1
|
Wiesman AI, Madge V, Fon EA, Dagher A, Collins DL, Baillet S. Associations between neuromelanin depletion and cortical rhythmic activity in Parkinson's disease. Brain 2025; 148:875-885. [PMID: 39282945 PMCID: PMC11884654 DOI: 10.1093/brain/awae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Parkinson's disease (PD) is marked by the death of neuromelanin-rich dopaminergic and noradrenergic cells in the substantia nigra (SN) and the locus coeruleus (LC), respectively, resulting in motor and cognitive impairments. Although SN dopamine dysfunction has clear neurophysiological effects, the association of reduced LC norepinephrine signalling with brain activity in PD remains to be established. We used neuromelanin-sensitive T1-weighted MRI (PD, n = 58; healthy control, n = 27) and task-free magnetoencephalography (PD, n = 58; healthy control, n = 65) to identify neuropathophysiological factors related to the degeneration of the LC and SN in patients with PD. We found pathological increases in rhythmic alpha-band (8-12 Hz) activity in patients with decreased LC neuromelanin, which were more strongly associated in patients with worse attentional impairments. This negative alpha-band-LC neuromelanin relationship is strongest in fronto-motor cortices, where alpha-band activity is inversely related to attention scores. Using neurochemical co-localization analyses with normative atlases of neurotransmitter transporters, we also show that this effect is more pronounced in regions with high densities of norepinephrine transporters. These observations support a noradrenergic association between LC integrity and alpha-band activity. Our data also show that rhythmic beta-band (15-29 Hz) activity in the left somatomotor cortex decreases with lower levels of SN neuromelanin; the same regions where beta activity reflects axial motor symptoms. Together, our findings clarify the association of well-documented alterations of rhythmic neurophysiology in PD with cortical and subcortical neurochemical systems. Specifically, attention-related alpha-band activity is related to dysfunction of the noradrenergic system, and beta activity with relevance to motor impairments reflects dopaminergic dysfunction.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Victoria Madge
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
2
|
Walker CS, Noriega de la Colina AE, Li L, Boulanger C, Thovinakere N, Noly-Gandon A, Barnoin G, Bennett M, Caplan J, Côté L, Elbaz S, Bao SFK, Kara R, Lavoie N, Nguyen M, Otaner F, Pallett-Wiesel H, Piché JV, Powers A, Ricciardelli S, Williams K, Déry C, Tremblay-Mercier J, Poirier J, Villeneuve S, Kramer AF, Geddes MR. Protocol for an intergenerational randomized controlled trial to enhance physical activity in older adults at risk for Alzheimer's disease. J Prev Alzheimers Dis 2025; 12:100039. [PMID: 40015754 PMCID: PMC11868723 DOI: 10.1016/j.tjpad.2024.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Physical inactivity is one of the most important modifiable risk factors for Alzheimer's disease in North America. Despite this, most older adults are physically inactive. It is currently unknown how to successfully motivate physical activity behavior in older adults at risk for Alzheimer's disease, and this knowledge is crucial for early and effective disease prevention. Prior research has shown that intergenerational social engagement and prosocial behaviours can enhance the health and well-being of older adults. OBJECTIVES This manuscript describes the design of a randomized controlled trial that will test the efficacy of a behavioral intervention to enhance physical activity in older adults at risk for Alzheimer's disease. DESIGN/SETTING This is a single-blinded, two-arm stratified randomized controlled trial that incorporates a hybrid efficacy and implementation design. Participants are randomized to an intervention or control condition in a 1:1 ratio and are stratified by a multimodal Alzheimer's disease risk score. All study visits are conducted remotely through videoconferencing. PARTICIPANTS The study aims to recruit 60 older adults with a first-degree family history of Alzheimer's disease from the PREVENT-AD cohort and 30 younger adults who are paired with older adults in the intervention condition. INTERVENTION Older participants in the intervention group will be paired with younger study partners and receive positive, daily messages over four weeks using a novel technology platform. The daily messages combine intergenerational social engagement (growing a virtual garden with a younger study partner) and prosocial goals (donations to charity after reaching step count goals). MEASUREMENTS The primary outcome is change in step count compared to baseline measured using a wrist-worn triaxial accelerometer. Secondary outcomes include time spent physically active, mood, generativity, loneliness, and cognition. Target mechanisms (social support and generativity) of physical activity engagement will be examined. Ease of use, acceptability, and feasibility of the technology as well as barriers and facilitators of participation will be assessed. CONCLUSIONS This research will advance our understanding of mechanisms and individual differences underlying successful physical activity engagement in older adults who are at risk for Alzheimer's disease. This knowledge will contribute to strategies for promoting health behaviours that can prevent the risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Caitlin S Walker
- Montreal Neurological Institute-Hospital Cognitive Neuroscience Research Group, McGill University, Montreal, QC, Canada.
| | - Adrián E Noriega de la Colina
- The Neuro, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada; Centre for Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada; Massachusetts Institute of Technology, Cambridge, MA, USA; McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Linda Li
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Carolynn Boulanger
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Nagashree Thovinakere
- The Neuro, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada; Rotman Research Institute, University of Toronto, Toronto, Canada
| | - Alix Noly-Gandon
- The Neuro, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Garance Barnoin
- Department of Arts and Science, McGill University, Montreal, QC, Canada
| | - Mitchell Bennett
- Department of Arts and Science, McGill University, Montreal, QC, Canada
| | - Jillian Caplan
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Laurence Côté
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Sarah Elbaz
- Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | | | - Ryan Kara
- The Neuro, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Nicolas Lavoie
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Maggie Nguyen
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Franciska Otaner
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Helen Pallett-Wiesel
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | | | | | - Sofia Ricciardelli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Kayla Williams
- The Neuro, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Christine Déry
- Centre for Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada; McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jennifer Tremblay-Mercier
- Centre for Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada
| | - Judes Poirier
- Centre for Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada; McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Sylvia Villeneuve
- The Neuro, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada; Centre for Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, QC, Canada; McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Arthur F Kramer
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA, USA; Beckman Institute, University of Illinois, Urbana, Illinois, USA
| | - Maiya R Geddes
- The Neuro, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada; Centre for Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada; Massachusetts Institute of Technology, Cambridge, MA, USA; McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada; Center for Cognitive & Brain Health, Northeastern University, Boston, MA, USA; Rotman Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Capogna E, Sørensen Ø, Watne LO, Roe J, Strømstad M, Idland AV, Halaas NB, Blennow K, Zetterberg H, Walhovd KB, Fjell AM, Vidal-Piñeiro D. Subtypes of brain change in aging and their associations with cognition and Alzheimer's disease biomarkers. Neurobiol Aging 2025; 147:124-140. [PMID: 39740372 DOI: 10.1016/j.neurobiolaging.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Structural brain changes underlie cognitive changes and interindividual variability in cognition in older age. By using structural MRI data-driven clustering, we aimed to identify subgroups of cognitively unimpaired older adults based on brain change patterns and assess how changes in cortical thickness, surface area, and subcortical volume relate to cognitive change. We tested (1) which brain structural changes predict cognitive change (2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer's disease biomarkers, and (3) the degree of overlap between clusters derived from different structural modalities in 1899 cognitively healthy older adults followed up to 16 years. We identified four groups for each brain feature, based on the degree of a main longitudinal component of decline. The minimal overlap between features suggested that each contributed uniquely and independently to structural brain changes in aging. Cognitive change and baseline cognition were associated with cortical area change, whereas higher baseline levels of phosphorylated tau and amyloid-β related to changes in subcortical volume. These results may contribute to a better understanding of different aging trajectories.
Collapse
Affiliation(s)
- Elettra Capogna
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway.
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - James Roe
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Ane Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Campus Ullevål, University of Oslo, Oslo, Norway.
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Center for Neurodegenerative Diseases, Hong Kong; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristine Beate Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders Martin Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0373, Norway
| |
Collapse
|
4
|
Vidal-Piñeiro D, Sørensen Ø, Strømstad M, Amlien IK, Anderson M, Baaré WFC, Bartrés-Faz D, Brandmaier AM, Bråthen AC, Garrido P, Ghisletta P, Grydeland H, Henson RN, Kievit RA, Kormacher M, Kühn S, Lindenberger U, Mowinckel AM, Nyberg L, Roe JM, Sneve MH, Sole-Padulles C, Watne LO, Walhovd KB, Fjell AM. Reliability of structural brain change in cognitively healthy adult samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.03.592804. [PMID: 40027710 PMCID: PMC11870432 DOI: 10.1101/2024.06.03.592804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
In neuroimaging research, tracking individuals over time is key to understanding the interplay between brain changes and genetic, environmental, or cognitive factors across the lifespan. Yet, the extent to which we can estimate the individual trajectories of brain change over time with precision remains uncertain. In this study, we estimated the reliability of structural brain change in cognitively healthy adults from multiple samples and assessed the influence of follow-up time and number of observations. Estimates of cross-sectional measurement error and brain change variance were obtained using the longitudinal FreeSurfer processing stream. Our findings showed, on average, modest longitudinal reliability with two years of follow-up. Increasing the follow-up time was associated with a substantial increase in longitudinal reliability while the impact of increasing the number of observations was comparatively minor. On average, 2-year follow-up studies require ≈2.7 and ≈4.0 times more individuals than designs with follow-ups of 4 and 6 years to achieve comparable statistical power. Subcortical volume exhibited higher longitudinal reliability compared to cortical area, thickness, and volume. The reliability estimates were comparable to those estimated from empirical data. The reliability estimates were affected by both the cohort's age where younger adults had lower reliability of change, and the preprocessing pipeline where the FreeSurfer's longitudinal stream was notably superior than the cross-sectional. Suboptimal reliability inflated sample size requirements and compromised the ability to distinguish individual trajectories of brain aging. This study underscores the importance of long-term follow-ups and the need to consider reliability in longitudinal neuroimaging research.
Collapse
|
5
|
Fjell A, Rogeberg O, Sørensen Ø, Amlien I, Bartres-Faz D, Brandmaier A, Cattaneo G, Duzel S, Grydeland H, Henson R, Kühn S, Lindenberger U, Lyngstad T, Mowinckel A, Nyberg L, Pascual-Leone A, Sole-Padulles C, Sneve M, Solana J, Stromstad M, Watne L, Walhovd KB, Vidal D. Reevaluating the Role of Education in Cognitive Decline and Brain Aging: Insights from Large-Scale Longitudinal Cohorts across 33 Countries. RESEARCH SQUARE 2025:rs.3.rs-5938408. [PMID: 39989967 PMCID: PMC11844660 DOI: 10.21203/rs.3.rs-5938408/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Why education is linked to higher cognitive function in aging is fiercely debated. Leading theories propose that education reduces brain decline in aging, enhances tolerance to brain pathology, or that it does not affect cognitive decline but rather reflects higher early-life cognitive function. To test these theories, we analyzed 407.356 episodic memory scores from 170.795 participants > 50 years, alongside 15.157 brain MRIs from 6.472 participants across 33 Western countries. More education was associated with better memory, larger intracranial volume and slightly larger volume of memory-sensitive brain regions. However, education did not protect against age-related decline or weakened effects of brain decline on cognition. The most parsimonious explanation for the results is that the associations reflect factors present early in life, including propensity of individuals with certain traits to pursue more education. While education has numerous benefits, the notion that it provides protection against cognitive or brain decline is not supported.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development
| | | | | | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fischer L, Molloy EN, Pichet Binette A, Vockert N, Marquardt J, Pacha Pilar A, Kreissl MC, Remz J, Tremblay-Mercier J, Poirier J, Rajah MN, Villeneuve S, Maass A. Precuneus Activity during Retrieval Is Positively Associated with Amyloid Burden in Cognitively Normal Older APOE4 Carriers. J Neurosci 2025; 45:e1408242024. [PMID: 39788739 PMCID: PMC11800745 DOI: 10.1523/jneurosci.1408-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
The precuneus is a site of early amyloid-beta (Aβ) accumulation. Previous cross-sectional studies reported increased precuneus fMRI activity in older adults with mild cognitive deficits or elevated Aβ. However, longitudinal studies in early Alzheimer's disease (AD) are lacking and the relationship to the Apolipoprotein-E (APOE) genotype is unclear. Investigating the PREVENT-AD dataset, we assessed how baseline and longitudinal precuneus activity during successful memory retrieval relates to future Aβ and tau burden and change in memory performance. We further studied the moderation by APOE4 genotype. We included 165 older adults (age, 62.8 ± 4.4 years; 113 female; 66 APOE4 carriers) who were cognitively normal at baseline with a family history of AD. All participants performed task-fMRI at baseline and underwent 18F-flortaucipir-PET and 18F-NAV4694-Aβ-PET on average 5 years later. We found that higher baseline activity and greater longitudinal increase in precuneus activity were associated with higher Aβ burden in APOE4 carriers but not noncarriers. We observed no effects of precuneus activity on tau burden. Finally, APOE4 noncarriers with low baseline precuneus activity exhibited better longitudinal performance in an independent memory test compared with (1) noncarriers with higher baseline activity and (2) APOE4 carriers. Our findings suggest that higher task-related precuneus activity during memory retrieval at baseline and over time are associated with greater Aβ burden in cognitively normal APOE4 carriers. Our results further indicate that the absence of "hyperactivation" and the absence of the APOE4 allele is related with better future cognitive outcomes in cognitively normal older adults at risk for AD.
