Fox
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Michael Fulham
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ralph Martins
- Edith Cowan University, Joondalup, Western Australia, Australia
| | | | | | | | - James M Noble
- Columbia University Irving Medical Center, New York, NY, USA
| | - Gerald Reischl
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | | | | | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Igor Yakushev
- School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Celeste Karch
- Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - John C Morris
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
20
|
Criswell SR, Nielsen SS, Faust IM, Shimony JS, White RL, Lenox-Krug J, Racette BA. Neuroinflammation and white matter alterations in occupational manganese exposure assessed by diffusion basis spectrum imaging. Neurotoxicology 2023; 97:25-33. [PMID: 37127223 PMCID: PMC10524700 DOI: 10.1016/j.neuro.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/04/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE To evaluate in-vivo neuroinflammation and white matter (WM) microstructural integrity in occupational manganese (Mn) exposure. METHODS We assessed brain inflammation using Diffusion Basis Spectrum Imaging (DBSI) in 26 Mn-exposed welders, 17 Mn-exposed workers, and 26 non-exposed participants. Cumulative Mn exposure was estimated from work histories and the Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3) scores were completed by a movement specialist. Tract-based Spatial Statistics allowed for whole-brain voxel-wise WM analyses to compare WM DBSI-derived measures between the Mn-exposed and non-exposed groups. Exploratory grey matter region of interest (ROI) analyses examined the presence of similar alterations in the basal ganglia. We used voxelwise general linear modeling and linear regression to evaluate the association between cumulative Mn exposure, WM or basal ganglia DBSI metrics, and UPDRS3 scores, while adjusting for age. RESULTS Mn-exposed welders had higher DBSI-derived restricted fraction (DBSI-RF), higher DBSI-derived nonrestricted fraction (DBSI-NRF), and lower DBSI-derived fiber fraction (DBSI-FF) in multiple WM tracts (all p < 0.05) in comparison to less-exposed workers and non-exposed participants. Basal ganglia ROI analyses revealed higher average caudate DBSI-NRF and DBSI-derived radial diffusion (DBSI-RD) values in Mn-exposed welders relative to non-exposed participants (p < 0.05). Caudate DBSI-NRF was also associated with greater cumulative Mn exposure and higher UPRDS3 scores. CONCLUSIONS Mn-exposed welders demonstrate greater DBSI-derived indicators of neuroinflammation-related cellularity (DBSI-RF), greater extracellular edema (DBSI-NRF), and lower apparent axonal density (DBSI-FF) in multiple WM tracts suggesting a neuroinflammatory component in the pathophysiology of Mn neurotoxicity. Caudate DBSI-NRF was positively associated with both cumulative Mn exposure and clinical parkinsonism, indicating a possible dose-dependent effect on extracellular edema with associated motor effects.
Collapse
Affiliation(s)
- Susan R Criswell
- Department of Neurology, Barrow Neurological Institute, 2910 N. 3rd Ave, Phoenix, AZ 85013, USA; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Irene M Faust
- Department of Neurology, Barrow Neurological Institute, 2910 N. 3rd Ave, Phoenix, AZ 85013, USA; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Joshua S Shimony
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; John Cochran Division, St. Louis VA Medical Center, Neurology Section, 915 N. Grand Blvd, St. Louis, MO 63106, USA
| | - Jason Lenox-Krug
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Brad A Racette
- Department of Neurology, Barrow Neurological Institute, 2910 N. 3rd Ave, Phoenix, AZ 85013, USA; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 Andrews Rd, Parktown 2193, South Africa
| |
Collapse
|
21
|
Pansieri J, Hadley G, Lockhart A, Pisa M, DeLuca GC. Regional contribution of vascular dysfunction in white matter dementia: clinical and neuropathological insights. Front Neurol 2023; 14:1199491. [PMID: 37396778 PMCID: PMC10313211 DOI: 10.3389/fneur.2023.1199491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
The maintenance of adequate blood supply and vascular integrity is fundamental to ensure cerebral function. A wide range of studies report vascular dysfunction in white matter dementias, a group of cerebral disorders characterized by substantial white matter damage in the brain leading to cognitive impairment. Despite recent advances in imaging, the contribution of vascular-specific regional alterations in white matter dementia has been not extensively reviewed. First, we present an overview of the main components of the vascular system involved in the maintenance of brain function, modulation of cerebral blood flow and integrity of the blood-brain barrier in the healthy brain and during aging. Second, we review the regional contribution of cerebral blood flow and blood-brain barrier disturbances in the pathogenesis of three distinct conditions: the archetypal white matter predominant neurocognitive dementia that is vascular dementia, a neuroinflammatory predominant disease (multiple sclerosis) and a neurodegenerative predominant disease (Alzheimer's). Finally, we then examine the shared landscape of vascular dysfunction in white matter dementia. By emphasizing the involvement of vascular dysfunction in the white matter, we put forward a hypothetical map of vascular dysfunction during disease-specific progression to guide future research aimed to improve diagnostics and facilitate the development of tailored therapies.
Collapse
|
22
|
Depp C, Sun T, Sasmita AO, Spieth L, Berghoff SA, Nazarenko T, Overhoff K, Steixner-Kumar AA, Subramanian S, Arinrad S, Ruhwedel T, Möbius W, Göbbels S, Saher G, Werner HB, Damkou A, Zampar S, Wirths O, Thalmann M, Simons M, Saito T, Saido T, Krueger-Burg D, Kawaguchi R, Willem M, Haass C, Geschwind D, Ehrenreich H, Stassart R, Nave KA. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer's disease. Nature 2023; 618:349-357. [PMID: 37258678 PMCID: PMC10247380 DOI: 10.1038/s41586-023-06120-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/21/2023] [Indexed: 06/02/2023]
Abstract
The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-β (Aβ) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aβ-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aβ plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.
Collapse
Affiliation(s)
- Constanze Depp
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrew Octavian Sasmita
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Taisiia Nazarenko
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Overhoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agnes A Steixner-Kumar
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Swati Subramanian
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Göbbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Maik Thalmann
- Department of German Philology, Georg-August University, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Dilja Krueger-Burg
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Willem
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ruth Stassart
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
23
|
Meysami S, Raji CA, Glatt RM, Popa ES, Ganapathi AS, Bookheimer T, Slyapich CB, Pierce KP, Richards CJ, Lampa MG, Gill JM, Rapozo MK, Hodes JF, Tongson YM, Wong CL, Kim M, Porter VR, Kaiser SA, Panos SE, Dye RV, Miller KJ, Bookheimer SY, Martin NA, Kesari S, Kelly DF, Bramen JE, Siddarth P, Merrill DA. Handgrip Strength Is Related to Hippocampal and Lobar Brain Volumes in a Cohort of Cognitively Impaired Older Adults with Confirmed Amyloid Burden. J Alzheimers Dis 2023; 91:999-1006. [PMID: 36530088 PMCID: PMC9912728 DOI: 10.3233/jad-220886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Strength and mobility are essential for activities of daily living. With aging, weaker handgrip strength, mobility, and asymmetry predict poorer cognition. We therefore sought to quantify the relationship between handgrip metrics and volumes quantified on brain magnetic resonance imaging (MRI). OBJECTIVE To model the relationships between handgrip strength, mobility, and MRI volumetry. METHODS We selected 38 participants with Alzheimer's disease dementia: biomarker evidence of amyloidosis and impaired cognition. Handgrip strength on dominant and non-dominant hands was measured with a hand dynamometer. Handgrip asymmetry was calculated. Two-minute walk test (2MWT) mobility evaluation was combined with handgrip strength to identify non-frail versus frail persons. Brain MRI volumes were quantified with Neuroreader. Multiple regression adjusting for age, sex, education, handedness, body mass index, and head size modeled handgrip strength, asymmetry and 2MWT with brain volumes. We modeled non-frail versus frail status relationships with brain structures by analysis of covariance. RESULTS Higher non-dominant handgrip strength was associated with larger volumes in the hippocampus (p = 0.02). Dominant handgrip strength was related to higher frontal lobe volumes (p = 0.02). Higher 2MWT scores were associated with larger hippocampal (p = 0.04), frontal (p = 0.01), temporal (p = 0.03), parietal (p = 0.009), and occipital lobe (p = 0.005) volumes. Frailty was associated with reduced frontal, temporal, and parietal lobe volumes. CONCLUSION Greater handgrip strength and mobility were related to larger hippocampal and lobar brain volumes. Interventions focused on improving handgrip strength and mobility may seek to include quantified brain volumes on MR imaging as endpoints.
Collapse
Affiliation(s)
- Somayeh Meysami
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Cyrus A. Raji
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Ryan M. Glatt
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Emily S. Popa
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Aarthi S. Ganapathi
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Tess Bookheimer
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Colby B. Slyapich
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Kyron P. Pierce
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Casey J. Richards
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Melanie G. Lampa
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Jaya M. Gill
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Molly K. Rapozo
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - John F. Hodes
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ynez M. Tongson
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Claudia L. Wong
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Mihae Kim
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Verna R. Porter
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Scott A. Kaiser
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Stella E. Panos
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Richelin V. Dye
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Behavioral Health Institute, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Karen J. Miller
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Susan Y. Bookheimer
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Neil A. Martin
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Santosh Kesari
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Daniel F. Kelly
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Jennifer E. Bramen
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Prabha Siddarth
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - David A. Merrill