Collapse
Affiliation(s)
- Larissa Fischer
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Alexa Pichet Binette
- Clinical Memory Research, Faculty of Medicine, Lund University, Lund 223 62, Sweden
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
| | - Niklas Vockert
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Jonas Marquardt
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Andrea Pacha Pilar
- Institute for Biology, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Michael C Kreissl
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Jordana Remz
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
| | - Jennifer Tremblay-Mercier
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montréal H3A 1A1, Canada
| | - Maria Natasha Rajah
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montréal H3A 1A1, Canada
- Department of Psychology, Toronto Metropolitan University, Toronto M5S 1A1, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute Research Centre, McGill University, Montréal H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montréal H3A 1A1, Canada
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Institute for Biology, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
7
|
Yakoub Y, Gonzalez‐Ortiz F, Ashton NJ, Déry C, Strikwerda‐Brown C, St‐Onge F, Ourry V, Schöll M, Geddes MR, Ducharme S, Montembeault M, Rosa‐Neto P, Soucy J, Breitner JCS, Zetterberg H, Blennow K, Poirier J, Villeneuve S. Plasma p-tau217 identifies cognitively normal older adults who will develop cognitive impairment in a 10-year window. Alzheimers Dement 2025; 21:e14537. [PMID: 40008832 PMCID: PMC11863240 DOI: 10.1002/alz.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/27/2025]
Abstract
INTRODUCTION We assessed the prognostic accuracy of plasma p-tau217 in predicting the progression to mild cognitive impairment (MCI) in cognitively unimpaired (CU) individuals over a mean follow-up of 5.65 years after plasma collection (range 1.01-10.47). METHODS We included 215 participants from the PREVENT-AD cohort with plasma Aβ42/40 and p-tau217, 159 with cerebrospinal fluid (CSF) Aβ42/40 and p-tau217, and 155 with 18F-NAV4694 and 18F-flortaucipir PET scans. MCI progression was determined by multidisciplinary consensus among memory experts blind to biomarker and genetic information. RESULTS Cox proportional hazard models indicated a greater progression rate in A+T+plasma and A-T+plasma compared to A-T-plasma individuals (HR = 7.81 [95% CI = 3.92 to 15.59] and HR = 4.25 [1.60-11.31] respectively). Similar results were found with CSF (HR = 3.63 [1.72-7.70]) and PET (HR = 9.30 [3.67-23.55]). DISCUSSION Plasma p-tau217 is a prognostic marker for identifying individuals who will develop cognitive impairment within ten years. HIGHLIGHTS Elevated plasma p-tau217 levels in CU individuals indicate future clinical progression. Adding plasma Aβ42/40 status to p-tau markers did not improve the prediction to MCI. All individuals with abnormal tau PET measured in a temporal meta-ROI progressed to MCI.
Collapse
Affiliation(s)
- Yara Yakoub
- Douglas Mental Health University InstituteCentre for Studies on the Prevention of Alzheimer's Disease (StoP‐AD)MontrealQuebecCanada
| | - Fernando Gonzalez‐Ortiz
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
- King's College LondonInstitute of Psychiatry, Psychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteLondonUK
- Banner Alzheimer's InstitutePhoenixArizonaUSA
| | - Christine Déry
- Douglas Mental Health University InstituteCentre for Studies on the Prevention of Alzheimer's Disease (StoP‐AD)MontrealQuebecCanada
| | - Cherie Strikwerda‐Brown
- Douglas Mental Health University InstituteCentre for Studies on the Prevention of Alzheimer's Disease (StoP‐AD)MontrealQuebecCanada
- School of Psychological SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Frédéric St‐Onge
- Douglas Mental Health University InstituteCentre for Studies on the Prevention of Alzheimer's Disease (StoP‐AD)MontrealQuebecCanada
| | - Valentin Ourry
- Douglas Mental Health University InstituteCentre for Studies on the Prevention of Alzheimer's Disease (StoP‐AD)MontrealQuebecCanada
| | - Michael Schöll
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Maiya R. Geddes
- Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- McGill University Research Centre for Studies in Aging, McGill UniversityMontrealQuebecCanada
| | - Simon Ducharme
- Douglas Mental Health University InstituteCentre for Studies on the Prevention of Alzheimer's Disease (StoP‐AD)MontrealQuebecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Maxime Montembeault
- Douglas Mental Health University InstituteCentre for Studies on the Prevention of Alzheimer's Disease (StoP‐AD)MontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Pedro Rosa‐Neto
- Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- McGill University Research Centre for Studies in Aging, McGill UniversityMontrealQuebecCanada
| | - Jean‐Paul Soucy
- Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - John C. S. Breitner
- Douglas Mental Health University InstituteCentre for Studies on the Prevention of Alzheimer's Disease (StoP‐AD)MontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongHong Kong
- UW Department of MedicineSchool of Medicine and Public HealthMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Judes Poirier
- Douglas Mental Health University InstituteCentre for Studies on the Prevention of Alzheimer's Disease (StoP‐AD)MontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Sylvia Villeneuve
- Douglas Mental Health University InstituteCentre for Studies on the Prevention of Alzheimer's Disease (StoP‐AD)MontrealQuebecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
8
|
Fjell AM, Røgeberg O, Sørensen Ø, Amlien IK, Bartrés-Faz D, Brandmaier AM, Cattaneo G, Düzel S, Grydeland H, Henson RN, Kühn S, Lindenberger U, Lyngstad TH, Mowinckel AM, Nyberg L, Pascual-Leone A, Solé-Padullés C, Sneve MH, Solana J, Strømstad M, Watne LO, Walhovd KB, Vidal-Piñeiro D. Reevaluating the Role of Education in Cognitive Decline and Brain Aging: Insights from Large-Scale Longitudinal Cohorts across 33 Countries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.29.25321305. [PMID: 39974127 PMCID: PMC11838635 DOI: 10.1101/2025.01.29.25321305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Why education is linked to higher cognitive function in aging is fiercely debated. Leading theories propose that education reduces brain decline in aging, enhances tolerance to brain pathology, or that it does not affect cognitive decline but rather reflects higher early-life cognitive function. To test these theories, we analyzed 407.356 episodic memory scores from 170.795 participants >50 years, alongside 15.157 brain MRIs from 6.472 participants across 33 Western countries. More education was associated with better memory, larger intracranial volume and slightly larger volume of memory-sensitive brain regions. However, education did not protect against age-related decline or weakened effects of brain decline on cognition. The most parsimonious explanation for the results is that the associations reflect factors present early in life, including propensity of individuals with certain traits to pursue more education. While education has numerous benefits, the notion that it provides protection against cognitive or brain decline is not supported.
Collapse
Affiliation(s)
- Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Ole Røgeberg
- Ragnar Frisch Centre for Economic Research, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Inge K. Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Andreas M. Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Germany
- Department of Psychology, MSB Medical School Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Germany
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Germany
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Richard N. Henson
- MRC Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, United Kingdom
| | - Simone Kühn
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Germany
- Center for Environmental Neuroscience, Max Planck Institute for Human Development
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Germany
| | | | | | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Medical and Translational Biology, Umeå University, Sweden
- Department of Diagnostics and Intervention, Umeå University, Sweden
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Markus H. Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Javier Solana
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Institute of Clinical Medicine, Campus Ahus, University of Oslo, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Norway
| | | | | | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| |
Collapse
|
9
|
Hass S, Liebscher M, Richter A, Fliessbach K, Laske C, Sodenkamp S, Peters O, Hellmann-Regen J, Ersözlü E, Priller J, Spruth EJ, Altenstein S, Röske S, Schneider A, Schütze H, Spottke A, Esser A, Teipel S, Kilimann I, Wiltfang J, Rostamzadeh A, Glanz W, Incesoy EI, Lüsebrink F, Dechent P, Hetzer S, Scheffler K, Wagner M, Jessen F, Düzel E, Glöckner F, Schott BH, Wirth M, Klimecki O. Environmental enrichment is associated with favorable memory-related functional brain activity patterns in older adults. Front Aging Neurosci 2024; 16:1451850. [PMID: 39777046 PMCID: PMC11704887 DOI: 10.3389/fnagi.2024.1451850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background In humans, environmental enrichment (EE), as measured by the engagement in a variety of leisure activities, has been associated with larger hippocampal structure and better memory function. The present cross-sectional study assessed whether EE during early life (13-30 years) and midlife (30-65 years) is associated with better preserved memory-related brain activity patterns in older age. Methods In total, 372 cognitively unimpaired older adults (aged ≥60 years old) of the DZNE-Longitudinal Study on Cognitive Impairment and Dementia (DELCODE; DRKS00007966) were investigated. EE was operationalized using items of the Lifetime of Experiences Questionnaire (LEQ), which measures the self-reported participation in a variety of leisure activities in early life and midlife. The preservation of memory-related functional brain activity was assessed using single-value scores, which relate older adults' brain activity patterns in the temporo-parieto-occipital memory network to those of young adults during visual memory encoding (FADE and SAME scores). Results EE during early life and midlife was significantly associated with higher SAME scores during novelty processing (n = 372, β = 0.13, p = 0.011). Thus, older participants with higher EE showed greater similarity of functional brain activity patterns during novelty processing with young adults. This positive association was observed most strongly in participants with subjective cognitive decline (SCD, n = 199, β = 0.20, p = 0.006). Conclusion More frequent participation in a variety of leisure activities in early life and midlife is associated with more successful aging of functional brain activity patterns in the memory network of older adults, including participants at increased risk for dementia. Longitudinal studies are needed to clarify whether higher EE during life could help preserve memory network function in later life.
Collapse
Affiliation(s)
- Simon Hass
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Maxie Liebscher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (CIRC), Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn and University of Bonn, Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Department of Psychiatry and Psychotherapy, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sebastian Sodenkamp
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Neuroscience, Charité - Universitaetsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Julian Hellmann-Regen
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Neuroscience, Charité - Universitaetsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Ersin Ersözlü
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Neuroscience, Charité - Universitaetsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitaetsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- UK DRI, University of Edinburgh, Edinburgh, United Kingdom
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Sandra Röske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn and University of Bonn, Bonn, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Anna Esser
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ayda Rostamzadeh
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Enise I. Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Magdeburg, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn and University of Bonn, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Franka Glöckner
- Chair of Behavioral Psychotherapy, Institute for Clinical Psychology and Psychotherapy, Dresden University of Technology, Dresden, Germany
| | - Björn Hendrik Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Olga Klimecki
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Faculty of Biopsychology, Dresden University of Technology, Dresden, Germany
| | | |
Collapse
|
10
|
Chang D, Wang X, Chen Y, Han ZR, Wang Y, Liu B, Zhang Z, Zuo XN. Older is order: entropy reduction in cortical spontaneous activity marks healthy aging. BMC Neurosci 2024; 25:74. [PMID: 39627691 PMCID: PMC11616130 DOI: 10.1186/s12868-024-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Entropy trajectories remain unclear for the aging process of human brain system due to the lacking of longitudinal neuroimaging resource. RESULTS We used open data from an accelerated longitudinal cohort (PREVENT-AD) that included 24 healthy aging participants followed by 4 years with 5 visits per participant to establish cortical entropy aging curves and distinguish with the effects of age and cohort. This reveals that global cortical entropy decreased with aging, while a significant cohort effect was detectable that people who were born earlier showed higher cortical entropy. Such entropy reductions were also evident for large-scale cortical networks, although with different rates of reduction for different networks. Specifically, the primary and intermediate networks reduce their entropy faster than the higher-order association networks. CONCLUSIONS Our study confirmed that cortical entropy decreases continually in the aging process, both globally and regionally, and we conclude two specific characteristics of the entropy of the human cortex with aging: the shift of the complexity hierarchy and the diversity of complexity strengthen.
Collapse
Affiliation(s)
- Da Chang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Xiu Wang
- Department of Neurology, Beijing Chuiyangliu Hospital Affiliated to Tsinghua University, No 2 Chuiyangliunan Street, Chaoyang District, Beijing, 100022, China
| | - Yaojing Chen
- BABRI Centre, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Zhuo Rachel Han
- Faculty of Psychology, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
- National Basic Science Data Center, No 2 Dongshengnan Road, Haidian District, Beijing, 100190, China.
| |
Collapse
|
11
|
Schwarz CG, Choe M, Rossi S, Das SR, Ittyerah R, Fletcher E, Maillard P, Singh B, Harvey DJ, Malone IB, Prosser L, Senjem ML, Matoush LC, Ward CP, Prakaashana CM, Landau SM, Koeppe RA, Lee J, DeCarli C, Weiner MW, Jack CR, Jagust WJ, Yushkevich PA, Tosun D. Implementation and validation of face de-identification (de-facing) in ADNI4. Alzheimers Dement 2024; 20:8048-8061. [PMID: 39392215 PMCID: PMC11567833 DOI: 10.1002/alz.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Recent technological advances have increased the risk that de-identified brain images could be re-identified from face imagery. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a leading source of publicly available de-identified brain imaging, who quickly acted to protect participants' privacy. METHODS An independent expert committee evaluated 11 face-deidentification ("de-facing") methods and selected four for formal testing. RESULTS Effects of de-facing on brain measurements were comparable across methods and sufficiently small to recommend de-facing in ADNI. The committee ultimately recommended mri_reface for advantages in reliability, and for some practical considerations. ADNI leadership approved the committee's recommendation, beginning in ADNI4. DISCUSSION ADNI4 de-faces all applicable brain images before subsequent pre-processing, analyses, and public release. Trained analysts inspect de-faced images to confirm complete face removal and complete non-modification of brain. This paper details the history of the algorithm selection process and extensive validation, then describes the production workflows for de-facing in ADNI. HIGHLIGHTS ADNI is implementing "de-facing" of MRI and PET beginning in ADNI4. "De-facing" alters face imagery in brain images to help protect privacy. Four algorithms were extensively compared for ADNI and mri_reface was chosen. Validation confirms mri_reface is robust and effective for ADNI sequences. Validation confirms mri_reface negligibly affects ADNI brain measurements.
Collapse
Affiliation(s)
| | - Mark Choe
- Northern California Institute for Research and EducationSan Francisco Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
| | - Stephanie Rossi
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Sandhitsu R. Das
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ranjit Ittyerah
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Evan Fletcher
- Department of NeurologyUniversity of California, DavisDavisCaliforniaUSA
| | - Pauline Maillard
- Department of NeurologyUniversity of California, DavisDavisCaliforniaUSA
| | - Baljeet Singh
- Department of NeurologyUniversity of California, DavisDavisCaliforniaUSA
| | - Danielle J. Harvey
- Division of Biostatistics Department of Public Health Sciences, University of California, DavisDavisCaliforniaUSA
| | - Ian B. Malone
- Dementia Research Centre, Dementia Research CentreUCL Institute of NeurologyQueen SquareLondonUK
| | - Lloyd Prosser
- Dementia Research Centre, Dementia Research CentreUCL Institute of NeurologyQueen SquareLondonUK
| | - Matthew L. Senjem
- Department of Information TechnologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Robert A. Koeppe
- Department of RadiologyUniversity of MichiganAnn ArborMichiganUSA
| | - JiaQie Lee
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of California, DavisDavisCaliforniaUSA
| | - Michael W. Weiner
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - William J. Jagust
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Paul A. Yushkevich
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Duygu Tosun
- Northern California Institute for Research and EducationSan Francisco Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | |
Collapse
|
12
|
Gallego-Rudolf J, Wiesman AI, Pichet Binette A, Villeneuve S, Baillet S. Synergistic association of Aβ and tau pathology with cortical neurophysiology and cognitive decline in asymptomatic older adults. Nat Neurosci 2024; 27:2130-2137. [PMID: 39294489 PMCID: PMC11537964 DOI: 10.1038/s41593-024-01763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/13/2024] [Indexed: 09/20/2024]
Abstract
Animal and computational models of Alzheimer's disease (AD) indicate that early amyloid-β (Aβ) deposits drive neurons into a hyperactive regime, and that subsequent tau depositions manifest an opposite, suppressive effect as behavioral deficits emerge. Here we report analogous changes in macroscopic oscillatory neurophysiology in the human brain. We used positron emission tomography and task-free magnetoencephalography to test the effects of Aβ and tau deposition on cortical neurophysiology in 104 cognitively unimpaired older adults with a family history of sporadic AD. In these asymptomatic individuals, we found that Aβ depositions colocalize with accelerated neurophysiological activity. In those also presenting medial-temporal tau pathology, linear mixed effects of Aβ and tau depositions indicate a shift toward slower neurophysiological activity, which was also linked to cognitive decline. We conclude that early Aβ and tau depositions relate synergistically to human cortical neurophysiology and subsequent cognitive decline. Our findings provide insight into the multifaceted neurophysiological mechanisms engaged in the preclinical phases of AD.
Collapse
Affiliation(s)
- Jonathan Gallego-Rudolf
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alexa Pichet Binette
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Sylvia Villeneuve
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Quesnel MJ, Labonté A, Picard C, Bowie DC, Zetterberg H, Blennow K, Brinkmalm A, Villeneuve S, Poirier J. Osteopontin: A novel marker of pre-symptomatic sporadic Alzheimer's disease. Alzheimers Dement 2024; 20:6008-6031. [PMID: 39072932 PMCID: PMC11497655 DOI: 10.1002/alz.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION We investigate the role of osteopontin (OPN) in participants with Pre-symptomatic Alzheimer's disease (AD), mild cognitive impairment (MCI), and in AD brains. METHODS Cerebrospinal fluid (CSF) OPN, AD, and synaptic biomarker levels were measured in 109 cognitively unimpaired (CU), parental-history positive Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease (PREVENT-AD) participants, and in 167 CU and 399 participants with MCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. OPN levels were examined as a function of amyloid beta (Aβ) and tau positivity. Survival analyses investigated the link between OPN and rate of conversion to AD. RESULTS In PREVENT-AD, CSF OPN was positively correlated with synaptic biomarkers. In PREVENT-AD and ADNI, OPN was elevated in CSF Aβ42/40(+)/total tau(+) and CSF Aβ42/40(+)/phosphorylated tau181(+) individuals. In ADNI, OPN was increased in Aβ(+) positron emission tomography (PET) and tau(+) PET individuals, and associated with an accelerated rate of conversion to AD. OPN was elevated in autopsy-confirmed AD brains. DISCUSSION Strong associations between CSF OPN and key markers of AD pathophysiology suggest a significant role for OPN in tau neurobiology, particularly in the early stages of the disease. HIGHLIGHTS In the Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease cohort, we discovered that cerebrospinal fluid (CSF) osteopontin (OPN) levels can indicate early synaptic dysfunction, tau deposition, and neuronal loss in cognitively unimpaired elderly with a parental history. CSF OPN is elevated in amyloid beta(+) positron emission tomography (PET) and tau(+) PET individuals. Elevated CSF OPN is associated with an accelerated rate of conversion to Alzheimer's disease (AD). Elevated CSF OPN is associated with an accelerated rate of cognitive decline on the Alzheimer's Disease Assessment Scale-Cognitive subscale 13, Montreal Cognitive Assessment, Mini-Mental State Examination, and Clinical Dementia Rating Scale Sum of Boxes. OPN mRNA and protein levels are significantly upregulated in the frontal cortex of autopsy-confirmed AD brains.
Collapse
Affiliation(s)
- Marc James Quesnel
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
| | - Anne Labonté
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Cynthia Picard
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Daniel C. Bowie
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science ParkShatin, N.T.Hong KongChina
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
- Paris Brain Institute, ICM, Pitié‐Salpêtrière Hospital, Sorbonne UniversityParisFrance
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiP.R. China
| | - Ann Brinkmalm
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
| | - Sylvia Villeneuve
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Judes Poirier
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | | | | |
Collapse
|
14
|
Wiesman AI, Gallego‐Rudolf J, Villeneuve S, Baillet S, Wilson TW. Neurochemical organization of cortical proteinopathy and neurophysiology along the Alzheimer's disease continuum. Alzheimers Dement 2024; 20:6316-6331. [PMID: 39001629 PMCID: PMC11497661 DOI: 10.1002/alz.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Despite parallel research indicating amyloid-β accumulation, alterations in cortical neurophysiological signaling, and multi-system neurotransmitter disruptions in Alzheimer's disease (AD), the relationships between these phenomena remains unclear. METHODS Using magnetoencephalography, positron emission tomography, and an atlas of 19 neurotransmitters, we studied the alignment between neurophysiological alterations, amyloid-β deposition, and the neurochemical gradients of the cortex. RESULTS In patients with mild cognitive impairment and AD, changes in cortical rhythms were topographically aligned with cholinergic, serotonergic, and dopaminergic systems. These alignments correlated with the severity of clinical impairments. Additionally, cortical amyloid-β plaques were preferentially deposited along neurochemical boundaries, influencing how neurophysiological alterations align with muscarinic acetylcholine receptors. Most of the amyloid-β-neurochemical and alpha-band neuro-physio-chemical alignments replicated in an independent dataset of individuals with asymptomatic amyloid-β accumulation. DISCUSSION Our findings demonstrate that AD pathology aligns topographically with the cortical distribution of chemical neuromodulator systems and scales with clinical severity, with implications for potential pharmacotherapeutic pathways. HIGHLIGHTS Changes in cortical rhythms in Alzheimer's are organized along neurochemical boundaries. The strength of these alignments is related to clinical symptom severity. Deposition of amyloid-β (Aβ) is aligned with similar neurotransmitter systems. Aβ deposition mediates the alignment of beta rhythms with cholinergic systems. Most alignments replicate in participants with pre-clinical Alzheimer's pathology.
Collapse
Affiliation(s)
- Alex I. Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Department of Biomedical Physiology & KinesiologySimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Jonathan Gallego‐Rudolf
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University InstituteMontrealQuebecCanada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University InstituteMontrealQuebecCanada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | | |
Collapse
|
15
|
La Rosa F, Dos Santos Silva J, Dereskewicz E, Invernizzi A, Cahan N, Galasso J, Garcia N, Graney R, Levy S, Verma G, Balchandani P, Reich DS, Horton M, Greenspan H, Sumowski J, Cuadra MB, Beck ES. BrainAgeNeXt: Advancing Brain Age Modeling for Individuals with Multiple Sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.10.24311686. [PMID: 39148818 PMCID: PMC11326330 DOI: 10.1101/2024.08.10.24311686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Aging is associated with structural brain changes, cognitive decline, and neurodegenerative diseases. Brain age, an imaging biomarker sensitive to deviations from healthy aging, offers insights into structural aging variations and is a potential prognostic biomarker in neurodegenerative conditions. This study introduces BrainAgeNeXt, a novel convolutional neural network inspired by the MedNeXt framework, designed to predict brain age from T1-weighted magnetic resonance imaging (MRI) scans. BrainAgeNeXt was trained and validated on 11,574 MRI scans from 33 private and publicly available datasets of healthy volunteers, aged 5 to 95 years, imaged with 3T and 7T MRI. Performance was compared against three state-of-the-art brain age prediction methods. BrainAgeNeXt achieved a mean absolute error (MAE) of 2.78 ± 3.64 years, lower than the compared methods (MAE = 3.55, 3.59, and 4.16 years, respectively). We tested all methods also across different levels of image quality, and BrainAgeNeXt performed well even with motion artifacts and less common 7T MRI data. In three longitudinal multiple sclerosis (MS) cohorts (273 individuals), brain age was, on average, 4.21 ± 6.51 years greater than chronological age. Longitudinal analysis indicated that brain age increased by 1.15 years per chronological year in individuals with MS (95% CI = [1.05, 1.26]). Moreover, in early MS, individuals with worsening disability had a higher annual increase in brain age compared to those with stable clinical assessments (1.24 vs. 0.75, p < 0.01). These findings suggest that brain age is a promising prognostic biomarker for MS progression and potentially a valuable endpoint for clinical trials.
Collapse
Affiliation(s)
- Francesco La Rosa
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Emma Dereskewicz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noa Cahan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Galasso
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nadia Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robin Graney
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Levy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gaurav Verma
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hayit Greenspan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Sumowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Merixtell Bach Cuadra
- CIBM Center for Biomedical Imaging, Switzerland
- Radiology Department, University of Lausanne and Lausanne University Hospital, Switzerland
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
16
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. EBioMedicine 2024; 105:105201. [PMID: 38908100 PMCID: PMC11253223 DOI: 10.1016/j.ebiom.2024.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Research in healthy young adults shows that characteristic patterns of brain activity define individual "brain-fingerprints" that are unique to each person. However, variability in these brain-fingerprints increases in individuals with neurological conditions, challenging the clinical relevance and potential impact of the approach. Our study shows that brain-fingerprints derived from neurophysiological brain activity are associated with pathophysiological and clinical traits of individual patients with Parkinson's disease (PD). METHODS We created brain-fingerprints from task-free brain activity recorded through magnetoencephalography in 79 PD patients and compared them with those from two independent samples of age-matched healthy controls (N = 424 total). We decomposed brain activity into arrhythmic and rhythmic components, defining distinct brain-fingerprints for each type from recording durations of up to 4 min and as short as 30 s. FINDINGS The arrhythmic spectral components of cortical activity in patients with Parkinson's disease are more variable over short periods, challenging the definition of a reliable brain-fingerprint. However, by isolating the rhythmic components of cortical activity, we derived brain-fingerprints that distinguished between patients and healthy controls with about 90% accuracy. The most prominent cortical features of the resulting Parkinson's brain-fingerprint are mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also demonstrate that Parkinson's symptom laterality can be decoded directly from cortical neurophysiological activity. Furthermore, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. INTERPRETATION The increased moment-to-moment variability of arrhythmic brain-fingerprints challenges patient differentiation and explains previously published results. We outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and symptom laterality of Parkinson's disease. Thus, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification. Symmetrically, we discuss how rhythmic brain-fingerprints may contribute to the improved identification and testing of therapeutic neurostimulation targets. FUNDING Data collection and sharing for this project was provided by the Quebec Parkinson Network (QPN), the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD; release 6.0) program, the Cambridge Centre for Aging Neuroscience (Cam-CAN), and the Open MEG Archives (OMEGA). The QPN is funded by a grant from Fonds de Recherche du Québec - Santé (FRQS). PREVENT-AD was launched in 2011 as a $13.5 million, 7-year public-private partnership using funds provided by McGill University, the FRQS, an unrestricted research grant from Pfizer Canada, the Levesque Foundation, the Douglas Hospital Research Centre and Foundation, the Government of Canada, and the Canada Fund for Innovation. The Brainstorm project is supported by funding to SB from the NIH (R01-EB026299-05). Further funding to SB for this study included a Discovery grant from the Natural Sciences and Engineering Research Council of Canada of Canada (436355-13), and the CIHR Canada research Chair in Neural Dynamics of Brain Systems (CRC-2017-00311).
Collapse
Affiliation(s)
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Li P, Gao L, Lucey BP, Ju YES, Musiek ES, Hu K. Longer sleep duration in Alzheimer's disease progression: a compensatory response? Sleep 2024; 47:zsae093. [PMID: 38602244 PMCID: PMC11168758 DOI: 10.1093/sleep/zsae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Peng Li
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Gao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Center on Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St Louis, MO, USA
| | - Yo-El S Ju
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Center on Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St Louis, MO, USA
- Department of Anesthesiology, Washington University, St Louis, MO, USA
| | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Center on Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St Louis, MO, USA
- Department of Anesthesiology, Washington University, St Louis, MO, USA
| | - Kun Hu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Wearn A, Tremblay SA, Tardif CL, Leppert IR, Gauthier CJ, Baracchini G, Hughes C, Hewan P, Tremblay-Mercier J, Rosa-Neto P, Poirier J, Villeneuve S, Schmitz TW, Turner GR, Spreng RN. Neuromodulatory subcortical nucleus integrity is associated with white matter microstructure, tauopathy and APOE status. Nat Commun 2024; 15:4706. [PMID: 38830849 PMCID: PMC11148077 DOI: 10.1038/s41467-024-48490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.