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Rahmani F, Ghezzi L, Tosti V, Liu J, Song SK, Wu AT, Rajamanickam J, Obert KA, Benzinger TL, Mittendorfer B, Piccio L, Raji CA. Twelve Weeks of Intermittent Caloric Restriction Diet Mitigates Neuroinflammation in Midlife Individuals with Multiple Sclerosis: A Pilot Study with Implications for Prevention of Alzheimer's Disease. J Alzheimers Dis 2023; 93:263-273. [PMID: 37005885 PMCID: PMC10460547 DOI: 10.3233/jad-221007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a prototype neuroinflammatory disorder with increasingly recognized role for neurodegeneration. Most first-line treatments cannot prevent the progression of neurodegeneration and the resultant disability. Interventions can improve symptoms of MS and might provide insights into the underlying pathology. OBJECTIVE To investigate the effect of intermittent caloric restriction on neuroimaging markers of MS. METHODS We randomized ten participants with relapsing remitting MS to either a 12-week intermittent calorie restriction (iCR) diet (n = 5) or control (n = 5). Cortical thickness and volumes were measured through FreeSurfer, cortical perfusion was measured by arterial spin labeling and neuroinflammation through diffusion basis spectrum imaging. RESULTS After 12 weeks of iCR, brain volume increased in the left superior and inferior parietal gyri (p: 0.050 and 0.049, respectively) and the banks of the superior temporal sulcus (p: 0.01). Similarly in the iCR group, cortical thickness improved in the bilateral medial orbitofrontal gyri (p: 0.04 and 0.05 in right and left, respectively), the left superior temporal gyrus (p: 0.03), and the frontal pole (p: 0.008) among others. Cerebral perfusion decreased in the bilateral fusiform gyri (p: 0.047 and 0.02 in right and left, respectively) and increased in the bilateral deep anterior white matter (p: 0.03 and 0.013 in right and left, respectively). Neuroinflammation, demonstrated through hindered and restricted water fractions (HF and RF), decreased in the left optic tract (HF p: 0.02), and the right extreme capsule (RF p: 0.007 and HF p: 0.003). CONCLUSION These pilot data suggest therapeutic effects of iCR in improving cortical volume and thickness and mitigating neuroinflammation in midlife adults with MS.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Ghezzi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Valeria Tosti
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jingxia Liu
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Surgery, Division of Public Health Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Sheng-Kwei Song
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Anthony T. Wu
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Jayashree Rajamanickam
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kathleen A. Obert
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St Louis, St. Louis, MO, USA
| | - Bettina Mittendorfer
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Piccio
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, NSW, Australia
- Charles Perkin Centre, The University of Sydney NSW, Australia
| | - Cyrus A. Raji
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St Louis, St. Louis, MO, USA
| |
Collapse
|
25
|
Moody JF, Dean DC, Kecskemeti SR, Blennow K, Zetterberg H, Kollmorgen G, Suridjan I, Wild N, Carlsson CM, Johnson SC, Alexander AL, Bendlin BB. Associations between diffusion MRI microstructure and cerebrospinal fluid markers of Alzheimer's disease pathology and neurodegeneration along the Alzheimer's disease continuum. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12381. [PMID: 36479018 PMCID: PMC9720004 DOI: 10.1002/dad2.12381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/29/2022] [Indexed: 12/07/2022]
Abstract
Introduction White matter (WM) degeneration is a critical component of early Alzheimer's disease (AD) pathophysiology. Diffusion-weighted imaging (DWI) models, including diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and mean apparent propagator MRI (MAP-MRI), have the potential to identify early neurodegenerative WM changes associated with AD. Methods We imaged 213 (198 cognitively unimpaired) aging adults with DWI and used tract-based spatial statistics to compare 15 DWI metrics of WM microstructure to 9 cerebrospinal fluid (CSF) markers of AD pathology and neurodegeneration treated as continuous variables. Results We found widespread WM injury in AD, as indexed by robust associations between DWI metrics and CSF biomarkers. MAP-MRI had more spatially diffuse relationships with Aβ42/40 and pTau, compared with NODDI and DTI. Discussion Our results suggest that WM degeneration may be more pervasive in AD than is commonly appreciated and that innovative DWI models such as MAP-MRI may provide clinically viable biomarkers of AD-related neurodegeneration in the earliest stages of AD progression.
Collapse
Affiliation(s)
- Jason F. Moody
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Douglas C. Dean
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of PediatricsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research InstituteUCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | | | | | | | - Cynthia M. Carlsson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterMiddleton Memorial VA HospitalMadisonWisconsinUSA
| | - Andrew L. Alexander
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
26
|
Shahid SS, Wen Q, Risacher SL, Farlow MR, Unverzagt FW, Apostolova LG, Foroud TM, Zetterberg H, Blennow K, Saykin AJ, Wu YC. Hippocampal-subfield microstructures and their relation to plasma biomarkers in Alzheimer's disease. Brain 2022; 145:2149-2160. [PMID: 35411392 PMCID: PMC9630875 DOI: 10.1093/brain/awac138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