Collapse
Affiliation(s)
- Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
| | - Stéfanie A Tremblay
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Department of Biomedical Engineering, McGill University, McGill, H3A 2B4, QC, Canada
| | - Ilana R Leppert
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Giulia Baracchini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Colleen Hughes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Patrick Hewan
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Taylor W Schmitz
- Department of Physiology & Pharmacology, Western Institute for Neuroscience, Western University, London, N6A 5C1, ON, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada.
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada.
| |
Collapse
|
19
|
Walker CS, Li L, Baracchini G, Tremblay-Mercier J, Spreng RN, Geddes MR. Neurobehavioral Mechanisms Influencing the Association Between Generativity, the Desire to Promote Well-Being of Younger Generations, and Purpose in Life in Older Adults at Risk for Alzheimer's Disease. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae060. [PMID: 38623965 PMCID: PMC11138215 DOI: 10.1093/geronb/gbae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVES Generativity, the desire and action to improve the well-being of younger generations, is associated with purpose in life among older adults. However, the neurobehavioral factors supporting the relationship between generativity and purpose in life remain unknown. This study aims to identify the functional neuroanatomy of generativity and mechanisms linking generativity with purpose in life in at-risk older adults. METHODS Fifty-eight older adults (mean age = 70.8, SD = 5.03, 45 females) with a family history of Alzheimer's disease (AD) were recruited from the PREVENT-AD cohort. Participants underwent brain imaging and completed questionnaires assessing generativity, social support, and purpose in life. Mediation models examined whether social support mediated the association between generativity and purpose in life. Seed-to-voxel analyses investigated the association between generativity and resting-state functional connectivity (rsFC) to the ventromedial prefrontal cortex (vmPFC) and ventral striatum (VS), and whether this rsFC moderated the relationship between generativity and purpose in life. RESULTS Affectionate social support mediated the association between generative desire and purpose in life. Generative desire was associated with rsFC between VS and precuneus, and, vmPFC and right dorsolateral prefrontal cortex (rdlPFC). The vmPFC-rdlPFC rsFC moderated the association between generative desire and purpose in life. DISCUSSION These findings provide insight into how the brain supports complex social behavior and, separately, purpose in life in at-risk aging. Affectionate social support may be a putative target process to enhance purpose in life in older adults. This knowledge contributes to future developments of personalized interventions that promote healthy aging.
Collapse
Affiliation(s)
- Caitlin S Walker
- Faculty of Medicine, Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Linda Li
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Giulia Baracchini
- Faculty of Medicine, Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Jennifer Tremblay-Mercier
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - R Nathan Spreng
- Faculty of Medicine, Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Maiya R Geddes
- Faculty of Medicine, Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Turner GR, Hewan P, Wearn A, van Dooren R, Wyatt L, Leppert IR, Baracchini G, Hughes C, Williams KM, Sylvain E, Tremblay-Mercier J, Poirier J, Villeneuve S, Tardif C, Spreng RN. Locus coeruleus integrity is related to an exploitation-based decision-making bias in older adulthood. Proc Natl Acad Sci U S A 2024; 121:e2322617121. [PMID: 38771873 PMCID: PMC11145298 DOI: 10.1073/pnas.2322617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024] Open
Abstract
Optimal decision-making balances exploration for new information against exploitation of known rewards, a process mediated by the locus coeruleus and its norepinephrine projections. We predicted that an exploitation-bias that emerges in older adulthood would be associated with lower microstructural integrity of the locus coeruleus. Leveraging in vivo histological methods from quantitative MRI-magnetic transfer saturation-we provide evidence that older age is associated with lower locus coeruleus integrity. Critically, we demonstrate that an exploitation bias in older adulthood, assessed with a foraging task, is sensitive and specific to lower locus coeruleus integrity. Because the locus coeruleus is uniquely vulnerable to Alzheimer's disease pathology, our findings suggest that aging, and a presymptomatic trajectory of Alzheimer's related decline, may fundamentally alter decision-making abilities in later life.
Collapse
Affiliation(s)
- Gary R. Turner
- Department of Psychology, York University, Toronto, ONM3J 1P3, Canada
| | - Patrick Hewan
- Department of Psychology, York University, Toronto, ONM3J 1P3, Canada
| | - Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Roel van Dooren
- Institutes of Psychology & Brain and Cognition, Leiden University, Leiden2300 RC, The Netherlands
| | - Lindsay Wyatt
- Department of Psychology, York University, Toronto, ONM3J 1P3, Canada
| | - Ilana R. Leppert
- McConnell Brain Imaging Centre, McGill University, Montreal, QCH2A 2B4, Canada
| | - Giulia Baracchini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Colleen Hughes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Kayla M. Williams
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Elisabeth Sylvain
- Douglas Mental Health University Institute, Verdun, QCH4H 1R3, Canada
| | | | - Judes Poirier
- Douglas Mental Health University Institute, Verdun, QCH4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QCH3A 1A1, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, McGill University, Montreal, QCH2A 2B4, Canada
- Douglas Mental Health University Institute, Verdun, QCH4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QCH3A 1A1, Canada
| | - Christine Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QCH2A 2B4, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QCH3A 2B4, Canada
| | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QCH2A 2B4, Canada
- Douglas Mental Health University Institute, Verdun, QCH4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QCH3A 1A1, Canada
- Department of Psychology, McGill University, Montreal, QCH3A 1G1, Canada
| | | |
Collapse
|
21
|
Yakoub Y, Gonzalez-Ortiz F, Ashton NJ, Déry C, Strikwerda-Brown C, St-Onge F, Ourry V, Schöll M, Geddes MR, Ducharme S, Montembeault M, Rosa-Neto P, Soucy JP, Breitner JCS, Zetterberg H, Blennow K, Poirier J, Villeneuve S. Plasma p-tau217 predicts cognitive impairments up to ten years before onset in normal older adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307120. [PMID: 38766113 PMCID: PMC11100946 DOI: 10.1101/2024.05.09.24307120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Importance Positron emission tomography (PET) biomarkers are the gold standard for detection of Alzheimer amyloid and tau in vivo . Such imaging can identify cognitively unimpaired (CU) individuals who will subsequently develop cognitive impartment (CI). Plasma biomarkers would be more practical than PET or even cerebrospinal fluid (CSF) assays in clinical settings. Objective Assess the prognostic accuracy of plasma p-tau217 in comparison to CSF and PET biomarkers for predicting the clinical progression from CU to CI. Design In a cohort of elderly at high risk of developing Alzheimer's dementia (AD), we measured the proportion of CU individuals who developed CI, as predicted by Aβ (A+) and/or tau (T+) biomarker assessment from plasma, CSF, and PET. Results from each method were compared with (A-T-) reference individuals. Data were analyzed from June 2023 to April 2024. Setting Longitudinal observational cohort. Participants Some 228 participants from the PREVENT-AD cohort were CU at the time of biomarker assessment and had 1 - 10 years of follow-up. Plasma was available from 215 participants, CSF from 159, and amyloid- and tau-PET from 155. Ninety-three participants had assessment using all three methods (main group of interest). Progression to CI was determined by clinical consensus among physicians and neuropsychologists who were blind to plasma, CSF, PET, and MRI findings, as well as APOE genotype. Exposures Plasma Aβ 42/40 was measured using IP-MS; CSF Aβ 42/40 using Lumipulse; plasma and CSF p-tau217 using UGOT assay. Aβ-PET employed the 18 F-NAV4694 ligand, and tau-PET used 18 F-flortaucipir. Main Outcome Prognostic accuracy of plasma, CSF, and PET biomarkers for predicting the development of CI in CU individuals. Results Cox proportional hazard models indicated a greater progression rate in all A+T+ groups compared to A-T-groups (HR = 6.61 [95% CI = 2.06 - 21.17] for plasma, 3.62 [1.49 - 8.81] for CSF and 9.24 [2.34 - 36.43] for PET). The A-T+ groups were small, but also characterized with individuals who developed CI. Plasma biomarkers identified about five times more T+ than PET. Conclusion and relevance Plasma p-tau217 assessment is a practical method for identification of persons who will develop cognitive impairment up to 10 years later. Key Points Question: Can plasma p-tau217 serve as a prognostic indicator for identifying cognitively unimpaired (CU) individuals at risk of developing cognitive impairments (CI)?Findings: In a longitudinal cohort of CU individuals with a family history of sporadic AD, almost all individuals with abnormal plasma p-tau217 concentrations developed CI within 10 years, regardless of plasma amyloid levels. Similar findings were obtained with CSF p-tau217 and tau-PET. Fluid p-tau217 biomarkers had the main advantage over PET of identifying five times more participants with elevated tau.Meaning: Elevated plasma p-tau217 levels in CU individuals strongly indicate future clinical progression.
Collapse
|
22
|
Zhou J, Wearn A, Huck J, Hughes C, Baracchini G, Tremblay-Mercier J, Poirier J, Villeneuve S, Tardif CL, Chakravarty MM, Daugherty AM, Gauthier CJ, Turner GR, Spreng RN. Iron Deposition and Distribution Across the Hippocampus Is Associated with Pattern Separation and Pattern Completion in Older Adults at Risk for Alzheimer's Disease. J Neurosci 2024; 44:e1973232024. [PMID: 38388425 PMCID: PMC11079967 DOI: 10.1523/jneurosci.1973-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
Elevated iron deposition in the brain has been observed in older adult humans and persons with Alzheimer's disease (AD), and has been associated with lower cognitive performance. We investigated the impact of iron deposition, and its topographical distribution across hippocampal subfields and segments (anterior, posterior) measured along its longitudinal axis, on episodic memory in a sample of cognitively unimpaired older adults at elevated familial risk for AD (N = 172, 120 females, 52 males; mean age = 68.8 ± 5.4 years). MRI-based quantitative susceptibility maps were acquired to derive estimates of hippocampal iron deposition. The Mnemonic Similarity Task was used to measure pattern separation and pattern completion, two hippocampally mediated episodic memory processes. Greater hippocampal iron load was associated with lower pattern separation and higher pattern completion scores, both indicators of poorer episodic memory. Examination of iron levels within hippocampal subfields across its long axis revealed topographic specificity. Among the subfields and segments investigated here, iron deposition in the posterior hippocampal CA1 was the most robustly and negatively associated with the fidelity memory representations. This association remained after controlling for hippocampal volume and was observed in the context of normal performance on standard neuropsychological memory measures. These findings reveal that the impact of iron load on episodic memory performance is not uniform across the hippocampus. Both iron deposition levels as well as its spatial distribution, must be taken into account when examining the relationship between hippocampal iron and episodic memory in older adults at elevated risk for AD.
Collapse
Affiliation(s)
- Jing Zhou
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alfie Wearn
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Julia Huck
- Physics Department, Concordia University, Montreal, Quebec H4B 1R6, Canada
- Department of Radiology, Université de Sherbrooke, Sherbrooke, Quebec J1G 1E4, Canada
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science, University of Sherbrooke, Quebec J1K 0A5, Canada
| | - Colleen Hughes
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Giulia Baracchini
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | - Judes Poirier
- StoP-AD Centre, Douglas Mental Health Institute Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Sylvia Villeneuve
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- StoP-AD Centre, Douglas Mental Health Institute Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Christine Lucas Tardif
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Cerebral Imaging Centre, Douglas Mental Health Institute Research Centre, Montreal, Quebec H4H 1R3, Canada
| | - Ana M Daugherty
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, Michigan 48202
| | - Claudine J Gauthier
- Physics Department, Concordia University, Montreal, Quebec H4B 1R6, Canada
- Montreal Heart Institute, Montreal, Quebec H1T 1C8, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - R Nathan Spreng
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- StoP-AD Centre, Douglas Mental Health Institute Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 1A1, Canada
- Departments of Psychiatry and Psychology, McGill University, Montréal, Quebec H3A 1G1, Canada
| |
Collapse
|
23
|
Quesnel MJ, Labonté A, Picard C, Zetterberg H, Blennow K, Brinkmalm A, Villeneuve S, Poirier J. Insulin-like growth factor binding protein-2 in at-risk adults and autopsy-confirmed Alzheimer brains. Brain 2024; 147:1680-1695. [PMID: 37992295 PMCID: PMC11068109 DOI: 10.1093/brain/awad398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Insulin, insulin-like growth factors (IGF) and their receptors are highly expressed in the adult hippocampus. Thus, disturbances in the insulin-IGF signalling pathway may account for the selective vulnerability of the hippocampus to nascent Alzheimer's disease (AD) pathology. In the present study, we examined the predominant IGF-binding protein in the CSF, IGFBP2. CSF was collected from 109 asymptomatic members of the parental history-positive PREVENT-AD cohort. CSF levels of IGFBP2, core AD and synaptic biomarkers were measured using proximity extension assay, ELISA and mass spectrometry. Cortical amyloid-beta (Aβ) and tau deposition were examined using 18F-NAV4694 and flortaucipir. Cognitive assessments were performed during up to 8 years of follow-up, using the Repeatable Battery for the Assessment of Neuropsychological Status. T1-weighted structural MRI scans were acquired, and neuroimaging analyses were performed on pre-specified temporal and parietal brain regions. Next, in an independent cohort, we allocated 241 dementia-free ADNI-1 participants into four stages of AD progression based on the biomarkers CSF Aβ42 and total-tau (t-tau). In this analysis, differences in CSF and plasma IGFBP2 levels were examined across the pathological stages. Finally, IGFBP2 mRNA and protein levels were examined in the frontal cortex of 55 autopsy-confirmed AD and 31 control brains from the Quebec Founder Population (QFP) cohort, a unique population isolated from Eastern Canada. CSF IGFBP2 progressively increased over 5 years in asymptomatic PREVENT-AD participants. Baseline CSF IGFBP2 was positively correlated with CSF AD biomarkers and synaptic biomarkers, and negatively correlated with longitudinal changes in delayed memory (P = 0.024) and visuospatial abilities (P = 0.019). CSF IGFBP2 was negatively correlated at a trend-level with entorhinal cortex volume (P = 0.082) and cortical thickness in the piriform (P = 0.039), inferior temporal (P = 0.008), middle temporal (P = 0.014) and precuneus (P = 0.033) regions. In ADNI-1, CSF (P = 0.009) and plasma (P = 0.001) IGFBP2 were significantly elevated in Stage 2 [CSF Aβ(+)/t-tau(+)]. In survival analyses in ADNI-1, elevated plasma IGFBP2 was associated with a greater rate of AD conversion (hazard ratio = 1.62, P = 0.021). In the QFP cohort, IGFBP2 mRNA was reduced (P = 0.049); however, IGFBP2 protein levels did not differ in the frontal cortex of autopsy-confirmed AD brains (P = 0.462). Nascent AD pathology may induce an upregulation in IGFBP2 in asymptomatic individuals. CSF and plasma IGFBP2 may be valuable markers for identifying CSF Aβ(+)/t-tau(+) individuals and those with a greater risk of AD conversion.