Hippocampal subfields exhibit differential vulnerabilities to Alzheimer's disease-associated pathology including abnormal accumulation of amyloid-β deposition and neurofibrillary tangles. These pathological processes extensively impact on the structural and functional interconnectivities of the subfields and may explain the association between hippocampal dysfunction and cognitive deficits. In this study, we investigated the degree of alterations in the microstructure of hippocampal subfields across the clinical continuum of Alzheimer's disease. We applied a grey matter-specific multi-compartment diffusion model (Cortical-Neurite orientation dispersion and density imaging) to understand the differential effects of Alzheimer's disease pathology on the hippocampal subfield microstructure. A total of 119 participants were included in this cross-sectional study. Participants were stratified into three categories, cognitively normal (n = 47), mild cognitive impairment (n = 52), and Alzheimer's disease (n = 19). Diffusion MRI, plasma biomarkers and neuropsychological test scores were used to determine the association between the microstructural integrity and Alzheimer's disease-associated molecular indicators and cognition. For Alzheimer's disease-related plasma biomarkers, we studied amyloid-β, total tau and neurofilament light; for Alzheimer's disease-related neuropsychological tests, we included the Trail Making Test, Rey Auditory Verbal Learning Test, Digit Span and Montreal Cognitive Assessment. Comparisons between cognitively normal subjects and those with mild cognitive impairment showed significant microstructural alterations in the hippocampal cornu ammonis (CA) 4 and dentate gyrus region, whereas CA 1-3 was the most sensitive region for the later stages in the Alzheimer's disease clinical continuum. Among imaging metrics for microstructures, the volume fraction of isotropic diffusion for interstitial free water demonstrated the largest effect size in between-group comparisons. Regarding the plasma biomarkers, neurofilament light appeared to be the most sensitive biomarker for associations with microstructural imaging findings in CA4-dentate gyrus. CA 1-3 was the subfield which had stronger correlations between cognitive performance and microstructural metrics. Particularly, poor performance on the Rey Auditory Verbal Learning Test and Montreal Cognitive Assessment was associated with decreased intracellular volume fraction. Overall, our findings support the value of tissue-specific microstructural imaging for providing pathologically relevant information manifesting in the plasma biomarkers and neuropsychological outcomes across various stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Syed Salman Shahid
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qiuting Wen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu Chien Wu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
27
|
Garland EF, Hartnell IJ, Boche D. Microglia and Astrocyte Function and Communication: What Do We Know in Humans? Front Neurosci 2022; 16:824888. [PMID: 35250459 PMCID: PMC8888691 DOI: 10.3389/fnins.2022.824888] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia and astrocytes play essential roles in the central nervous system contributing to many functions including homeostasis, immune response, blood-brain barrier maintenance and synaptic support. Evidence has emerged from experimental models of glial communication that microglia and astrocytes influence and coordinate each other and their effects on the brain environment. However, due to the difference in glial cells between humans and rodents, it is essential to confirm the relevance of these findings in human brains. Here, we aim to review the current knowledge on microglia-astrocyte crosstalk in humans, exploring novel methodological techniques used in health and disease conditions. This will include an in-depth look at cell culture and iPSCs, post-mortem studies, imaging and fluid biomarkers, genetics and transcriptomic data. In this review, we will discuss the advantages and limitations of these methods, highlighting the understanding these methods have brought the field on these cells communicative abilities, and the knowledge gaps that remain.
Collapse
Affiliation(s)
| | | | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
28
|
Johnson P, Chan JK, Vavasour IM, Abel S, Lee LE, Yong H, Laule C, Li DKB, Tam R, Traboulsee A, Carruthers RL, Kolind SH. Quantitative MRI findings indicate diffuse white matter damage in Susac Syndrome. Mult Scler J Exp Transl Clin 2022; 8:20552173221078834. [PMID: 35186315 PMCID: PMC8851927 DOI: 10.1177/20552173221078834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/21/2022] [Indexed: 11/15/2022] Open
Abstract
Background Susac Syndrome (SuS) is an autoimmune endotheliopathy impacting the brain, retina and cochlea that can clinically mimic multiple sclerosis (MS). Objective To evaluate non-lesional white matter demyelination changes in SuS compared to MS and healthy controls (HC) using quantitative MRI. Methods 3T MRI including myelin water imaging and diffusion basis spectrum imaging were acquired for 7 SuS, 10 MS and 10 HC participants. Non-lesional white matter was analyzed in the corpus callosum (CC) and normal appearing white matter (NAWM). Groups were compared using ANCOVA with Tukey correction. Results SuS CC myelin water fraction (mean 0.092) was lower than MS(0.11, p = 0.01) and HC(0.11, p = 0.04). Another myelin marker, radial diffusivity, was increased in SuS CC(0.27μm2/ms) compared to HC(0.21μm2/ms, p = 0.008) and MS(0.23μm2/ms, p = 0.05). Fractional anisotropy was lower in SuS CC(0.82) than HC(0.86, p = 0.04). Fiber fraction (reflecting axons) did not differ from HC or MS. In NAWM, radial diffusivity and apparent diffusion coefficient were significantly increased in SuS compared to HC(p < 0.001 for both measures) and MS(p = 0.003, p < 0.001 respectively). Conclusions Our results provided evidence of myelin damage in SuS, particularly in the CC, and more extensive microstructural injury in NAWM, supporting the hypothesis that there are widespread microstructural changes in SuS syndrome including diffuse demyelination.
Collapse
Affiliation(s)
| | - JK Chan
- Department of Medicine (Neurology), University of British Columbia, Canada
| | - IM Vavasour
- Department of Radiology, University of British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD)
| | | | | | - H Yong
- Department of Medicine (Neurology), University of British Columbia, Canada
| | - C Laule
- Department of Radiology, University of British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - DKB Li
- Department of Medicine (Neurology), University of British Columbia, Canada
- Department of Radiology, University of British Columbia, Canada
| | - R Tam
- Department of Radiology, University of British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Canada
| | | | - RL Carruthers
- Department of Medicine (Neurology), University of British Columbia, Canada
| | - SH Kolind
- Department of Medicine (Neurology), University of British Columbia, Canada
- Department of Radiology, University of British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD)
- Department of Physics and Astronomy, University of British Columbia, Canada
| |
Collapse
|
29
|
Rahmani F, Wang Q, McKay NS, Keefe S, Hantler N, Hornbeck R, Wang Y, Hassenstab J, Schindler S, Xiong C, Morris JC, Benzinger TL, Raji CA. Sex-Specific Patterns of Body Mass Index Relationship with White Matter Connectivity. J Alzheimers Dis 2022; 86:1831-1848. [PMID: 35180116 PMCID: PMC9108572 DOI: 10.3233/jad-215329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Obesity is an increasingly recognized modifiable risk factor for Alzheimer's disease (AD). Increased body mass index (BMI) is related to distinct changes in white matter (WM) fiber density and connectivity. OBJECTIVE We investigated whether sex differentially affects the relationship between BMI and WM structural connectivity. METHODS A cross-sectional sample of 231 cognitively normal participants were enrolled from the Knight Alzheimer Disease Research Center. Connectome analyses were done with diffusion data reconstructed using q-space diffeomorphic reconstruction to obtain the spin distribution function and tracts were selected using a deterministic fiber tracking algorithm. RESULTS We identified an inverse relationship between higher BMI and lower connectivity in the associational fibers of the temporal lobe in overweight and obese men. Normal to overweight women showed a significant positive association between BMI and connectivity in a wide array of WM fibers, an association that reversed in obese and morbidly obese women. Interaction analyses revealed that with increasing BMI, women showed higher WM connectivity in the bilateral frontoparietal and parahippocampal parts of the cingulum, while men showed lower connectivity in right sided corticostriatal and corticopontine tracts. Subgroup analyses demonstrated comparable results in participants with and without positron emission tomography or cerebrospinal fluid evidence of brain amyloidosis, indicating that the relationship between BMI and structural connectivity in men and women is independent of AD biomarker status. CONCLUSION BMI influences structural connectivity of WM differently in men and women across BMI categories and this relationship does not vary as a function of preclinical AD.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole S. McKay
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah Keefe
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nancy Hantler
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Russ Hornbeck
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yong Wang
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason Hassenstab
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Suzanne Schindler
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - John C. Morris
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Cyrus A. Raji
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
30
|
Pichet Binette A, Theaud G, Rheault F, Roy M, Collins DL, Levin J, Mori H, Lee JH, Farlow MR, Schofield P, Chhatwal JP, Masters CL, Benzinger T, Morris J, Bateman R, Breitner JC, Poirier J, Gonneaud J, Descoteaux M, Villeneuve S. Bundle-specific associations between white matter microstructure and Aβ and tau pathology in preclinical Alzheimer's disease. eLife 2021; 10:62929. [PMID: 33983116 PMCID: PMC8169107 DOI: 10.7554/elife.62929] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-amyloid (Aβ) and tau proteins, the pathological hallmarks of Alzheimer's disease (AD), are believed to spread through connected regions of the brain. Combining diffusion imaging and positron emission tomography, we investigated associations between white matter microstructure specifically in bundles connecting regions where Aβ or tau accumulates and pathology. We focused on free-water-corrected diffusion measures in the anterior cingulum, posterior cingulum, and uncinate fasciculus in cognitively normal older adults at risk of sporadic AD and presymptomatic mutation carriers of autosomal dominant AD. In Aβ-positive or tau-positive groups, lower tissue fractional anisotropy and higher mean diffusivity related to greater Aβ and tau burden in both cohorts. Associations were found in the posterior cingulum and uncinate fasciculus in preclinical sporadic AD, and in the anterior and posterior cingulum in presymptomatic mutation carriers. These results suggest that microstructural alterations accompany pathological accumulation as early as the preclinical stage of both sporadic and autosomal dominant AD.
Collapse
Affiliation(s)
- Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - François Rheault
- Electrical Engineering, Vanderbilt University, Nashville, United States
| | - Maggie Roy
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, Osaka, Japan
| | - Jae Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Peter Schofield
- Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Jasmeer P Chhatwal
- Harvard Medical School, Massachusetts General Hospital, Boston, United States
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Tammie Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - John Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - Randall Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - John Cs Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Julie Gonneaud
- Douglas Mental Health University Institute, Montreal, Canada.,Normandie Univ, UNICAEN, INSERM, U1237, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | | | | |
Collapse
|
31
|
Ni R, Röjdner J, Voytenko L, Dyrks T, Thiele A, Marutle A, Nordberg A. In vitro Characterization of the Regional Binding Distribution of Amyloid PET Tracer Florbetaben and the Glia Tracers Deprenyl and PK11195 in Autopsy Alzheimer's Brain Tissue. J Alzheimers Dis 2021; 80:1723-1737. [PMID: 33749648 PMCID: PMC8150513 DOI: 10.3233/jad-201344] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Emerging evidence indicates a central role of gliosis in Alzheimer's disease (AD) pathophysiology. However, the regional distribution and interaction of astrogliosis and microgliosis in association with amyloid-β (Aβ) still remain uncertain. OBJECTIVE Here we studied the pathological profiles in autopsy AD brain by using specific imaging tracers. METHODS Autopsy brain tissues of AD (n = 15, age 70.4±8.5 years) and control cases (n = 12, age 76.6±10.9) were examined with homogenate binding assays, autoradiography for Aβ plaques (3H-florbetaben/3H-PIB), astrogliosis (3H-L-deprenyl), and microgliosis (3H-PK11195/3H-FEMPA), as well as immunoassays. RESULTS In vitro saturation analysis revealed high-affinity binding sites of 3H-florbetaben, 3H-L-deprenyl, and 3H-PK11195/3H-FEMPA in the frontal cortex of AD cases. In vitro3H-florbetaben binding increased across cortical and subcortical regions of AD compared to control with the highest binding in the frontal and parietal cortices. The in vitro3H-L-deprenyl binding showed highest binding in the hippocampus (dentate gyrus) followed by cortical and subcortical regions of AD while the GFAP expression was upregulated only in the hippocampus compared to control. The in vitro3H-PK11195 binding was solely increased in the parietal cortex and the hippocampus of AD compared to control. The 3H-florbetaben binding positively correlated with the 3H-L-deprenyl binding in the hippocampus and parietal cortex of AD and controls. Similarly, a positive correlation was observed between 3H-florbetaben binding and GFAP expression in hippocampus of AD and control. CONCLUSION The use of multi-imaging tracers revealed different regional pattern of changes in autopsy AD brain with respect to amyloid plaque pathology versus astrogliosis and microgliosis.