Collapse
Affiliation(s)
- Marc James Quesnel
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792-2420, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75646 Cedex 13, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230026, P.R. China
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Sylvia Villeneuve
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Judes Poirier
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| |
Collapse
|
24
|
Qiu T, Liu Z, Rheault F, Legarreta JH, Valcourt Caron A, St‐Onge F, Strikwerda‐Brown C, Metz A, Dadar M, Soucy J, Pichet Binette A, Spreng RN, Descoteaux M, Villeneuve S. Structural white matter properties and cognitive resilience to tau pathology. Alzheimers Dement 2024; 20:3364-3377. [PMID: 38561254 PMCID: PMC11095478 DOI: 10.1002/alz.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION We assessed whether macro- and/or micro-structural white matter properties are associated with cognitive resilience to Alzheimer's disease pathology years prior to clinical onset. METHODS We examined whether global efficiency, an indicator of communication efficiency in brain networks, and diffusion measurements within the limbic network and default mode network moderate the association between amyloid-β/tau pathology and cognitive decline. We also investigated whether demographic and health/risk factors are associated with white matter properties. RESULTS Higher global efficiency of the limbic network, as well as free-water corrected diffusion measures within the tracts of both networks, attenuated the impact of tau pathology on memory decline. Education, age, sex, white matter hyperintensities, and vascular risk factors were associated with white matter properties of both networks. DISCUSSION White matter can influence cognitive resilience against tau pathology, and promoting education and vascular health may enhance optimal white matter properties. HIGHLIGHTS Aβ and tau were associated with longitudinal memory change over ∼7.5 years. White matter properties attenuated the impact of tau pathology on memory change. Health/risk factors were associated with white matter properties.
Collapse
Affiliation(s)
- Ting Qiu
- Douglas Mental Health University InstituteMontrealCanada
| | - Zhen‐Qi Liu
- Montreal Neurological InstituteDepartment of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
| | - François Rheault
- Medical Imaging and NeuroInformatics LabUniversité de SherbrookeSherbrookeCanada
| | - Jon Haitz Legarreta
- Department of RadiologyBrigham and Women's HospitalMass General Brigham/Harvard Medical SchoolBostonMassachusettsUSA
| | - Alex Valcourt Caron
- Sherbrooke Connectivity Imaging LaboratoryUniversité de SherbrookeSherbrookeCanada
| | | | - Cherie Strikwerda‐Brown
- Douglas Mental Health University InstituteMontrealCanada
- School of Psychological ScienceThe University of Western AustraliaPerthAustralia
| | - Amelie Metz
- Douglas Mental Health University InstituteMontrealCanada
| | - Mahsa Dadar
- Douglas Mental Health University InstituteMontrealCanada
- Department of PsychiatryMcGill UniversityMontrealCanada
| | - Jean‐Paul Soucy
- Montreal Neurological InstituteDepartment of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
| | | | - R. Nathan Spreng
- Douglas Mental Health University InstituteMontrealCanada
- Montreal Neurological InstituteDepartment of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
- Department of PsychiatryMcGill UniversityMontrealCanada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging LaboratoryUniversité de SherbrookeSherbrookeCanada
| | - Sylvia Villeneuve
- Douglas Mental Health University InstituteMontrealCanada
- Department of PsychiatryMcGill UniversityMontrealCanada
| | | |
Collapse
|
25
|
Wiesman AI, Gallego-Rudolf J, Villeneuve S, Baillet S, Wilson TW. Alignments between cortical neurochemical systems, proteinopathy and neurophysiological alterations along the Alzheimer's disease continuum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.13.24305551. [PMID: 38645027 PMCID: PMC11030470 DOI: 10.1101/2024.04.13.24305551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Two neuropathological hallmarks of Alzheimer's disease (AD) are the accumulation of amyloid-β (Aβ) proteins and alterations in cortical neurophysiological signaling. Despite parallel research indicating disruption of multiple neurotransmitter systems in AD, it has been unclear whether these two phenomena are related to the neurochemical organization of the cortex. We leveraged task-free magnetoencephalography and positron emission tomography, with a cortical atlas of 19 neurotransmitters to study the alignment and interactions between alterations of neurophysiological signaling, Aβ deposition, and the neurochemical gradients of the human cortex. In patients with amnestic mild cognitive impairment (N = 18) and probable AD (N = 20), we found that changes in rhythmic, but not arrhythmic, cortical neurophysiological signaling relative to healthy controls (N = 20) are topographically aligned with cholinergic, serotonergic, and dopaminergic neurochemical systems. These neuro-physio-chemical alignments are related to the severity of cognitive and behavioral impairments. We also found that cortical Aβ plaques are preferentially deposited along neurochemical boundaries, and mediate how beta-band rhythmic cortical activity maps align with muscarinic acetylcholine receptors. Finally, we show in an independent dataset that many of these alignments manifest in the asymptomatic stages of cortical Aβ accumulation (N = 33; N = 71 healthy controls), particularly the Aβ-neurochemical alignments (57.1%) and neuro-physio-chemical alignments in the alpha frequency band (62.5%). Overall, the present study demonstrates that the expression of pathology in pre-clinical and clinical AD aligns topographically with the cortical distribution of chemical neuromodulator systems, scaling with clinical severity and with implications for potential pharmacotherapeutic pathways.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jonathan Gallego-Rudolf
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
26
|
Wiesman AI, da Silva Castanheira J, Fon EA, Baillet S. Alterations of Cortical Structure and Neurophysiology in Parkinson's Disease Are Aligned with Neurochemical Systems. Ann Neurol 2024; 95:802-816. [PMID: 38146745 PMCID: PMC11023768 DOI: 10.1002/ana.26871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) affects the structural integrity and neurophysiological signaling of the cortex. These alterations are related to the motor and cognitive symptoms of the disease. How these changes are related to the neurochemical systems of the cortex is unknown. METHODS We used T1-weighted magnetic resonance imaging (MRI) and magnetoencephalography (MEG) to measure cortical thickness and task-free neurophysiological activity in patients with idiopathic PD (nMEG = 79, nMRI = 65) and matched healthy controls (nMEG = 65, nMRI = 37). Using linear mixed-effects models, we examined the topographical alignment of cortical structural and neurophysiological alterations in PD with cortical atlases of 19 neurotransmitter receptor and transporter densities. RESULTS We found that neurophysiological alterations in PD occur primarily in brain regions rich in acetylcholinergic, serotonergic, and glutamatergic systems, with protective implications for cognitive and psychiatric symptoms. In contrast, cortical thinning occurs preferentially in regions rich in noradrenergic systems, and the strength of this alignment relates to motor deficits. INTERPRETATION This study shows that the spatial organization of neurophysiological and structural alterations in PD is relevant for nonmotor and motor impairments. The data also advance the identification of the neurochemical systems implicated. The approach uses novel nested atlas modeling methodology that is transferrable to research in other neurological and neuropsychiatric diseases and syndromes. ANN NEUROL 2024;95:802-816.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Edward A. Fon
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
27
|
Capogna E, Sørensen Ø, Watne LO, Roe J, Strømstad M, Idland AV, Halaas NB, Blennow K, Zetterberg H, Walhovd KB, Fjell AM, Vidal-Piñeiro D. Subtypes of brain change in aging and their associations with cognition and Alzheimer's disease biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583291. [PMID: 38496633 PMCID: PMC10942348 DOI: 10.1101/2024.03.04.583291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Structural brain changes underly cognitive changes in older age and contribute to inter-individual variability in cognition. Here, we assessed how changes in cortical thickness, surface area, and subcortical volume, are related to cognitive change in cognitively unimpaired older adults using structural magnetic resonance imaging (MRI) data-driven clustering. Specifically, we tested (1) which brain structural changes over time predict cognitive change in older age (2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers phosphorylated tau (p-tau) and amyloid-β (Aβ42), and (3) the degree of overlap between clusters derived from different structural features. In total 1899 cognitively healthy older adults (50 - 93 years) were followed up to 16 years with neuropsychological and structural MRI assessments, a subsample of which (n = 612) had CSF p-tau and Aβ42 measurements. We applied Monte-Carlo Reference-based Consensus clustering to identify subgroups of older adults based on structural brain change patterns over time. Four clusters for each brain feature were identified, representing the degree of longitudinal brain decline. Each brain feature provided a unique contribution to brain aging as clusters were largely independent across modalities. Cognitive change and baseline cognition were best predicted by cortical area change, whereas higher levels of p-tau and Aβ42 were associated with changes in subcortical volume. These results provide insights into the link between changes in brain morphology and cognition, which may translate to a better understanding of different aging trajectories.
Collapse
Affiliation(s)
- Elettra Capogna
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - James Roe
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Ane Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Campus UllevÅl, University of Oslo, Oslo, Norway
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristine Beate Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders Martin Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
28
|
Wiesman AI, Madge V, Fon EA, Dagher A, Collins DL, Baillet S. Associations between neuromelanin depletion and cortical rhythmic activity in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302958. [PMID: 38405952 PMCID: PMC10889029 DOI: 10.1101/2024.02.16.24302958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background and Objectives Parkinson's disease (PD) is marked by the death of neuromelanin-rich dopaminergic and noradrenergic cells in the substantia nigra (SN) and the locus coeruleus (LC), respectively, resulting in motor and cognitive impairments. While SN dopamine dysfunction has clear neurophysiological effects, the impact of reduced LC norepinephrine signaling on brain activity in PD remains to be established. Methods We used neuromelanin-sensitive T1-weighted MRI (NPD = 58; NHC = 27) and task-free magnetoencephalography (NPD = 58; NHC = 65) to identify neuropathophysiological factors related to the degeneration of the LC and SN in patients with PD. Results We found pathological increases in rhythmic alpha (8 - 12 Hz) activity in patients with decreased LC neuromelanin, with a stronger association in patients with worse attentional impairments. This negative alpha-LC neuromelanin relationship is also stronger in fronto-motor cortices, which are regions with high densities of norepinephrine transporters in the healthy brain, and where alpha activity is negatively related to attention scores. These observations support a noradrenergic association between LC integrity and alpha band activity. Our data also show that rhythmic beta (15 - 29 Hz) activity in the left somato-motor cortex decreases with lower levels of SN neuromelanin; the same regions where beta activity reflects axial motor symptoms. Discussion Together, our findings clarify the association of well-documented alterations of rhythmic neurophysiology in PD with cortical and subcortical neurochemical systems. Specifically, attention-related alpha activity reflects dysfunction of the noradrenergic system, and beta activity with relevance to motor impairments reflects dopaminergic dysfunction.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Victoria Madge
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edward A. Fon
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
29
|
Ai M, Morris TP, Noriega de la Colina A, Thovinakere N, Tremblay-Mercier J, Villeneuve S, H Hillman C, Kramer AF, Geddes MR. Midlife physical activity engagement is associated with later-life brain health. Neurobiol Aging 2024; 134:146-159. [PMID: 38091752 DOI: 10.1016/j.neurobiolaging.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 01/02/2024]
Abstract
The relationship between midlife physical activity (PA), and cognition and brain health in later life is poorly understood with conflicting results from previous research. Investigating the contribution of midlife PA to later-life cognition and brain health in high-risk populations will propel the development of health guidance for those most in need. The current study examined the association between midlife PA engagement and later-life cognition, grey matter characteristics and resting-state functional connectivity in older individuals at high-risk for Alzheimer's disease. The association between midlife PA and later-life cognitive function was not significant but was moderated by later-life PA. Meanwhile, greater midlife moderate-to-vigorous PA was associated with greater grey matter surface area in the left middle frontal gyrus. Moreover, greater midlife total PA was associated with diminished functional connectivity between bilateral middle frontal gyri and middle cingulum, supplementary motor areas, and greater functional connectivity between bilateral hippocampi and right cerebellum, Crus II. These results indicate the potentially independent contribution of midlife PA to later-life brain health.
Collapse
Affiliation(s)
- Meishan Ai
- Department of Psychology, Northeastern University, Boston, MA 02115, USA.
| | - Timothy P Morris
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Adrián Noriega de la Colina
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec H3G 2M1, Canada
| | | | - Jennifer Tremblay-Mercier
- STOP-AD CENTRE, Centre for Studies on Prevention of Alzheimer's Disease, Montreal, Quebec H4H 1R3, Canada; Douglas Mental Health University Institute Research Centre, Affiliated with McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Sylvia Villeneuve
- STOP-AD CENTRE, Centre for Studies on Prevention of Alzheimer's Disease, Montreal, Quebec H4H 1R3, Canada; Douglas Mental Health University Institute Research Centre, Affiliated with McGill University, Montreal, Quebec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, MA 02115, USA; Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Arthur F Kramer
- Department of Psychology, Northeastern University, Boston, MA 02115, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana-Champaign, IL 61801, USA
| | - Maiya R Geddes
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec H3G 2M1, Canada; Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada; STOP-AD CENTRE, Centre for Studies on Prevention of Alzheimer's Disease, Montreal, Quebec H4H 1R3, Canada
| |
Collapse
|
30
|
Dauar MT, Picard C, Labonté A, Breitner J, Rosa-Neto P, Villeneuve S, Poirier J. Contactin 5 and Apolipoproteins Interplay in Alzheimer's Disease. J Alzheimers Dis 2024; 98:1361-1375. [PMID: 38578887 DOI: 10.3233/jad-231003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p < 0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.