Collapse
Affiliation(s)
- Ruiqing Ni
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jennie Röjdner
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Larysa Voytenko
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Amelia Marutle
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, The Aging Brain Unit, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Collij LE, Ingala S, Top H, Wottschel V, Stickney KE, Tomassen J, Konijnenberg E, ten Kate M, Sudre C, Lopes Alves I, Yaqub MM, Wink AM, Van ‘t Ent D, Scheltens P, van Berckel BN, Visser PJ, Barkhof F, Braber AD. White matter microstructure disruption in early stage amyloid pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12124. [PMID: 33816751 PMCID: PMC8015832 DOI: 10.1002/dad2.12124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Amyloid beta (Aβ) accumulation is the first pathological hallmark of Alzheimer's disease (AD), and it is associated with altered white matter (WM) microstructure. We aimed to investigate this relationship at a regional level in a cognitively unimpaired cohort. METHODS We included 179 individuals from the European Medical Information Framework for AD (EMIF-AD) preclinAD study, who underwent diffusion magnetic resonance (MR) to determine tract-level fractional anisotropy (FA); mean, radial, and axial diffusivity (MD/RD/AxD); and dynamic [18F]flutemetamol) positron emission tomography (PET) imaging to assess amyloid burden. RESULTS Regression analyses showed a non-linear relationship between regional amyloid burden and WM microstructure. Low amyloid burden was associated with increased FA and decreased MD/RD/AxD, followed by decreased FA and increased MD/RD/AxD upon higher amyloid burden. The strongest association was observed between amyloid burden in the precuneus and body of the corpus callosum (CC) FA and diffusivity (MD/RD) measures. In addition, amyloid burden in the anterior cingulate cortex strongly related to AxD and RD measures in the genu CC. DISCUSSION Early amyloid deposition is associated with changes in WM microstructure. The non-linear relationship might reflect multiple stages of axonal damage.
Collapse
Affiliation(s)
- Lyduine E. Collij
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Silvia Ingala
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Herwin Top
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Viktor Wottschel
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | | | - Jori Tomassen
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | | | - Mara ten Kate
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Carole Sudre
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
- Institute of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - Isadora Lopes Alves
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Maqsood M. Yaqub
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Alle Meije Wink
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Dennis Van ‘t Ent
- Dept. of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Philip Scheltens
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Bart N.M. van Berckel
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Pieter Jelle Visser
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNS), Alzheimer Centrum LimburgMaastricht UniversityMaastrichtThe Netherlands
- Department of NeurobiologyCare Sciences Division of NeurogeriatricsKarolinska InstitutetStockholmSweden
| | - Frederik Barkhof
- Dept. of Radiology and Nuclear MedicineAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
- Institute of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - Anouk Den Braber
- Dept. of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- Alzheimer CenterAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| |
Collapse
|
33
|
Ly M, Raji CA, Yu GZ, Wang Q, Wang Y, Schindler SE, An H, Samara A, Eisenstein SA, Hershey T, Smith G, Klein S, Liu J, Xiong C, Ances BM, Morris JC, Benzinger TLS. Obesity and White Matter Neuroinflammation Related Edema in Alzheimer's Disease Dementia Biomarker Negative Cognitively Normal Individuals. J Alzheimers Dis 2021; 79:1801-1811. [PMID: 33459647 DOI: 10.3233/jad-201242] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is related to quantitative neuroimaging abnormalities including reduced gray matter volumes and impaired white matter microstructural integrity, although the underlying mechanisms are not well understood. OBJECTIVE We assessed influence of obesity on neuroinflammation imaging that may mediate brain morphometric changes. Establishing the role of neuroinflammation in obesity will enhance understanding of this modifiable disorder as a risk factor for Alzheimer's disease (AD) dementia. METHODS We analyzed brain MRIs from 104 cognitively normal participants (CDR = 0) and biomarker negativity for CSF amyloid or tau. We classified body mass index (BMI) as normal (BMI <25, N = 62) or overweight and obese (BMI ≥25, N = 42). Blood pressure was measured. BMI and blood pressure classifications were related to neuroinflammation imaging (NII) derived edema fraction in 17 white matter tracts. This metric was also correlated to hippocampal volumes and CSF biomarkers of inflammation and neurodegeneration: YKL-40, SNAP25, VILIP, tau, and NFL. RESULTS Participants with BMI <25 had lower NII-derived edema fraction, with protective effects of normal blood pressure. Statistically significant white matter tracts included the internal capsule, external capsule, and corona radiata, FDR correc-ted for multiple comparisons to alpha = 0.05. Higher NII-derived edema fractions in the internal capsule, corpus callosum, gyrus, and superior fronto-occipital fasciculus were related with smaller hippocampal volumes only in individuals with BMI ≥25. There were no statistically significant correlations between NII-derived edema fraction and CSF biomarkers. CONCLUSION We demonstrate statistically significant relationships between neuroinflammation, elevated BMI, and hippocampal volume, raising implications for neuroinflammation mechanisms of obesity-related brain dysfunction in cognitively normal elderly.