Collapse
Affiliation(s)
- Marina Tedeschi Dauar
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - John Breitner
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- McGill University, Montreal, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Verdun, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
31
|
Yakoub Y, Ashton NJ, Strikwerda-Brown C, Montoliu-Gaya L, Karikari TK, Kac PR, Gonzalez-Ortiz F, Gallego-Rudolf J, Meyer PF, St-Onge F, Schöll M, Soucy JP, Breitner JCS, Zetterberg H, Blennow K, Poirier J, Villeneuve S. Longitudinal blood biomarker trajectories in preclinical Alzheimer's disease. Alzheimers Dement 2023; 19:5620-5631. [PMID: 37294682 DOI: 10.1002/alz.13318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. METHODS We measured longitudinal changes in plasma amyloid-beta (Aβ)42/40 ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with Aβ and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. RESULTS Aβ42/40 ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) ε4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both Aβ-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. DISCUSSION Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD. HIGHLIGHTS Longitudinal increase of plasma pTau181 and glial fibrillary acidic protein (GFAP) can be measured in the preclinical phase of AD. Apolipoprotein E ε4 carriers experience faster increase in plasma pTau181 over time than non-carriers. Female sex showed accelerated increase in plasma GFAP over time compared to males. Aβ42/40 and pTau231 values are already abnormal at baseline in individuals with both amyloid and tau PET burden.
Collapse
Affiliation(s)
- Yara Yakoub
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Cherie Strikwerda-Brown
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan Gallego-Rudolf
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Pierre-François Meyer
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Frédéric St-Onge
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - John C S Breitner
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Judes Poirier
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.03.23285441. [PMID: 36798232 PMCID: PMC9934726 DOI: 10.1101/2023.02.03.23285441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In this study, we investigate the clinical potential of brain-fingerprints derived from electrophysiological brain activity for diagnostics and progression monitoring of Parkinson's disease (PD). We obtained brain-fingerprints from PD patients and age-matched healthy controls using short, task-free magnetoencephalographic recordings. The rhythmic components of the individual brain-fingerprint distinguished between patients and healthy participants with approximately 90% accuracy. The most prominent cortical features of the Parkinson's brain-fingerprint mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also show that Parkinson's disease stages can be decoded directly from cortical neurophysiological activity. Additionally, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. We further demonstrate that the arrhythmic components of cortical activity are more variable over short periods of time in patients with Parkinson's disease than in healthy controls, making individual differentiation between patients based on these features more challenging and explaining previous negative published results. Overall, we outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and clinical staging of Parkinson's disease. For this reason, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification and to the improved identification and testing of therapeutic neurostimulation targets.
Collapse
Affiliation(s)
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Justine Y. Hansen
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | | | | |
Collapse
|
33
|
Wiesman AI, da Silva Castanheira J, Degroot C, Fon EA, Baillet S, Network QP. Adverse and compensatory neurophysiological slowing in Parkinson's disease. Prog Neurobiol 2023; 231:102538. [PMID: 37832713 PMCID: PMC10872886 DOI: 10.1016/j.pneurobio.2023.102538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Patients with Parkinson's disease (PD) exhibit multifaceted changes in neurophysiological brain activity, hypothesized to represent a global cortical slowing effect. Using task-free magnetoencephalography and extensive clinical assessments, we found that neurophysiological slowing in PD is differentially associated with motor and non-motor symptoms along a sagittal gradient over the cortical anatomy. In superior parietal regions, neurophysiological slowing reflects an adverse effect and scales with cognitive and motor impairments, while across the inferior frontal cortex, neurophysiological slowing is compatible with a compensatory role. This adverse-to-compensatory gradient is sensitive to individual clinical profiles, such as drug regimens and laterality of symptoms; it is also aligned with the topography of neurotransmitter and transporter systems relevant to PD. We conclude that neurophysiological slowing in patients with PD signals both deleterious and protective mechanisms of the disease, from posterior to anterior regions across the cortex, respectively, with functional and clinical relevance to motor and cognitive symptoms.
Collapse
Affiliation(s)
- Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | | | - Clotilde Degroot
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edward A Fon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Quebec Parkinson Network
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
34
|
Winchester LM, Harshfield EL, Shi L, Badhwar A, Khleifat AA, Clarke N, Dehsarvi A, Lengyel I, Lourida I, Madan CR, Marzi SJ, Proitsi P, Rajkumar AP, Rittman T, Silajdžić E, Tamburin S, Ranson JM, Llewellyn DJ. Artificial intelligence for biomarker discovery in Alzheimer's disease and dementia. Alzheimers Dement 2023; 19:5860-5871. [PMID: 37654029 PMCID: PMC10840606 DOI: 10.1002/alz.13390] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/02/2023]
Abstract
With the increase in large multimodal cohorts and high-throughput technologies, the potential for discovering novel biomarkers is no longer limited by data set size. Artificial intelligence (AI) and machine learning approaches have been developed to detect novel biomarkers and interactions in complex data sets. We discuss exemplar uses and evaluate current applications and limitations of AI to discover novel biomarkers. Remaining challenges include a lack of diversity in the data sets available, the sheer complexity of investigating interactions, the invasiveness and cost of some biomarkers, and poor reporting in some studies. Overcoming these challenges will involve collecting data from underrepresented populations, developing more powerful AI approaches, validating the use of noninvasive biomarkers, and adhering to reporting guidelines. By harnessing rich multimodal data through AI approaches and international collaborative innovation, we are well positioned to identify clinically useful biomarkers that are accurate, generalizable, unbiased, and acceptable in clinical practice. HIGHLIGHTS: Artificial intelligence and machine learning approaches may accelerate dementia biomarker discovery. Remaining challenges include data set suitability due to size and bias in cohort selection. Multimodal data, diverse data sets, improved machine learning approaches, real-world validation, and interdisciplinary collaboration are required.
Collapse
Affiliation(s)
| | - Eric L Harshfield
- Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, Cambridge, UK
| | - Liu Shi
- Novo Nordisk Research Centre Oxford (NNRCO), Headington, UK
| | - AmanPreet Badhwar
- Département de Pharmacologie et Physiologie, Institut de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montreal, Canada
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Natasha Clarke
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Amir Dehsarvi
- School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Imre Lengyel
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University, Belfast, UK
| | - Ilianna Lourida
- Health and Community Sciences, University of Exeter Medical School, Exeter, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Petroula Proitsi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anto P Rajkumar
- Institute of Mental Health, Mental Health and Clinical Neurosciences academic unit, University of Nottingham, Nottingham, UK, Mental health services of older people, Nottinghamshire healthcare NHS foundation trust, Nottingham, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Edina Silajdžić
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Janice M Ranson
- Health and Community Sciences, University of Exeter Medical School, Exeter, UK
| | - David J Llewellyn
- Health and Community Sciences, University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
35
|
Aganj I, Mora J, Frau-Pascual A, Fischl B. Exploratory Correlation of The Human Structural Connectome with Non-MRI Variables in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547308. [PMID: 37461543 PMCID: PMC10350016 DOI: 10.1101/2023.06.30.547308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
INTRODUCTION Discovery of the associations between brain structural connectivity and clinical and demographic variables can help to better understand the vulnerability and resilience of the brain architecture to neurodegenerative diseases and to discover biomarkers. METHODS We used four diffusion-MRI databases, three related to Alzheimer's disease, to exploratorily correlate structural connections between 85 brain regions with non-MRI variables, while stringently correcting the significance values for multiple testing and ruling out spurious correlations via careful visual inspection. We repeated the analysis with brain connectivity augmented with multi-synaptic neural pathways. RESULTS We found 85 and 101 significant relationships with direct and augmented connectivity, respectively, which were generally stronger for the latter. Age was consistently linked to decreased connectivity, and healthier clinical scores were generally linked to increased connectivity. DISCUSSION Our findings help to elucidate which structural brain networks are affected in Alzheimer's disease and aging and highlight the importance of including indirect connections.
Collapse
Affiliation(s)
- Iman Aganj
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, 149 13 St., Suite 2301, Boston, MA 02129, USA
- Radiology Department, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Jocelyn Mora
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, 149 13 St., Suite 2301, Boston, MA 02129, USA
| | - Aina Frau-Pascual
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, 149 13 St., Suite 2301, Boston, MA 02129, USA
- Radiology Department, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, 149 13 St., Suite 2301, Boston, MA 02129, USA
- Radiology Department, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Parent O, Bussy A, Devenyi GA, Dai A, Costantino M, Tullo S, Salaciak A, Bedford S, Farzin S, Béland ML, Valiquette V, Villeneuve S, Poirier J, Tardif CL, Dadar M, Chakravarty MM. Assessment of white matter hyperintensity severity using multimodal magnetic resonance imaging. Brain Commun 2023; 5:fcad279. [PMID: 37953840 PMCID: PMC10636521 DOI: 10.1093/braincomms/fcad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
White matter hyperintensities are radiological abnormalities reflecting cerebrovascular dysfunction detectable using MRI. White matter hyperintensities are often present in individuals at the later stages of the lifespan and in prodromal stages in the Alzheimer's disease spectrum. Tissue alterations underlying white matter hyperintensities may include demyelination, inflammation and oedema, but these are highly variable by neuroanatomical location and between individuals. There is a crucial need to characterize these white matter hyperintensity tissue alterations in vivo to improve prognosis and, potentially, treatment outcomes. How different MRI measure(s) of tissue microstructure capture clinically-relevant white matter hyperintensity tissue damage is currently unknown. Here, we compared six MRI signal measures sampled within white matter hyperintensities and their associations with multiple clinically-relevant outcomes, consisting of global and cortical brain morphometry, cognitive function, diagnostic and demographic differences and cardiovascular risk factors. We used cross-sectional data from 118 participants: healthy controls (n = 30), individuals at high risk for Alzheimer's disease due to familial history (n = 47), mild cognitive impairment (n = 32) and clinical Alzheimer's disease dementia (n = 9). We sampled the median signal within white matter hyperintensities on weighted MRI images [T1-weighted (T1w), T2-weighted (T2w), T1w/T2w ratio, fluid-attenuated inversion recovery (FLAIR)] as well as the relaxation times from quantitative T1 (qT1) and T2* (qT2*) images. qT2* and fluid-attenuated inversion recovery signals within white matter hyperintensities displayed different age- and disease-related trends compared to normal-appearing white matter signals, suggesting sensitivity to white matter hyperintensity-specific tissue deterioration. Further, white matter hyperintensity qT2*, particularly in periventricular and occipital white matter regions, was consistently associated with all types of clinically-relevant outcomes in both univariate and multivariate analyses and across two parcellation schemes. qT1 and fluid-attenuated inversion recovery measures showed consistent clinical relationships in multivariate but not univariate analyses, while T1w, T2w and T1w/T2w ratio measures were not consistently associated with clinical variables. We observed that the qT2* signal was sensitive to clinically-relevant microstructural tissue alterations specific to white matter hyperintensities. Our results suggest that combining volumetric and signal measures of white matter hyperintensity should be considered to fully characterize the severity of white matter hyperintensities in vivo. These findings may have implications in determining the reversibility of white matter hyperintensities and the potential efficacy of cardio- and cerebrovascular treatments.
Collapse
Affiliation(s)
- Olivier Parent
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Aurélie Bussy
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Gabriel Allan Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Alyssa Dai
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Manuela Costantino
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Stephanie Tullo
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Alyssa Salaciak
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Saashi Bedford
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Sarah Farzin
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Marie-Lise Béland
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Vanessa Valiquette
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Sylvia Villeneuve
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Center for the Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Judes Poirier
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Center for the Studies in the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Molecular Neurobiology Unit, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Christine Lucas Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Mahsa Dadar
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
37
|
Aganj I, Mora J, Frau‐Pascual A, Fischl B. Exploratory correlation of the human structural connectome with non-MRI variables in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12511. [PMID: 38111597 PMCID: PMC10725839 DOI: 10.1002/dad2.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023]
Abstract
Introduction Discovery of the associations between brain structural connectivity and clinical and demographic variables can help to better understand the vulnerability and resilience of the brain architecture to neurodegenerative diseases and to discover biomarkers. Methods We used four diffusion-MRI databases, three related to Alzheimer's disease (AD), to exploratorily correlate structural connections between 85 brain regions with non-MRI variables, while stringently correcting the significance values for multiple testing and ruling out spurious correlations via careful visual inspection. We repeated the analysis with brain connectivity augmented with multi-synaptic neural pathways. Results We found 85 and 101 significant relationships with direct and augmented connectivity, respectively, which were generally stronger for the latter. Age was consistently linked to decreased connectivity, and healthier clinical scores were generally linked to increased connectivity. Discussion Our findings help to elucidate which structural brain networks are affected in AD and aging and highlight the importance of including indirect connections.
Collapse
Affiliation(s)
- Iman Aganj
- Athinoula A. Martinos Center for Biomedical ImagingRadiology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Radiology DepartmentHarvard Medical SchoolBostonMassachusettsUSA
| | - Jocelyn Mora
- Athinoula A. Martinos Center for Biomedical ImagingRadiology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
| | - Aina Frau‐Pascual
- Athinoula A. Martinos Center for Biomedical ImagingRadiology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Radiology DepartmentHarvard Medical SchoolBostonMassachusettsUSA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical ImagingRadiology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Radiology DepartmentHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
38
|
Wood ME, Xiong LY, Wong YY, Buckley RF, Swardfager W, Masellis M, Lim ASP, Nichols E, Joie RL, Casaletto KB, Kumar RG, Dams-O'Connor K, Palta P, George KM, Satizabal CL, Barnes LL, Schneider JA, Binet AP, Villeneuve S, Pa J, Brickman AM, Black SE, Rabin JS. Sex differences in associations between APOE ε2 and longitudinal cognitive decline. Alzheimers Dement 2023; 19:4651-4661. [PMID: 36994910 PMCID: PMC10544702 DOI: 10.1002/alz.13036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION We examined whether sex modifies the association between APOE ε2 and cognitive decline in two independent samples. METHODS We used observational data from cognitively unimpaired non-Hispanic White (NHW) and non-Hispanic Black (NHB) adults. Linear mixed models examined interactive associations of APOE genotype (ε2 or ε4 carrier vs. ε3/ε3) and sex on cognitive decline in NHW and NHB participants separately. RESULTS In both Sample 1 (N = 9766) and Sample 2 (N = 915), sex modified the association between APOE ε2 and cognitive decline in NHW participants. Specifically, relative to APOE ε3/ε3, APOE ε2 protected against cognitive decline in men but not women. Among APOE ε2 carriers, men had slower decline than women. Among APOE ε3/ε3 carriers, cognitive trajectories did not differ between sexes. There were no sex-specific associations of APOE ε2 with cognition in NHB participants (N = 2010). DISCUSSION In NHW adults, APOE ε2 may protect men but not women against cognitive decline. HIGHLIGHTS We studied sex-specific apolipoprotein E (APOE) ε2 effects on cognitive decline. In non-Hispanic White (NHW) adults, APOE ε2 selectively protects men against decline. Among men, APOE ε2 was more protective than APOE ε3/ε3. In women, APOE ε2 was no more protective than APOE ε3/ε3. Among APOE ε2 carriers, men had slower decline than women. There were no sex-specific APOE ε2 effects in non-Hispanic Black (NHB) adults.
Collapse
Affiliation(s)
- Madeline E Wood
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Y Xiong
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Yuen Yan Wong
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Florey Institute, University of Melbourne, Parkville, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrew S P Lim
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Emma Nichols
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Kaitlin B Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Raj G Kumar
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Priya Palta
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Kristen M George
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, California, USA
| | - Claudia L Satizabal
- Department of Population Health Science and Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Alexa Pichette Binet
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sylvia Villeneuve
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Douglas Mental Health University Institute, Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Walker CS, Li L, Baracchini G, Tremblay-Mercier J, Spreng RN, Geddes MR. The influence of generativity on purpose in life is mediated by social support and moderated by prefrontal functional connectivity in at-risk older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530089. [PMID: 36909532 PMCID: PMC10002691 DOI: 10.1101/2023.02.26.530089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Objectives Generativity, the desire and action to improve the well-being of younger generations, is positively associated with purpose in life among older adults. However, the neural basis of generativity and the neurobehavioral factors supporting the relationship between generativity and purpose in life remain unknown. This study aims to identify the functional neuroanatomy of generativity and mechanisms linking generativity with purpose in life in at-risk older adults. Methods Fifty-eight cognitively healthy older adults (mean age = 70.78, 45 females) with a family history of Alzheimer's disease were recruited from the PREVENT-AD aging cohort. Participants underwent brain imaging and completed questionnaires assessing generativity, social support, and purpose in life. Mediation models examined whether social support mediated the association between generativity and purpose in life. Seed-to-voxel analyses investigated the association between resting-state functional connectivity (rsFC) to the ventromedial prefrontal cortex (vmPFC) and ventral striatum (VS) and whether this rsFC moderated the relationship between generativity and purpose in life. Results Affectionate social support mediated the association between generative desire and purpose in life. Generative desire was associated with rsFC between VS and precuneus and vmPFC and right dorsolateral prefrontal cortex (rdlPFC). The vmPFC-rdlPFC connectivity moderated the association between generative desire and purpose in life. Discussion These findings provide insight into how the brain supports social behavior and, separately, purpose in life in at-risk aging. Affectionate social support may be a putative target process to enhance purpose and life in older adults. This knowledge contributes to future developments of personalized interventions that promote healthy aging.
Collapse
Affiliation(s)
- Caitlin S. Walker
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Linda Li
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Giulia Baracchini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Centre of the Douglas Mental Health Institute, Montreal, Quebec, Canada
| | - Jennifer Tremblay-Mercier
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
- Research Centre of the Douglas Mental Health Institute, Montreal, Quebec, Canada
| | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
- Research Centre of the Douglas Mental Health Institute, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Maiya R. Geddes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
- Research Centre of the Douglas Mental Health Institute, Montreal, Quebec, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Tanguay-Sabourin C, Fillingim M, Guglietti GV, Zare A, Parisien M, Norman J, Sweatman H, Da-Ano R, Heikkala E, Perez J, Karppinen J, Villeneuve S, Thompson SJ, Martel MO, Roy M, Diatchenko L, Vachon-Presseau E. A prognostic risk score for development and spread of chronic pain. Nat Med 2023; 29:1821-1831. [PMID: 37414898 PMCID: PMC10353938 DOI: 10.1038/s41591-023-02430-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/31/2023] [Indexed: 07/08/2023]
Abstract
Chronic pain is a complex condition influenced by a combination of biological, psychological and social factors. Using data from the UK Biobank (n = 493,211), we showed that pain spreads from proximal to distal sites and developed a biopsychosocial model that predicted the number of coexisting pain sites. This data-driven model was used to identify a risk score that classified various chronic pain conditions (area under the curve (AUC) 0.70-0.88) and pain-related medical conditions (AUC 0.67-0.86). In longitudinal analyses, the risk score predicted the development of widespread chronic pain, the spreading of chronic pain across body sites and high-impact pain about 9 years later (AUC 0.68-0.78). Key risk factors included sleeplessness, feeling 'fed-up', tiredness, stressful life events and a body mass index >30. A simplified version of this score, named the risk of pain spreading, obtained similar predictive performance based on six simple questions with binarized answers. The risk of pain spreading was then validated in the Northern Finland Birth Cohort (n = 5,525) and the PREVENT-AD cohort (n = 178), obtaining comparable predictive performance. Our findings show that chronic pain conditions can be predicted from a common set of biopsychosocial factors, which can aid in tailoring research protocols, optimizing patient randomization in clinical trials and improving pain management.
Collapse
Affiliation(s)
- Christophe Tanguay-Sabourin
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada.
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Matt Fillingim
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Gianluca V Guglietti
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Azin Zare
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Jax Norman
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Hilary Sweatman
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ronrick Da-Ano
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Eveliina Heikkala
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jordi Perez
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Alan Edwards Pain Management Unit, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jaro Karppinen
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Rehabilitation Services of Southern Karelia Social and Health Care District, Lappeenranta, Finland
| | - Sylvia Villeneuve
- Douglas Mental Health Institute Research Centre, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Scott J Thompson
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | - Marc O Martel
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Etienne Vachon-Presseau
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada.
- Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
41
|
Harding RJ, Bermudez P, Bernier A, Beauvais M, Bellec P, Hill S, Karakuzu A, Knoppers BM, Pavlidis P, Poline JB, Roskams J, Stikov N, Stone J, Strother S, Evans AC. The Canadian Open Neuroscience Platform-An open science framework for the neuroscience community. PLoS Comput Biol 2023; 19:e1011230. [PMID: 37498959 PMCID: PMC10374086 DOI: 10.1371/journal.pcbi.1011230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
The Canadian Open Neuroscience Platform (CONP) takes a multifaceted approach to enabling open neuroscience, aiming to make research, data, and tools accessible to everyone, with the ultimate objective of accelerating discovery. Its core infrastructure is the CONP Portal, a repository with a decentralized design, where datasets and analysis tools across disparate platforms can be browsed, searched, accessed, and shared in accordance with FAIR principles. Another key piece of CONP infrastructure is NeuroLibre, a preprint server capable of creating and hosting executable and fully reproducible scientific publications that embed text, figures, and code. As part of its holistic approach, the CONP has also constructed frameworks and guidance for ethics and data governance, provided support and developed resources to help train the next generation of neuroscientists, and has fostered and grown an engaged community through outreach and communications. In this manuscript, we provide a high-level overview of this multipronged platform and its vision of lowering the barriers to the practice of open neuroscience and yielding the associated benefits for both individual researchers and the wider community.
Collapse
Affiliation(s)
- Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Bermudez
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Alexander Bernier
- Centre of Genomics and Policy, Department of Human Genetics, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Michael Beauvais
- Centre of Genomics and Policy, Department of Human Genetics, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Pierre Bellec
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Sean Hill
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Agâh Karakuzu
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Québec, Canada
- Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Bartha M Knoppers
- Centre of Genomics and Policy, Department of Human Genetics, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Canada Research Chair in Law and Medicine, Montréal, Québec, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jean-Baptiste Poline
- ORIGAMI Neuro Data Science Laboratory, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Jane Roskams
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Neurosurgery University of Washington, Seattle, Washington, United States of America
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Québec, Canada
- Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
- Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Jessica Stone
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Stephen Strother
- Rotman Research Institute, Baycrest, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
42
|
Intzandt B, Sanami S, Huck J, Villeneuve S, Bherer L, Gauthier CJ. Sex-specific relationships between obesity, physical activity, and gray and white matter volume in cognitively unimpaired older adults. GeroScience 2023; 45:1869-1888. [PMID: 36781598 PMCID: PMC10400512 DOI: 10.1007/s11357-023-00734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Independently, obesity and physical activity (PA) influence cerebral structure in aging, yet their interaction has not been investigated. We examined sex differences in the relationships among PA, obesity, and cerebral structure in aging with 340 participants who completed magnetic resonance imaging (MRI) acquisition to quantify grey matter volume (GMV) and white matter volume (WMV). Height and weight were measured to calculate body mass index (BMI). A PA questionnaire was used to estimate weekly Metabolic Equivalents. The relationships between BMI, PA, and their interaction on GMV Regions of Interest (ROIs) and WMV ROIs were examined. Increased BMI was associated with higher GMV in females, an inverse U relationship was found between PA and GMV in females, and the interaction indicated that regardless of BMI greater PA was associated with enhanced GMV. Males demonstrated an inverse U shape between BMI and GMV, and in males with high PA and had normal weight demonstrated greater GMV than normal weight low PA revealed by the interaction. WMV ROIs had a linear relationship with moderate PA in females, whereas in males, increased BMI was associated with lower WMV as well as a positive relationship with moderate PA and WMV. Males and females have unique relationships among GMV, PA and BMI, suggesting sex-aggregated analyses may lead to biased or non-significant results. These results suggest higher BMI, and PA are associated with increased GMV in females, uniquely different from males, highlighting the importance of sex-disaggregated models. Future work should include other imaging parameters, such as perfusion, to identify if these differences co-occur in the same regions as GMV.
Collapse
Affiliation(s)
- Brittany Intzandt
- School of Graduate Studies, Concordia University, Montreal, H3G 1N1 Canada
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, H3W 1W6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
| | - Safa Sanami
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
| | - Julia Huck
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montreal, H4H 1R3 Canada
- STOP-AD Centre, Montreal Canada, Montreal, H4H 1R3 Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, H3A 1Y2 Montreal Canada, Montreal, Canada
| | - Louis Bherer
- Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, H3W 1W6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Département de Médecine, Université de Montréal, Montreal, H3T 1J4 Canada
| | - Claudine J. Gauthier
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
- Département de Médecine, Université de Montréal, Montreal, H3T 1J4 Canada
- Department of Physics, Concordia University, Montreal, H3G 1M8 Canada
| |
Collapse
|
43
|
Ai M, Morris TP, Zhang J, de la Colina AN, Tremblay-Mercier J, Villeneuve S, Whitfield-Gabrieli S, Kramer AF, Geddes MR. Resting-state MRI functional connectivity as a neural correlate of multidomain lifestyle adherence in older adults at risk for Alzheimer's disease. Sci Rep 2023; 13:7487. [PMID: 37160915 PMCID: PMC10170147 DOI: 10.1038/s41598-023-32714-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023] Open
Abstract
Prior research has demonstrated the importance of a healthy lifestyle to protect brain health and diminish dementia risk in later life. While a multidomain lifestyle provides an ecological perspective to voluntary engagement, its association with brain health is still under-investigated. Therefore, understanding the neural mechanisms underlying multidomain lifestyle engagement, particularly in older adults at risk for Alzheimer's disease (AD), gives valuable insights into providing lifestyle advice and intervention for those in need. The current study included 139 healthy older adults with familial risk for AD from the Prevent-AD longitudinal aging cohort. Self-reported exercise engagement, cognitive activity engagement, healthy diet adherence, and social activity engagement were included to examine potential phenotypes of an individual's lifestyle adherence. Two adherence profiles were discovered using data-driven clustering methodology [i.e., Adherence to healthy lifestyle (AL) group and Non-adherence to healthy lifestyle group]. Resting-state functional connectivity matrices and grey matter brain features obtained from magnetic resonance imaging were used to classify the two groups using a support vector machine (SVM). The SVM classifier was 75% accurate in separating groups. The features that show consistently high importance to the classification model were functional connectivity mainly between nodes located in different prior-defined functional networks. Most nodes were located in the default mode network, dorsal attention network, and visual network. Our results provide preliminary evidence of neurobiological characteristics underlying multidomain healthy lifestyle choices.