Collapse
Affiliation(s)
- Maria Ly
- University of Pittsburgh Medical Scientist Training Program, Pittsburgh, PA, USA
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary Z Yu
- University of Pittsburgh Medical Scientist Training Program, Pittsburgh, PA, USA
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yong Wang
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Amjad Samara
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah A Eisenstein
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.,Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gordon Smith
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA
| | - Jingxia Liu
- Department of Biostatistics, Washington University in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St. Louis, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
34
|
Fronza MG, Baldinotti R, Sacramento M, Gutierres J, Carvalho FB, Fernandes MDC, Sousa FSS, Seixas FK, Collares T, Alves D, Pratico D, Savegnago L. Effect of QTC-4-MeOBnE Treatment on Memory, Neurodegeneration, and Neurogenesis in a Streptozotocin-Induced Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2021; 12:109-122. [PMID: 33315382 DOI: 10.1021/acschemneuro.0c00615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that drugs targeting neurogenesis and myelinization could be novel therapeutic targets against Alzheimer's disease (AD). Intracerebroventricular (icv) injection of streptozotocin (STZ) induces neurodegeneration through multiple mechanisms ultimately resulting in reduced adult neurogenesis. Previously, the multitarget compound QTC-4-MeOBnE (1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4-carboxamide) demonstrated beneficial effects in preclinical models of AD. Here we investigated its pharmacokinetics profile and the effect on memory impairments and neurodegeneration induced by STZ. Two icv injections of STZ resulted in significant cognitive and memory impairments, assessed by novel object recognition, Y-maze, social recognition, and step-down passive avoidance paradigms. These deficits were reversed in STZ-injected mice treated with QTC-4-MeOBnE. This effect was associated with reversion of neuronal loss in hippocampal dentate gyrus, reduced oxidative stress, and amelioration of synaptic function trough Na+/K+ ATPase and acetylcholinesterase activities. Furthermore, brains from QTC-4-MeOBnE-treated mice had a significant increase in adult neurogenesis and remyelination through Prox1/NeuroD1 and Wnt/β-catenin pathways. Overall, our findings support the potential anti-AD effect of QTC-4-MeOBnE through multiple pathways, all of which have been involved in the onset and progression of the disease.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Research Group on Neurobiotechnology−GPN, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Rodolfo Baldinotti
- Research Group on Neurobiotechnology−GPN, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Manoela Sacramento
- Laboratory of Clean Organic Synthesis−LASOL, Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, Pelotas, RS 96010-610, Brazil
| | - Jessié Gutierres
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Fabiano Barbosa Carvalho
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Marilda da Cruz Fernandes
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | | | - Fabiana K. Seixas
- Oncology Research Group, GPO, CDTec, UFPel, CDTec, Pelotas, RS 96010-610, Brazil
| | - Tiago Collares
- Oncology Research Group, GPO, CDTec, UFPel, CDTec, Pelotas, RS 96010-610, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis−LASOL, Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, Pelotas, RS 96010-610, Brazil
| | - Domenico Pratico
- Alzheimer’s Center at Temple−ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States of America
| | - Lucielli Savegnago
- Research Group on Neurobiotechnology−GPN, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| |
Collapse
|
35
|
Weston PSJ, Poole T, Nicholas JM, Toussaint N, Simpson IJA, Modat M, Ryan NS, Liang Y, Rossor MN, Schott JM, Ourselin S, Zhang H, Fox NC. Measuring cortical mean diffusivity to assess early microstructural cortical change in presymptomatic familial Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:112. [PMID: 32943095 PMCID: PMC7499910 DOI: 10.1186/s13195-020-00679-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Background There is increasing interest in improving understanding of the timing and nature of early neurodegeneration in Alzheimer’s disease (AD) and developing methods to measure this in vivo. Autosomal dominant familial Alzheimer’s disease (FAD) provides the opportunity for investigation of presymptomatic change. We assessed early microstructural breakdown of cortical grey matter in FAD with diffusion-weighted MRI. Methods Diffusion-weighted and T1-weighed MRI were acquired in 38 FAD mutation carriers (17 symptomatic, 21 presymptomatic) and 39 controls. Mean diffusivity (MD) was calculated for six cortical regions previously identified as being particularly vulnerable to FAD-related neurodegeneration. Linear regression compared MD between symptomatic and presymptomatic carriers and controls, adjusting for age and sex. Spearman coefficients assessed associations between cortical MD and cortical thickness. Spearman coefficients also assessed associations between cortical MD and estimated years to/from onset (EYO). Across mutation carriers, linear regression assessed associations between MD and EYO, adjusting for cortical thickness. Results Compared with controls, cortical MD was higher in symptomatic mutation carriers (mean ± SD CDR = 0.88 ± 0.39) for all six regions (p < 0.001). In late presymptomatic carriers (within 8.1 years of predicted symptom onset), MD was higher in the precuneus (p = 0.04) and inferior parietal cortex (p = 0.003) compared with controls. Across all presymptomatic carriers, MD in the precuneus correlated with EYO (p = 0.04). Across all mutation carriers, there was strong evidence (p < 0.001) of association between MD and cortical thickness in all regions except entorhinal cortex. After adjusting for cortical thickness, there remained an association (p < 0.05) in mutation carriers between MD and EYO in all regions except entorhinal cortex. Conclusions Cortical MD measurement detects microstructural breakdown in presymptomatic FAD and correlates with proximity to symptom onset independently of cortical thickness. Cortical MD may thus be a feasible biomarker of early AD-related neurodegeneration, offering additional/complementary information to conventional MRI measures.
Collapse
Affiliation(s)
- Philip S J Weston
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.
| | - Teresa Poole
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Nicolas Toussaint
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Transitional Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Ivor J A Simpson
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Transitional Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Marc Modat
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Department of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK
| | - Yuying Liang
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK
| | - Martin N Rossor
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK
| | - Sebastien Ourselin
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK.,Department of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Hui Zhang
- Microstructure Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, Box 16, London, WC1N 3BG, UK
| |
Collapse
|
36
|
Samara A, Murphy T, Strain J, Rutlin J, Sun P, Neyman O, Sreevalsan N, Shimony JS, Ances BM, Song SK, Hershey T, Eisenstein SA. Neuroinflammation and White Matter Alterations in Obesity Assessed by Diffusion Basis Spectrum Imaging. Front Hum Neurosci 2020; 13:464. [PMID: 31992978 PMCID: PMC6971102 DOI: 10.3389/fnhum.2019.00464] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/18/2019] [Indexed: 01/06/2023] Open
Abstract
Human obesity is associated with low-grade chronic systemic inflammation, alterations in brain structure and function, and cognitive impairment. Rodent models of obesity show that high-calorie diets cause brain inflammation (neuroinflammation) in multiple regions, including the hippocampus, and impairments in hippocampal-dependent memory tasks. To determine if similar effects exist in humans with obesity, we applied Diffusion Basis Spectrum Imaging (DBSI) to evaluate neuroinflammation and axonal integrity. We examined diffusion-weighted magnetic resonance imaging (MRI) data in two independent cohorts of obese and non-obese individuals (Cohort 1: 25 obese/21 non-obese; Cohort 2: 18 obese/41 non-obese). We applied Tract-based Spatial Statistics (TBSS) to allow whole-brain white matter (WM) analyses and compare DBSI-derived isotropic and anisotropic diffusion measures between the obese and non-obese groups. In both cohorts, the obese group had significantly greater DBSI-derived restricted fraction (DBSI-RF; an indicator of neuroinflammation-related cellularity), and significantly lower DBSI-derived fiber fraction (DBSI-FF; an indicator of apparent axonal density) in several WM tracts (all corrected p < 0.05). Moreover, using region of interest analyses, average DBSI-RF and DBSI-FF values in the hippocampus were significantly greater and lower, respectively, in obese relative to non-obese individuals (Cohort 1: p = 0.045; Cohort 2: p = 0.008). Hippocampal DBSI-FF and DBSI-RF and amygdalar DBSI-FF metrics related to cognitive performance in Cohort 2. In conclusion, these findings suggest that greater neuroinflammation-related cellularity and lower apparent axonal density are associated with human obesity and cognitive performance. Future studies are warranted to determine a potential role for neuroinflammation in obesity-related cognitive impairment.
Collapse
Affiliation(s)
- Amjad Samara
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Tatianna Murphy
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeremy Strain
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Peng Sun
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Olga Neyman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Nitya Sreevalsan
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
37
|
Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2019; 46:2831-2847. [PMID: 31396666 PMCID: PMC6879435 DOI: 10.1007/s00259-019-04462-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation, as defined by the activation of microglia and astrocytes, has emerged in the last years as a key element of the pathogenesis of neurodegenerative diseases based on genetic findings and preclinical and human studies. This has raised the need for new methodologies to assess and follow glial activation in patients, prompting the development of PET ligands for molecular imaging of glial cells and novel structural MRI and DTI tools leading to a multimodal approach. The present review describes the recent advancements in microglia and astrocyte biology in the context of health, ageing, and Alzheimer's disease, the most common dementia worldwide. The review further delves in molecular imaging discussing the challenges associated with past and present targets, including conflicting findings, and finally, presenting novel methodologies currently explored to improve our in vivo knowledge of the neuroinflammatory patterns in Alzheimer's disease. With glial cell activation as a potential therapeutic target in neurodegenerative diseases, the translational research between cell biologists, chemists, physicists, radiologists, and neurologists should be strengthened.
Collapse
|