Collapse
Affiliation(s)
- Meishan Ai
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - Timothy P Morris
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | - Jennifer Tremblay-Mercier
- STOP-AD Centre, Centre for Studies on Prevention of Alzheimer's Disease, Montreal, QC, Canada
- Douglas Mental Health University Institute Research Centre, Affiliated with, McGill University, Montreal, QC, Canada
| | - Sylvia Villeneuve
- STOP-AD Centre, Centre for Studies on Prevention of Alzheimer's Disease, Montreal, QC, Canada
- Douglas Mental Health University Institute Research Centre, Affiliated with, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Arthur F Kramer
- Department of Psychology, Northeastern University, Boston, MA, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana-Champaign, IL, USA
| | - Maiya R Geddes
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- STOP-AD Centre, Centre for Studies on Prevention of Alzheimer's Disease, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| |
Collapse
|
44
|
Veréb D, Mijalkov M, Chang YW, Canal-Garcia A, Gomez-Ruis E, Maass A, Villeneuve S, Volpe G, Pereira JB. Functional gradients of the medial parietal cortex in a healthy cohort with family history of sporadic Alzheimer's disease. Alzheimers Res Ther 2023; 15:82. [PMID: 37076873 PMCID: PMC10114342 DOI: 10.1186/s13195-023-01228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND The medial parietal cortex is an early site of pathological protein deposition in Alzheimer's disease (AD). Previous studies have identified different subregions within this area; however, these subregions are often heterogeneous and disregard individual differences or subtle pathological alterations in the underlying functional architecture. To address this limitation, here we measured the continuous connectivity gradients of the medial parietal cortex and assessed their relationship with cerebrospinal fluid (CSF) biomarkers, ApoE ε4 carriership and memory in asymptomatic individuals at risk to develop AD. METHODS Two hundred sixty-three cognitively normal participants with a family history of sporadic AD who underwent resting-state and task-based functional MRI using encoding and retrieval tasks were included from the PREVENT-AD cohort. A novel method for characterizing spatially continuous patterns of functional connectivity was applied to estimate functional gradients in the medial parietal cortex during the resting-state and task-based conditions. This resulted in a set of nine parameters that described the appearance of the gradient across different spatial directions. We performed correlation analyses to assess whether these parameters were associated with CSF biomarkers of phosphorylated tau181 (p-tau), total tau (t-tau), and amyloid-ß1-42 (Aß). Then, we compared the spatial parameters between ApoE ε4 carriers and noncarriers, and evaluated the relationship between these parameters and memory. RESULTS Alterations involving the superior part of the medial parietal cortex, which was connected to regions of the default mode network, were associated with higher p-tau, t-tau levels as well as lower Aß/p-tau levels during the resting-state condition (p < 0.01). Similar alterations were found in ApoE ε4 carriers compared to non-carriers (p < 0.003). In contrast, lower immediate memory scores were associated with changes in the middle part of the medial parietal cortex, which was connected to inferior temporal and posterior parietal regions, during the encoding task (p = 0.001). No results were found when using conventional connectivity measures. CONCLUSIONS Functional alterations in the medial parietal gradients are associated with CSF AD biomarkers, ApoE ε4 carriership, and lower memory in an asymptomatic cohort with a family history of sporadic AD, suggesting that functional gradients are sensitive to subtle changes associated with early AD stages.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.
| | - Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Yu-Wei Chang
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Anna Canal-Garcia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | | | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Joana B Pereira
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.
- Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| |
Collapse
|
45
|
Wiesman AI, Donhauser PW, Degroot C, Diab S, Kousaie S, Fon EA, Klein D, Baillet S. Aberrant neurophysiological signaling associated with speech impairments in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:61. [PMID: 37059749 PMCID: PMC10104849 DOI: 10.1038/s41531-023-00495-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
Difficulty producing intelligible speech is a debilitating symptom of Parkinson's disease (PD). Yet, both the robust evaluation of speech impairments and the identification of the affected brain systems are challenging. Using task-free magnetoencephalography, we examine the spectral and spatial definitions of the functional neuropathology underlying reduced speech quality in patients with PD using a new approach to characterize speech impairments and a novel brain-imaging marker. We found that the interactive scoring of speech impairments in PD (N = 59) is reliable across non-expert raters, and better related to the hallmark motor and cognitive impairments of PD than automatically-extracted acoustical features. By relating these speech impairment ratings to neurophysiological deviations from healthy adults (N = 65), we show that articulation impairments in patients with PD are associated with aberrant activity in the left inferior frontal cortex, and that functional connectivity of this region with somatomotor cortices mediates the influence of cognitive decline on speech deficits.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Peter W Donhauser
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - Clotilde Degroot
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Sabrina Diab
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Shanna Kousaie
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Denise Klein
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
- Center for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada.
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
| |
Collapse
|
46
|
Wiesman AI, da Silva Castanheira J, Fon EA, Baillet S. Structural and neurophysiological alterations in Parkinson's disease are aligned with cortical neurochemical systems. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.04.23288137. [PMID: 37066346 PMCID: PMC10104211 DOI: 10.1101/2023.04.04.23288137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Parkinson's disease (PD) affects cortical structures and neurophysiology. How these deviations from normative variants relate to the neurochemical systems of the cortex in a manner corresponding to motor and cognitive symptoms is unknown. We measured cortical thickness and spectral neurophysiological alterations from structural magnetic resonance imaging and task-free magnetoencephalography in patients with idiopathic PD (NMEG = 79; NMRI = 65), contrasted with similar data from matched healthy controls (NMEG = 65; NMRI = 37). Using linear mixed-effects models and cortical atlases of 19 neurochemical systems, we found that the structural and neurophysiological alterations of PD align with several receptor and transporter systems (acetylcholine, serotonin, glutamate, and noradrenaline) albeit with different implications for motor and non-motor symptoms. Some neurophysiological alignments are protective of cognitive functions: the alignment of broadband power increases with acetylcholinergic systems is related to better attention function. However, neurochemical alignment with structural and other neurophysiological alterations is associated with motor and psychiatric impairments, respectively. Collectively, the present data advance understanding of the association between the nature of neurophysiological and structural cortical alterations in PD and the symptoms that are characteristic of the disease. They also demonstrate the value of a new nested atlas modeling approach to advance research on neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Edward A. Fon
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
47
|
Fitzgerald GS, Chuchta TG, McNay EC. Insulin‐like growth factor‐2 is a promising candidate for the treatment and prevention of Alzheimer's disease. CNS Neurosci Ther 2023; 29:1449-1469. [PMID: 36971212 PMCID: PMC10173726 DOI: 10.1111/cns.14160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Current AD treatments slow the rate of cognitive decline, but do not restore lost function. One reason for the low efficacy of current treatments is that they fail to target neurotrophic processes, which are thought to be essential for functional recovery. Bolstering neurotrophic processes may also be a viable strategy for preventative treatment, since structural losses are thought to underlie cognitive decline in AD. The challenge of identifying presymptomatic patients who might benefit from preventative treatment means that any such treatment must meet a high standard of safety and tolerability. The neurotrophic peptide insulin-like growth factor-2 (IGF2) is a promising candidate for both treating and preventing AD-induced cognitive decline. Brain IGF2 expression declines in AD patients. In rodent models of AD, exogenous IGF2 modulates multiple aspects of AD pathology, resulting in (1) improved cognitive function; (2) stimulation of neurogenesis and synaptogenesis; and, (3) neuroprotection against cholinergic dysfunction and beta amyloid-induced neurotoxicity. Preclinical evidence suggests that IGF2 is likely to be safe and tolerable at therapeutic doses. In the preventative treatment context, the intranasal route of administration is likely to be the preferred method for achieving the therapeutic effect without risking adverse side effects. For patients already experiencing AD dementia, routes of administration that deliver IGF2 directly access the CNS may be necessary. Finally, we discuss several strategies for improving the translational validity of animal models used to study the therapeutic potential of IGF2.
Collapse
Affiliation(s)
| | | | - E C McNay
- University at Albany, Albany, New York, USA
| |
Collapse
|
48
|
Picher-Martel V, Magnussen C, Blais M, Bubela T, Das S, Dionne A, Evans AC, Genge A, Greiner R, Iturria-Medina Y, Johnston W, Jones K, Kaneb H, Karamchandani J, Moradipoor S, Robertson J, Rogaeva E, Taylor DM, Vande Velde C, Yunusova Y, Zinman L, Kalra S, Dupré N. CAPTURE ALS: the comprehensive analysis platform to understand, remedy and eliminate ALS. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:33-39. [PMID: 35195049 DOI: 10.1080/21678421.2022.2041668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The absence of disease modifying treatments for amyotrophic lateral sclerosis (ALS) is in large part a consequence of its complexity and heterogeneity. Deep clinical and biological phenotyping of people living with ALS would assist in the development of effective treatments and target specific biomarkers to monitor disease progression and inform on treatment efficacy. The objective of this paper is to present the Comprehensive Analysis Platform To Understand Remedy and Eliminate ALS (CAPTURE ALS), an open and translational platform for the scientific community currently in development. CAPTURE ALS is a Canadian-based platform designed to include participants' voices in its development and through execution. Standardized methods will be used to longitudinally characterize ALS patients and healthy controls through deep clinical phenotyping, neuroimaging, neurocognitive and speech assessments, genotyping and multisource biospecimen collection. This effort plugs into complementary Canadian and international initiatives to share common resources. Here, we describe in detail the infrastructure, operating procedures, and long-term vision of CAPTURE ALS to facilitate and accelerate translational ALS research in Canada and beyond.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- CERVO Brain Research Centre, Université Laval, Quebec, QC, Canada.,Neuroscience Axis, CHU de Québec - Université Laval, Quebec, QC, Canada
| | - Claire Magnussen
- The Montreal Neurological Institute- Hospital, McGill University Montreal, Québec, QC, Canada
| | - Mathieu Blais
- Neuroscience Axis, CHU de Québec - Université Laval, Quebec, QC, Canada
| | - Tania Bubela
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Samir Das
- The Montreal Neurological Institute- Hospital, McGill University Montreal, Québec, QC, Canada
| | - Annie Dionne
- Neuroscience Axis, CHU de Québec - Université Laval, Quebec, QC, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Alan C Evans
- The Montreal Neurological Institute- Hospital, McGill University Montreal, Québec, QC, Canada
| | - Angela Genge
- The Montreal Neurological Institute- Hospital, McGill University Montreal, Québec, QC, Canada
| | - Russell Greiner
- Department of Computing Science, Faculty of Science, Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, Canada.,Department of Psychiatry, Faculty of Medicine and Dentistry, Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, Canada
| | - Yasser Iturria-Medina
- The Montreal Neurological Institute- Hospital, McGill University Montreal, Québec, QC, Canada
| | - Wendy Johnston
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kelvin Jones
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Hannah Kaneb
- The Montreal Neurological Institute- Hospital, McGill University Montreal, Québec, QC, Canada
| | - Jason Karamchandani
- The Montreal Neurological Institute- Hospital, McGill University Montreal, Québec, QC, Canada
| | - Sara Moradipoor
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | | | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada
| | - Yana Yunusova
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada, and
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sanjay Kalra
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec - Université Laval, Quebec, QC, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
49
|
Consent Codes: Maintaining Consent in an Ever-expanding Open Science Ecosystem. Neuroinformatics 2023; 21:89-100. [PMID: 36520344 PMCID: PMC9931855 DOI: 10.1007/s12021-022-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
Abstract
We previously proposed a structure for recording consent-based data use 'categories' and 'requirements' - Consent Codes - with a view to supporting maximum use and integration of genomic research datasets, and reducing uncertainty about permissible re-use of shared data. Here we discuss clarifications and subsequent updates to the Consent Codes (v4) based on new areas of application (e.g., the neurosciences, biobanking, H3Africa), policy developments (e.g., return of research results), and further practical considerations, including developments in automated approaches to consent management.
Collapse
|
50
|
Savignac C, Villeneuve S, Badhwar A, Saltoun K, Shafighi K, Zajner C, Sharma V, Gagliano Taliun SA, Farhan S, Poirier J, Bzdok D. APOE alleles are associated with sex-specific structural differences in brain regions affected in Alzheimer's disease and related dementia. PLoS Biol 2022; 20:e3001863. [PMID: 36512526 PMCID: PMC9747055 DOI: 10.1371/journal.pbio.3001863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease is marked by intracellular tau aggregates in the medial temporal lobe (MTL) and extracellular amyloid aggregates in the default network (DN). Here, we examined codependent structural variations between the MTL's most vulnerable structure, the hippocampus (HC), and the DN at subregion resolution in individuals with Alzheimer's disease and related dementia (ADRD). By leveraging the power of the approximately 40,000 participants of the UK Biobank cohort, we assessed impacts from the protective APOE ɛ2 and the deleterious APOE ɛ4 Alzheimer's disease alleles on these structural relationships. We demonstrate ɛ2 and ɛ4 genotype effects on the inter-individual expression of HC-DN co-variation structural patterns at the population level. Across these HC-DN signatures, recurrent deviations in the CA1, CA2/3, molecular layer, fornix's fimbria, and their cortical partners related to ADRD risk. Analyses of the rich phenotypic profiles in the UK Biobank cohort further revealed male-specific HC-DN associations with air pollution and female-specific associations with cardiovascular traits. We also showed that APOE ɛ2/2 interacts preferentially with HC-DN co-variation patterns in estimating social lifestyle in males and physical activity in females. Our structural, genetic, and phenotypic analyses in this large epidemiological cohort reinvigorate the often-neglected interplay between APOE ɛ2 dosage and sex and link APOE alleles to inter-individual brain structural differences indicative of ADRD familial risk.
Collapse
Affiliation(s)
- Chloé Savignac
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche de l’Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | - Karin Saltoun
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kimia Shafighi
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chris Zajner
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Vaibhav Sharma
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah A. Gagliano Taliun
- Department of Neurosciences & Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|